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Faceting instability in the presence of wetting interactions: A mechanism for the formation
of quantum dots
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A mechanism for the formation of quantum dots on the surface of thin solid films is propugedsociated
with the Asaro-Tiller-Grinfeld instability caused by epitaxial stresses. This mechanism, free of stress, involves
instability of the film surface due to strong anisotropy of the surface energy of the film, coupled to wetting
interactions between the film and the substrate. According to the mechanism, the substrate induces the film
growth in a certain crystallographic orientation. In the absence of wetting interactions with the substrate, due
to a large surface-energy anisotropy, this orientation would be thermodynamically forbidden and the surface
would undergo a long-wave facetirigpinodal decompositigrinstability. We show that wetting interactions
between the film and the substrate can suppress this instability and qualitatively change its spectrum, leading
to the damping of long-wave perturbations and the selection of the preferred wavelength at the instability
threshold. This creates a possibility for the formation of stable regular arrays of quantum dots even in the
absence of epitaxial stresses. This possibility is investigated analytically and numerically, by solving the
corresponding nonlinear evolution equation for the film surface profile, and analyzing the stability of patterns
with different symmetries. It is shown that, near the instability threshold, the formation of stable hexagonal
arrays of quantum dots is possible. With the increase of the supercriticality, a transition to a square array of dots
or the formation of spatially localized dots can occur. Different models of wetting interactions between the film
and the substrate are considered and the effects of the wetting potential anisotropy are discussed. It is argued
that the mechanism can provide a new route for producing self-organized quantum dots.
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I. INTRODUCTION coarsening process by sustaining ridges and corners of fac-
eted mound$.'*15However, when the growth stops, further
The formation of quantum dots in epitaxially grown thin annealing will cause coarsening of the surface structures. Re-
solid films has been attracting attention as a very promisingently, an additional mechanism that can terminate coarsen-
area of nanotechnology that can lead to a new generation @fig of the surface structures has been identified. This mecha-
electronic devices. It is generally understood that the maimism is based on wetting interactions between the film and
mechanism of the formation of quantum dots in thin solidthe substraté®!’It has been shown that wetting interactions
films on solid substrates is the Asaro-Tiller-GrinfgliTG)  can change the spectrum of the ATG instabifty®-1°or sur-
instability! that releases epitaxial elastic stresses in the filnface instability caused by the Schwobel effécand lead to
caused by the crystal lattice mismatch between the film an¢he selection of a finite wavelength near the instability
the substraté:® At the same time, other mechanisms can alsathreshold and therefore to the possibility of the formation of
play an important role in the formation of surface structurespermanent spatially regular pattefisn this case spatially
during epitaxial growth, for example faceting instability of a regular arrays of dotgor pits) are formed as a result of
thermodynamically unstable surface caused by strongonlinear dynamics near the instability threshold and the cor-
surface-energy anisotropyor slope-dependent surface cur- responding steady state can be considered as having a local
rents caused by the Schwobel efféct energy minimum. So far the formation of spatially regular
The characteristic feature of these mechanisms is that theytrays of dots has been investigated for the case of ATG
produce long-wave instabilities of the film surface leading toinstability accompanied by wetting interactions between the
the formation of mounds that usually coarsen, with largeffilm and the substrat€:'” The interplay between the film-
islands growing at the expense of the smaller dhéd.the  substrate wetting interactions afateting instability caused
same time formation of a system of islands with almost unity anisotropic surface energy, has not been studied yet. In
form sizes has been also obsertédeveral mechanisms this paper we investigate this coupling and show that, even in
that can terminate the coarsening process have been idenfive absence of epitaxial stresses, wetting interactions can ter-
fied. For example, a balance between the surface and elastiginate coarsening and lead to the formation of permanent
energies can lead to the formation of uniform-size islands agegular arrays of quantum dots, as well as spatially localized

a preferred configuration having minimal enefdyAnother,  dots, thus providing a new route for quantum-dot fabrication.
dynamic mechanism is associated with the normal growth of

the interface, e.g., by evaporation-condensa_tion or due to the Il PROBLEM STATEMENT

presence of a diffusion boundary layer typical of chemical

vapor deposition. The normal growth introduces convective Consider a thin, solid film grown on a solid substrate
effects in the evolution of the interface that compete with thewhere the lattice mismatch between the two materials is neg-
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ligible, the surface energy of the film is strongly aniso- and corners”24(for simplicity, we write this term here in the
tropic, the film wets the substrate and it is thin enough for thesmall-slope approximation that will be further employed in
wetting interaction energy to affect the chemical potential ofthis papey. The free energy5) gives the chemical potential
the film. _ _ ~ 5

Let us assume that the substrate determines the initial M= Moty = pot VapCap + VAT, ®)
crystallographic orientation of the free surface of a growingwherecaﬂ is the surface curvature tensor.
film. Let us also assume that the absence of the substrate  |n the presence of wetting interactions between the film
or when the film is thick enough so it does not “feel” the and the substrate, the film chemical potentiastrongly de-
substrate, this orientation would be in the range of “forbid-pends on the film thickness for h~ &, where 8, is the
den orientations.” characteristic wetting length, and— u, for h> 4, In this

In this paper we consider only high-symmetry orienta-case the film free energy can be written as
tions, such ag001] and [111]]. In this case, the forbidden
orientation of the growing surface implies that the surface- _ 1 2
stiffness tensot-22 }—_f [f(h’hx’ hy) +31(A) ]dxdy, ™

- y where f(h,hy,h) — uoh+I(hy,hy) for h>4,. The wetting
Yap= Voap * 00,005 (1 part of the free energy can be then defined as

is diagonal for this orientation and has two equal negative =f _ _

components. Fu= | [f(hehy) = moh=1(hehy)ldxdy.  (8)
Y11= Yop=— 0 <0. (2)  Inthis paper, we consider the following two models for wet-

ting interactions between the film and the substrate.

A two-layer wetting modelaccording to which the wet-

g interactions between the film and the substrate are de-
cribed as a thickness-dependent surface energy of the film,
(h). This dependence is usually taken td®e

(Here 6, ; are the surface angular coordinates @pglis the
Kroneker deltg. In the absence of wetting interactions be-
tween the film and the substrate, such a surface is thermod
namically unstable and exhibits spontaneous formation o
pyramidal “faceted” structures that coarsen in tifdeé The
film would decompose into faceted islands and exhibit the () =i+ (vs = yexp(=h9), 9)

Volmer-Weber growth, rather than the StranSkl'Kras’[anovwhereyS:const is the surface energy of the substrate in the

one. Hc_)wever, as we shovy b?IOW' 'ghe presence Of. Wettln%bsence of the filmy; is the energy of the film free surface
Interactions cansuppressthls instability, or qua]ltatlvely far from the substrate, and is the characteristic wetting
change it, so that it would lead to the Stranskl—KrastanO\1ength This modell s consistent withab _ initio

growth in the form of spatially regular arrays of islands. -, 3i0ng6.27 For anisotropic surface energy of the film,
The continuum evolution of the film free surface can be

described by the classical surface-diffusion equation, ¥ = W1 +e(h,hy)], (10

vp=DAgu, (3)  wherey;=const ance(h,,h,) is the anisotropy function that
depends on the orientation of the film surface. Thus, in this
model the free energy density i7) is f(h,h,,h)
:y(h,hx,hy)\e’1+|Vh|2, and the chemical potential is com-
puted asu=pu,+u,, Whereu,, is defined by(6) and

where v, is the normal surface velocity, D
=DsSQVo/ (RT)? (Dg is the surface diffusivityS, is the
number of atoms per unit area on the surfafg, is the
atomic volume )V, is the molar volume of lattice cites in the

Illm, R is theAun!verrs;al ga? consLtanIt aiidis the absol(tjjteh &_y_{ Py h+ Py H ](1 +Vh?)
e;]mpgra}ur)gt St|sI the surface Laplace operator and the oh | dhh, ohah,, @
chemical potentia = ,
P o VL+[Vh?
oF . . ~ .
w=—, (4) Note that in this cas®,z in u, depends orn.
oh A glued wetting-layer modgthat considers isotropic wet-

where F is the free energy functional arfu(x,y,t) is the ting free energy, additive to the anisotropic surface energy,
yielding u=pu,+ uy, with 1, defined by(6) and u,, being an

shape of the film surface. In trebsenceof elastic stresses . ; ) Y 4
and wetting interactions between the film and the substrateSPonentially decaying function ¢fthat has a singularity at
h .

—0:

- f [uh+I(hehy) + I(anZdxdy, (5) =~ W/ 3)" expi~ /). (12)
Here é is the characteristic wetting lengthy>0 character-
where ug is the volume part of the free energy, is the izes the “strength” of the wetting interactions, anag>0
constant chemical potential of a planar film|  characterizes the singularity of the wetting potentialhat
=y(hy,hy)1+(Vh)? is the weighted anisotropic surface en- — 0. This singularity is a simple continuum phenomenologi-
ergy that depends on the local surface slope, and the  cal model of a very large potential barrier for removal of an
regularization coefficient that measures the energy of edgadgtra-thin(possibly monolaygmwetting layer that persists be-
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tween surface mounds during Stranski-Krastanov growth
procesgsee also Refs. 20, 28, and)29Ve are not aware of

experimental studies in which the wetting interaction poten- ?

tial has been measured and the glued wetting-layer model is 0

a reasonable approximation for the purpose of our analysis. b)
Thus, in the small-slope approximation and for high- s

symmetry orientations, the surface chemical potential in both )

of these models have the same form,

W= pd oy, (13)
where,u‘;:,uy(ho) is defined by(6) and evaluated at the ini-
tial film thicknesshy, and the part of chemical potential due
to wetting can be expanded as

oy = Wo(h) + Wo(h)(Vh)2+ W5(h)V2h+ -+, (14) FIG. 1. Sketch of dispersion curves defined (82) for (a)
0?1 (4v\Wpy) > 1, (b) 02/ (AvWpy) =1, and(c) o2/ (4vWpy) < 1.

k

whereW, , {h) are smooth functions, rapidlgxponentially

decaying with the increase ol, W;(hy)=0, and 2\, a b

=dW,/dh [due to(4)]. Goor= —(hi + h;l) + _hihf/, (20)
In the small-slope approximation, and in the particular 12 2

cases of high-symmetry orientatiofg®®01] or [111]) of a

crystal with cubic symmetry, the evolution equati) for _a s b5 3
the film thickness can be written in the following form: 1117 1_2(V h)*+ é(3hxhy_ hy). (21)
— 2K 2
dih=DA[gAh+ vA%h = Tiy[h] + Wo(h) + Wa(h)(Vh) In the following sections we investigate the stability and
+Ws(h)Ah], (15) ?105n)linear dynamics of the solid-film surface governed by Eq.
where for the orientationf001] and[111] the nonlinear dif- '
fgrential operatofl’;y[h] has the following formg, respec- Il FACETING INSTABILITY IN THE PRESENCE OF
tively: WETTING INTERACTIONS
— 2 2 2
Too1= (@b + bhﬁ)hx“ (bR +aR)hy, + 4bhhyh,y, Consider infinitesimal perturbations of a planar film sur-

(16)  face, h=hy+he***“t, and linearize Eq(15) to obtain the
following dispersion relation between the perturbation

a .

T'110= a[h2hyy + hihyy +2hhh ]+ g[hihxx ¥ hihyy growth ratew and the wave vectdk:
= D(— Wyk? + ok* = 1k8), (22

- 2hhyhy I+ B[ (he = hyyhy + 2h h . 17
o _ wherek=|k| and
Here the coefficienta andb characterize the surface-energy

anisotropy and can be computed from the surface-energy de- Wor = Mo (23

pendence on the surface orientation. Naturally, the nonlinear 017\ sh heh

operatorl’yy is invariant with respect to rotations by/ 2, as

well as any of the transformations——x, y— -y, x—Y, One can see that if the film wets the substrate, i.e., when
while I'y;; is invariant with respect to rotations by723 as  Wp;>0, the wetting interactions suppress the long-wave
well as the transformatioly— -y, b——b. The functions faceting instability caused by the surface-energy anisotropy.
W, > 4h) are determined by the type of a wetting interaction The instability occurs only for

model and can also differ for different orientations of the o2
film surface. >1, (24)
Note that Eq.(15) with the nonlinear operatork;; de- 4vWo;

fined by (16) and(17) can be written in a variational form o it either the wetting interaction is less than the threshold

,O0F value, Wy, <W§,=0?/(4v), or the surface stiffness is larger
dh=DV*—, (18)  than the threshold value;> o= 2\Wy,v. At the instability
threshold, the wavelength of the unstable perturbatiois
where F=[Fdxdy, and the free energy density finite, A\=\.=27/k;, where
__9 2,V 2 21 2 o
F= 2(Vh) + 2(Ah) +gijk+fwo(h)dh 2Wz(h)(Vh) : k.= > (25)
(19

Typical dispersion curves defined 82) are schematically
with shown in Fig. 1. Note that the critical wave number at the
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threshold does not depend on the wetting potential and isrders ofe. From the problem at second order one finds
determined only by the surface stiffness and the energy of ) )

edges and corners. For the parameter values typical of semi- Az = 5(3Wap = 2Wpo) A%, (31
conductors like Si or Ge, with the surface energy
~2.0 Jm?, surface stiffnessr~0.2 J m?, the lattice spac-
ing ag~0.5 nm and the regularization parameter- ya3

As the solvability condition at the third order, one obtains the
evolution equation for the complex amplitude of the un-
stable, spatially periodic mod&(X,T). The solvability con-

. 19
5.0x10"J, the wavelength of the structure at the Onsetdition at the fourth order yields the evolution equation for the

of instability is 14.0 nm. . .
Thus, in the presence of the wetting interactions with thereal amplltudeB(X,T) of .the Goldstongzerg mode associ
o - o ated with the conservation of mass. Together, the two equa-
substrate, the faceting instability beconséert wave This is tions form the followina svstem of coupled equations:
qualitatively different from the case of the faceting instability gsy P q '
in the absence of the wetting interactions when the instability A=A+ Ay~ \o|A?A+ SAB,
is long wave i.e., when all perturbations whose wavelengths

are larger than a certain threshold are unstable. In other B.=lg.._ 25(| A2 (32)
words, wetting interactions with the substrate change the T™ a=xXX XX

faceting instability from the spinodal decomposition t§p8  where

the Turing type® thus leading to the possibility of changing Lol ) ,

the system evolution from Ostwald ripeniigparseningto No=75— 5(3wyo— 2Wg)? — 5Wo1 + 5Wpg, (33
the formation of spatially regular patterns. The latter is stud-

ied in the following sections. s= %Wzo‘Woz- (34)
IV. FORMATION OF SURFACE STRUCTURES: 1+1 CASE The system of amplitude equatio(®2) has a stable, sta-

tionary solution,A:)\allz, B=0, corresponding to spatially

In this section we investigate the nonlinear evolution Ofperiodic patterr(array of dots, if31:16

surface structures resulting from the faceting instability in
the presence of wetting interactions with the substrate in a Ao > 857 = 2(Wyo— 2Wgy)?. (35
1+1 case of a two-dimensional film with a one-dimensional

surface. In this case, the evolution equatidb) for the
shape of the film surface, after the rescaling (v/ o)V,
t—[12/(Do3)]t, h— (v/a)Y?h, becomes

Condition (35) defines a region in the parameter space in
which one can observe the formation of stable periodic ar-
rays of dots. First, consider glued-layerwetting potential
defined by(12). From (24) one obtains that the planar film

A =[hy + Nyys— hihxx"' wo(h) +w,(h) h§ + Ws(h) ey surface becomes unstable with respect to periodic structures
(26) for
wherewg , {h) are the rescaled functiond) , {h), respec- - %S > Yay,+ O W De! (36)
14

tively [ws(hg) =0, 2w,=dwg/ dh]. In this scaling, the instabil-

. _ 1

ity occurs for (wo/ dh)nen,=Wo1 <3 at the wave number here ;=hy/s. Since for the wetting potentiall2) w,(h)

ke=vN2/2. . . _ _ =wy(h)=0, one obtains from35) and (36) that a near-
First, we investigate the evolution near the instability {hreshold periodic surface structure is stable if

threshold by means of weakly nonlinear analysis, and then
we study a strongly nonlinear evolution by means of numeri- ﬁ ¢ 37
cal simulations. L (¢.aw), (37)

A. Weakly nonlinear analysis where

Considerwy, =3 - 2¢%, e<1, introduce the long-scale co- (¢, a,,) = [18X({ + ay) 2] {108* + 400, 3
ordinateX=ex and the slow timeT =€, and expand
€ P + (11 + 600,) 2 + 2 (2002 + 11, - 9)¢

h=h-ho=dAX T+ c.c] + [A(X T+ B(X,T) +a2(1002+ 11, + 1)]. (38)
reeld -, (27) Conditions(36) and(37) are shown in Fig. 2.
_ _ ~ Now consider awo-layerwetting potential defined b§9)
Wo(h) =Wpot WOlh + W02h2 + Wo:.gh3 + oo (28) with
0
~ =vyl+ecos4dby+6)], 39
W) = Vg + WP+ - 29 ¥ =%l 460+ 0)] (39

where §=arctarih,) and 6, corresponds to the orientation of
—w B T the planar surface of the film, parallel to the substrate; for the
Ws(h) = Wagh +Waht™+ -, (30 high-symmetry orientation§01] and [11], 6,=0, /4, re-
wherews;; =2w,, andws,=W,;. Substitute27)—30) into Eq.  spectively. It is convenient to introduce the following dimen-
(26) to obtain the corresponding problems in the successivsionless parameters:
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a) b)

b)

stable
periodic
structures

i)

| unstable film % 15

\

-

5 1\.5‘2‘3415[10,5 18\ o) d)
FIG. 2. () Parameter regions where a planar film surface is 0g o unstable \g, ~ unstable
unstable (above the corresponding curyefor «,=6.0 (dashed nf’;%ggfeﬂ'\f" ot oty |
line), &, =3.0(solid line) and «y,,=1.0 (dashed-dotted line(b) Pa- 2 4,6 8 2 476 8
rameter regions where weakly nonlinear periodic surface structures
are stablgabove the corresponding curydsr different values of FIG. 3. Parameter regions where a planar film surface is un-
Q- stable(above the solid lingand where stable periodic structures can
form near the instability thresholthear the solid line, above the
dashed ling (a) £€=0.1, y56°/v=0.5; (b) £=0.1, y56°/ v=2.0; (C)
£=0.2, v:6°/v=0.5; and(d) £=0.4, y;6°/v=0.5.

3
1 \&
= \ %6 planar film [ 2 planar film|
1 %
0

he . +1  _ 9% -1
r=200185-1), ¢==2 FH=——" %= .
v s 156 -1 156 -1

The film wets the substrate F<7% Il or v/ yo>¢e+1. In ues of the surface-energy anisotropy, and the value of
this case, the nonlinear anisotropy coefficiatin Eq. (15) is vs6/ v, the formation of stable periodic structures occurs if
always positive. The faceting instability requires a negativethe ratio of the initial film thickness to the wetting length is
surface stiffness that can be achieved only 48>0, and  Within a certain interval.

{>In(1+T7Y). (40)

. - o . B. N ical simulati
The instability threshold conditio(24) gives umericat simuiations

We have performed numerical simulations of E2p) for

ys0® _ _4e{1-T%] (41) the two types of wetting potentials, by means of a pseu-
v [T(ef-1) -1 dospectral code with the time integration in Fourier space

) i using the Crank-Nicolson scheme for the linear operator and
The analysis of the conditiong0) and(41) shows that the = ho Aqams-Bashforth scheme for the nonlinear operator. Nu-
short-wave instability of the film surface that can lead t0grica| solutions in both cases exhibited the formation of
pattern formation can occur only if the film thickness is siaple periodic structures near the instability threshold in the
above a threshold value determined only by the surfacesarameter regions where these structures are stable. At the

energy anisotropy and the wetting length, namely, for same time, outside these regions or with the increase of the
supercriticality, the periodic stationary structures become un-
ho > 5In{ T 1]- (42)  stable and exhibit different behavior, depending on the type
of wetting interactions. We have found that with the two-
Using (35) one can show that the weakly nonlinear peri- layer wetting potential{9)—(11), the surface mounds grow
odic structure is stable if and coarsenlarge islands grow at the expense of small
oney, with the film between the islands getting thinner and
ﬁz > (¢ Te) (43) thinner, until its thickness reaches zero in a finite time and
v e then becomes negative, which is unphysical. This is clearly

an artifact of the presentontinuummodel, based on the
conservation of mass, that neither treats the substrate as a
2 T2(5e% + 14ef + 35) + 14’ (e + 5) + 35 44 separate surface with its own transport properties, nor can it
S o T 112 N . properly describe the dynamics of a monolayer wetting film.
27 e I(e-1) - 1l (e - D -1] Although zero film thickness may indicate dewetting, the
The conditiong40)—<44) allow one to determine regions latter process itself, on the one hand, cannot be described
in the (I, £) parameter plane where spatially regular surfacewithin the framework of this model, and, on the other hand,
structures can occur as a result of thermodynamic instabilitys not the focus of the present investigation aimed at studying
of the film surface caused by strongly anisotropic surfacesystems in which the film between the islands evolves to
tension in the presence of wetting interaction described bygmall thickness but never exposes the substrate. The persis-
the two-layer mode(9). Examples of these regions for dif- tence of a very thin, “glued” wetting layer, typical of the
ferent values of the anisotropy parameteare shown in Fig. ~ Stranski-Krastanov growth, indicates a very large energy
3. penalty for its removal. Such energy barrier can be effec-
Solid lines correspond to the conditigdl), the dashed tively described by the phenomenological glued-layer model
lines correspond to the conditigd4). The film is unstable in  (12) in which the wetting potential is singular ftwv— O (see
the regions above the solid lines, and the stable periodialso Refs. 28 and 39
structures can form in the region near the solid line which In Figs. 4 and 5 we present the results of the numerical
lies above the dashed curve. One can see that for given vasimulations of EQ.(26) with the wetting potential corre-

where
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@ parameter regions where a near-threshold periodic structure
with the wavelength corresponding to the most rapidly grow-
ing linear mode is unstable, it undergoes coarsening right
after formation, and finally evolves into spatiallycalized

h (nm)
=P
r 1

[=)

20 40 60 80 100 120

=6

%4 /\/\/\/\/\/\/\(i)\ dots. Different stages of this coarsening process and the for-
2 mation of localized islands are shown in Fig. 5. At the last

9 2 4 e 8 10 1 stage, shown in Fig. 5, the coarsening either completely

&3 © stops or becomes logarithmically slow.

‘zw Thus, the presence of wetting interactions between the
0 20 40, omp0 80 100 film and the substrate can suppress the faceting instability of

the film surface, that is thermodynamically unstable due to
FIG. 4. Stationary numerical solutions of E@6) with the wet-  strong anisotropy of the surface energy, and lead to the for-
ting potential (12) showing stationary surface structures fagy  mation of spatially regular surface structures, or to the for-
=3.0 nm, (¢{=2.0, a=0.17 Jm? and(a) w=6.8x10° Im™> (Wo;  mation of spatially localized dots divided by a thin wetting
=0.24; (b w=2.8x10°Jm® (w;=0.; and (c) w=2.8 |ayer. In the next section we consider evolution of a more
X 10" 3 m® (w;=0.02. realistic, 2+1 system.

sponding to the glued wetting-layer model defined(bf).  \, FORMATION OF SURFACE STRUCTURES: 2+1 CASE
The shown length scales correspond to the following param-

eter values, typical of semiconductors like Si or Ge: In this section we investigate the nonlinear evolution of
~2.0Jm?2 o~0.2J3m2 5~1.5 nm, and the estimates of surface structures resulting from the faceting instability of a
«=3.0 andy~ ya(2)~5.0>< 10719, wherea,~0.5 nm is the  three-dimensional film with a two-dimensional surfa
crystal lattice spacing; the nonlinear coefficient of thetl case in the presence of wetting interactions with the
surface-energy anisotropyg, the initial film thicknessh,, ~ substrate. We consider high-symmetry orientations only,
and the wetting interaction strength parameterare varied.  [001] and[111], described by Eq(15). _

In experiment, the film thickness is the main parameter that After the appropriate rescaling, E(.5) can be written as
controls the film instability. For example, fov~Avy/é§ _ 2 2

~6.7x10° IJm3, where Ay~0.1Jm? is the surface- ah=A{ah+A% = glh] +wo(h) +wa(h)(VH)"+ ws(h) A,
tension difference between the substrate and the film, one (45)
finds that if the initial film thicknessh,, ranges from h th I diff tial th] for [001] ori-

1.2 to 5.3 nm, the parametav,, changes from 2.3to 7.3 \(Iavnt‘zl:‘iaon ;non inear differential operatgii] for (001 ori

X 1074, respectively. The instability occurs in this case for a
film thicker than h0z1.9.nm, a_md _the wavelength of the Ooo1= (N2 + phﬁ)hxx+(h§+ phf)hyy+ 4phhyhyy, (46)
structure at the onset of instability is 14.0 nm.

Figure 4 presents the stationary solutions of &) for ~ and for[111] orientation it is

different values of the dimensionless wetting parametgy, = (h2+)ho+ (h2+ h)h .+ 2honh
corresponding to different values of the wetting interaction Y111 ( x 3 y) > ( yo3 X) A R
strength,w, and the initial film thicknessh,. One can see +q[(hy— hyyhy + 20, b, ]. (47

that, near the instability threshold, an almost harmonic small-
amplitude periodic structure is formed. Farther from the
threshold, the formation of periodic structures with larger
amplitude and larger wavelengths can be observed. In th

Equation (45) has a special structure in that the linear
operator is isotropic, while the nonlinear operator is aniso-
tropic. The linear growth rate near the instability threshold,
t%us, does not depend on the wave vector orientation and the
resulting dispersion relation is the same as in the 1+1 case,

%NWW\NWWW\AN\ANWVWVWW\AMMMAM w:—WOJ|_<2+k4—k6, with the instability threshold/vm:i at

k=k.=v2/2. It is the nonlinear interaction between the
150 300 450

£, modes that will determine the symmetry of the emerging
=2 H “ f\ “ A “ AR I\ H pattern. This situation is similar to the one considered in Ref.

= 150 300 450 32 where the effect of surface-energy anisotropy on the for-
£ mation of cellular patterns with different symmetries at a
g ‘ M) . crystal-melt interface caused by morphological instability

0 150 300 450

during directional solidification was studied. In the next sec-
tion we consider the weakly nonlinear analysis near the in-
(0] T A0  (om) 300 450 stability threshold.

FIG. 5. Different stages of coarsening of the initial periodic

- ) . L ) A. Weakly nonlinear analysis
structure, yielding the formation of localized dots divided by a thin

wetting layer—the numerical solution of E(26) with the wetting Since the linear operator of E(45) is isotropic and the
potential (12); hy=1.5 nm, w=8.2x10° Jm3 (£{=1.0,wp;=0.1), nonlinear operator of Eq45) has a quadratic nonlinearity
a=0.22 Jm2 that breaksh— —h symmetry, the preferred pattern near the
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instability threshold will have Aexagonakymmetry, caused . _ &b
by the quadratic resonant interaction between three different O
modes oriented at 120° with respect to one another and hav-
ing the same linear growth rate. The specific type of pattern
in this case is determined by the phase locking of the three
resonant modes that depends on the quadratic resonant inter-
action coefficient. In order to compute this coefficient, take
Wo1= 2‘276 €<1, introduce the slow time=et, and use

the expansion$28)—30), as well as the expansion

3 3 3
h=eX A(NENT + €D B (1™ + € [Byn(1)e?n"
n=1 n=1 n=1

@
‘IL
g
(&
g

+ By poq(Deki D ] + c.c. +O(€), (48)

where Ay(7), Bn(7), Byn(7), and B, ,_1(7) are complex am-
plitudes(the spatially uniform mod®,, _, is missing due to
the conservation of magy is a vector in the(x,y) plane,
kn=1/\s‘§ andk,+k,+k3=0(n=0 andn=3 correspond to the
same mode with the wave vectkg). Then, the solvability FIG. 6. Spatial patterns
condition for the problem foB,, in the ordere? yields the  Of ©@=61+6,+0s.

following three evolution equations for the amplitud®s,
hexagonal arrays of dots fa®°*>0 or pits for a®°1<0.

IAL= VALY alohy, (49) Note that for{001] orientation, the pattern type is determined
where the other two equations are obtained by the cycligurely by the details of the wetting potentigthe coefficients
permutation of the indices in Eq49). The resonant qua- Wo2 andw,g) since in this case the anisotropic surface energy
dratic interaction coefficient is different for different surface enters only through the quartic terms in the free energy func-
orientations: tional yielding cubic nonlinear terms in the evolution equa-

tion for the surface shape. For example, for a glued wetting
4W20~ Wop, (500 potential of type(12), Wy=0, a®1=-wy,>0 and therefore
the formation of only hexagonal arraysdadtsis possible, an
array of pits cannot form.

The situation is different fof111] orientation when the
free-energy functional has anisotropic cubic terms leading to
where the angleg, characterizes the orientation of the anisotropic quadratic terms in the evolution equation for the
resonant triad {k;,ky,ks} in the surface plane,ky  surface shape and the complex quadratic resonant interaction
=(cosdy, sin ¢p). Thus, in the case of th@01] surface, the  coefficient. In this case, the imaginary part of the resonant
quadratic mode interaction is isotropic, while in the case ofinteraction coefficient depends on the surface-energy aniso-
[111] surface it depends on the pattern orientation within theropy coefficient,q, and the pattern orientation within the
[117] plane. . ' [111] plane(angle ¢). As one can see frortb2), the most

For equilateral patternd,=pe'% and usinge=|e/€’ one  rapidly growing pattern corresponds to the maximunjcf
obtains from(49) the following system of equations fgr  that is achieved forp,=7/6. Thus, one would observe in

r\e=
2@
C

@
@

@

=€

57
4
€

~
|

)

/)

=
\

)
/g
\

o

escribed 84 with different values

001_

atti= goot_ i 4 gay 51
5 Sy (5)

and®=6,+6,+ 65 this case the growth of a pattern described by the function
9.p= yp +|alp? cod® - 8), (52) (54) with the phases locked at
—
3.0 == 3p|a|sin(® - &). (53 _ arcta{ /N2 } . (55)
4wgz = 3wy

Equation(53) has two critical points: stable®) =4, and
unstable® =7+ 4. Thus, the systentb2) and(53) describes

an unbounded growth of a pattern given by a function Examples of patterns corresponding to different value® of

are shown in Fig. @see also Ref. 32 One can see that for
h=p[cogk, -x + 6;) + cogK, - X + 6,) + cogk3 - X + 65)], intermediate values o the growing pattern consists of a
(54) regular hexagonal array of triangular pyramids. Note that
similar hexagonal arrays of triangular pyramids were ob-
in which the phases are lockeg:+ 6>+ 63=4. If the resonant  served in experiments reported in Ref. 33. Although the
interaction coefficient is real, thef=0 (a>0) or 6=m (a  physical mechanism of the formation of ordered arrays of
<0), and the functior{54) describes a spatially regular array triangular pyramids observed in Ref. 33 was differ@hastic
of hexagons witth>0 (h<0) in the centers of the hexagons interaction of multiple epitaxial layeys the nonlinear
for >0 (a<0). Therefore, in the case of t§601] surface mechanismbased on the resonant quadratic interaction of
when o is real, one could observe the growth of regularunstable modes in the presence of the anisotropy ofith#
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orientation is universal and may well be the same in the
system studied in Ref. 33.

The amplitude equation®9) cannot describe the nonlin-
ear stabilization of a growing surface structure and cannotl
provide conditions for the formation of stable, spatially regu- ,nm,
lar structures near the instability threshold. In order to obtain
such conditions higher ord¢usually cubig nonlinear terms 3
in the amplitude equations need to be taken into account o«
However, in the presence of the resonant quadratic interac
tion, the addition of cubic terms in the amplitude equations
near the instability threshold is asymptotically rigorous only
if the quadratic interaction coefficient is smali| ~ €, which FIG. 7. Formation of spatially regular arrays of dots: numerical
restricts the validity of the weakly nonlinear analysis to asolutions of Eq.(15) for [001] surface orientation(a) Stationary
narrow range of physical parameters. The Landau cubic inkexagonal array of equal-size dotsh,=1.5 nm, w=1.89
teraction coefficients will be anisotropic and depend on thex 10" Jm3, a=6.6 J m? (wy;=0.23 ¢(=1.0). (b) Stationary square
pattern orientation in the surface platfeBesides, if one al- array of equal-size dotshy=1.5 nm, w=8.2x10°Jm3, a
lows for long-scale spatial modulations of the patterns, thes11.1 Jm? (w;=0.01£=1.0); Other parameters are the same as
interaction between the unstable periodic modes and thi Figs. 4 and 5 an®=0.

Goldstone mode will strongly affect the pattern stabi{gge i .
Sec. V) and must be taken into account. The resulting syS_and further increase of the surface-energy anisotropy, forma-

tem of amplitude equations with cubic terms, coupled to arfion of spatially regular square arrays of equal-sized dots
equation for the Goldstone mode, will be similar to that stud-Shown in Fig. Tb) is possible. If the anisotropy coefficieat

ied in Ref. 16, but will have anisotropic Landau coefficients!S not sufficiently large, hexagonal arrays of dots that are
and anisotropic and complex quadratic coefficients. The fulformed at the initial stage of the film instabiliffig. &a)]
stability analysis of such a system is cumbersome; it is beoarsen in time, resulting in the formation of rounded local-
yond the scope of the present paper and will be done elsdZ€d dots shown in Fig.(8). These dots are connected with
where. In this paper we rather perform numerical simulationg€ach other by a thin wetting layer. The mound slope remains
of the full 2D nonlinear evolution equatio@5) for the two constant during thg coarsening. At fche late stages, when the
orientations of the film free surface. The results of the nu-dots become localized, the coarsening rate decreases sharply

merical simulation are described in the next section. and the coarsening apparently stops. _
In the case of th¢l11] orientation of the film surface we

have not observed the formation of regular arrays of dots
even near the instability threshold and for large surface-
We have performed numerical simulations of Etp) for  tension anisotropy coefficients. For all studied parameter val-
the two orientations of the film surfacg®01] and[111], with ues we have observed the initial formation of a hexagonal
Ii[h] defined by(16) and (17), respectively, and for the array of triangular pyramids that further coarsen and evolve
glued-layer wetting potentialVp(h) defined by(12) [so that towards localized triangular pyramidal structures; different
W,(h)=Wj5(h)=0 in (15)]. We have used a pseudospectral 2Dstages of the coarsening process are shown in Fig. 9. As the
code similar to the 1D code described in Sec. IV. We havdocalized dots shown in Fig.(B), the localized pyramids
considered two different cases: formation of structures durhere are divided from one another by a thin wetting layer and

ing surface annealing and during ballistic deposition. at the late stages the coarsening apparently stops. It is inter-
esting that, unlike[001] surface orientation, the localized

B. Numerical simulations

1. Structure formation during surface annealing 3 b)

If the initial film thicknesshy is so large that the film does
not “feel” the substratehy,> 6, the numerical solutions of
Eqg. (45) exhibit the formation of “faceted” pyramidal struc-

tures(square pyramids fdi001] surface and triangular pyra- 120 120
mids for[111] surfacg that coarsen in time, similar to those h(nm) h(nm)
described in Refs. 7 and 15. If the film is thin enough so that 19, %0 10 80

the wetting interactions become important, in the case of g
[00]] surface one can observe the formation of spatially
regular (with some defects hexagonal arrays of rounded
dots. We have observed that these arrays of equal-sized dows

can be stable for small supercriticality and large enough giG. 8. Formation of localized dots via coarsening: numerical
surface-energy anisotropjfarge enough coefficien& to-  sojutions of Eq(15) for [001] surface orientation(a) Nearly hex-
gether with the ratia/b in Eq. (15)]. An example of such agonal array of dotginitial stage; (b) spatially localized dots di-
stable array is shown in Fig.(@. It is interesting that the vided by a thin wetting layerlate stagg hy=1.5 nm, w=8.2
surface-energy anisotropy is overcome here by the isotropig 10° J m3, a=0.22 J m? (wy;=0.1,,=1.0). Other parameters are
wetting interactions. With the increase of the supercriticalitythe same as in Figs. 4 and 5 abd0.

100 -
o Yoy 50 ¥

y(nm) 50
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a) b)

h(nm)
20

0

FIG. 10. Evolution of dots accompanied by ballistic deposition:
numerical solutions of Eq.15) in 2D with the additional constant
deposition term.(a) Hexagonal array of equal-size dogsitial
0X(nm) stag®; (b) larger dots with pyramidal shapéater stagg hg

=1.5nm, w=8.2x10f Jn3, a=0.22Jm? (wy=0.1,(=1.0,
deposition rat&/=0.2 nm/min. Other parameters are the same as in
Fig. 1 andb=0.

100

100
y(nm) *°

x(nm)
yom)® g 0

FIG. 9. Formation of localized dots: numerical solutions of Eq.
(15) for [111] surface orientation showing different stages of coars-
ening of initial regular hexagonal array of triangular pyramids. The
parameters are the same as in for the case shown in Fig. 8, excgpanied by the coarsening of the pyramidal structures, as in
b=0.44 Jm? the case of annealing of thermodynamically unstable surface,

and the rate of coarsening does not depend on the deposition

dots grown or{111] surface are strongly anisotropic. This is rate. Indeed, for thick enough films, when the wetting inter-
due to anisotropic cubic terms in the free energy functionafctions decay and become negligible, the only order param-
(anisotropic quadratic terms in the evolution equatitvat in ~ €ter that governs the dynamics of the surface structures is the
the small slope approximation become dominant. Note tha©cal surface slope, and the effect of the film growth is elimi-
self-organization of quantum dots in the form of localizedNated in the frame of reference moving with the mean sur-
triangular pyramids on §111] surface was observed in Ref. face position. This is different from the faceting instability
34. Although in experiments described in Ref. 34 an elasti@ccompanied by the film growth by the evaporation-
mechanism of the solid film instability seems to play an im_c_ondensation mechanism that produces the flux normal to the
portant role, the triangular shape of the pyramids w@f1  film surface.

faces is clearly caused by the anisotropic surface energy,

which is correctly captured by our model. VI. EFFECT OF EPITAXIAL STRESS

2. Structure formation during ballistic deposition The analysis presented above assumes that the epitaxial
stress in the film is negligible and the instability is driven
solely by the anisotropic surface energy. In experimental het-

structures caused by the interplay between the anisotropﬁroep'tﬁx;?l. systetmsi_hov;/ever,t_theteptléaxmflf st:esfs IS .?IW.aBI/S
surface energy and the wetting interactions between the filfresent. 1t Is-instructive to estimate the efiect ol epiaxia

and the substrate. One can expect that if the surface evolﬁ—m_al_shS onﬁth? s:cjrfapte-gnler?y—drlyenlmeche(xjmstmbqlf_ 'nStak%'::ty'
tion is accompanied by ballistic deposition, the influence of e efiect of epitaxial stress 1S always destabilizing. The

wetting interactions will decay with the film growth, and the analysis of the ATG. mstabl!lty n a thin solid film in the
anisotropic effects of surface energy will become more proP'¢s€nce of wetting interactions with the substrate has been
nounced. The effect of the film growth by ballistic deposition done in Refs. 16 and 19. In the linear, small-slope approxi-

: ; o ation, the effect of the anisotropic surface energy will be
n ri in nstan ition r r L ;
can be descrbed by adding a constant ceposiion rate e, (S IS5 08 STTARE SRS S

we have chosen thg001] surface orientation of the film corresponding terms from the dispersion relai{ad) to the

since in this case the cubic nonlinear effects of anisotmpigispersion relation obtained in Ref. 19 for the general case of

surface energy are almost completely suppressed by qu.‘;i‘-n elastic substrate to obtain

dratic nonlinearity of isotropic wetting interactions. D7 lw = — Wy k? + Bgk® + (0 + By)k* = Bsk® — (Bg + »)KC,

We have performed numerical simulations of Ebp) for
[001] surface with an additional constant deposition ratewhere the coefficient8; are proportional to the square of the
term. The result is shown in Fig. 10. One can see that, inlattice misfit, 2, and depend on the elastic constants of the
deed, in the course of the film growth, when the film be-film and the substrate. For example, for a rigid substrate,
comes thicker, the effects of wetting interactions decay and

Finally, it is interesting to study the effect of the film
growth by ballistic deposition on the formation of surface

the rounded localized surface mounds become anisotropic Bs=B5=0,

and acquire pyramidal shape, as in the case of faceting insta- . )

bility of thermodynamically unstable crystal surfades. B, = 4ehou'(1+p) (56)
Also, we have observed that the growth of the film is accom- 4 (1-p)? '
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Be = 2e?h3u(3 + 4p)(1 +p)?, the presence of wetting interactions and anisotropic surface
] . energy, governed by surface diffusion, have been performed.
and, for an elastic substrate with the shear modulus close tphe formation of spatially regular arrays of square pyramids

that of the film, has been observed for some parameter values.
B.= 461 (1 +p)? VII. CONCLUSIONS
3_ L
1-p In conclusion, we have found that, besides the stress-
driven instability, there can be another mechanism of the
B4=Bs=Bs=0, (57)  formation of quantum dots in epitaxially grown thin solid

films. By this mechanism, the substrate determines that the
film surface grows in a specific crystallographic orientation.
do the case of a thick film that does not feel the substrate, this

merely shifts the critical value of the wetting interaction co- orientation would be forbiddeni.e., thermodynamically un-

efficient, WE,, corresponding to the onset of the instability, aSstable, leading to the formation of faceted structures. Wet-

well as the threshold wave number of the emerging periodi¢iN"d Interactions between the film and the substrate suppress
structure k.. In the case of a rigid substrate the long-wave modes of this instability and change its spec-

trum from the spinodal decomposition type to the Turing

wherehy is the initial film thicknessy' is the shear modulus
of the film andp is its Poisson ratio.
One can see that the presence of the epitaxial stre

B Bﬁ , 0+By type, thus yielding a possibility of the self-organization of
We, = 4_36 ke = 20+ B’ stable, spatially regular hexagonal or square arrays of equal-
o . size dots. We have shown also that, depending on the initial
and for small epitaxial stress, one obtains orientation of the film surface, this type of surface instability
o2 can lead to the formation of rounded dots whose coarsening
WE, = 4—[1 +e%hou’(8P, - 2P,)], apparently stops when they become localigedhe case of
14

the [001] surface, or to the formation of localized faceted
triangular pyramidgin the case of thg111] surface. This
_ /l o f B difference is explained by the presence of cubic anisotropic
ko= 21,[1"’8 how'(2P, = P)], terms in the surface free energy in the case of [thEl]
orientation. We have found the parameter regions in which,

where depending on the type of wetting interactions, one can ob-
1+p)2 h2 serve the formation of stable periodic arrays of dots. In the
P1:U'1<—> . Py=—(3+4p)(1+p)> presence of deposition, or for sufficiently thick films, the
1-p v dots can acquire pyramidal shape due to the decrease of the

Thus, in the case of a rigid substrate, the shift of the criticafffect of isotropic wetting interactions. This new mechanism
value of the wetting interaction coefficient and of the critical @0 provide a new route for producing self-organized quan-
wave number can be of either sign, depending on the PoissdHM dots. Small epitaxial stresses would not change this
ratio, surface stiffness, regularization coefficient and the ini/neéchanism qualitatively, but merely lead to a small shift of
tial film thickness. the critical film thickness, critical wetting parameter and the

In the case of an elastic substrate whose shear modulus fgreshold wave number.

close to that of the film, for small epitaxial stress, one obtains Note that spatially regular stable arrays of dots caused by
wetting interactions exist in a rather narrow range of param-

WE. = f + Bk, eters, bount_ll_ed _by proximity to_the instabilit_y threshold a_md
017 4y %0 by the stability interval determined by the interaction with
the Goldstone mode. Therefore, experimental implementa-
B; tion of the conditions that may lead to the self-assembly of
ke=ko+ 10 spatially regular arrays of dots can be a challenge for experi-
7 mentallists.
whereky=+/o/(2v) and B; is defined by(57). Thus, in this
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