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Thermionic phenomena in a nanoscale ring without carrier reservoirs: A thermionic couple
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We have studied various thermionic processes in a small one-dimensional ring consisting of a metallic wire
and an insulator which serves as the potential barrier for the charge carriers in the metallic wire. The ring is not
connected to any particle reservoir, but at the two junctions it is attached to two phonon reservoirs with
different temperatures. The lengths of both the metallic wire and the insulating part are shorter than the carrier
mean free path, and therefore the nonequilibrium electron distribution function was solved using the
Boltzmann-equation approach with electron-phonon interaction at the two junctions. We found that there is
always a heat current flowing from the hot junction to the cold one. The electric current over the potential
barrier increases monotonically as the Fermi energy in the metallic wire approaches the potential barrier height
from below. Using a modulation doped semiconductor ring for numerical calculation, the thermionic current is
found to be almost linear with respect to the temperature difference between the two junctions. Consequently,
our system can be developed into a nanometer scale thermionic couple.
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I. INTRODUCTION in a thermoelectric system. In high quality doped semicon-

To study a materials transport properties, either electri@uctor, the carrier mean free path can be much longer than
conductivity, thermal conductivity, or thermoelectric phe-the barrier width in typical semiconductor superlattices.
nomena, a sample is usually connected to two reservoirs withience, the observed higher value of figure of merit of semi-
a voltage difference and/or a temperature difference. In reconductor superlattices with thermionic transport is most
cent years, because of the advancement of material fabricéikely due to both their much lower value of thermal
tion and measurement technique, it is not unreasonable twonductivity ! and the possible hopping of carriers over
expect the possibility to experimentally investigate the transseveral barrier wells. In this case, a relevant topic to be con-
port properties in a closed system without connecting to carsidered is the ballistic transport of a carrier through two wells
rier reservoirs. Whether such experiments can be done in thgith one barrier sandwiched in between. To simplify the
near future or not, the topic itself is an interesting and chalproblem, one can consider the thermionic process in a single-
lenging problem for the fundamental theory of transport inbarrier system, in which the length of each lead is shorter
nonequilibrium systems. In this paper, we will analyze thethan the mean free path. A lead of so short length cannot
thermionic processes in a small ring which is not connectederve as a reservoir. It is then feasible to join the two leads to
to carrier reservaoirs. form a closed system in which the typical length is shorter

The thermoelectric effect has been extensively studied fothan the carrier mean free path. Assuming that thermionic
many years, and the required breakthrough is in its effitransport can be induced in such a system in a suitable way,
ciency. Since thermoelectric transport is a diffusive processhen we have a thermionic phenomena in a nonequilibrium
thermionic transport, which is based on a ballistic process o$ystem. This problem will be studied in the present paper. We
Richardson currehtbover a potential barrier, has been a fash-should mention that thermionic processes in a single barrier
ionable research topic in the last ten years. In the earliesystem connected to two carrier reservoirs was investigated
works on thermionic devices, there was the problem ofearlier!?*3
charge carriers in the vacuum gap between two condugfors. The one-dimensional closed system to be studied is
To avoid this problem, structures of semiconductorshown schematically in Fig. 1, where tReaxis is along the
superlattices and metal-semiconductor multilayersvere  ring in clockwise direction. The ring system consists of a
proposed with the idea to replace the vacuum potential baconducting wirglight shaded region marked witls)] and an
rier by a semiconductor potential barrier. However, as longnsulating wire[dark shaded region marked with)]. The
as there exists uncompensated charge, carriers can still acdength of the conducting wiré is shorter than the carrier
mulate in the semiconductor barrier regfohe physical mean free path, and the carrier transport in the wire is bal-
significance of the potential barrier width for the thermionic listic. The single barrier potential profile around the ring is
transport in semiconductor superlattices was clarifiehlotted at the top in Fig. 1, with the Fermi energy marked as
recently’ where the calculated barrier strength for maximumeg. Around positions; andx, we introduce two very narrow
thermionic  efficiency agrees with the experimentalregions of widthL, for local heating. In these two narrow
observatior?. regions of phonon sources, the phonon temperafliyesd

It was discoverefithat for thermoelectric transport, the T, are well defined. The electron-phonon interaction is then
role of the width of potential barrier in a multilayers thermi- restricted to these two point contagtsandx,, which can be
onic system is equivalent to the role of carrier mean free patlsonsidered as heat reservoirs. There are several existing tech-
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v positionsx; andxs, its distribution function changes only at
- o P 2 - these scattering points. Hence, it is convenient to introduce
""""""""" two local distribution functiond(x)=f, . in the conducting

point x;, the Boltzmann equation has the form

—{}— —~{}—
L, L ik of (%)
u +ph_J L Lk7=lcou(l,k)5(x—x|), (3)
- C

which is equivalent to
FIG. 1. Aring structure is schematically illustrated with a con-

ducting channeffor example, am-doped GaAs marked bi)] and fik _ |
an insulating barrieffor example, an undoped Aba,_,Al marked m(fk,c_ fip) = (= D'l eon(l,K), (4)
by (b)]. The two local phonon sources of narrow widit, are set at
positionsx; and x, with respective temperaturég, and T,. The  wherel (k) is the carrier-phonon collision term.
potential profile around the ring is shown at the top of the figure We will derive the carrier-phonon collision terms with the
with the Fermi energy Fermi golden rule for the absorption or emission of one pho-
non. To simplify the writing of the energy conservation for

niques which may be used here for local heating. We willthe scattering matrix elemehl(q), we introduce the no-
return to this point later. tations 5(kk'q). = (e~ e tiwg). We will specify each of

In Sec. Il we will analyze the nonequilibrium carrier dis- the two distribution functions,,, and fy . explicitly in two
tribution functions. For small temperature differenfg  different forms according to the direction kfas illustrated
-T,| such that the terms of second ord&T,-T,|/(T,; in Fig. 1. For the plane wave traveling in clockwise direc-
+T,)]? and higher can be neglected, a closed equation i§on, K is positive and the distribution functions éfig , and
obtained in Sec. Ill which provides a way to solve the non-fi: ¢ If Kis negative, the distribution functions are expressed
equilibrium distribution functions numerically by iteration. asfipandfy_ .. Consequently, we will solve the four equa-
Using the acoustic deformation potential for electron-phonoriions
interaction which will be analyzed in Sec. IV, we study in ”
Sec. V the th_ermionic current and the heat flow numerically ——(frac = frap) = (= D',k ). (5)
in great detail. We notice that the sample structure shown in m* L
Fig. 1 is similar to a conventional thermoelectric couple.
Consequently, in the concluding Sec. VI we will discuss the
performance of our thermionic couple which may be a usefu
tool for investigating nanoscale thermal transport. Some re-

marks will be given at the last section. fik
m(fkm — fied) =lean(L,k+). (6)

Tll—% bH+|T2 wire and f(x)=fy, in the barrier region. At the scattering

Let us first describe all the scattering processes in the heat
eservoir at positiorx; for a carrier moving in a clockwise
irection. That is, we will first treat the equation

II. NONEQUILIBRIUM DISTRIBUTION FUNCTIONS . .
If the wave vectokk>0 labels the final state of the carrier,

Although the length. of the conducting wiréc) in Fig. 1 then the scattering must be from an initial state with wave
is shorter than the carrier mean free path, it can still be sufvectork’ into the final state with wave vectérin the barrier
ficiently long such that the carrier wave functioi$x) are  region. There are four such scattering processes as shown in
plane waves with wave vectd: We assume a very small panels(1) and (2) in Fig. 2, two with phonon absorption
cross-section of the conducting wire, and therefore only thgmarked with “absj and two with phonon emissioimarked
lowest electron subband is populated. Hence the energy afith “emi”). The probability for emitting or absorbing a pho-

the carrier is simply non with w, contains a facto(N, 1+ 1) 5(kk'g),. for emission
7212 andNg 10(kk'g)_ for absorption. The two processes in panel
= +U(X), (1) (1) have their initial stateg’— in the barrier region, and the
2m two in panel(2) have their initial statek’+ in the conductor

wherem? is the carrier effective mass. The potenti(x) is region. Taking into account the proper carrier occupation
given by the top plot in Fig. 1. For the phonon part, in eachProbabilities of the initiak’ = state and the findd+ state, the
of the two heat reservoirs at andx,, the phonon soijrce is total contributionlj;(1,k+) to the collision term for scatter-
specified byw,. In the Ith heat reservoir, the number of N9 It thek+ state from all these four processes is
phononsNy, is given by the Bose-Einstein function

K lin(Lk+) = 2 Wige (@ffiers o(1 = fia )

Ng, =[eedtel - 1], v ax’
wherel=1,2. X[(Ng1+ 1) A(kKk'q), + Ng 1
The carrier temperature in our system and the correspond- « / _
ing nonequilibrium distribution functiori,(x) remain to be SKK'Q)-]+ fio (1 = Fiep)
determined. Since a charge carrier is scattered only locally at X[(Ng1+ 1) &(kk'q), + Ny 8kk'g)-]}.  (7)
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FIG. 2. Scattering processes for positkén the heat reservoir FIG. 3. Scattering processes for negativia the heat reservoir

at positionx;. The wave vectok labels the final states in pan€ly at positionx;. The wave vectok labels the initial states in panels
and (2), but the initial states in panel8®) and (4). The phonon (1) and(2) and the final states in panegl3) and(4). The phonon
absorption processes are marked with “abs,” and the emission prabsorption processes are marked with abs, and the emission pro-
cesses with “emi.” cesses with emi.

On the other hand, if the wave vectior-0 labels the initial _
state of the carrier, then the initial state must be in the con- lin(L,k=) = 2 Wige (@){fyrs (1 = fie )[(Ng,1 + 1)

ductor region. The final state with wave vectdr can be ak’
either in the barrier region as shown in pai@l or in the X 8(KK' Q) + Ng 18Kk q)_] + fio_ p(1 =i o)
conductor region as shown in parié). Again, there are two , ,
phonon emission processémarked with “emi) and two X[(Ng,1 + 1) S(kK'Q)s + Ng18(kK'q)-J}. - (12)
phonon absorption processésarked with “abs). Their
contribution I ,,(1,k+) to the collision term for scattering . o
out of thek+ state is then The scattering processes out of the initial stateare shown
in panels (1) and (2) in Fig. 3, and their contribution
lou(1,k—) to the collision term is
Lol 1K+) = 2 Wi (@1 o1 = s o) (NG + 1) oul 1. k=)
qk’
X S(KK'g)- + Ng 10(KK'q) ] + s (1 = Fr_
KD+ Noa KK+ e (1 -0 lout= = W (@i oL~ s [ (N + 1)
X[(Ng1+ 1) oKk q)- + Ny 10(kk'q). I} (8) ak’
. . . X ! - ! + — K=
The total scattering terneg(1,k+) is simply Io(1,k+) A(KK'Q)- + Ng 18(KK' Q)] + i p(1 = fier- o)
=1ip(1,k+) =11 ,k+) and Eq.(6) becomes X[(Ng,1+ 1) A(kk'q)- + N 18(kk'g), ]} (12
filk|

(Frep = Fre0) = 2 Wige (@) X {(1 = Fre p) (s o + i)

m* L We notice that each panel in Fig. 3 can be obtained from the

ak’ corresponding panel in Fig. 2 by reversing the directions of
X[(Ng1+ 1)Kk q), + Ng 10(kk'q)_] all k z_;lnd k’. The processes in Fig. 3 give the Boltzmann
~fie o2 = fioap = fio- Il (Nga + 1) equation
X 8(KK'q)- + Ng 15(KK'q).. ]} 9)
Next, we will treat the equation %(fk_’c— frep) = > Wige (DAL = fie ) (s o+ Fro—p)
qk
Ly )= lwllk-) (10 X[ (Nga + DAKK Q) + Ny kK )]

~fren(2 = frsp = foo (NG 1 + 1)

for a carrier moving in a counterclockwise direction with , ,
9 X S(KK'q)- + Ng,18(kK'q) T} (13)

negativek. The four processes for scattering into the final

statek— are plotted in panelg3) and (4) in Fig. 3. Their We apply a similar analysis on the scattering processes in
contributionl;,(1,k—) to the collision term for scattering into the heat reservoir around positio to obtain two more
the final statek- is Boltzmann equations
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K| phonon absorption ik is the wave vector of the final state,
— L(fk+,c_ fiee) = 20 Wige (D (L = Fer ) (Frormc + Fiora ) and phonon emission i is the wave vector of the initial
.k’ state. These emission and absorption processes can be easily
X[(Ng5+ 1) 8(kK'Q), + N, ,0(kK'q)_ recognized in Figs. 2 and 3.
[(Nqz ; %2 9-] After linearizing the four equationg9) and (13)<(15),
~fien(2 = fop = for [ (Ng 2+ 1) there is a lengthy but trivial algebraic manipulation to com-
, / bine various terms to simple forms. Then, using the phonon
X 8(kk'g)_ + Ng 20(kK'q)., 14 : : :
(kk'a) a20kk Q). ]y (149 density of stateg(w) to convert the summation overinto
and an integration ovet, we arrive at a closed equation for
filk| S5f(g) = Sy o — S ¢ 19
TL(fk—,b‘ free) = 2 Wiae (@{(1 = fiep) (Fror o + Fiorap) (60 = Oicro ~ i (19
m k' If we setk positive, this equation has the form
X[(Nq 2+ DokKg), + Nq 20(kk'g)_] 2hk L
’ ’ ar(e):—ﬂ‘fdwwm) (w)[ASf(€+ )
~ 2= fp = fre O (N2 + 1) meL7 WL plo)lAdt (e
X 3(KK'Q)- + Ng 20(Kk' Q). ]} (15 +Bof(e—fiw) + Cof(g) + DN(w)],
The nonequilibrium distribution functions can be expressed (20
in the general form whereL,, is the width of each heat reservoir as indicated in
fi,a = To.al€) + i 0 (1)  F19- 1. We define
*Thw—e |
where a can be eithetb or c. With a good choice of the F.(6o0) = = fo(g)[e s el — 1)/ g + hiw, (21)
equilibrium distribution functionsfyp(e) and fo.(e), the
correction termssf,. , can be obtained by solving the above G, (6 0) = fol e+ how)[e sk PeTo- 1)\ g + hiw, (22)

set of equations.

Hi(ék! w) = 2f0(6ki ﬁw)[e(_fk“F)/kBTO + 1]_1/\3’61( tho,
Ill. SMALL TEMPERATURE DIFFERENCE (23)

The set of Eqs(9) and(13)—«15) are difficult to solve for
the general case. Let us sBf>T, and defineAT=T;-T, B (holkaTo) .
and the lattice temperatufig=(T,+T,)/2. We will consider No(Te) = | plw)[e™"e’0 ~ 1] dw, (24)
a simpler situation such that terms of ord&T/Ty)? and
higher are small and can be neglected. To avoid ambiguityf0 express the functions, B, C, andD in compact forms
we call such a situation small temperature difference. Hence, _
we have the equilibrium distributign A=No(Tol1 +O(6c+fro = V)JFu( € ), (25)

fon(ed) = focle) = fole) =[elPkeTo+ 1771 (17) B=[No(To) + 1][O(e&x— iw) + O(e— iw = V) [F_(€, ),

We will further assume a weak interaction between the (26)
charge carriers and phonons. Under these conditions the cor-
rection termssfy. ., are small compared tfy(e). Under the C=[Ny(Tp) + 1[1 +O(eg + 7w — V)]G, (g, w) + No(Tp)
condition of small temperature difference as defined above
' X - -ho- _

we can approximateN, ;=Ng o+ N, and Ny =N, =N, (66~ Aiw) + 06~ o =V)|C-(& ), @7

[l with
e D =[1+0(qc+ i~ V)TH. (6 0)/No(To) - [O(e~ i)

+ @(Gk - hw - V)]H_(Gk, w)/[No(To) + 1], (28)

In the above approximatiodN, is linear inAT/T,. We will _a A

linearize Egs.(9) and (13)«(15) with respect to the small where.G)(E)Tl it E>0 a_nd@)(E?—O 'f. E<.0' .In the -abqve

quantitiessNy and of,. ... In these four equations, each term equatlon:_s,\/ is the potential barrier height indicated in E|g. 1.
ol kt,a ' As we will see later when we calculate the thermionic cur-

on the right-hand side is a product of two electron distribu- o oy .
tions functions and one phonon distribution function. Henceren.t’.It is sufficient to knows¥(eg without the knowledge of
igdmdual e o

by linearizing these terms, each physical process include
four groups of terms; one group of terms is proportional to
5f(€,), the other group proportional &N (w), the third group
proportional tosf(e+#Aw), and the last group proportional to
of(e—fw). It is important to mention that théf(e+7%w) To complete the theoretical analysis, we need to do more
group contains phonon emissiorkifs the wave vector of the for the scattering between the carriers and phonons. Using
final state, and phonon absorptiorkiis the wave vector of the deformation potential approach, the scattering rate of
the initial state. Similarly, thesf(e,—%w) group contains one-dimensional electrons by three-dimensional acoustic

Ngo=[eed¥eTo - 1], (18)

IV. ELECTRON-PHONON INTERACTION
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phonons in a quantum wire was derived eadfef? How-
ever, using this scattering rate for our system, it requires two
modification. Since we have pointlike phonon sources the
details of which are not specified, the form factor has a value
between zero and 1. In our calculation we set the form factor
equal to 1. Furthermore, since in our system electrons inter-
act with phonons only in each heat reservoir of a narrow
width Ly, instead of in the entire conducting wire of length
L, the scattering rate derived in Ref. 14 should be scaled by
a factorL,/L. Then the electron-phonon scattering rate 1/

10% 8f(e)

-1E | I . I -

in our system can be expressed as 006 008 0.1 0.12 0.14
€(eV)
1 bt
T L mp FIG. 4. 5f(¢g) calculated with Eqs(30)—(32) for various values

of barrier potential heights.

1 No(To) +1  No(T

] dwwm)p(w){ Tt 2, NolTol |- 5 " e [

o Ve heo Vet fo i=2eX — = (foficd = — f de(Sfic o= ).
where the scattering matrix elemew(w) calculated with k=0 0
the deformation potential is proportional to the frequency (33

We will use the Debye model for the acoustic phonons,O he other hand if he distribution f ion in th
which givesp(w) = w2 Therefore W(w)p(w)=Mw?, where n the other hand if we use the distribution function in the

M contains the deformation potential constant and other m parrier region where the energy of the carrier must be larger

terial parameters, but is independent of the frequencye han the barrier height, the current is calculated with the

notice that the same produdi(w)p(w) appears in the inte- integral
gral in Eq.(20), as it should be because in both E¢) and e (*
(29) the dynamical mechanism is the electron-phonon inter- i= —f de(8f s p— Of ). (34)
action. By combining these two equations, we obtain for mhJy
positive k . .
Since we have already derived the formula to calculate
fik 1 Ple) Sfir o~ Ofi- o= 8f (&) [Eqs.(30)~(32), we will use Eq(33) to
2Fﬁ(5k) = Lpha Qe)’ (300 obtain the current. However, to check that our linearized for-
mulas are indeed correct and our numerical results are accu-
with rate enough, we have also used E84) to calculate the
op current and indeed obtain the same result.
P(e) = f dww’[Asf(e + hiw) + BS(e,— fiw) + CSf(€) For numerical calculation, we will consider a doped GaAs
0 for the metallic wire and an AGa _,As for the barrier. The
Fermi energy in the GaAs is set at 0.1 eV, which is the lower
+DN(w)] (31) limit of the barrier height/, corresponding to the Al concen-
and tration aboutx=0.12. The Debye frequency for GaAs is
hop=31.9 meV, and from the calculations in Ref. 14 we
O(e) = f P doow? No(To) +1  No(To) (32) estimater;,=10"12 s. Each heat source is restricted in a nar-
0 \,r’ek_ﬁw Ve +how | row region ofL,,=100 A. The temperatures are chosen as

T,=100 K andT,=80 K. The electron temperature in Eq.
where wp is the Debye frequency. From the above three(17) is equal to the mean lattice temperatufig=(T;
equations, the functionf(e,) can be calculated by numerical +T,)/2=90 K. With such a choice of parameter values, the
iteration. terms neglected are smaller thakT/T,)2=0.05. When we
increase the value of, to make AT smaller, there is no
qualitative change of our numerical results. In fact, in Fig. 7
which will be presented later we have calculated the thermi-

To calculate the thermioni@lectrig current over the bar- onic current forAT in a range from zero to 25 K. We will
rier [region (b) in Fig. 1], we can use the distribution func- discuss this point further in the later section where we intro-
tion either in the metallic wirgregion(c) in Fig. 1] orinthe  duce the thermionic couple.
barrier. This will give the same result because the current is Equations(30)«32) are solved numerically by iteration
continuous within the sample. For the convenience of anawith initial input 6f(e,+%w)=0 and &f(e—~7%w)=0. In our
lyzing the numerical results in a later section, we will defineconvention, a positive current flows through the santplg.

e as the magnitude of the electron charge. If we use thd) in clockwise direction. The self-consistent solution of
distribution function in the metallic wire, the current can be &f(e) is plotted in Fig. 4 for three values of barrier height
expressed as V=0.1, 0.11, and 0.2 eV. Let us first analyze the case of high

V. THERMIONIC CURRENT AND HEAT FLOW
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potential barrie=0.2 eV which is substantially high in the 02 T T T
sense thaV - (e +hwp) > kgTy. 5f(e) behaves smoothly and

is positive for low e but negative for highe. Hence, the 0.15
low-energy electrons flow clockwise and the high-energy
electrons flow counterclockwise. These two current compo-
nents cancel each other exactly, and the integral of this curve,
which is the thermionic current from E¢(B3), turns out to be
zero. The absence of thermionic current can also be seen
from Eq.(34), for which the integrand is practically zero for

all e>V as indicated in Fig. 4.

Even if there is no thermionic current, there exists a heat 0
flow from the high-temperature region arouxgto the low- 0.1 0.12 VO'I‘\‘, 0.16 0.18
temperature region around. The heat current is calculated V)
from

0.1

Current (nA)

0.05

FIG. 5. Thermionic current as a function of barrier potential
height foreg=0.1 eV, T;=100 K, andT,=80 K.

1 o]
B EL de(e = €e) S¥(e). (39 We continue to calculate the heat curr¢hflowing in the

metallic wire, using Eq(35). This is shown in Fig. 6 as solid
curve, which is negative because this heat flow is in a coun-
terclockwise direction. The heat current through the barrier
can be calculated similarly as

Because of the additional facter g, the integrand is al-
ways negative, implying a heat flow in the metallic wire
from x; to x,. The corresponding physical processes are low-

energy (cold) electrons flow tox;, where they absorb _ 1 (®

phonons, and high-energfot) electrons move ta,, where j9= %f de(e = €p) (s p = Ofi—p)- (36)
they emit phonons. The net effect is the heat transfer in the 0

metallic wire from the hot point to the cold point. This heat flow is along the clockwise direction, and is plotted

The ¢ functions in Eqs(25)+28) set several restrictions in Fig. 6 as the positive dashed curve. Both heat currents
on the electron transport processes. The most important fegow from the hot region to the cold region, and the amount
ture is the two energy thresholds\atiwp andV+#wp. If - of heat flow in the metallic wire is larger than that over the
an electron in the metallic wire has energyV-fiwp, it barrier, as expected. When the barrier height becomes larger
cannot absorb a phonon to get into the barrier region. Simithan ;- +#%wp, the heat flow over the barrier approaches zero
larly, if an electron in the metallic wire has energy<V  rapidly, while the heat flow in the metallic wire remains al-
+fiwp, it cannot emit a phonon to get into the barrier region.most constant. This is the situation we discussed earlier in
For V=0.2 eV, the two threshold¥-7wp=0.168 €V and  connection to the barrier height=0.2 eV. We should men-
V+hwp=0.232 eV are outside the energy range in Fig. 4tion that we only needf, ,— of_, to calculate the thermi-
where 5f(e) is already negligibly small. This is the reason onic current and the heat flow, although individual functions
why the corresponding curve is very smooth. For the twosf,, ., can also be calculated.
lower values of barrier potenti&=0.11 and 0.1 eV, in each
curve we see two kinks at energyV+hwp. Because we
have ignored multiphonon processes in our theory, all curves
in Fig. 4 merge into one another in both limits of largand The sample structure shown in Fig. 1 is essentially a ther-
small e. mionic couple analogous to the conventional thermoelectric

We note that in Fig. 4, for each of the two curves with
V=0.11 and 0.1 eV, the area under the posii#ée) in the =
low € region is larger than the area above the negaive) [~~~
in the high e region. Consequently, more low-energy elec- S~
trons absorb phonons around the high-temperature heat
source and travel into the barrier in clockwise direction, and
less high-energy electrons emit phonons around the low-
temperature heat source and travel into the barrier in coun-
terclockwise direction. This results in a positive thermionic
current in the ring system, when calculated with E28). b

Using the above procedure to calculate the thermionic
current as a function of the barrier potential heiyht e,
the result is plotted in Fig. 5. The current has its maximum
when the barrier height is equal to the Fermi eneegy
=0.1 eV, and decreases monotonically with increasing bar- F|G. 6. Heat current as a function of barrier potential height, for
rier potential. The current diminishes wher (e +Awp) be-  =0.1 eV,T;=100 K, andT,=80 K. Curve a is the heat flow over
comes larger thakgT. the barrier, and curve b is the heat flow through the metallic wire.

VI. THERMIONIC COUPLE

Heat current (pW)

L
(=]
T
L

0.1 0.12 0.14 0.16 0.18
V(eV)
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02 T T T T should design a sample witN—e- comparable to(T;
+T,)/2. For the thermionic couple shown in Fig. 7, which is
0.15 i designed to operate around the temperature 90 K, we have

(V-e€r)/kg=120 K. Of course, what we provide here is just
a theoretical guideline. In reality, there are other possible
material problems and engineering difficulties to overcome.

Current (nA)
=
]
|

005 - VII. FINAL REMARKS

Before closing this paper, we should address the question
0 L l l L of pointlike heat sources shown in Fig. 1. To our knowledge
four methods of local heating exist. A pointlike source pho-
non cavity was used in the experiment to detect quantized
FIG. 7. Thermionic current over a barrier potential height ~thermal conductanc€.With thermal excitation of impurity
=0.11 eV as a function of the temperature differedce=T,-T,  atoms by an electron current, under a nonequilibrium condi-
with T,=77 K. tion local phonons can be creatédThis local heating tech-
nigue was used to study electromigration in metal

couple made from two metals. Since local temperature meghanobridges? Focused laser beam was also used to generate
surement is important to nanoscale thermal transiattis acoustic phonons in a localized region which depends on the
then worthwhile to examine the performance of such a thersize of the laser beafi.Finally, a local heat reservoir can be
mionic couple. We will first use the result in Fig. 5 to dem- established by passing a current through a point contact.
onstrate the essential features of a thermionic couple. Since\iith this method the thermopow/ras well as the Peltier
thermionic couple measures the relative temperatdigust ~ coefficient and the thermal conductaficef a quantum point
as a conventional thermoelectric couple does, we need a regontact were investigated.
erence temperature for calibration. This reference tempera- Whether some of these local heating methods can be ap-
ture can be eithef; or T,, and we will use liquid nitrogen plied directly to our system or need modification to fit into
temperature as our reference temperature toTse77 K.  our sample structure, is outside the scope of the present work
Then we have to determine the potential barrier helght Which is the first theoretical study on thermionic emission in
such that within the temperature raniy€ a sufficiently large @ nanostructured material. However, we do realize one essen-
thermionic current can be generated. From Fig. 5 we see th&gl aspect as to the size of the local heat reservoir. In our
a barrier heightv=0.11 eV will serve our purpose. For this numerical study we have set the slzg of our heat source at
thermionic couple withe==0.1 eV andv=0.11 eV, in Fig. 7 10 nm. However, this is not the lower limit, because from
we show the thermionic current as a function of the temperaEqg. (30) we see that an increase bfy, will increase of(e,)
ture differenceAT=T,-T, with T,=77 K. Itis interesting to  and will therefore enhance the thermionic current. The physi-
notice that the current varies withiT almost linearly, which  cal picture of this phenomenon is that in a larger heat source
is the desired property for a practical thermocouple. the more frequent electron-phonon scattering will increase
The thermionic current depends on the potential barriethe thermionic transport over the barrier. We should point out
heightV, the Fermi energy, as well as temperaturdg and  that an increase dfy, has no influence on the ballistic trans-
T,. Therefore, to make a thermionic couple with high effi- port both in the metallic wire and over the barrier. We should
ciency in a particular temperature range requires the propealso point out that the possible multiple phonon scattering
choice of these parameter values. For a given temper&ure processes, which are not included in our theoretical analysis,
the thermionic process is optimized with the condifitimat ~ may affect the final numerical results quantitatively but not
the thermal energygT is about the same as the energy dif- qualitatively. Consequently, it is not unreasonable to expect
ferenceV-e-. Consequently, to have a thermionic couplethe realization of a submicron heat source to be attached to
operated in the temperature range betw&erand T,, we  our thermionic couple.

AT (K)
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