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Polariton effects due to the interplay of the excitonic polarization of a semiconductor and a propagating light
field are studied for transmission spectra of ZnSe/ZnSxSe1−x heterostructures. Calculations in terms of micro-
scopic boundary conditions for the exciton motion within a finite-height confinement potential can explain the
measured transmission spectra. These calculations also show the absence of polarization-free regions near the
sample interfaces. Macroscopic models based on Pekar’s additional boundary conditions can only reproduce
the spectra if the band alignment at the ZnSe/ZnSxSe1−x interfaces is modified in comparison to the micro-
scopic calculation and if a sample thickness is used that exceeds the independently determined experimental
value. Our findings demonstrate the breakdown of the dead-layer concept for shallow confinement potentials.
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I. INTRODUCTION

Since the introduction of the polariton concept1 the proper
description of a propagating light field interacting with the
excitonic resonances of a semiconductor medium has been a
long standing problem. For the idealized case of propagation
within an infinitely extended semiconductor, the eigenmodes
of the propagating light field coupled to the excitonic states
can be easily formulated2 since in this situation the exciton
relative and center-of-mass motion are decoupled. Complica-
tions arise from the inclusion of sample surfaces where an
external light field is coupled to the polariton modes and
where the polaritons radiatively decay into photons.

In the past, macroscopic approaches have been introduced
which continue using the excitonic susceptibility of the spa-
tially homogeneous(infinitely extended) medium. In this
case the inclusion of sample surfaces requires so-called ad-
ditional boundary conditions(ABCs). The original proposal
of Pekar3 requires the vanishing of the macroscopic polariza-
tion at the semiconductor surface. Other approaches suggest
that the spatial derivative4 or a linear combination of the
polarization and its derivative5 should vanish at the sample
surface. The missing microscopic foundation of ABCs for
the coupled exciton and light field propagation in spatially
inhomogeneous media has been the motivation for an alter-
native macroscopic formulation.6

Another effect that has to be included in macroscopic ap-
proaches is the reduced excitonic polarization near surfaces
due to finite extension of the exciton relative motion. So-
called dead-layers(leading to an effectively reduced sample
thickness) have often been used in the past as a fit parameter.
The determination of the dead-layer thickness based on a
Born-Oppenheimer approximation has been discussed in
Ref. 7.

Unfortunately the results for the excitonic transmission
and reflection spectra in thin semiconductor layers strongly
depend on the particular treatment of boundaries within the
macroscopic models. These ambiguities can be avoided
within a microscopic formulation of boundary conditions
which are imposed on the solution of a two-particle
Schrödinger equation for the electron-hole motion under the
influence of Coulomb interaction which is directly coupled
to Maxwell’s equations for the propagating light field. A mi-
croscopic solution for this problem has been suggested in
Ref. 8 for a semiconductor sample in half-space and slab
geometry. The treatment of light reflection on a single sur-
face within a half-space geometry has been presented in Ref.
9 using a contact potential for the Coulomb interaction. Re-
cently the full solution of the linear light propagation prob-
lem has been applied to a finite semiconductor layer.10 Only
with microscopic boundary conditions was it possible to si-
multaneously reproduce amplitude and phase measurements
of the transmitted light field through a GaAs layer.10,11 An-
other investigation,12 based on the approach of Ref. 8, has
also demonstrated the critical role of microscopic boundary
conditions for the half-space and slab geometry where again
a one-dimensional contact interaction between the electrons
and holes has been used.

Previous theoretical investigations have focused on infi-
nitely high confinement potentials for the optically excited
electrons and holes. In typical experiments, however, polar-
iton propagation is studied in layers surrounded by buffer
material. These heterostructures provide a confinement po-
tential that is relatively high in the GaAs/Al0.3Ga0.7As sys-
tem of Refs. 10 and 11 but considerably shallower in the
ZnCdSe/ZnSe system13 or in ZnSe/ZnSSe structures.14

The purpose of this paper is to study polariton effects in
ZnSe/ZnSSe as a model material system for shallow con-
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finement within a direct comparison between transmission
experiments and calculations using microscopic boundary
conditions. As an alternative to the full numerical solution of
the two-particle Schrödinger equation in Refs. 10 and 11 we
use an expansion in terms of exciton wave functions for a
layer with finite height of the carrier confinement potential.

Our approach deviates from Refs. 8 and 12 as we use
exciton basis states computed for the confinement geometry,
i.e., the semiconductor layer including finite-height poten-
tials. In principle, the basis sets are equivalent, but in praxis
a truncation is necessary. For the bulk basis used in Refs. 8
and 12, a large number of states is necessary to reach con-
vergency of the wave function at the sample boundaries. On
the contrary, in our approach each basis state fulfills the mi-
croscopic boundary conditions separately. Our new approach
has several advantages.(i) In the linear case, different polar-
iton resonances are uncoupled. Hence the number of basis
states relates only to the number of included resonances, i.e.,
to the investigated spectral window. With different basis
states different parts of the spectrum can be analyzed sepa-
rately.(ii ) Most of the numerical work is concentrated on the
calculation of the basis states including microscopic bound-
ary conditions. However, this calculation needs to be done
only once for a given sample geometry. The calculations of
the polariton spectra themselves are greatly simplified.(iii )
Since the boundary conditions are fulfilled for every basis
state, the accuracy of the wave functions is much higher. A
suitable discretization of the wave function can easily be
achieved.

Multiple reflections at the outer surfaces of the hetero-
structure are included in the solution of Maxwell’s equations.
We also show results for a macroscopic model based on Pe-
kar’s ABCs which is usually closer to the experiment and
microscopic calculations in comparison to other macroscopic
approaches. In the present case, the best fit of the Pekar
model is obtained for an effective sample thickness that ex-
ceeds the true layer thickness which is independently deter-
mined using high-resolution x-ray diffraction. The micro-
scopic calculations reveal this surprising result as an
interplay between the extension of the exciton wave function
into the shallow barriers and the reduction of the polarization
near the barrier due to the finite extension of the exciton
relative motion.

II. THEORY

We consider a semiconductor heterostructure consisting
of a single ZnSe layer sandwiched between two ZnSxSe1−x
layers as illustrated in Fig. 1. The structure homogeneously
extends in thex-y plane and has a finite thickness in thez
direction. Our calculations are based on a two-band model
with spin-degenerate conduction and heavy-hole valence
bands. This model is appropriate to describe the lowest in-
terband transitions for the ZnSe layer with strain-split light-
and heavy-hole valence bands for biaxial compressive strain
(see the Appendix for more details). In order to obtain a
lattice-matched structure to the GaAs substrate the sulfur
content has to be less than 7%. An important property of
these ZnSe/ZnSxSe1−x heterostructures is the relatively small

height of the confinement potentialsDEc and DEv
hh for the

carrier motion in thez direction. The outer sample surfaces at
z1 andz2 act as infinitely high potential barriers for electrons
and holes.

For a circularly polarized transverse electromagnetic field
propagating in thez direction we use the ansatzEsr ,vd
=Esz,vde+ andBsr ,vd=Bsz,vdie+ with e+=1/Î2sex+ ieyd in
terms of the standard Cartesian basis vectors. Then in the
semiconductor a macroscopic polarization of the form
Psr ,vd=Psz,vde+ is induced. We consider an incoming
plane-wave light field with electric field amplitudeEinsvd
that is partly reflected at the semiconductor surfacez1 with
an amplitudeErsvd and partly transmitted through the het-
erostructure with an amplitudeEtsvd. The nonresonant back-
ground refractive indexnbg inside the sample is assumed to
be equal for ZnSe and ZnSxSe1−x in good approximation for
the considered sulfur contents. In Sec. II A the microscopic
theory to calculate the transmitted and reflected field ampli-
tude is formulated. In Sec. II B we briefly summarize the
phenomenological polariton theory based on Pekar’s ABCs
in the form used for the discussions in the following sections.

A. Microscopic theory

In the linear optical regime, the resonant contribution to
the macroscopic polarization for electronic interband transi-
tions can be given in the form8

Psz,vd =E dz8Esz8,vdxsz,z8,vd, s1d

with the frequency dependent and nonlocal excitonic suscep-
tibility

xsz,z8,vd = − udehu2o
m

o
k,k8

fm
* sk8,z8,z8dfmsk,z,zd

"v + ig − «m
. s2d

Here, k denotes the excitonic in-plane relative momentum,
deh is the dipole matrix element between conduction and
heavy-hole valence band, andg a phenomenological dephas-

FIG. 1. Illustration of the considered semiconductor heterostruc-
ture in a slab geometry. Conduction band(cb) and heavy-hole va-
lence band(vb) alignments are visualized. The system homoge-
neously extends in thex-y plane and has a finite thicknessuz2−z1u in
the z direction. For more details see text.
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ing constant for the excitonic polarization. The exciton wave
functions fmsk ,ze,zhd enter the susceptiblity(2) only for
equal electron and hole positionsze=zh due to the use of a
local dipole matrix elementdehsze−zhd=dehdsze−zhd. The
eigenenergies«m and wave functionsfmsk ,z,z8d of the ex-
citonic Hamiltonian

Hk,k8
X = s«k,ze

e + «k,zh

h ddk,k8 − Vk,k8
zezh , s3d

are determined according to the following microscopic
boundary conditions: The exciton wave functions vanish if
either the electron or the hole reaches the semiconductor sur-
face at z1 or z2. Note that these boundary conditions are
fulfilled for each single exciton wave functionfmsk ,ze,zhd
in contrast to previous formulations.8,12 The one-particle en-
ergies in effective-mass approximation are

«k,zi

i =
"2k2

2mii
* −

"2

2miz
*

]2

]zi
2 +

Egap

2
+ Vext

i szid, s4d

wheremei
* ,mez

* andmhi
* ,mhz

* denote the effective electron and
hole masses for in-plane(i) andz direction, respectively. The
external potentialVext

i szd is used to model the band offsets of
the heterostructure. The Coulomb matrix elements are given
by

Vk,k8
zz8 =

e0
2

2«0nbg
2

e−uk−k8uuz−z8u

uk − k8u
s5d

with uk −k8u=Îk2+k82−2kk8 cossfk−fk8
d. Heree0 is the ab-

solute value of the electronic charge and«0 is the vacuum
dielectric constant. In linear optics only excitons with in-
plane s symmetry are optically excited. This is due to the
rotational invariance of the system with respect to thez di-
rection. An in-plane angular momentum decomposition
yields the Hamiltonian projected to the in-planes subspace.15

The evaluation of the excitonic polarization in the excitonic
eigenbasis turns out to be advantageous if only a few lowest
excitonic states are optically excited. For our system, the
considered states are well separated from the neglected part
of the spectrum. Therefore a truncation of the excitonic basis
represents a very good approximation in comparison to the
full calculation.10,11,15The scalar wave equation for the elec-
tric field reads

F ]2

]z2 + nbg
2 v2

c0
2 GEsz,vd = −

v2

«0c0
2 E dz8xsz,z8,vdEsz8,vd.

s6d

Within the medium we use as an ansatz for the electric field
coupled to the excitonic polarization

Emedsz,vd = asvdeiqsvdz + bsvde−iqsvdz +E dz8Gsz,z8,vd

3F−
v2

«0c0
2 E dz9xsz8,z9,vdEsz9,vdG , s7d

whereasvd and bsvd are the amplitudes of the free propa-
gating and counterpropagating contributions solving the ho-
mogeneous part of Eq.(6). Treating the right-hand side of

Eq. (6) as an inhomogeneity, its formal solution is found by
adding a particular solution with the Green’s function

Gsz,z8,vd = −
i

2qsvd
eiqsvduz−z8u. s8d

The dispersion of the free solution is given byq2svd
=nbg

2 sv2/c0
2d wherec0 is the vacuum velocity of light. The

solution outside of the sample is given by the sum of the
incoming and reflected plane wave forz,z1 and a transmit-
ted plane wave forz.z2. The self-consistency requirement
of the coupled light-matter interaction enters in our descrip-
tion of the spatially inhomogeneous system via the inhomo-
geneity in Eq.(6) depending on the solution itself. This ap-
proach yields a unique solution of the problem with respect
to Maxwell’s boundary conditions, namely, the continuity of
the electric fieldEsz,vd and its first derivatives] /]zdEsz,vd
at the sample boundaries forz=z1,z2.

B. Additional boundary conditions

In this section we summarize the application of a phe-
nomenological polariton model to calculate optical transmis-
sion spectra for the above discussed heterostructure. To avoid
the involved solution of the excitonic problem in the pres-
ence of an external potential on a microscopic level, the phe-
nomenological model starts from the analytically known so-
lution in a bulk crystal. In the absence of sample boundaries,
a separation of the electron-hole relative and center-of-mass
motion is possible. For the relative motion under the influ-
ence of Coulomb interaction and the free center-of-mass mo-
tion, the contribution of the 1s exciton can be described us-
ing the susceptibility

xsq,vd =
ud1u2

"v + ig − «1 −
"2q2

2M*

, s9d

where«1 is the 1s exciton energy,M* the total exciton mass,
q the center-of-mass momentum, andud1u2= udehu2/ spa0

x3d is
the dipole coupling of the 1s state to the electric field with
the bulk exciton Bohr radiusa0

x. Taking into account propa-
gatingEp=1,2

+ svd and counterpropagatingEp=1,2
− svd contribu-

tions for the two resulting polariton modesqp=1,2svd in the
vicinity of the 1s exciton resonance, the ansatz for the elec-
tric field inside the layer is given by

Emedsz,vd = o
p=1,2

fEp
+svdeiqpsvdz + Ep

−svde−iqpsvdzg. s10d

An essential property of this phenomenological approach is
that Maxwell’s boundary conditions at the sample surfaces
and the ZnSe/ZnSSe interfaces are not sufficient to find a
unique solution for the unknown field amplitudes. To over-
come this fundamental shortcoming one imposes ABCs on
the macroscopic polarization

Psv,zd = u o
p=1,2

xsq,vduq=qpsvd

3fEp
+svdeiqpsvdz + Ep

−svde−iqpsvdzg. s11d

The original ABCs of Pekar require a vanishing macroscopic
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polarization at the boundaries of the layer that resonantly
interacts with the light field.3

The advantage of this approach is simplicity. However,
results may strongly depend on the used ABC scheme. Other
models4,6 are not considered here as Pekar’s ABCs are most
commonly used and yield best results in comparison to mi-
croscopic theory and experiment.11

It should be noted that the need for macroscopic ABCs
results from the use of a local excitonic susceptibility,(9).
The corresponding decoupling of the exciton relative and
center-of-mass motion is clearly violated near the sample
boundaries. To account for a finite spatial extension of the
exciton, macroscopic ABCs have been augmented by the
dead-layer assumption where an effectively reduced sample
thickness due to polarization-free surface regions is consid-
ered. The dead-layer thickness should depend on the
electron-hole mass ratio.7,15 It is commonly used, however,
as a fit parameter. This situation is additionally complicated
by the fact that in many cases the sample thickness is not
sufficiently well known. To remove this uncertainty for the
samples used in this paper the thickness has been indepen-
dently determined by means of high resolution x-ray diffrac-
tion, see Sec. III for details. Both the coupling of exciton
relative and center-of-mass motion as well as the appearance
of surface regions of reduced polarization are fully included
in our microscopic solution of the two-particle problem for
the electron-hole motion under the influence of Coulomb in-
teraction and the external confinement potential.

III. SAMPLE GROWTH, CHARACTERIZATION
AND OPTICAL SETUP

Three ZnSe/ZnSSe samples with nominal thicknesses of
20, 28, and 40 nm for the ZnSe layer were grown by mo-
lecular beam epitaxy(MBE) in a twin-chamber system on
GaAs(001) substrates on which a 180-nm-thick GaAs buffer
layer was deposited. The ZnSe layers are asymmetrically im-
bedded in ZnSSe lattice matched to the substrate with thick-
ness of 1mm (on the GaAs side) and 500 nm(on the top
side).

The samples were characterized using a high resolution
x-ray diffractometer with a Cu sealed anode, a four-crystal
monochromator in Ge(220) configuration and a two-crystal
analyzer.v-2u scans of the symmetrical(004) Bragg reflec-
tion show good lattice matching of the ZnSSe layers with
respect to the substrate which allowed the coherent growth of
the heterostructures. The resulting composition of the ZnSSe
barriers as well as the thickness of the ZnSe layers extracted
from calculatedv-2u patterns are given in Table I. Recipro-
cal space maps of the asymmetrical(224) Bragg reflection
confirmed that the structures are fully strained.

For transmission experiments the opaque GaAs substrate
was removed by grinding and subsequent chemical etching.
To measure the linear transmission spectra a conventional
setup was used consisting of a Xe lamp with a filter trans-
mitting the interesting blue spectral region only, a cryostat, a
double-grating spectrometer with a spectral resolution of
10−4 eV, and a photomultiplier. All experiments were per-
formed on free standing samples immersed in a liquid helium
bath with a temperature of 4 K.

Free standing samples had to be used to avoid additional
stress due to cooling down the samples. The chemical etch-
ing of the substrate had to be stopped in time to avoid an
etching down of the ZnSSe-barrier on the bottom of the ac-
tive layer. Therefore, the total thickness of the interesting
transparent ZnSSe/ZnSe/ZnSSe system was checked after
the etching process by an additional optical measurement. To
do this, transmission spectra were measured over an ex-
tended spectral range to observe some periods of the Fabry-
Perot modes which are due to the whole thickness of the
system and are responsible for the absolute values of the
transmission measured in the interesting spectral region of
the hh-polariton modes. From comparison of the spectral be-
havior of the Fabry-Perot modes measured and calculated,
the total thickness was obtained. For the samples used in the
experiments it was in good agreement with the thickness
previously intended in the MBE growth process. All samples
show very pronounced polariton mode structures with dis-
tances depending on their active layer thickness.

IV. THEORY vs EXPERIMENT:
RESULTS AND DISCUSSION

In this section we investigate the optical transmission
spectra for the three samples described in Sec. III. The mea-
sured transmission spectra in the vicinity of the excitonic
resonances of the ZnSe layer are shown as dashed lines in
Fig. 2 for the(a) 20 nm, (b) 28 nm, and(c) 40 nm sample,
respectively. Because of the high quality of the heterostruc-
tures even the weaker polariton resonances are clearly re-
solved. All peaks that can uniquely be attributed to reso-
nances of the 1s heavy-hole polariton in the finite ZnSe layer
are labeled with hh and consecutive numbers. While light-
hole resonances are not considered in the calculations, at
least the lowest light-hole(lh) resonance(and even higher
resonances in the 40 nm layers) can be seen in the experi-

TABLE I. Structural sample parameters determined by high
resolution x-ray diffraction and input parameters for the micro-
scopic theory for the different samples. Band offsets are deduced
from the structural data, see the Appendix. The layer thicknesses for
the microscopic theory agree with the experimental ones, within an
error of ±0.8 nm. For the macroscopic model the layer thicknesses
are chosen so that the best fit is obtained for a reproduction of the
experimental transmission spectra.

Nominal ZnSe layer thickness[nm] 20 28 40

Experimentally determined

ZnSe layer thickness[nm] 21.5 29.0 43.5

Barrier sulfur contentx [%] 5.2 5.0 5.8

Parameters for microscopic theory

ZnSe layer thickness[nm] 20.7 29.4 43.7

Heavy-hole val. band offsetDEv
hh [meV] 21.2 20.6 23.2

Conduction band offsetDEc [meV] 2.7 2.1 4.6

Parameters for Pekar’s ABCs

ZnSe layer thickness[nm] 22.5 31.5 45.5
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ment. In each figure, the resulting spectrum from the micro-
scopic theory is given by the solid lines. Input parameters are
given in Tables I and II. In a good approximation to the
experimental setup, a vacuum background refractive index
nbg=1 is used outside the sample. The results demonstrate
that the microscopic theory well reproduces the experimental
findings for the considered part of the spectrum. The devia-
tions for higher energies result from the not considered light-
hole exciton contributions, higher heavy-hole exciton states,
and the neglected frequency dependent dispersion of the
ZnSSe layers in this frequency range. It should be noted that
in the linear regime various polariton resonances are
decoupled.15 The dephasing constantg and the band-gap en-
ergy EgapsZnSed for the heavy-hole conduction band transi-
tion in the strained ZnSe layer(Table II) are adjusted accord-
ing to the experimental values.

The surfaces of the heterostructure form a resonator for
the optical field. The resulting Fabry-Perot modes are super-
imposed to the polariton resonances. To concentrate exclu-
sively on the polariton effects in the ZnSe layer, the solid
lines in Fig. 3 show results of the microscopic calculation

without Fabry-Perot effects(which corresponds to an ideal
antireflection coating of the outer sample surfaces). For the
macroscopic model, isotropic effective massesme

* , mhh
*

=mhhz
* for electrons and holes have to be used to facilitate the

analytical solution, Eq.(9), which necessitates a slightly
shifted band-gap energyEgap

Pekar=2.8289 eV in comparison to
the microscopic theory. The results are shown as dashed-
dotted lines for a dipole couplingdeh/e0=3.7 Å and as dot-
ted lines fordeh/e0=2.89 Å, respectively.

The dipole couplingdeh/e0=3.7 Å corresponds to the
value of the microscopic theory. However, for the macro-
scopic model it turns out to be not appropriate. This is due to
the assumption of homogeneity that enters the macroscopic
model and that is not fulfilled for our system. For a mean-
ingful comparison with the microscopic theory, an effec-
tively reduced dipole coupling constant is extracted from the
microscopic theory in the following way: Within a homoge-
neous system the reduced exciton massm* is connected to
the exciton binding energyEb

xs3Dd by

m * =
32p2«0

2nbg
4 "2

e0
4 Eb

xs3Dd. s12d

Using the exciton binding energyEb
x=19 meV obtained from

the microscopic theory for the anisotropic system, it is pos-
sible to extract an effective reduced exciton massmeff

* . This
yields an effective exciton Bohr radius

a0,eff
x =

4pnbg
2 «0"2

meff
* e0

2 , s13d

which, together with the dipole coupling constantdeh/e0
=3.7 Å, provides an effective longitudinal-transversal split-
ting

FIG. 2. Transmission spectra for the(a) 20 nm, (b) 28 nm, (c)
40 nm sample. Dashed line: Experiment. Solid line: Microscopic
theory.

TABLE II. ZnSe material parameters for the microscopic theory,
equal for all samples. For material parameters entering the macro-
scopic model see discussion in the text. The bare electron mass is
denoted bym0.

Gap energy EgapsZnSed=2.82593 eV

Dephasing constant g=0.35 meV

Dipole coupling deh/e0=3.7 Å

Backgr. refractive index nbg=2.95

Effective electron mass me
* =mei

* =mez
* =0.147 m0 (Ref. 16)

Luttinger parameter g1=2.45 (Ref. 16)

Luttinger parameter g2=0.61 (Ref. 16)

FIG. 3. Transmission spectra for the(a) 20 nm,(b) 28 nm, and
(c) 40 nm sample without Fabry-Perot effects. Solid line: Micro-
scopic theory,deh/e0=3.7 Å. Dotted line: Pekar’s ABCs,deh/e0

=2.89 Å. Dashed-dotted line: Pekar’s ABCs,deh/e0=3.7 Å.
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DLT
mic =

udehu2

pnbg
2 «0a0,eff

x3 . s14d

With the assumptionDLT
Pekar=DLT

mic we obtain an effectively
reduced dipole coupling constantdeh/e0=2.89 Å for the
macroscopic model. Our discussion shows that within a mac-
roscopic model for a homogeneous system applied to an in-
homogeneous semiconductor heterostructure the dipole cou-
pling constant is underestimated. In principle, the commonly
used determination of dipole coupling constants from the
longitudinal-transversal splitting is not appropriate here since
Eq. (14) is only valid for homogeneous materials.

For each calculation based on Pekar’s ABCs the layer
thickness is adjusted for best reproduction of the energy po-
sitions of the polariton resonances in the experimental spec-
trum. The resulting values are given in Table I. The values
for the layer thickness chosen for the macroscopic model are
even largerthan the values that are experimentally deter-
mined as well as used for the microscopic calculation. At
first glance this is contradicted by the fact that for infinitely
high potential barriers of the ZnSe layer there is a
polarization-free region near the surface due to the finite ex-
tension of the exciton relative motion(which is often in-
cluded as a dead-layer in macroscopic models).7,11,15 Previ-
ous microscopic calculations for the GaAs/AlxGA1−xAs
system clearly identified these polarization-free regions.

For a better understanding of these apparent inconsisten-
cies in the application of Pekar’s ABCs, Fig. 4 shows the
spatially resolved macroscopic excitonic polarization ob-
tained from the microscopic theory for resonant monochro-
matic excitation of the lowest three polariton states. Due to

the relatively small height of the confinement potentials in
the ZnSe/ZnSSe system, the exciton wave functions can
even penetrate slightly into the barrier region. This shows
that for shallow confinement potentials the “effective”
sample thickness used in the macroscopic calculations based
on ABCs can even exceed the true layer thickness, and that
in this case the dead-layer concept breaks down.

It is interesting to note that in a layer with a high confine-
ment potential the thickness of the region of reduced polar-
ization varied for different polariton resonances of a given
sample.11 In the cases displayed in Fig. 4 this variation is
much less pronounced. Especially for the 40 nm sample the
effective thickness is almost the same for the displayed po-
lariton modes. This also explains previous interpretations of
experiments for ZnSe/ZnSSe heterostructures14 in terms of
Pekar’s ABCs using the same effective thickness for all reso-
nances of a given sample. As it turns out now, the used
sample thickness exceeds the true value. However, the spa-
tial dependence of the macroscopic polarization in Fig. 4
clearly deviates from a simple picture of quantization of the
center-of-mass motion which shows the intricate interplay of
relative and center-of-mass motion with the propagating light
field.

V. CONCLUSION

A solution of the two-particle Schrödinger equation for
the description of electron-hole-pair excitations under the in-
fluence of Coulomb interaction has been used to apply mi-
croscopic boundary conditions in a shallow confinement po-
tential situation for which ZnSe/ZnSSe heterostructures
served as a model example. Results for the polariton modes
in transmission spectra reproduce the experimental observa-
tions while calculations based on Pekar’s ABCs require un-
realistic modifications of the material parameters. This is due
to the fact that Pekar’s ABCs assume an infinite-height con-
finement potential where the realistic inclusion of the exciton
relative motion requires a polarization-free dead-layer. For
shallow-confinement situations, a breakdown of these con-
cepts has been demonstrated since the application of Pekar’s
ABCs requires an effective sample thickness which even ex-
ceeds the thickness of the confinement potential.

Generally the use of macroscopic ABC models inherits
uncertainties in the used sample thickness to fit the spectral
position and oscillatory strength ofall polariton resonances
of the same spectrum. In the studied examples of this paper,
the counteracting influence of a shallow confinement poten-
tial, the band offset, and the carrier masses result in exciton
wave functions having nearly the same effective extension.
This is, however, by no means trivial and strongly dependent
on the material system.
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APPENDIX: MATERIAL PARAMETERS

This appendix is dedicated to the material parameters that
are used to model the electronic band structure and its offsets

FIG. 4. Steady-state polarization for monochromatic, resonant
excitation of the three lowest polariton modes in the microscopic
theory without Fabry-Perot effects for the(a) 20 nm,(b) 28 nm, and
(c) 40 nm sample. The excitation frequency is tuned to the first
(dotted line), second(dashed-dotted line), or third (dashed line)
resonance, respectively. The solid lines illustrate the confinement
potential for carriers in the ZnSe layer.
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at the semiconductor interfaces. The effective masses for the
heavy-hole valence band that follow from the Luttinger
Hamiltonian in axial approximation are17

mhhi
* =

m0

g1 + g2
= 0.327m0, sA1d

mhhz
* =

m0

g1 − 2g2
= 0.813m0 sA2d

for the in-plane motion and the motion in the growth direc-
tion, respectively. Different effective masses for the ZnSe
and ZnSSe material are not considered because they would
yield only minor changes to our results: Changes in the elec-
tron mass are negligible due to the small sulfur contents. The
hole states contributing to the optical spectra only slightly
penetrate the barrier due to the larger heavy-hole band offsets
and the large effective heavy-hole mass. In good approxima-
tion, the optical band-gap bowing for a ternary compound is
given by

Egap
ABxC1−x = s1 − xdEgap

AC + xEgap
AB − bxs1 − xd. sA3d

For the ZnSe/ZnSSe material system a variety of bowing
parametersbsZnSxSe1−xd has been reported.18 We use an in-
termediate value of 0.43 eV, so that the literature values are
accumulated around it. Gap energies of the pure binary bulk
materials are19

Egap
ZnSsT = 5 Kd = 3.84 eV, sA4d

Egap
ZnSesT = 5 Kd = 2.82 eV. sA5d

The ZnSe gap energy coincides quite well with the result for
our samples(compare Table II and keep in mind its strain
enlargement). For the unstrained bulk materials the valence
band offset from ZnSe to ZnS isDEvsZnSe,ZnSd
=530 meV.20 Similar results have been reported

elsewhere.21,22With the gap energies this yields a conduction
band offset ofDEcsZnSe,ZnSd=490 meV. We assume that
the ratio of valence and conduction band offsets from pure
ZnSe to ZnSxSe1−x does not depend on the sulfur concentra-
tion x for the unstrained bulk materials. Due to pseudomor-
phic growth on GaAs(001) substrate, the ZnSe layer is biax-
ially compressively strained. This yields energy shifts of its
conduction and valence bands.23,24 The resulting energy
shifts for conduction and heavy-hole valence band are given
by17

DEc,strain= 2acS1 −
C12

C11
D«xx, sA6d

DEv,strain
hh = 2avS1 −

C12

C11
D«xx − bvS1 + 2

C12

C11
D«xx. sA7d

Only a hydrostatic deformation potential is obtained for the
conduction band whereas an additional shear deformation
potential applies for the valence band shift. The hydrostatic
deformation potential decreases the band offsets for both
bands and thus enlarges the gap energy of the ZnSe material.
The shear deformation potential increases the offset for the
heavy-hole valence band and thus decreases the gap energy.
The required material parameters for ZnSe are21,24 ac
=−5.9 eV, av=−1.0 eV, bv=−1.14 eV for the deformation
potential constants andC11=929 kbar,C12=562 kbar for the
elastic stiffness tensor elements. The strain tensor element
«xx=sai,ZnSe−aZnSe

0 d / saZnSe
0 d follows from the in-plane lattice

constants of the fully strainedsai,ZnSe=aGaAsd and unstrained
saZnSe

0 d ZnSe material. The band offsets for the different
samples follow from the sulfur concentration in Table I.
They slightly vary around carrier confinement potentials of
3 meV for the conduction band and 22 meV for the heavy-
hole valence band, compare Table I. The small conduction
band offset coincides with previous results for ZnSe/ZnSSe
heterostructures with larger sulfur concentrations.23,25
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