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A mechanism for the formation of quantum dots on the surface of thin solid films is proposed,not associated
with the Asaro-Tiller-Grinfeld instability caused by epitaxial stresses. This mechanism, free of stress, involves
instability of the film surface due to strong anisotropy of the surface energy of the film, coupled to wetting
interactions between the film and the substrate. According to the mechanism, the substrate induces the film
growth in a certain crystallographic orientation. In the absence of wetting interactions with the substrate, due
to a large surface-energy anisotropy, this orientation would be thermodynamically forbidden and the surface
would undergo a long-wave faceting(spinodal decomposition) instability. We show that wetting interactions
between the film and the substrate can suppress this instability and qualitatively change its spectrum, leading
to the damping of long-wave perturbations and the selection of the preferred wavelength at the instability
threshold. This creates a possibility for the formation of stable regular arrays of quantum dots even in the
absence of epitaxial stresses. This possibility is investigated analytically and numerically, by solving the
corresponding nonlinear evolution equation for the film surface profile, and analyzing the stability of patterns
with different symmetries. It is shown that, near the instability threshold, the formation of stable hexagonal
arrays of quantum dots is possible. With the increase of the supercriticality, a transition to a square array of dots
or the formation of spatially localized dots can occur. Different models of wetting interactions between the film
and the substrate are considered and the effects of the wetting potential anisotropy are discussed. It is argued
that the mechanism can provide a new route for producing self-organized quantum dots.
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I. INTRODUCTION

The formation of quantum dots in epitaxially grown thin
solid films has been attracting attention as a very promising
area of nanotechnology that can lead to a new generation of
electronic devices. It is generally understood that the main
mechanism of the formation of quantum dots in thin solid
films on solid substrates is the Asaro-Tiller-Grinfeld(ATG)
instability1 that releases epitaxial elastic stresses in the film
caused by the crystal lattice mismatch between the film and
the substrate.2–5At the same time, other mechanisms can also
play an important role in the formation of surface structures
during epitaxial growth, for example faceting instability of a
thermodynamically unstable surface caused by strong
surface-energy anisotropy6,7 or slope-dependent surface cur-
rents caused by the Schwöbel effect.8–10

The characteristic feature of these mechanisms is that they
produce long-wave instabilities of the film surface leading to
the formation of mounds that usually coarsen, with larger
islands growing at the expense of the smaller ones.11 At the
same time formation of a system of islands with almost uni-
form sizes has been also observed.12 Several mechanisms
that can terminate the coarsening process have been identi-
fied. For example, a balance between the surface and elastic
energies can lead to the formation of uniform-size islands as
a preferred configuration having minimal energy.2,13Another,
dynamic mechanism is associated with the normal growth of
the interface, e.g., by evaporation-condensation or due to the
presence of a diffusion boundary layer typical of chemical
vapor deposition. The normal growth introduces convective
effects in the evolution of the interface that compete with the

coarsening process by sustaining ridges and corners of fac-
eted mounds.7,14,15However, when the growth stops, further
annealing will cause coarsening of the surface structures. Re-
cently, an additional mechanism that can terminate coarsen-
ing of the surface structures has been identified. This mecha-
nism is based on wetting interactions between the film and
the substrate.16,17 It has been shown that wetting interactions
can change the spectrum of the ATG instability,18,16,19or sur-
face instability caused by the Schwöbel effect,20 and lead to
the selection of a finite wavelength near the instability
threshold and therefore to the possibility of the formation of
permanent spatially regular patterns.16 In this case spatially
regular arrays of dots(or pits) are formed as a result of
nonlinear dynamics near the instability threshold and the cor-
responding steady state can be considered as having a local
energy minimum. So far the formation of spatially regular
arrays of dots has been investigated for the case of ATG
instability accompanied by wetting interactions between the
film and the substrate.16,17 The interplay between the film-
substrate wetting interactions andfaceting instability, caused
by anisotropic surface energy, has not been studied yet. In
this paper we investigate this coupling and show that, even in
the absence of epitaxial stresses, wetting interactions can ter-
minate coarsening and lead to the formation of permanent
regular arrays of quantum dots, as well as spatially localized
dots, thus providing a new route for quantum-dot fabrication.

II. PROBLEM STATEMENT

Consider a thin, solid film grown on a solid substrate
where the lattice mismatch between the two materials is neg-
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ligible, the surface energyg of the film is strongly aniso-
tropic, the film wets the substrate and it is thin enough for the
wetting interaction energy to affect the chemical potential of
the film.

Let us assume that the substrate determines the initial
crystallographic orientation of the free surface of a growing
film. Let us also assume thatin the absence of the substrate,
or when the film is thick enough so it does not “feel” the
substrate, this orientation would be in the range of “forbid-
den orientations.”

In this paper we consider only high-symmetry orienta-
tions, such as[001] and [111]. In this case, the forbidden
orientation of the growing surface implies that the surface-
stiffness tensor,21,22

g̃ab = gdab +
]2g

]ua]ub

, s1d

is diagonal for this orientation and has two equal negative
components,

g̃11 = g̃22 ; − s , 0. s2d

(Hereua,b are the surface angular coordinates anddab is the
Kroneker delta.) In the absence of wetting interactions be-
tween the film and the substrate, such a surface is thermody-
namically unstable and exhibits spontaneous formation of
pyramidal “faceted” structures that coarsen in time.7,15 The
film would decompose into faceted islands and exhibit the
Volmer-Weber growth, rather than the Stranski-Krastanov
one. However, as we show below, the presence of wetting
interactions cansuppressthis instability, or qualitatively
change it, so that it would lead to the Stranski-Krastanov
growth in the form of spatially regular arrays of islands.

The continuum evolution of the film free surface can be
described by the classical surface-diffusion equation,

vn = DDsm, s3d

where vn is the normal surface velocity, D
=DSS0V0V0/ sRTd23 (DS is the surface diffusivity,S0 is the
number of atoms per unit area on the surface,V0 is the
atomic volume,V0 is the molar volume of lattice cites in the
film, R is the universal gas constant andT is the absolute
temperature), Ds is the surface Laplace operator and the
chemical potential

m =
dF
dh

, s4d

where F is the free energy functional andhsx,y,td is the
shape of the film surface. In theabsenceof elastic stresses
and wetting interactions between the film and the substrate,

F =E fm0h + Ishx,hyd + 1
2nsDhd2gdxdy, s5d

where m0 is the volume part of the free energy(m0 is the
constant chemical potential of a planar film), I
=gshx,hydÎ1+s¹hd2 is the weighted anisotropic surface en-
ergy that depends on the local surface slope, andn is the
regularization coefficient that measures the energy of edges

and corners6,7,24(for simplicity, we write this term here in the
small-slope approximation that will be further employed in
this paper). The free energy(5) gives the chemical potential

m = m0 + mg ; m0 + g̃abCab + nD2h, s6d

whereCab is the surface curvature tensor.
In the presence of wetting interactions between the film

and the substrate, the film chemical potentialm strongly de-
pends on the film thicknessh for h,dw, where dw is the
characteristic wetting length, andm→m0 for h@dw. In this
case the film free energy can be written as

F =E f fsh,hx,hyd + 1
2nsDhd2gdxdy, s7d

where fsh,hx,hyd→m0h+ Ishx,hyd for h@dw. The wetting
part of the free energy can be then defined as

Fw =E ffsh,hx,hyd − m0h − Ishx,hydgdxdy. s8d

In this paper, we consider the following two models for wet-
ting interactions between the film and the substrate.

A two-layer wetting model, according to which the wet-
ting interactions between the film and the substrate are de-
scribed as a thickness-dependent surface energy of the film,
gshd. This dependence is usually taken to be25

gshd = g f + sgs − g fdexps− h/dd, s9d

wheregs=const is the surface energy of the substrate in the
absence of the film,g f is the energy of the film free surface
far from the substrate, andd is the characteristic wetting
length. This model is consistent withab initio
calculations.26,27 For anisotropic surface energy of the film,

g f = g f
0f1 + «shx,hydg, s10d

whereg f
0=const and«shx,hyd is the anisotropy function that

depends on the orientation of the film surface. Thus, in this
model the free energy density in(7) is fsh,hx,hyd
=gsh,hx,hydÎ1+u¹hu2, and the chemical potential is com-
puted asm=mg+mw, wheremg is defined by(6) and

mw =

]g

]h
− F ]2g

]h]hx
hx +

]2g

]h]hy
hyGs1 + u ¹ hu2d

Î1 + u ¹ hu2
. s11d

Note that in this caseg̃ab in mg depends onh.
A glued wetting-layer model, that considers isotropic wet-

ting free energy, additive to the anisotropic surface energy,
yielding m=mg+mw, with mg defined by(6) andmw being an
exponentially decaying function ofh that has a singularity at
h→0:

mw = − wsh/dd−aw exps− h/dd. s12d

Here d is the characteristic wetting length,w.0 character-
izes the “strength” of the wetting interactions, andaw.0
characterizes the singularity of the wetting potential ath
→0. This singularity is a simple continuum phenomenologi-
cal model of a very large potential barrier for removal of an
ultra-thin(possibly monolayer) wetting layer that persists be-
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tween surface mounds during Stranski-Krastanov growth
process(see also Refs. 20, 28, and 29). We are not aware of
experimental studies in which the wetting interaction poten-
tial has been measured and the glued wetting-layer model is
a reasonable approximation for the purpose of our analysis.

Thus, in the small-slope approximation and for high-
symmetry orientations, the surface chemical potential in both
of these models have the same form,

m = mg
0 + mw, s13d

wheremg
0=mgsh0d is defined by(6) and evaluated at the ini-

tial film thicknessh0, and the part of chemical potential due
to wetting can be expanded as

mw = W0shd + W2shds¹hd2 + W3shd¹2h + ¯ , s14d

whereW0,2,3shd are smooth functions, rapidly(exponentially)
decaying with the increase ofh, W3sh0d=0, and 2W2

=dW3/dh [due to(4)].
In the small-slope approximation, and in the particular

cases of high-symmetry orientations([001] or [111]) of a
crystal with cubic symmetry, the evolution equation(3) for
the film thickness can be written in the following form:

]th = DDfsDh + nD2h − Gi jkfhg + W0shd + W2shds¹hd2

+ W3shdDhg, s15d

where for the orientations[001] and[111] the nonlinear dif-
ferential operatorGi jkfhg has the following forms,7 respec-
tively:

G001= sahx
2 + bhy

2dhxx + sbhx
2 + ahy

2dhyy + 4bhxhyhxy,

s16d

G111= afhx
2hxx + hy

2hyy + 2hxhyhxyg +
a

3
fhy

2hxx + hx
2hyy

− 2hxhyhxyg + bfshxx − hyydhy + 2hxyhxg. s17d

Here the coefficientsa andb characterize the surface-energy
anisotropy and can be computed from the surface-energy de-
pendence on the surface orientation. Naturally, the nonlinear
operatorG001 is invariant with respect to rotations byp /2, as
well as any of the transformationsx→−x, y→−y, x→y,
while G111 is invariant with respect to rotations by 2p /3 as
well as the transformationy→−y, b→−b. The functions
W0,2,3shd are determined by the type of a wetting interaction
model and can also differ for different orientations of the
film surface.

Note that Eq.(15) with the nonlinear operatorsGi jk de-
fined by (16) and (17) can be written in a variational form

]th = D¹2
dF
dh

, s18d

whereF=eFdxdy, and the free energy density

F = −
s

2
s¹hd2 +

n

2
sDhd2 + Gi jk +E W0shddh−

1

2
W2shds¹hd2,

s19d

with

G001=
a

12
shx

4 + hy
4d +

b

2
hx

2hy
2, s20d

G111=
a

12
s¹hd4 +

b

6
s3hx

2hy − hy
3d. s21d

In the following sections we investigate the stability and
nonlinear dynamics of the solid-film surface governed by Eq.
(15).

III. FACETING INSTABILITY IN THE PRESENCE OF
WETTING INTERACTIONS

Consider infinitesimal perturbations of a planar film sur-

face, h=h0+ h̃eik·x+vt, and linearize Eq.(15) to obtain the
following dispersion relation between the perturbation
growth ratev and the wave vectork:

v = Ds− W01k
2 + sk4 − nk6d, s22d

wherek= uk u and

W01 = S ]W0

]h
D

h=h0

. s23d

One can see that if the film wets the substrate, i.e., when
W01.0, the wetting interactions suppress the long-wave
faceting instability caused by the surface-energy anisotropy.
The instability occurs only for

s2

4nW01
. 1, s24d

i.e., if either the wetting interaction is less than the threshold
value,W01,W01

c =s2/ s4nd, or the surface stiffness is larger
than the threshold value,s.sc=2ÎW01n. At the instability
threshold, the wavelength of the unstable perturbationsl is
finite, l=lc=2p /kc, where

kc =Î s

2n
. s25d

Typical dispersion curves defined by(22) are schematically
shown in Fig. 1. Note that the critical wave number at the

FIG. 1. Sketch of dispersion curves defined by(22) for (a)
s2/ s4nW01d.1, (b) s2/ s4nW01d=1, and(c) s2/ s4nW01d,1.
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threshold does not depend on the wetting potential and is
determined only by the surface stiffness and the energy of
edges and corners. For the parameter values typical of semi-
conductors like Si or Ge, with the surface energyg
,2.0 J m−2, surface stiffnesss,0.2 J m−2, the lattice spac-
ing a0,0.5 nm and the regularization parametern,ga0

2

,5.0310−19 J, the wavelength of the structure at the onset
of instability is 14.0 nm.

Thus, in the presence of the wetting interactions with the
substrate, the faceting instability becomesshort wave. This is
qualitatively different from the case of the faceting instability
in the absence of the wetting interactions when the instability
is long wave, i.e., when all perturbations whose wavelengths
are larger than a certain threshold are unstable. In other
words, wetting interactions with the substrate change the
faceting instability from the spinodal decomposition type6 to
the Turing type,30 thus leading to the possibility of changing
the system evolution from Ostwald ripening(coarsening) to
the formation of spatially regular patterns. The latter is stud-
ied in the following sections.

IV. FORMATION OF SURFACE STRUCTURES: 1+1 CASE

In this section we investigate the nonlinear evolution of
surface structures resulting from the faceting instability in
the presence of wetting interactions with the substrate in a
1+1 case of a two-dimensional film with a one-dimensional
surface. In this case, the evolution equation(15) for the
shape of the film surface, after the rescalingx→ sn /sd1/2x,
t→ fn2/ sDs3dgt, h→ sn /ad1/2h, becomes

]th = fhxx + hxxxx− hx
2hxx + w0shd + w2shdhx

2 + w3shdhxxgxx,

s26d

wherew0,2,3shd are the rescaled functionsW0,2,3shd, respec-
tively [w3sh0d=0, 2w2=dw3/dh]. In this scaling, the instabil-
ity occurs for s]w0/]hdh=h0

;w01,
1
4 at the wave number

kc=Î2/2.
First, we investigate the evolution near the instability

threshold by means of weakly nonlinear analysis, and then
we study a strongly nonlinear evolution by means of numeri-
cal simulations.

A. Weakly nonlinear analysis

Considerw01= 1
4 −2e2, e!1, introduce the long-scale co-

ordinateX=ex and the slow timeT=e2t, and expand

h̃ = h − h0 = efAsX,Tdeikcx + c.c.g + e2fA2sX,Tde2ikcx + BsX,Td

+ c.c.g + ¯ , s27d

w0shd = w00 + w01h̃ + w02h̃
2 + w03h̃

3 + ¯ , s28d

w2shd = w20 + w21h̃ + ¯ , s29d

w3shd = w31h̃ + w32h̃
2 + ¯ , s30d

wherew31=2w20 andw32=w21. Substitute(27)–(30) into Eq.
(26) to obtain the corresponding problems in the successive

orders ofe. From the problem at second order one finds

A2 = 2
9s3w20 − 2w02dA2. s31d

As the solvability condition at the third order, one obtains the
evolution equation for the complex amplitude of the un-
stable, spatially periodic mode,AsX,Td. The solvability con-
dition at the fourth order yields the evolution equation for the
real amplitudeBsX,Td of the Goldstone(zero) mode associ-
ated with the conservation of mass. Together, the two equa-
tions form the following system of coupled equations:

AT = A + AXX − l0uAu2A + sAB,

BT = 1
4BXX − 2ssuAu2dXX, s32d

where

l0 = 1
8 − 1

9s3w20 − 2w02d2 − 1
2w21 + 3

2w03, s33d

s= 1
2w20 − w02. s34d

The system of amplitude equations(32) has a stable, sta-
tionary solution,A=l0

−1/2, B=0, corresponding to spatially
periodic pattern(array of dots), if31,16

l0 . 8s2 = 2sw20 − 2w02d2. s35d

Condition(35) defines a region in the parameter space in
which one can observe the formation of stable periodic ar-
rays of dots. First, consider aglued-layerwetting potential
defined by(12). From (24) one obtains that the planar film
surface becomes unstable with respect to periodic structures
for

−
s2d

wn
. 4saw + zdz−saw+1de−z, s36d

where z=h0/d. Since for the wetting potential(12) w2shd
=w3shd;0, one obtains from(35) and (36) that a near-
threshold periodic surface structure is stable if

ad2

n
. fsz,awd, s37d

where

fsz,awd = f18z2sz + awd2g−1f10z4 + 40awz3

+ aws11 + 60awdz2 + 2aws20aw
2 + 11aw − 9dz

+ aw
2s10aw

2 + 11aw + 1dg. s38d

Conditions(36) and (37) are shown in Fig. 2.
Now consider atwo-layerwetting potential defined by(9)

with

g f = g f
0f1 + « cos 4su0 + udg, s39d

whereu=arctanshxd andu0 corresponds to the orientation of
the planar surface of the film, parallel to the substrate; for the
high-symmetry orientations[01] and [11], u0=0, p /4, re-
spectively. It is convenient to introduce the following dimen-
sionless parameters:
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G =
g f0

gs
s15« − 1d, z =

h0

d
, «̃1 =

« + 1

15« − 1
, «̃2 =

95« − 1

15« − 1
.

The film wets the substrate ifG,«̃ 1
−1 or gs/g f0.«+1. In

this case, the nonlinear anisotropy coefficienta in Eq. (15) is
always positive. The faceting instability requires a negative
surface stiffness that can be achieved only if 15«−1.0, and

z . lns1 + G−1d. s40d

The instability threshold condition(24) gives

gsd
2

n
ù

4ezf1 − G«̃1g
fGsez − 1d − 1g2 . s41d

The analysis of the conditions(40) and (41) shows that the
short-wave instability of the film surface that can lead to
pattern formation can occur only if the film thickness is
above a threshold value determined only by the surface-
energy anisotropy and the wetting length, namely, for

h0 . d lnF 16«

15« − 1
G . s42d

Using (35) one can show that the weakly nonlinear peri-
odic structure is stable if

gsd
2

n
. fsz,G,«d, s43d

where

f =
2

27

G2s5e2z + 14ez + 35d + 14Gsez + 5d + 35

e−zfGsez − 1d − 1g2f«̃2Gsez − 1d − 1g
. s44d

The conditions(40)–(44) allow one to determine regions
in the sG ,zd parameter plane where spatially regular surface
structures can occur as a result of thermodynamic instability
of the film surface caused by strongly anisotropic surface-
tension in the presence of wetting interaction described by
the two-layer model(9). Examples of these regions for dif-
ferent values of the anisotropy parameter« are shown in Fig.
3.

Solid lines correspond to the condition(41), the dashed
lines correspond to the condition(44). The film is unstable in
the regions above the solid lines, and the stable periodic
structures can form in the region near the solid line which
lies above the dashed curve. One can see that for given val-

ues of the surface-energy anisotropy,«, and the value of
gsd /n, the formation of stable periodic structures occurs if
the ratio of the initial film thickness to the wetting length is
within a certain interval.

B. Numerical simulations

We have performed numerical simulations of Eq.(26) for
the two types of wetting potentials, by means of a pseu-
dospectral code with the time integration in Fourier space
using the Crank-Nicolson scheme for the linear operator and
the Adams-Bashforth scheme for the nonlinear operator. Nu-
merical solutions in both cases exhibited the formation of
stable periodic structures near the instability threshold in the
parameter regions where these structures are stable. At the
same time, outside these regions or with the increase of the
supercriticality, the periodic stationary structures become un-
stable and exhibit different behavior, depending on the type
of wetting interactions. We have found that with the two-
layer wetting potential(9)–(11), the surface mounds grow
and coarsen(large islands grow at the expense of small
ones), with the film between the islands getting thinner and
thinner, until its thickness reaches zero in a finite time and
then becomes negative, which is unphysical. This is clearly
an artifact of the presentcontinuummodel, based on the
conservation of mass, that neither treats the substrate as a
separate surface with its own transport properties, nor can it
properly describe the dynamics of a monolayer wetting film.
Although zero film thickness may indicate dewetting, the
latter process itself, on the one hand, cannot be described
within the framework of this model, and, on the other hand,
is not the focus of the present investigation aimed at studying
systems in which the film between the islands evolves to
small thickness but never exposes the substrate. The persis-
tence of a very thin, “glued” wetting layer, typical of the
Stranski-Krastanov growth, indicates a very large energy
penalty for its removal. Such energy barrier can be effec-
tively described by the phenomenological glued-layer model
(12) in which the wetting potential is singular forh→0 (see
also Refs. 28 and 29).

In Figs. 4 and 5 we present the results of the numerical
simulations of Eq.(26) with the wetting potential corre-

FIG. 2. (a) Parameter regions where a planar film surface is
unstable (above the corresponding curves) for aw=6.0 (dashed
line), aw=3.0 (solid line) andaw=1.0 (dashed-dotted line). (b) Pa-
rameter regions where weakly nonlinear periodic surface structures
are stable(above the corresponding curves) for different values of
aw.

FIG. 3. Parameter regions where a planar film surface is un-
stable(above the solid line) and where stable periodic structures can
form near the instability threshold(near the solid line, above the
dashed line): (a) «=0.1, gsd

2/n=0.5; (b) «=0.1, gsd
2/n=2.0; (c)

«=0.2, gsd
2/n=0.5; and(d) «=0.4, gsd

2/n=0.5.
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sponding to the glued wetting-layer model defined by(12).
The shown length scales correspond to the following param-
eter values, typical of semiconductors like Si or Ge:g
,2.0 J m−2, s,0.2 J m−2, d,1.5 nm, and the estimates of
a=3.0 andn,ga0

2,5.0310−19 J, wherea0,0.5 nm is the
crystal lattice spacing; the nonlinear coefficient of the
surface-energy anisotropy,a, the initial film thickness,h0,
and the wetting interaction strength parameter,w, are varied.
In experiment, the film thickness is the main parameter that
controls the film instability. For example, forw,Dg /d
,6.73107 J m−3, where Dg,0.1 J m−2 is the surface-
tension difference between the substrate and the film, one
finds that if the initial film thickness,h0, ranges from
1.2 to 5.3 nm, the parameterw01 changes from 2.3 to 7.3
310−4, respectively. The instability occurs in this case for a
film thicker than h0<1.9 nm, and the wavelength of the
structure at the onset of instability is 14.0 nm.

Figure 4 presents the stationary solutions of Eq.(26) for
different values of the dimensionless wetting parameter,w01,
corresponding to different values of the wetting interaction
strength,w, and the initial film thickness,h0. One can see
that, near the instability threshold, an almost harmonic small-
amplitude periodic structure is formed. Farther from the
threshold, the formation of periodic structures with larger
amplitude and larger wavelengths can be observed. In the

parameter regions where a near-threshold periodic structure
with the wavelength corresponding to the most rapidly grow-
ing linear mode is unstable, it undergoes coarsening right
after formation, and finally evolves into spatiallylocalized
dots. Different stages of this coarsening process and the for-
mation of localized islands are shown in Fig. 5. At the last
stage, shown in Fig. 5, the coarsening either completely
stops or becomes logarithmically slow.

Thus, the presence of wetting interactions between the
film and the substrate can suppress the faceting instability of
the film surface, that is thermodynamically unstable due to
strong anisotropy of the surface energy, and lead to the for-
mation of spatially regular surface structures, or to the for-
mation of spatially localized dots divided by a thin wetting
layer. In the next section we consider evolution of a more
realistic, 2+1 system.

V. FORMATION OF SURFACE STRUCTURES: 2+1 CASE

In this section we investigate the nonlinear evolution of
surface structures resulting from the faceting instability of a
three-dimensional film with a two-dimensional surface(2
+1 case) in the presence of wetting interactions with the
substrate. We consider high-symmetry orientations only,
[001] and [111], described by Eq.(15).

After the appropriate rescaling, Eq.(15) can be written as

]th = DhDh + D2h − gfhg + w0shd + w2shds¹hd2 + w3shdDhj,

s45d

where the nonlinear differential operatorgfhg for [001] ori-
entation is

g001= shx
2 + phy

2dhxx + shy
2 + phx

2dhyy + 4phxhyhxy, s46d

and for [111] orientation it is

g111= shx
2 + 1

3hy
2dhxx + shy

2 + 1
3hx

2dhyy + 4
3hxhyhxy

+ qfshxx − hyydhy + 2hxyhxg. s47d

Equation (45) has a special structure in that the linear
operator is isotropic, while the nonlinear operator is aniso-
tropic. The linear growth rate near the instability threshold,
thus, does not depend on the wave vector orientation and the
resulting dispersion relation is the same as in the 1+1 case,
v=−w01k

2+k4−k6, with the instability thresholdw01= 1
4 at

k=kc=Î2/2. It is the nonlinear interaction between the
modes that will determine the symmetry of the emerging
pattern. This situation is similar to the one considered in Ref.
32 where the effect of surface-energy anisotropy on the for-
mation of cellular patterns with different symmetries at a
crystal-melt interface caused by morphological instability
during directional solidification was studied. In the next sec-
tion we consider the weakly nonlinear analysis near the in-
stability threshold.

A. Weakly nonlinear analysis

Since the linear operator of Eq.(45) is isotropic and the
nonlinear operator of Eq.(45) has a quadratic nonlinearity
that breaksh→−h symmetry, the preferred pattern near the

FIG. 4. Stationary numerical solutions of Eq.(26) with the wet-
ting potential (12) showing stationary surface structures forh0

=3.0 nm, sz=2.0d, a=0.17 J m−2, and (a) w=6.83108 J m−3 sw01

=0.24d; (b) w=2.83108 J m−3 sw01=0.1d; and (c) w=2.8
3107 J m−3 sw01=0.01d.

FIG. 5. Different stages of coarsening of the initial periodic
structure, yielding the formation of localized dots divided by a thin
wetting layer—the numerical solution of Eq.(26) with the wetting
potential (12); h0=1.5 nm, w=8.23106 J m−3 sz=1.0,w01=0.1d,
a=0.22 J m−2.
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instability threshold will have ahexagonalsymmetry, caused
by the quadratic resonant interaction between three different
modes oriented at 120° with respect to one another and hav-
ing the same linear growth rate. The specific type of pattern
in this case is determined by the phase locking of the three
resonant modes that depends on the quadratic resonant inter-
action coefficient. In order to compute this coefficient, take
w01= 1

4 −2ge, e!1, introduce the slow timet=et, and use
the expansions(28)–(30), as well as the expansion

h = eo
n=1

3

Anstdekn·r + e2o
n=1

3

Bnstdekn·r + e2o
n=1

3

fBn,nstde2kn·r

+ Bn,n−1stdeskn−kn−1d·rg + c.c. +Ose3d, s48d

whereAnstd, Bnstd, Bn,nstd, and Bn,n−1std are complex am-
plitudes(the spatially uniform modeBn,−n is missing due to
the conservation of mass), r is a vector in thesx,yd plane,
kn=1/Î2 andk1+k2+k3=0 (n=0 andn=3 correspond to the
same mode with the wave vectork3). Then, the solvability
condition for the problem forBn in the ordere2 yields the
following three evolution equations for the amplitudesA1,2,3:

]tA1 = gA1 + aA2
*A3

* , s49d

where the other two equations are obtained by the cyclic
permutation of the indices in Eq.(49). The resonant qua-
dratic interaction coefficient is different for different surface
orientations:

a001= 3
4w20 − w02, s50d

a111= a001− i
q

4Î2
sin 3f0, s51d

where the anglef0 characterizes the orientation of the
resonant triad hk1,k2,k3j in the surface plane,k1

=scosf0,sinf0d. Thus, in the case of the[001] surface, the
quadratic mode interaction is isotropic, while in the case of
[111] surface it depends on the pattern orientation within the
[111] plane.

For equilateral patternsAk=reiuk and usinga= uaueid one
obtains from(49) the following system of equations forr
andQ=u1+u2+u3:

]tr = gr + uaur2 cossQ − dd, s52d

]tQ = − 3ruausinsQ − dd. s53d

Equation(53) has two critical points: stable,Q=d, and
unstable,Q=p+d. Thus, the system(52) and(53) describes
an unbounded growth of a pattern given by a function

h = rfcossk1 ·x + u1d + cossk2 ·x + u2d + cossk3 ·x + u3dg,

s54d

in which the phases are locked:u1+u2+u3=d. If the resonant
interaction coefficient is real, thend=0 sa.0d or d=p sa
,0d, and the function(54) describes a spatially regular array
of hexagons withh.0 sh,0d in the centers of the hexagons
for a.0 sa,0d. Therefore, in the case of the[001] surface
when a001 is real, one could observe the growth of regular

hexagonal arrays of dots fora001.0 or pits for a001,0.
Note that for[001] orientation, the pattern type is determined
purely by the details of the wetting potential(the coefficients
w02 andw20) since in this case the anisotropic surface energy
enters only through the quartic terms in the free energy func-
tional yielding cubic nonlinear terms in the evolution equa-
tion for the surface shape. For example, for a glued wetting
potential of type(12), w20=0, a001=−w02.0 and therefore
the formation of only hexagonal arrays ofdotsis possible, an
array of pits cannot form.

The situation is different for[111] orientation when the
free-energy functional has anisotropic cubic terms leading to
anisotropic quadratic terms in the evolution equation for the
surface shape and the complex quadratic resonant interaction
coefficient. In this case, the imaginary part of the resonant
interaction coefficient depends on the surface-energy aniso-
tropy coefficient,q, and the pattern orientation within the
[111] plane(anglef0). As one can see from(52), the most
rapidly growing pattern corresponds to the maximum ofuau
that is achieved forf0=p /6. Thus, one would observe in
this case the growth of a pattern described by the function
(54) with the phases locked at

Q = arctanF q/Î2

4w02 − 3w20
G . s55d

Examples of patterns corresponding to different values ofQ
are shown in Fig. 6(see also Ref. 32). One can see that for
intermediate values ofQ the growing pattern consists of a
regular hexagonal array of triangular pyramids. Note that
similar hexagonal arrays of triangular pyramids were ob-
served in experiments reported in Ref. 33. Although the
physical mechanism of the formation of ordered arrays of
triangular pyramids observed in Ref. 33 was different(elastic
interaction of multiple epitaxial layers), the nonlinear
mechanismbased on the resonant quadratic interaction of
unstable modes in the presence of the anisotropy of the[111]

FIG. 6. Spatial patterns described by(54) with different values
of Q=u1+u2+u3.
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orientation is universal and may well be the same in the
system studied in Ref. 33.

The amplitude equations(49) cannot describe the nonlin-
ear stabilization of a growing surface structure and cannot
provide conditions for the formation of stable, spatially regu-
lar structures near the instability threshold. In order to obtain
such conditions higher order(usually cubic) nonlinear terms
in the amplitude equations need to be taken into account.
However, in the presence of the resonant quadratic interac-
tion, the addition of cubic terms in the amplitude equations
near the instability threshold is asymptotically rigorous only
if the quadratic interaction coefficient is small,uau,e, which
restricts the validity of the weakly nonlinear analysis to a
narrow range of physical parameters. The Landau cubic in-
teraction coefficients will be anisotropic and depend on the
pattern orientation in the surface plane.32 Besides, if one al-
lows for long-scale spatial modulations of the patterns, the
interaction between the unstable periodic modes and the
Goldstone mode will strongly affect the pattern stability(see
Sec. IV) and must be taken into account. The resulting sys-
tem of amplitude equations with cubic terms, coupled to an
equation for the Goldstone mode, will be similar to that stud-
ied in Ref. 16, but will have anisotropic Landau coefficients
and anisotropic and complex quadratic coefficients. The full
stability analysis of such a system is cumbersome; it is be-
yond the scope of the present paper and will be done else-
where. In this paper we rather perform numerical simulations
of the full 2D nonlinear evolution equation(45) for the two
orientations of the film free surface. The results of the nu-
merical simulation are described in the next section.

B. Numerical simulations

We have performed numerical simulations of Eq.(15) for
the two orientations of the film surface:[001] and[111], with
Gi jkfhg defined by(16) and (17), respectively, and for the
glued-layer wetting potentialW0shd defined by(12) [so that
W2shd=W3shd=0 in (15)]. We have used a pseudospectral 2D
code similar to the 1D code described in Sec. IV. We have
considered two different cases: formation of structures dur-
ing surface annealing and during ballistic deposition.

1. Structure formation during surface annealing

If the initial film thicknessh0 is so large that the film does
not “feel” the substrate,h0@d, the numerical solutions of
Eq. (45) exhibit the formation of “faceted” pyramidal struc-
tures(square pyramids for[001] surface and triangular pyra-
mids for [111] surface) that coarsen in time, similar to those
described in Refs. 7 and 15. If the film is thin enough so that
the wetting interactions become important, in the case of
[001] surface one can observe the formation of spatially
regular (with some defects), hexagonal arrays of rounded
dots. We have observed that these arrays of equal-sized dots
can be stable for small supercriticality and large enough
surface-energy anisotropy[large enough coefficienta to-
gether with the ratioa/b in Eq. (15)]. An example of such
stable array is shown in Fig. 7(a). It is interesting that the
surface-energy anisotropy is overcome here by the isotropic
wetting interactions. With the increase of the supercriticality

and further increase of the surface-energy anisotropy, forma-
tion of spatially regular square arrays of equal-sized dots
shown in Fig. 7(b) is possible. If the anisotropy coefficienta
is not sufficiently large, hexagonal arrays of dots that are
formed at the initial stage of the film instability[Fig. 8(a)]
coarsen in time, resulting in the formation of rounded local-
ized dots shown in Fig. 8(b). These dots are connected with
each other by a thin wetting layer. The mound slope remains
constant during the coarsening. At the late stages, when the
dots become localized, the coarsening rate decreases sharply
and the coarsening apparently stops.

In the case of the[111] orientation of the film surface we
have not observed the formation of regular arrays of dots
even near the instability threshold and for large surface-
tension anisotropy coefficients. For all studied parameter val-
ues we have observed the initial formation of a hexagonal
array of triangular pyramids that further coarsen and evolve
towards localized triangular pyramidal structures; different
stages of the coarsening process are shown in Fig. 9. As the
localized dots shown in Fig. 8(b), the localized pyramids
here are divided from one another by a thin wetting layer and
at the late stages the coarsening apparently stops. It is inter-
esting that, unlike[001] surface orientation, the localized

FIG. 7. Formation of spatially regular arrays of dots: numerical
solutions of Eq.(15) for [001] surface orientation.(a) Stationary
hexagonal array of equal-size dots,h0=1.5 nm, w=1.89
3107 J m−3, a=6.6 J m−2 sw01=0.23,z=1.0d. (b) Stationary square
array of equal-size dots,h0=1.5 nm, w=8.23105 J m−3, a
=11.1 J m−2 sw01=0.01,z=1.0d; Other parameters are the same as
in Figs. 4 and 5 andb=0.

FIG. 8. Formation of localized dots via coarsening: numerical
solutions of Eq.(15) for [001] surface orientation.(a) Nearly hex-
agonal array of dots(initial stage); (b) spatially localized dots di-
vided by a thin wetting layer(late stage); h0=1.5 nm, w=8.2
3106 J m−3, a=0.22 J m−2 sw01=0.1,z=1.0d. Other parameters are
the same as in Figs. 4 and 5 andb=0.
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dots grown on[111] surface are strongly anisotropic. This is
due to anisotropic cubic terms in the free energy functional
(anisotropic quadratic terms in the evolution equation) that in
the small slope approximation become dominant. Note that
self-organization of quantum dots in the form of localized
triangular pyramids on a[111] surface was observed in Ref.
34. Although in experiments described in Ref. 34 an elastic
mechanism of the solid film instability seems to play an im-
portant role, the triangular shape of the pyramids with[001]
faces is clearly caused by the anisotropic surface energy,
which is correctly captured by our model.

2. Structure formation during ballistic deposition

Finally, it is interesting to study the effect of the film
growth by ballistic deposition on the formation of surface
structures caused by the interplay between the anisotropic
surface energy and the wetting interactions between the film
and the substrate. One can expect that if the surface evolu-
tion is accompanied by ballistic deposition, the influence of
wetting interactions will decay with the film growth, and the
anisotropic effects of surface energy will become more pro-
nounced. The effect of the film growth by ballistic deposition
can be described by adding a constant deposition rate term,
V=const, to the right-hand side of Eq.(15). As an example,
we have chosen the[001] surface orientation of the film
since in this case the cubic nonlinear effects of anisotropic
surface energy are almost completely suppressed by qua-
dratic nonlinearity of isotropic wetting interactions.

We have performed numerical simulations of Eq.(15) for
[001] surface with an additional constant deposition rate
term. The result is shown in Fig. 10. One can see that, in-
deed, in the course of the film growth, when the film be-
comes thicker, the effects of wetting interactions decay and
the rounded localized surface mounds become anisotropic
and acquire pyramidal shape, as in the case of faceting insta-
bility of thermodynamically unstable crystal surfaces.7,15

Also, we have observed that the growth of the film is accom-

panied by the coarsening of the pyramidal structures, as in
the case of annealing of thermodynamically unstable surface,
and the rate of coarsening does not depend on the deposition
rate. Indeed, for thick enough films, when the wetting inter-
actions decay and become negligible, the only order param-
eter that governs the dynamics of the surface structures is the
local surface slope, and the effect of the film growth is elimi-
nated in the frame of reference moving with the mean sur-
face position. This is different from the faceting instability
accompanied by the film growth by the evaporation-
condensation mechanism that produces the flux normal to the
film surface.

VI. EFFECT OF EPITAXIAL STRESS

The analysis presented above assumes that the epitaxial
stress in the film is negligible and the instability is driven
solely by the anisotropic surface energy. In experimental het-
eroepitaxial systems, however, the epitaxial stress is always
present. It is instructive to estimate the effect of epitaxial
stress on the surface-energy-driven mechanism of instability.

The effect of epitaxial stress is always destabilizing. The
analysis of the ATG instability in a thin solid film in the
presence of wetting interactions with the substrate has been
done in Refs. 16 and 19. In the linear, small-slope approxi-
mation, the effect of the anisotropic surface energy will be
additive to the effect of stress. Thus, one can just add the
corresponding terms from the dispersion relation(22) to the
dispersion relation obtained in Ref. 19 for the general case of
an elastic substrate to obtain

D−1v = − W01k
2 + B3k

3 + ss + B4dk4 − B5k
5 − sB6 + ndk6,

where the coefficientsBi are proportional to the square of the
lattice misfit,«2, and depend on the elastic constants of the
film and the substrate. For example, for a rigid substrate,

B3 = B5 = 0,

B4 =
4«2h0m fs1 + pd2

s1 − pd2 , s56d

FIG. 9. Formation of localized dots: numerical solutions of Eq.
(15) for [111] surface orientation showing different stages of coars-
ening of initial regular hexagonal array of triangular pyramids. The
parameters are the same as in for the case shown in Fig. 8, except
b=0.44 J m−2.

FIG. 10. Evolution of dots accompanied by ballistic deposition:
numerical solutions of Eq.(15) in 2D with the additional constant
deposition term.(a) Hexagonal array of equal-size dots(initial
stage); (b) larger dots with pyramidal shape(later stage); h0

=1.5 nm, w=8.23106 J m−3, a=0.22 J m−2 sw01=0.1,z=1.0d,
deposition rateV=0.2 nm/min. Other parameters are the same as in
Fig. 1 andb=0.
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B6 = 2«2h0
3m fs3 + 4pds1 + pd2,

and, for an elastic substrate with the shear modulus close to
that of the film,

B3 =
4«2m fs1 + pd2

1 − p
,

B4 = B5 = B6 = 0, s57d

whereh0 is the initial film thickness,m f is the shear modulus
of the film andp is its Poisson ratio.

One can see that the presence of the epitaxial stress
merely shifts the critical value of the wetting interaction co-
efficient,W01

c , corresponding to the onset of the instability, as
well as the threshold wave number of the emerging periodic
structure,kc. In the case of a rigid substrate,

W01
c =

B4
2

4B6
, kc

2 =
s + B4

2n + B6
,

and for small epitaxial stress, one obtains

W01
c =

s2

4n
f1 + «2h0m fs8P1 − 2P2dg,

kc =Î s

2n
f1 + «2h0m fs2P1 − P2dg,

where

P1 = s−1S1 + p

1 − p
D2

, P2 =
h0

2

n
s3 + 4pds1 + pd2.

Thus, in the case of a rigid substrate, the shift of the critical
value of the wetting interaction coefficient and of the critical
wave number can be of either sign, depending on the Poisson
ratio, surface stiffness, regularization coefficient and the ini-
tial film thickness.

In the case of an elastic substrate whose shear modulus is
close to that of the film, for small epitaxial stress, one obtains

W01
c =

s2

4n
+ B3k0,

kc = k0 +
B3

4s
,

wherek0=Îs / s2nd and B3 is defined by(57). Thus, in this
case the critical value of the wetting parameter as well as the
critical wave number are slightly increased due to the pres-
ence of a small epitaxial stress.

Note that in a recent paper17 fully nonlinear numerical
simulations of the dynamics of thestress-driveninstability in

the presence of wetting interactions and anisotropic surface
energy, governed by surface diffusion, have been performed.
The formation of spatially regular arrays of square pyramids
has been observed for some parameter values.

VII. CONCLUSIONS

In conclusion, we have found that, besides the stress-
driven instability, there can be another mechanism of the
formation of quantum dots in epitaxially grown thin solid
films. By this mechanism, the substrate determines that the
film surface grows in a specific crystallographic orientation.
In the case of a thick film that does not feel the substrate, this
orientation would be forbidden,(i.e., thermodynamically un-
stable), leading to the formation of faceted structures. Wet-
ting interactions between the film and the substrate suppress
the long-wave modes of this instability and change its spec-
trum from the spinodal decomposition type to the Turing
type, thus yielding a possibility of the self-organization of
stable, spatially regular hexagonal or square arrays of equal-
size dots. We have shown also that, depending on the initial
orientation of the film surface, this type of surface instability
can lead to the formation of rounded dots whose coarsening
apparently stops when they become localized(in the case of
the [001] surface), or to the formation of localized faceted
triangular pyramids(in the case of the[111] surface). This
difference is explained by the presence of cubic anisotropic
terms in the surface free energy in the case of the[111]
orientation. We have found the parameter regions in which,
depending on the type of wetting interactions, one can ob-
serve the formation of stable periodic arrays of dots. In the
presence of deposition, or for sufficiently thick films, the
dots can acquire pyramidal shape due to the decrease of the
effect of isotropic wetting interactions. This new mechanism
can provide a new route for producing self-organized quan-
tum dots. Small epitaxial stresses would not change this
mechanism qualitatively, but merely lead to a small shift of
the critical film thickness, critical wetting parameter and the
threshold wave number.

Note that spatially regular stable arrays of dots caused by
wetting interactions exist in a rather narrow range of param-
eters, bounded by proximity to the instability threshold and
by the stability interval determined by the interaction with
the Goldstone mode. Therefore, experimental implementa-
tion of the conditions that may lead to the self-assembly of
spatially regular arrays of dots can be a challenge for experi-
mentallists.
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