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Polariton propagation in shallow-confinement heterostructures: Microscopic theory
and experiment showing the breakdown of the dead-layer concept
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Polariton effects due to the interplay of the excitonic polarization of a semiconductor and a propagating light
field are studied for transmission spectra of ZnSe /&8s, heterostructures. Calculations in terms of micro-
scopic boundary conditions for the exciton motion within a finite-height confinement potential can explain the
measured transmission spectra. These calculations also show the absence of polarization-free regions near the
sample interfaces. Macroscopic models based on Pekar’s additional boundary conditions can only reproduce
the spectra if the band alignment at the ZnSe /&, interfaces is modified in comparison to the micro-
scopic calculation and if a sample thickness is used that exceeds the independently determined experimental
value. Our findings demonstrate the breakdown of the dead-layer concept for shallow confinement potentials.
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[. INTRODUCTION Unfortunately the results for the excitonic transmission
and reflection spectra in thin semiconductor layers strongly
Since the introduction of the polariton concktite proper  depend on the particular treatment of boundaries within the
description of a propagating light field interacting with the macroscopic models. These ambiguities can be avoided
excitonic resonances of a semiconductor medium has beenvathin a microscopic formulation of boundary conditions
long standing problem. For the idealized case of propagatiomwhich are imposed on the solution of a two-particle
within an infinitely extended semiconductor, the eigenmodeschrédinger equation for the electron-hole motion under the
of the propagating light field coupled to the excitonic statesnfluence of Coulomb interaction which is directly coupled
can be easily formulatédsince in this situation the exciton to Maxwell's equations for the propagating light field. A mi-
relative and center-of-mass motion are decoupled. Complicazroscopic solution for this problem has been suggested in
tions arise from the inclusion of sample surfaces where aiRef. 8 for a semiconductor sample in half-space and slab
external light field is coupled to the polariton modes andgeometry. The treatment of light reflection on a single sur-
where the polaritons radiatively decay into photons. face within a half-space geometry has been presented in Ref.
In the past, macroscopic approaches have been introduc@€dusing a contact potential for the Coulomb interaction. Re-
which continue using the excitonic susceptibility of the spa-cently the full solution of the linear light propagation prob-
tially homogeneouginfinitely extendegl medium. In this lem has been applied to a finite semiconductor 1ay@nly
case the inclusion of sample surfaces requires so-called addth microscopic boundary conditions was it possible to si-
ditional boundary condition6ABCs). The original proposal multaneously reproduce amplitude and phase measurements
of Peka? requires the vanishing of the macroscopic polariza-of the transmitted light field through a GaAs lay&t! An-
tion at the semiconductor surface. Other approaches suggesther investigation? based on the approach of Ref. 8, has
that the spatial derivatiVeor a linear combination of the also demonstrated the critical role of microscopic boundary
polarization and its derivativeshould vanish at the sample conditions for the half-space and slab geometry where again
surface. The missing microscopic foundation of ABCs fora one-dimensional contact interaction between the electrons
the coupled exciton and light field propagation in spatiallyand holes has been used.
inhomogeneous media has been the motivation for an alter- Previous theoretical investigations have focused on infi-
native macroscopic formulaticdh. nitely high confinement potentials for the optically excited
Another effect that has to be included in macroscopic apelectrons and holes. In typical experiments, however, polar-
proaches is the reduced excitonic polarization near surfacétn propagation is studied in layers surrounded by buffer
due to finite extension of the exciton relative motion. So-material. These heterostructures provide a confinement po-
called dead-layerdeading to an effectively reduced sample tential that is relatively high in the GaAs/fGa, ;As sys-
thicknes$ have often been used in the past as a fit parametetem of Refs. 10 and 11 but considerably shallower in the
The determination of the dead-layer thickness based on ZnCdSe/ZnSe systerhor in ZnSe/ZnSSe structurés.
Born-Oppenheimer approximation has been discussed in The purpose of this paper is to study polariton effects in
Ref. 7. ZnSe/ZnSSe as a model material system for shallow con-
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finement within a direct comparison between transmission © e e . oo

experiments and calculations using microscopic boundary oo ¢ ¢ x ¢ |

conditions. As an alternative to the full numerical solution of L Q L

the two-particle Schrodinger equation in Refs. 10 and 11we g (p) = L -

use an expansion in terms of exciton wave functions fora <——: e © L E(w)

layer with finite height of the carrier confinement potential. Ep(@) @ e ¢ ¢ :
Our approach deviates from Refs. 8 and 12 as we use = Er i B

exciton basis states computed for the confinement geometry, | v v

i.e., the semiconductor layer including finite-height poten- — [ : j =

tials. In principle, the basis sets are equivalent, but in praxis . ZnS,Sei x ZnSe ZnS.Sei x <oy

a truncation is necessary. For the bulk basis used in Refs. 8 < <2

and 12, a large number of states is necessary to reach con- <

vergency of the wave function at the sample boundaries. On
the contrary, in our approach each basis state fulfills the mi- . . )
croscopic boundary conditions separately. Our new approach FIG. 1. lllustration of the considered semiconductor heterostruc-

. . . ture in a slab geometry. Conduction bafuth) and heavy-hole va-
has several advantaggs. In the linear case, different polar- lence band(vb) alignments are visualized. The system homoge-

iton resonances are uncoupled. He.nce the number of bz.i%%ously extends in they plane and has a finite thicknelgs—zy| in
states relates only to the number of included resonances, i.6., direction. For more details see text

to the investigated spectral window. With different basis
states different parts of the spectrum can be analyzed sepa-. ' : hh

rately. (i) Most of the numerical work is concentrated on the ﬁelg_ht of the (_:onflner_nent_ potentialé=; and AE,” for the
calculation of the basis states including microscopic boundSarfier motion in the direction. The outer sample surfaces at
ary conditions. However, this calculation needs to be doné andz, act as infinitely high potential barriers for electrons
only once for a given sample geometry. The calculations of"nd holes_. . -
the polariton spectra themselves are greatly simplifiéd). For a circularly polarized transverse electromagnetic field
Since the boundary conditions are fulfilled for every basis?'oPagating in thez d_lrectlon. we use the ansa&(r,w)
state, the accuracy of the wave functions is much higher. & E(Z, @), andB(r, »)=B(z, w)ie, with &, =1/y2(e,+ie) in
suitable discretization of the wave function can easily bderms of the standard Cartesian basis vectors. Then in the
achieved. semiconductor a macroscopic polarization of the form

Multiple reflections at the outer surfaces of the heteroP(r@)=P(z,w)e, is induced. We consider an incoming
structure are included in the solution of Maxwell's equations Plane-wave light field with electric field amplitude,(w)
We also show results for a macroscopic model based on Péhat is partly reflected at the semiconductor surfacevith
kar's ABCs which is usually closer to the experiment andan amplitudeE, () and partly transmitted through the het-
microscopic calculations in comparison to other macroscopi€rostructure with an amplitudg(w). The nonresonant back-
approaches. In the present case, the best fit of the Pekground refractive indexy, inside the sample is assumed to
model is obtained for an effective sample thickness that exbe equal for ZnSe and ZgSe _, in good approximation for
ceeds the true layer thickness which is independently detethe considered sulfur contents. In Sec. Il A the microscopic
mined using high-resolution x-ray diffraction. The micro- theory to calculate the transmitted and reflected field ampli-
scopic calculations reveal this surprising result as ariude is formulated. In Sec. Il B we briefly summarize the
interplay between the extension of the exciton wave functiorphenomenological polariton theory based on Pekar's ABCs
into the shallow barriers and the reduction of the polarizatiorin the form used for the discussions in the following sections.
near the barrier due to the finite extension of the exciton
relative motion. A. Microscopic theory
In the linear optical regime, the resonant contribution to
Il. THEORY the macroscopic polarization for electronic interband transi-

We consider a semiconductor heterostructure consistinﬁons can be given in the forfn

of a single ZnSe layer sandwiched between two B&,

layers as illustrated in Fig. 1. The structure homogeneously P(z,w) =f dZE(Z, 0)x(2.7',w), (1)
extends in thex-y plane and has a finite thickness in the

direction. Our calculations are based on a two-band modekith the frequency dependent and nonlocal excitonic suscep-
with spin-degenerate conduction and heavy-hole valencegbility

bands. This model is appropriate to describe the lowest in-
terband transitions for the ZnSe layer with strain-split light-
and heavy-hole valence bands for biaxial compressive strain
(see the Appendix for more detagilsn order to obtain a
lattice-matched structure to the GaAs substrate the sulfurere, k denotes the excitonic in-plane relative momentum,
content has to be less than 7%. An important property ofle, is the dipole matrix element between conduction and
these ZnSe/ZnSe _, heterostructures is the relatively small heavy-hole valence band, anda phenomenological dephas-

>y ¢;<k',z’,z'>¢m(k,z,z)_

ho+iy—gny

x(2.2',0) = = |der] (2)

m Kk’
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ing constant for the excitonic polarization. The exciton waveEg. (6) as an inhomogeneity, its formal solution is found by
functions ¢ (k,z.,2,) enter the susceptiblity2) only for  adding a particular solution with the Green’s function

equal electron and hole positiong=z, due to the use of a i

local dipole matrix elementqy(ze—27,) =dend(ze—2z,). The G(z,Z,w)=~- gla(w)|z=2'| (8)
eigenenergies,, and wave functionsp,(k,z,z') of the ex- 29(w)
citonic Hamiltonian The dispersion of the free solution is given mf(w)
—n2 (2] 2 : - :
H)k(,k’ - (SE,zEJ' SE,zh)5k,k' ‘Vi‘fzkhu 3) =ny(w”/Cy) Wherecy is the vacuum velocity of light. The

solution outside of the sample is given by the sum of the
are determined according to the following microscopicincoming and reflected plane wave oz, and a transmit-
boundary conditions: The exciton wave functions vanish ifted plane wave foez>z,. The self-consistency requirement
either the electron or the hole reaches the semiconductor supf the coupled light-matter interaction enters in our descrip-
face atz; or z,. Note that these boundary conditions aretion of the spatially inhomogeneous system via the inhomo-
fulfilled for each single exciton wave functiof(k,z,,z,)  9eneity in Eq.(6) depending on the solution itself. This ap-
in contrast to previous formulatiods? The one-particle en- Proach yields a unique solution of the problem with respect

ergies in effective-mass approximation are to Maxwell's boundary conditions, namely, the continuity of
oo ) the electric fieldE(z, w) and its first derivatived/ 9z)E(z, w)
i Rk h_ﬁ + qup+vi (z) 4 & the sample boundaries forz;,z,.
Sk,zi * * ext4),
2y 2m, o7 2

B. Additional boundary conditions
wheremy ,m,, andm,,,m,, denote the effective electron and
hole masses for in-plan®) andz direction, respectively. The nomenological polariton model to calculate optical transmis-

. | .
external potentiaV,(2) is used to model the band offsets of g, snectra for the above discussed heterostructure. To avoid
the heterostructure. The Coulomb matrix elements are giVefhe involved solution of the excitonic problem in the pres-

In this section we summarize the application of a phe-

by ence of an external potential on a microscopic level, the phe-
2 k—k'||lz-Z| nomenological model starts from the analytically known so-
27 & € ; ; ;
Vi = 5 - (5) lution in a bulk crystal. In the absence of sample boundaries,
' 2&0Mpg k=K'l a separation of the electron-hole relative and center-of-mass

with [k—k'| = \k2+k'2—2kk' cod - &y,). Heree, is the ab- motion is possible. For the relative motion under the influ-

ence of Coulomb interaction and the free center-of-mass mo-
tion, the contribution of the 4 exciton can be described us-
ing the susceptibility

solute value of the electronic charge agglis the vacuum
dielectric constant. In linear optics only excitons with in-
planes symmetry are optically excited. This is due to the

rotational invariance of the system with respect to zhdi- |d,|?

rection. An in-plane angular momentum decomposition X(q,0) = P 9
yields the Hamiltonian projected to the in-plassubspacé® ho+iy—e, - 9

The evaluation of the excitonic polarization in the excitonic 2M*

eigenbasis turns out to be advantageous if only a few |°We%heresl is the Is exciton energyM* the total exciton mass,

excitonic states are optically excited. For our system, thq] the center-of-mass momentum ajrui;|2=|deh|2/(wa(’§3) is

considered states are well separated from the neglected pgffy ginole coupling of the dstate to the electric field with

of the spectrum. Therefore a truncation of the excitonic basig, o pulk exciton Bohr radiua. Taking into account propa-

represents a very good approximation in comparison to thSating E*_, () and counterpropagating;_, () contribu-

full calculation®'%15The scalar wave equation for the elec- tions for the two resulting polariton mopd_ﬂ’g {w) in the
=1,

tric field reads vicinity of the 1s exciton resonance, the ansatz for the elec-

P 5 2 2 tric field inside the layer is given by
P +Nog 2 E(zw)=-—— [ dZx(z.Z,0)E(Z,w). ) )
J Co £0Co Emedz @) = 2 [Ep(@)e%@?+E (w)e %], (10)
(6) 1.2
Within the medium we use as an ansatz for the electric field?n essential property of this phenomenological approach is
coupled to the excitonic polarization that Maxwell's boundary conditions at the sample surfaces

and the ZnSe/ZnSSe interfaces are not sufficient to find a
unique solution for the unknown field amplitudes. To over-
come this fundamental shortcoming one imposes ABCs on
the macroscopic polarization

EmedZ ©) = a(@)@¥? + b(w)e ™7 + f dZG(z.7 )

w? f
X|——= | dZ'x(Z',7',0)E(Z", w) |, 7 -
[ EOCS x(Z',Z', w)E( a)):| (7) P(w,2) = p:ELZX(q,w)|q:qp(w)
wherea(w) andb(w) are the amplitudes of the free propa- X[E* ()92 + E- (o) 9@)7] (11)
P P :

gating and counterpropagating contributions solving the ho-
mogeneous part of Eq6). Treating the right-hand side of The original ABCs of Pekar require a vanishing macroscopic
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polarization at the boundaries of the layer that resonantly TABLE I. Structural sample parameters determined by high
interacts with the light field. resolution x-ray diffraction and input parameters for the micro-
The advantage of this approach is simplicity. However,scopic theory for the different samples. Band offsets are deduced
results may strongly depend on the used ABC scheme. Oth&em the structural data, see the Appendix. The layer thicknesses for
modelé® are not considered here as Pekar's ABCs are modbe microscopic theory agree with the experimental ones, within an
commonly used and yield best results in comparison to mi€"or of +0.8 nm. For the macroscopic model the layer thicknesses
croscopic theory and experimeht. are chosen so that the _best fit is obtained for a reproduction of the
It should be noted that the need for macroscopic ABCEXPerimental transmission spectra.
results from the use of a local excitonic susceptibil{§).

The corresponding decoupling of the exciton relative and‘°minal ZnSe layer thicknegsim] 20 28 4
center-of-mass motion is clearly violated near the sample Experimentally determined

boundaries. To account for a finite spatial extension of theZnSe layer thicknesgmi 215 290 435
exciton, macroscopic ABCs have been augmented by th% . 0 2 50 5.8
dead-layer assumption where an effectively reduced samp arrier sulfur contenk [%] > ' i
thickness due to polarization-free surface regions is consid- Parameters for microscopic theory

ered. The dead-layerr(altshickness should depend on thg,ge layer thicknesgm 207 294 437
electron-hole mass ratfo= It is commonly used, however, hh

as a fit parameter. This situation is addit)i/onally compIicate(ﬁeavy_h.OIe val. band offSetE, [mev]  21.2 20.6 232
by the fact that in many cases the sample thickness is ndtonduction band offseAE; [meV] 20 21 46
sufficiently well known. To remove this uncertainty for the Parameters for Pekar’s ABCS

samples used in this paper the thickness has been indepej)ge layer thicknesgmi 225 315 455
dently determined by means of high resolution x-ray diffrac-
tion, see Sec. lll for details. Both the coupling of exciton
relative and center-of-mass motion as well as the appearance grqe standing samples had to be used to avoid additional
of surface regions of reduced polarization are fully includedgiress due to cooling down the samples. The chemical etch-
in our microscopic solution of the two-particle problem for ing of the substrate had to be stopped in time to avoid an
the electron-hole motion under the influence of Coulomb i”'etching down of the ZnSSe-barrier on the bottom of the ac-

teraction and the external confinement potential. tive layer. Therefore, the total thickness of the interesting
IIl. SAMPLE GROWTH, CHARACTERIZATION transparent ZnSSe/ZnSe/ZnSSe system was checked after
AND OPTICAL SETUP the etching process by an additional optical measurement. To

do this, transmission spectra were measured over an ex-

Three ZnSe/ZnSSe samples with nominal thicknesses akénded spectral range to observe some periods of the Fabry-
20, 28, and 40 nm for the ZnSe layer were grown by mo-Perot modes which are due to the whole thickness of the
lecular beam epitaxyMBE) in a twin-chamber system on system and are responsible for the absolute values of the
GaAg001) substrates on which a 180-nm-thick GaAs buffertransmission measured in the interesting spectral region of
layer was deposited. The ZnSe layers are asymmetrically imthe hh-polariton modes. From comparison of the spectral be-
bedded in ZnSSe lattice matched to the substrate with thickhavior of the Fabry-Perot modes measured and calculated,
ness of 1um (on the GaAs sideand 500 nm(on the top  the total thickness was obtained. For the samples used in the
side). experiments it was in good agreement with the thickness

The samples were characterized using a high resolutiopreviously intended in the MBE growth process. All samples
x-ray diffractometer with a Cu sealed anode, a four-crystakhow very pronounced polariton mode structures with dis-
monochromator in G@20) configuration and a two-crystal tances depending on their active layer thickness.
analyzer.w-26 scans of the symmetricé004) Bragg reflec-
tion show good lattice maftchlng of the ZnSSe layers with I\V. THEORY vs EXPERIMENT:
respect to the substrate which allowed the coherent growth of RESULTS AND DISCUSSION
the heterostructures. The resulting composition of the ZnSSe
barriers as well as the thickness of the ZnSe layers extracted In this section we investigate the optical transmission
from calculatedw-26 patterns are given in Table |. Recipro- spectra for the three samples described in Sec. lll. The mea-
cal space maps of the asymmetri¢aR4) Bragg reflection sured transmission spectra in the vicinity of the excitonic
confirmed that the structures are fully strained. resonances of the ZnSe layer are shown as dashed lines in

For transmission experiments the opaque GaAs substratég. 2 for the(a) 20 nm, (b) 28 nm, and(c) 40 nm sample,
was removed by grinding and subsequent chemical etchingespectively. Because of the high quality of the heterostruc-
To measure the linear transmission spectra a conventionélires even the weaker polariton resonances are clearly re-
setup was used consisting of a Xe lamp with a filter transsolved. All peaks that can uniquely be attributed to reso-
mitting the interesting blue spectral region only, a cryostat, anances of the 4heavy-hole polariton in the finite ZnSe layer
double-grating spectrometer with a spectral resolution ofre labeled with hh and consecutive numbers. While light-
10* eV, and a photomultiplier. All experiments were per- hole resonances are not considered in the calculations, at
formed on free standing samples immersed in a liquid heliunteast the lowest light-hol€lh) resonancgand even higher
bath with a temperature of 4 K. resonances in the 40 nm layeisan be seen in the experi-
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FIG. 2. Transmission spectra for tii@ 20 nm, (b) 28 nm,(c) FIG. 3. Transmission spectra for tii@ 20 nm,(b) 28 nm, and
40 nm sample. Dashed line: Experiment. Solid line: Microscopic(c) 40 nm sample without Fabry-Perot effects. Solid line: Micro-
theory. scopic theory,dsn/€,=3.7 A. Dotted line: Pekar’s ABCS(er/ €y

=2.89 A. Dashed-dotted line: Pekar’'s ABQ%,/e,=3.7 A.
ment. In each figure, the resulting spectrum from the micro-

scopic theory is given by the solid lines. Input parameters argithout Fabry-Perot effectévhich corresponds to an ideal

given in Tables | and Il. In a good approximation to the gptjreflection coating of the outer sample surfacér the
experimental setup, a vacuum background refractive '”de?hacroscopic model, isotropic effective massm*g m;h
Nyg=1 is used outside the sample. The results demonstrate,; , ’

: ; ) Lz fOr electrons and holes have to be used to facilitate the
that the microscopic theory well reproduces the expenmen.taénawﬁcm solution, Eq(9), which necessitates a slightly

findings for the considered part of the spectrum. The deviagpitieq band-gap energs.c<¥=2.8289 eV in comparison to
ap :

tions for higher energies result from the not considered lighty,o microscopic theory. gThe results are shown as dashed-

hole exciton contributions, higher heavy-hole exciton statesyqiiad lines for a dipole couplind./e,=3.7 A and as dot-

and the neglected frequency dependent dispersion of theq |ines ford.,/e,=2.89 A, respectively.

ZnSSe layers in this frequency range. It should be noted that o dipole couplingd,/e,=3.7 A corresponds to the

in the linear regime various polariton resonances argg|ue of the microscopic theory. However, for the macro-

decoupled? The dephasing constaptand the band-gap en-  s¢qhic model it turns out to be not appropriate. This is due to

ergy EgaZnSe for the heavy-hole conduction band transi- yhe assumption of homogeneity that enters the macroscopic

tion in the strained ZnSe lay€Table Il) are adjusted accord-  mode| and that is not fulfilled for our system. For a mean-

ing to the experimental values. ingful comparison with the microscopic theory, an effec-
The surfaces of the heterostructure form a resonator fofyyely reduced dipole coupling constant is extracted from the

the optical field. The resulting Fabry-Perot modes are SUPeicroscopic theory in the following way: Within a homoge-

imposed to the polariton resonances. To concentrate excligeoys system the reduced exciton massis connected to
sively on the polariton effects in the ZnSe layer, the solidie exciton binding energi(3D) by

lines in Fig. 3 show results of the microscopic calculation

_ _ _ 32meni®
TABLE Il. ZnSe material parameters for the microscopic theory, n* = 7 5(3D). (12
equal for all samples. For material parameters entering the macro- €

scopic model see discussion in the text. The bare electron mass

fj'sing the exciton binding enerds{=19 meV obtained from

denoted bym,. . . . ; L

Yo the microscopic theory for the anisotropic system, it is pos-
Gap energy E,afZNS8=2.82593 eV sible to extract an effective reduced exciton magg This

) yields an effective exciton Bohr radius

Dephasing constant v=0.35 meV
Dipole coupling den/€=3.7 A . Amn? §0h2 13
Backgr. refractive index — npg=2.95 89,eff = M*ﬁeg y 13
Effective electron mass ~ m,=m,=m,,=0.147 m (Ref. 16 ¢
Luttinger parameter v1=2.45(Ref. 16 which, together with the dlpole Coupling Constmig]/eo
Luttinger parameter 1,=0.61(Ref. 16 =3.7 A, provides an effective longitudinal-transversal split-

ting
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L roro LT the relatively small height of the confinement potentials in
oéz(a) ] the ZnSe/ZnSSe system, the exciton wave functions can
0‘6-_ E even penetrate slightly into the barrier region. This shows
0‘4- 1 that for shallow confinement potentials the “effective”
0‘2 sample thickness used in the macroscopic calculations based

- '0 on ABCs can even exceed the true layer thickness, and that
g . in this case the dead-layer concept breaks down.
: 08 It is interesting to note that in a layer with a high confine-
g 0:6- ment potential the thickness of the region of reduced polar-
ool ization varied for different polariton resonances of a given
é:o.z' samplet! In the cases displayed in Fig. 4 this variation is
g 0 much less pronounced. Especially for the 40 nm sample the
- . effective thickness is almost the same for the displayed po-
0.8 lariton modes. This also explains previous interpretations of
06 experiments for ZnSe/ZnSSe heterostructifrés terms of
04 Pekar's ABCs using the same effective thickness for all reso-
02 nances of a given sample. As it turns out now, the used
0 sample thickness exceeds the true value. However, the spa-

tial dependence of the macroscopic polarization in Fig. 4

clearly deviates from a simple picture of quantization of the
FIG. 4. Steady-state polarization for monochromatic, resonan€enter-of-mass motion which shows the intricate interplay of

excitation of the three lowest polariton modes in the microscopidelative and center-of-mass motion with the propagating light

theory without Fabry-Perot effects for tt@ 20 nm,(b) 28 nm, and  field.

(c) 40 nm sample. The excitation frequency is tuned to the first

(dotted ling, second(dashed-dotted line or third (dashed ling V. CONCLUSION
resonance, respectively. The solid lines illustrate the confinement A solution of the two-particle Schrodinger equation for
potential for carriers in the ZnSe layer. the description of electron-hole-pair excitations under the in-
fluence of Coulomb interaction has been used to apply mi-
) |deh|2 croscopic boundary conditions in a shallow confinement po-
AY =——5. (14)  tential situation for which ZnSe/ZnSSe heterostructures
TNhg€08, eff served as a model example. Results for the polariton modes
With the assumptiomETekar: ATTiC we obtain an effectively in transmission spectra reproduce the experimental observa-

reduced dipole coupling constamk,/e,=2.89 A for the tions while calculations based on Pekar’s ABCs require un-
macroscopic model. Our discussion shows that within a mad€alistic modifications of the material parameters. This is due
roscopic model for a homogeneous system applied to an irfo the fact that Pekar's ABCs assume an infinite-height con-
homogeneous semiconductor heterostructure the dipole cofinement potential where the realistic inclusion of the exciton
pling constant is underestimated. In principle, the commonly€lative motion requires a polarization-free dead-layer. For
used determination of dipole coupling constants from theshallow-confinement situations, a breakdown of these con-
longitudinal-transversal splitting is not appropriate here sinc&€epts has been demonstrated since the application of Pekar’s
EqQ. (14) is only valid for homogeneous materials. ABCs requires an effective sample thickness which even ex-
For each calculation based on Pekar's ABCs the layegeeds the thickness of the confinement potential.
thickness is adjusted for best reproduction of the energy po- Generally the use of macroscopic ABC models inherits
sitions of the polariton resonances in the experimental spedincertainties in the used sample thickness to fit the spectral
trum. The resulting values are given in Table I. The valuegposition and oscillatory strength afl polariton resonances
for the layer thickness chosen for the macroscopic model aref the same spectrum. In the studied examples of this paper,
even largerthan the values that are experimentally deter-the counteracting influence of a shallow confinement poten-
mined as well as used for the microscopic calculation. Atial, the band offset, and the carrier masses result in exciton
first glance this is contradicted by the fact that for infinitely wave functions having nearly the same effective extension.
high potential barriers of the ZnSe layer there is aThisis, however, by no means trivial and strongly dependent
polarization-free region near the surface due to the finite exon the material system.
tension of the exciton relative motiofwhich is often in-
cluded as a dead-layer in macroscopic modet$® Previ- ACKNOWLEDGMENTS
ous microscopic calculations for the GaAs/@A;_As We acknowledge a grant for CPU time from the John von
system clearly identified these polarization-free regions.  Neumann Institute for Computing at the Forschungszentrum
For a better understanding of these apparent inconsistediilich.
cies in the application of Pekar's ABCs, Fig. 4 shows the
spatially resolved macroscopic excitonic polarization ob-
tained from the microscopic theory for resonant monochro- This appendix is dedicated to the material parameters that
matic excitation of the lowest three polariton states. Due tare used to model the electronic band structure and its offsets

APPENDIX: MATERIAL PARAMETERS
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at the semiconductor interfaces. The effective masses for thelsewheré!-22With the gap energies this yields a conduction
heavy-hole valence band that follow from the Luttingerband offset ofAE.(ZnSe,Zn3$=490 meV. We assume that

Hamiltonian in axial approximation arée the ratio of valence and conduction band offsets from pure
ZnSe to Zn$Se _, does not depend on the sulfur concentra-
My = =0.327my, (A1) tionxfor the unstrained bulk materials. Due to pseudomor-
Y1ty phic growth on GaA®01) substrate, the ZnSe layer is biax-
ially compressively strained. This yields energy shifts of its
R Mo conduction and valence bant’&* The resulting energy
My =~ 2 =0.813ng (A2) shifts for conduction and heavy-hole valence band are given
71 Y2 by]_7
for the in-plane motion and the motion in the growth direc- c
tion, respectively. Different effective masses for the ZnSe AE; grain= Zac(l_—”)gxx, (A6)
and ZnSSe material are not considered because they would ' Cn

yield only minor changes to our results: Changes in the elec-
tron mass are negligible due to the small sulfur contents. The
hole states contributing to the optical spectra only slightly

penetrate the barrier due to the larger heavy-hole band offsets . . N .
and the large effective heavy-hole mass. In good approximaonly a hydrostatic deformation potential is obtained for the
tion, the optical band-gap bowing for a ternary compound i onduction band whereas an additional shear deformation

C C
AES,hstrain: 2av(1 - _lz)sxx_ bu(l + 2_12>8xx- (A7)
C:1]. Cll

given by potential applies for the valence band shift. The hydrostatic
deformation potential decreases the band offsets for both
EqeCix= (1-X)Epe+ XEqs—bx(1-x).  (A3)  bands and thus enlarges the gap energy of the ZnSe material.

The shear deformation potential increases the offset for the

For the ZnSe/ZnSSe material system a variety of bowing,q 4y hole valence band and thus decreases the gap energy.
parameter$(ZnS,Se _,) has been reportéd.We use an in- The required material parameters for ZnSe 2hfé a,
termediate value of 0.43 eV, so that the literature values are _5 g g\ 4 =-1.0 eV, b,=-1.14 eV for the deformation

accumulated around it. Gap energies of the pure binary bu'botential constants ar@,,=929 kbar,C,,=562 kbar for the
materials ar€ elastic stiffness tensor elements. The strain tensor element

EXST=5K)=3.84 eV, (A4) €x= (8 znse~ 8onsd !/ (Bonsd follows from the in-plane lattice
gap constants of the fully straine@, z,se=acaag and unstrained
O . .
EZNS4T =5 K) = 2.82 eV. A5 (87,59 ZnSe material. The band offsets fqr the different
2 | ) (A5) samples follow from the sulfur concentration in Table I.

The ZnSe gap energy coincides quite well with the result forThey slightly vary around carrier confinement potentials of
our samplegcompare Table Il and keep in mind its strain 3 meV for the conduction band and 22 meV for the heavy-
enlargement For the unstrained bulk materials the valencehole valence band, compare Table I. The small conduction
band offset from ZnSe to ZnS isAE,(ZnSe,Zn$  band offset coincides with previous results for ZnSe/ZnSSe
=530 meV?® Similar results have been reported heterostructures with larger sulfur concentratiéh®,

1J. J. Hopfield, Phys. Re\l12, 1555(1958). 11H. C. Schneider, F. Jahnke, S. W. Koch, J. Tignon, T. Hasche, and
2H. Haug and S. W. KochQuantum Theory of the Optical and D. S. Chemla, Phys. Rev. B3, 045202(2002).
Electronic Properties of Semiconductp@yd ed.(World Scien-  2E. A. Muljarov and R. Zimmermann, Phys. Rev. &, 235319

tific Publishing, Singapore, 1995 (2002.
3S. I. Pekar, Sov. Phys. JET®, 785(1958. 133, Lankes, M. Meier, T. Reisinger, and W. Gebhardt, J. Appl.
4C. S. Ting, M. J. Frankel, and J. L. Birman, Solid State Commun.  Phys. 80, 4049(1996).
17, 1285(1975. 14U. Neukirch, K. Wundke, J. Gutowski, and D. Hommel, Phys.
5V. A. Kiselev, B. S. Razbirin, and I. N. Uraltsev, Phys. Status  Status Solidi B196, 473(1996.
Solidi B 72, 161 (1975. 153, Schumacher, G. Czycholl, and F. Jahnke, Phys. Status Solidi B
6K. Henneberger, Phys. Rev. Le®0, 2889(1998. 234, 172(2002.
M. Combescot, R. Combescot, and B. Roulet, Eur. Phys.23B  16H. W. Hélscher, A. Néthe, and C. Uihlein, Phys. Rev3R, 2379
139(200D. (1985.
8A. D’Andrea and R. Del Sole, Phys. Rev. #5, 3714(1982; A. 17s. L. ChuangPhysics of Optoelectronic Devices, Wiley Series in
D’Andrea and R. Del Solebid. 41, 1413(1990. Pure and Applied OpticgWiley-Interscience publication, New
9K. Victor, V. M. Axt, and A. Stahl, Z. Phys. B: Condens. Matter York, 1995.
92, 35(1993. 183, E. Bernard and A. Zunger, Phys. Rev.38, 3199(1987).
103, Tignon, T. Hasche, D. S. Chemla, H. C. Schneider, F. Jahnké?K. Shahzad, D. J. Olego, and C. G. Van de Walle, Phys. Rev. B
and S. W. Koch, Phys. Rev. Let8&4, 3382(2000. 38, 1417(1988.

235340-7



SCHUMACHEREet al. PHYSICAL REVIEW B 70, 235340(2004)

203 -H. Wei and A. Zunger, Appl. Phys. Let72, 2011(1998. (1995.
21G. F. Schétz, W. Sedimeier, M. Lindner, and W. Gebhardt, J24B. Rockwell, H. R. Chandrasekhar, M. Chandrasekhar, A. K.
Phys.: Condens. Matter, 795(1995. Ramdas, M. Kobayashi, and R. L. Gunshor, Phys. ReviB
22C. G. Van de Walle and J. Neugebauer, Nat(irendon) 423 11 307(1991).
626 (2003, 253, Lankes, T. Reisinger, B. Hahn, C. Meier, M. Meier, and W.

233, Lankes, B. Hahn, C. Meier, F. Hierl, M. Kastner, A.

Rosenauer, and W. Gebhardt, Phys. Status Solidi5®, 123 Gebhardt, J. Cryst. Growtt59, 480 (1996

235340-8



