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We have studied various thermionic processes in a small one-dimensional ring consisting of a metallic wire
and an insulator which serves as the potential barrier for the charge carriers in the metallic wire. The ring is not
connected to any particle reservoir, but at the two junctions it is attached to two phonon reservoirs with
different temperatures. The lengths of both the metallic wire and the insulating part are shorter than the carrier
mean free path, and therefore the nonequilibrium electron distribution function was solved using the
Boltzmann-equation approach with electron-phonon interaction at the two junctions. We found that there is
always a heat current flowing from the hot junction to the cold one. The electric current over the potential
barrier increases monotonically as the Fermi energy in the metallic wire approaches the potential barrier height
from below. Using a modulation doped semiconductor ring for numerical calculation, the thermionic current is
found to be almost linear with respect to the temperature difference between the two junctions. Consequently,
our system can be developed into a nanometer scale thermionic couple.
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I. INTRODUCTION

To study a materials transport properties, either electric
conductivity, thermal conductivity, or thermoelectric phe-
nomena, a sample is usually connected to two reservoirs with
a voltage difference and/or a temperature difference. In re-
cent years, because of the advancement of material fabrica-
tion and measurement technique, it is not unreasonable to
expect the possibility to experimentally investigate the trans-
port properties in a closed system without connecting to car-
rier reservoirs. Whether such experiments can be done in the
near future or not, the topic itself is an interesting and chal-
lenging problem for the fundamental theory of transport in
nonequilibrium systems. In this paper, we will analyze the
thermionic processes in a small ring which is not connected
to carrier reservoirs.

The thermoelectric effect has been extensively studied for
many years, and the required breakthrough is in its effi-
ciency. Since thermoelectric transport is a diffusive process,
thermionic transport, which is based on a ballistic process of
Richardson current1 over a potential barrier, has been a fash-
ionable research topic in the last ten years. In the earlier
works on thermionic devices, there was the problem of
charge carriers in the vacuum gap between two conductors.2,3

To avoid this problem, structures of semiconductor
superlattices4 and metal-semiconductor multilayers5 were
proposed with the idea to replace the vacuum potential bar-
rier by a semiconductor potential barrier. However, as long
as there exists uncompensated charge, carriers can still accu-
mulate in the semiconductor barrier region.6 The physical
significance of the potential barrier width for the thermionic
transport in semiconductor superlattices was clarified
recently,7 where the calculated barrier strength for maximum
thermionic efficiency agrees with the experimental
observation.8

It was discovered7 that for thermoelectric transport, the
role of the width of potential barrier in a multilayers thermi-
onic system is equivalent to the role of carrier mean free path

in a thermoelectric system. In high quality doped semicon-
ductor, the carrier mean free path can be much longer than
the barrier width in typical semiconductor superlattices.
Hence, the observed higher value of figure of merit of semi-
conductor superlattices with thermionic transport is most
likely due to both their much lower value of thermal
conductivity9–11 and the possible hopping of carriers over
several barrier wells. In this case, a relevant topic to be con-
sidered is the ballistic transport of a carrier through two wells
with one barrier sandwiched in between. To simplify the
problem, one can consider the thermionic process in a single-
barrier system, in which the length of each lead is shorter
than the mean free path. A lead of so short length cannot
serve as a reservoir. It is then feasible to join the two leads to
form a closed system in which the typical length is shorter
than the carrier mean free path. Assuming that thermionic
transport can be induced in such a system in a suitable way,
then we have a thermionic phenomena in a nonequilibrium
system. This problem will be studied in the present paper. We
should mention that thermionic processes in a single barrier
system connected to two carrier reservoirs was investigated
earlier.12,13

The one-dimensional closed system to be studied is
shown schematically in Fig. 1, where thex axis is along the
ring in clockwise direction. The ring system consists of a
conducting wire[light shaded region marked with(c)] and an
insulating wire[dark shaded region marked with(b)]. The
length of the conducting wireL is shorter than the carrier
mean free path, and the carrier transport in the wire is bal-
listic. The single barrier potential profile around the ring is
plotted at the top in Fig. 1, with the Fermi energy marked as
eF. Around positionsx1 andx2 we introduce two very narrow
regions of widthLph for local heating. In these two narrow
regions of phonon sources, the phonon temperaturesT1 and
T2 are well defined. The electron-phonon interaction is then
restricted to these two point contactsx1 andx2, which can be
considered as heat reservoirs. There are several existing tech-
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niques which may be used here for local heating. We will
return to this point later.

In Sec. II we will analyze the nonequilibrium carrier dis-
tribution functions. For small temperature differenceuT1
−T2u such that the terms of second orderf2uT1−T2u / sT1

+T2dg2 and higher can be neglected, a closed equation is
obtained in Sec. III which provides a way to solve the non-
equilibrium distribution functions numerically by iteration.
Using the acoustic deformation potential for electron-phonon
interaction which will be analyzed in Sec. IV, we study in
Sec. V the thermionic current and the heat flow numerically
in great detail. We notice that the sample structure shown in
Fig. 1 is similar to a conventional thermoelectric couple.
Consequently, in the concluding Sec. VI we will discuss the
performance of our thermionic couple which may be a useful
tool for investigating nanoscale thermal transport. Some re-
marks will be given at the last section.

II. NONEQUILIBRIUM DISTRIBUTION FUNCTIONS

Although the lengthL of the conducting wire(c) in Fig. 1
is shorter than the carrier mean free path, it can still be suf-
ficiently long such that the carrier wave functionscsxd are
plane waves with wave vectork. We assume a very small
cross-section of the conducting wire, and therefore only the
lowest electron subband is populated. Hence the energy of
the carrier is simply

ek =
"2k2

2m*
+ Usxd, s1d

wherem* is the carrier effective mass. The potentialUsxd is
given by the top plot in Fig. 1. For the phonon part, in each
of the two heat reservoirs atx1 andx2, the phonon source is
specified byvq. In the lth heat reservoir, the number of
phononsNq,l is given by the Bose-Einstein function

Nq,l = fes"vq/kBTld − 1g−1, s2d

wherel =1,2.
The carrier temperature in our system and the correspond-

ing nonequilibrium distribution functionfksxd remain to be
determined. Since a charge carrier is scattered only locally at

positionsx1 andx2, its distribution function changes only at
these scattering points. Hence, it is convenient to introduce
two local distribution functionsfksxd= fk,c in the conducting
wire and fksxd= fk,b in the barrier region. At the scattering
point xl, the Boltzmann equation has the form

"k

m* L

]fksxd
]x

= Icollsl,kddsx − xld, s3d

which is equivalent to

"k

m* L
sfk,c − fk,bd = s− 1dlIcollsl,kd, s4d

whereIcollskd is the carrier-phonon collision term.
We will derive the carrier-phonon collision terms with the

Fermi golden rule for the absorption or emission of one pho-
non. To simplify the writing of the energy conservation for
the scattering matrix elementWkk8sqd, we introduce the no-
tations dskk8qd±=dsek−«k8±"vqd. We will specify each of
the two distribution functionsfk,b and fk,c explicitly in two
different forms according to the direction ofk as illustrated
in Fig. 1. For the plane wave traveling in clockwise direc-
tion, k is positive and the distribution functions arefk+,b and
fk+,c. If k is negative, the distribution functions are expressed
as fk−,b and fk−,c. Consequently, we will solve the four equa-
tions

"k

m* L
sfk±,c − fk±,bd = s− 1dlIcollsl,k ± d. s5d

Let us first describe all the scattering processes in the heat
reservoir at positionx1 for a carrier moving in a clockwise
direction. That is, we will first treat the equation

"k

m* L
sfk+,b − fk+,cd = Icolls1,k + d. s6d

If the wave vectork.0 labels the final state of the carrier,
then the scattering must be from an initial state with wave
vectork8 into the final state with wave vectork in the barrier
region. There are four such scattering processes as shown in
panels(1) and (2) in Fig. 2, two with phonon absorption
(marked with “abs”) and two with phonon emission(marked
with “emi” ). The probability for emitting or absorbing a pho-
non withvq contains a factorsNq,1+1ddskk8qd+ for emission
andNq,1dskk8qd− for absorption. The two processes in panel
(1) have their initial statesk8− in the barrier region, and the
two in panel(2) have their initial statesk8+ in the conductor
region. Taking into account the proper carrier occupation
probabilities of the initialk8± state and the finalk+ state, the
total contributionI ins1,k+d to the collision term for scatter-
ing into thek+ state from all these four processes is

I ins1,k + d = o
q,k8

Wkk8sqdhfk8+,cs1 − fk+,bd

3fsNq,1 + 1ddskk8qd+ + Nq,1

3dskk8qd−g + fk8−,bs1 − fk+,bd

3fsNq,1 + 1ddskk8qd+ + Nq,1dskk8qd−gj. s7d

FIG. 1. A ring structure is schematically illustrated with a con-
ducting channel[for example, ann-doped GaAs marked by(c)] and
an insulating barrier(for example, an undoped AlxGa1−xAl marked
by (b)]. The two local phonon sources of narrow widthLph are set at
positionsx1 and x2 with respective temperaturesT1 and T2. The
potential profile around the ring is shown at the top of the figure
with the Fermi energyeF
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On the other hand, if the wave vectork.0 labels the initial
state of the carrier, then the initial state must be in the con-
ductor region. The final state with wave vectork8 can be
either in the barrier region as shown in panel(3) or in the
conductor region as shown in panel(4). Again, there are two
phonon emission processes(marked with “emi”) and two
phonon absorption processes(marked with “abs”). Their
contribution Iouts1,k+d to the collision term for scattering
out of thek+ state is then

Iouts1,k + d = o
q,k8

Wkk8sqdhfk+,cs1 − fk8+,bdfsNq,1 + 1d

3dskk8qd− + Nq,1dskk8qd+g + fk+,cs1 − fk8−,cd

3fsNq,1 + 1ddskk8qd− + Nq,1dskk8qd+gj. s8d

The total scattering termIcolls1,k+d is simply Icolls1,k+d
= I ins1,k+d− Iouts1,k+d and Eq.(6) becomes

"uku
m* L

sfk+,b − fk+,cd = o
q,k8

Wkk8sqd 3 hs1 − fk+,bdsfk8+,c + fk8−,bd

3fsNq,1 + 1ddskk8qd+ + Nq,1dskk8qd−g

− fk+,cs2 − fk8+,b − fk8−,cdfsNq,1 + 1d

3dskk8qd− + Nq,1dskk8qd+gj. s9d

Next, we will treat the equation

"k

m* L
sfk−,b − fk−,cd = Icolls1,k − d s10d

for a carrier moving in a counterclockwise direction with
negativek. The four processes for scattering into the final
statek− are plotted in panels(3) and (4) in Fig. 3. Their
contributionI ins1,k−d to the collision term for scattering into
the final statek− is

I ins1,k − d = o
q,k8

Wkk8sqdhfk8+,cs1 − fk−,cdfsNq,1 + 1d

3dskk8qd+ + Nq,1dskk8qd−g + fk8−,bs1 − fk−,cd

3fsNq,1 + 1ddskk8qd+ + Nq,1dskk8qd−gj. s11d

The scattering processes out of the initial statek− are shown
in panels (1) and (2) in Fig. 3, and their contribution
Iouts1,k−d to the collision term is

Iout = o
q,k8

Wkk8sqdhfk−,bs1 − fk8+,bdfsNq,1 + 1d

3dskk8qd− + Nq,1dskk8qd+g + fk−,bs1 − fk8−,cd

3fsNq,1 + 1ddskk8qd− + Nq,1dskk8qd+gj. s12d

We notice that each panel in Fig. 3 can be obtained from the
corresponding panel in Fig. 2 by reversing the directions of
all k and k8. The processes in Fig. 3 give the Boltzmann
equation

"uku
m* L

sfk−,c − fk−,bd = o
q,k8

Wkk8sqdhs1 − fk−,cdsfk8+,c + fk8−,bd

3fsNq,1 + 1ddskk8qd+ + Nq,1dskk8qd−g

− fk−,bs2 − fk8+,b − fk8−,cdfsNq,1 + 1d

3dskk8qd− + Nq,1dskk8qd+gj. s13d

We apply a similar analysis on the scattering processes in
the heat reservoir around positionx2 to obtain two more
Boltzmann equations

FIG. 2. Scattering processes for positivek in the heat reservoir
at positionx1. The wave vectork labels the final states in panels(1)
and (2), but the initial states in panels(3) and (4). The phonon
absorption processes are marked with “abs,” and the emission pro-
cesses with “emi.”

FIG. 3. Scattering processes for negativek in the heat reservoir
at positionx1. The wave vectork labels the initial states in panels
(1) and (2) and the final states in panels(3) and (4). The phonon
absorption processes are marked with abs, and the emission pro-
cesses with emi.
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"uku
m* L

sfk+,c − fk+,bd = o
q,k8

Wkk8sqdhs1 − fk+,cdsfk8−,c + fk8+,bd

3fsNq,2 + 1ddskk8qd+ + Nq,2dskk8qd−g

− fk+,bs2 − fk8−,b − fk8+,cdfsNq,2 + 1d

3dskk8qd− + Nq,2dskk8qd+gj s14d

and

"uku
m* L

sfk−,b − fk−,cd = o
q,k8

Wkk8sqdhs1 − fk−,bdsfk8−,c + fk8+,bd

3fsNq,2 + 1ddskk8qd+ + Nq,2dskk8qd−g

− fk−,cs2 − fk8−,b − fk8+,cdfsNq,2 + 1d

3dskk8qd− + Nq,2dskk8qd+gj. s15d

The nonequilibrium distribution functions can be expressed
in the general form

fk±,a = f0,asekd + dfk±,a, s16d

where a can be eitherb or c. With a good choice of the
equilibrium distribution functionsf0,bsekd and f0,csekd, the
correction termsdfk±,a can be obtained by solving the above
set of equations.

III. SMALL TEMPERATURE DIFFERENCE

The set of Eqs.(9) and(13)–(15) are difficult to solve for
the general case. Let us setT1.T2 and defineDT=T1−T2
and the lattice temperatureT0=sT1+T2d /2. We will consider
a simpler situation such that terms of ordersDT/T0d2 and
higher are small and can be neglected. To avoid ambiguity,
we call such a situation small temperature difference. Hence,
we have the equilibrium distribution

f0,bsekd = f0,csekd = f0sekd = fesek−md/kBT0 + 1g−1. s17d

We will further assume a weak interaction between the
charge carriers and phonons. Under these conditions the cor-
rection termsdfk±,a are small compared tof0sekd. Under the
condition of small temperature difference as defined above,
we can approximateNq,1=Nq,0+dNq and Nq,2=Nq,0−dNq
well with

Nq,0 = fes"vq/kBT0d − 1g−1. s18d

In the above approximation,dNq is linear inDT/T0. We will
linearize Eqs.(9) and (13)–(15) with respect to the small
quantitiesdNq,l anddfk±,a. In these four equations, each term
on the right-hand side is a product of two electron distribu-
tions functions and one phonon distribution function. Hence,
by linearizing these terms, each physical process includes
four groups of terms; one group of terms is proportional to
dfsekd, the other group proportional todNsvd, the third group
proportional todfsek+"vd, and the last group proportional to
dfsek−"vd. It is important to mention that thedfsek+"vd
group contains phonon emission ifk is the wave vector of the
final state, and phonon absorption ifk is the wave vector of
the initial state. Similarly, thedfsek−"vd group contains

phonon absorption ifk is the wave vector of the final state,
and phonon emission ifk is the wave vector of the initial
state. These emission and absorption processes can be easily
recognized in Figs. 2 and 3.

After linearizing the four equations(9) and (13)–(15),
there is a lengthy but trivial algebraic manipulation to com-
bine various terms to simple forms. Then, using the phonon
density of statesrsvd to convert the summation overq into
an integration overv, we arrive at a closed equation for

dfsekd = dfk+,c − dfk−,c. s19d

If we setk positive, this equation has the form

2"k

m* L
dfsekd =

Lph

L
E dvWsvdrsvdfAdfsek + "vd

+ Bdfsek − "vd + Cdfsekd + DdNsvdg,

s20d

whereLph is the width of each heat reservoir as indicated in
Fig. 1. We define

F±sek,vd = − f0sekdfesek±"v−eFd/kBT0 − 1g/Îek ± "v, s21d

G±sek,vd = f0sek ± "vdfesek−eFd/kBT0 − 1g/Îek ± "v, s22d

H±sek,vd = 2f0sek ± "vdfes−ek+eFd/kBT0 + 1g−1/Îek ± "v,

s23d

N0sTed =E rsvdfes"v/kBT0d − 1g−1dv, s24d

to express the functionsA, B, C, andD in compact forms

A = N0sT0df1 + Qsek + "v − VdgF+sek,vd, s25d

B = fN0sT0d + 1gfQsek − "vd + Qsek − "v − VdgF−sek,vd,

s26d

C = fN0sT0d + 1gf1 + Qsek + "v − VdgG+sek,vd + N0sT0d

3fQsek − "vd + Qsek − "v − VdgG−sek,vd, s27d

D = f1 + Qsek + "v − VdgH+sek,vd/N0sT0d − fQsek − "vd

+ Qsek − "v − VdgH−sek,vd/fN0sT0d + 1g, s28d

whereQsEd=1 if E.0 andQsEd=0 if E,0. In the above
equations,V is the potential barrier height indicated in Fig. 1.
As we will see later when we calculate the thermionic cur-
rent, it is sufficient to knowdfsekd without the knowledge of
individual dfk±,a.

IV. ELECTRON-PHONON INTERACTION

To complete the theoretical analysis, we need to do more
for the scattering between the carriers and phonons. Using
the deformation potential approach, the scattering rate of
one-dimensional electrons by three-dimensional acoustic
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phonons in a quantum wire was derived earlier.14,15 How-
ever, using this scattering rate for our system, it requires two
modification. Since we have pointlike phonon sources the
details of which are not specified, the form factor has a value
between zero and 1. In our calculation we set the form factor
equal to 1. Furthermore, since in our system electrons inter-
act with phonons only in each heat reservoir of a narrow
width Lph instead of in the entire conducting wire of length
L, the scattering rate derived in Ref. 14 should be scaled by
a factorLph/L. Then the electron-phonon scattering rate 1/t
in our system can be expressed as

1

t
=

Lph

L

1

t1D
,

1

t1D
=E dvWsvdrsvdFN0sT0d + 1

Îek − "v
+

N0sT0d
Îek + "v

G , s29d

where the scattering matrix elementWsvd calculated with
the deformation potential is proportional to the frequencyv.

We will use the Debye model for the acoustic phonons,
which givesrsvd~v2. Therefore,Wsvdrsvd=Mv3, where
M contains the deformation potential constant and other ma-
terial parameters, but is independent of the frequencyv. We
notice that the same productWsvdrsvd appears in the inte-
gral in Eq.(20), as it should be because in both Eqs.(20) and
(29) the dynamical mechanism is the electron-phonon inter-
action. By combining these two equations, we obtain for
positivek

2
"k

m*
dfsekd = Lph

1

t1D

Psekd
Qsekd

, s30d

with

Psekd =E
0

vD

dvv3fAdfsek + "vd + Bdfsek − "vd + Cdfsekd

+ DdNsvdg s31d

and

Qsekd =E
0

vD

dvv3FN0sT0d + 1
Îek − "v

+
N0sT0d

Îek + "v
G , s32d

where vD is the Debye frequency. From the above three
equations, the functiondfsekd can be calculated by numerical
iteration.

V. THERMIONIC CURRENT AND HEAT FLOW

To calculate the thermionic(electric) current over the bar-
rier [region (b) in Fig. 1], we can use the distribution func-
tion either in the metallic wire[region(c) in Fig. 1] or in the
barrier. This will give the same result because the current is
continuous within the sample. For the convenience of ana-
lyzing the numerical results in a later section, we will define
e as the magnitude of the electron charge. If we use the
distribution function in the metallic wire, the current can be
expressed as

j = 2eo
k.0

"k

m* L
sfk+,c − fk−,cd =

e

p"
E

0

`

desdfk+,c − dfk−,cd.

s33d

On the other hand if we use the distribution function in the
barrier region where the energy of the carrier must be larger
than the barrier heightV, the current is calculated with the
integral

j =
e

p"
E

V

`

desdfk+,b − dfk−,bd. s34d

Since we have already derived the formula to calculate
dfk+,c−dfk−,c=dfsekd [Eqs.(30)–(32), we will use Eq.(33) to
obtain the current. However, to check that our linearized for-
mulas are indeed correct and our numerical results are accu-
rate enough, we have also used Eq.(34) to calculate the
current and indeed obtain the same result.

For numerical calculation, we will consider a doped GaAs
for the metallic wire and an AlxGa1−xAs for the barrier. The
Fermi energy in the GaAs is set at 0.1 eV, which is the lower
limit of the barrier heightV, corresponding to the Al concen-
tration aboutx=0.12. The Debye frequency for GaAs is
"vD=31.9 meV, and from the calculations in Ref. 14 we
estimatet1D=10−12 s. Each heat source is restricted in a nar-
row region ofLph=100 Å. The temperatures are chosen as
T1=100 K andT2=80 K. The electron temperature in Eq.
(17) is equal to the mean lattice temperatureT0=sT1

+T2d /2=90 K. With such a choice of parameter values, the
terms neglected are smaller thansDT/T0d2.0.05. When we
increase the value ofT2 to makeDT smaller, there is no
qualitative change of our numerical results. In fact, in Fig. 7
which will be presented later we have calculated the thermi-
onic current forDT in a range from zero to 25 K. We will
discuss this point further in the later section where we intro-
duce the thermionic couple.

Equations(30)–(32) are solved numerically by iteration
with initial input dfsek+"vd=0 and dfsek−"vd=0. In our
convention, a positive current flows through the sample(Fig.
1) in clockwise direction. The self-consistent solution of
dfsed is plotted in Fig. 4 for three values of barrier height
V=0.1, 0.11, and 0.2 eV. Let us first analyze the case of high

FIG. 4. dfsekd calculated with Eqs.(30)–(32) for various values
of barrier potential heights.
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potential barrierV=0.2 eV which is substantially high in the
sense thatV−seF+"vDd@kBT0. dfsed behaves smoothly and
is positive for low e but negative for highe. Hence, the
low-energy electrons flow clockwise and the high-energy
electrons flow counterclockwise. These two current compo-
nents cancel each other exactly, and the integral of this curve,
which is the thermionic current from Eq.(33), turns out to be
zero. The absence of thermionic current can also be seen
from Eq. (34), for which the integrand is practically zero for
all e.V as indicated in Fig. 4.

Even if there is no thermionic current, there exists a heat
flow from the high-temperature region aroundx1 to the low-
temperature region aroundx2. The heat current is calculated
from

jq =
1

p"
E

0

`

dese − eFddfsed. s35d

Because of the additional factore−eF, the integrand is al-
ways negative, implying a heat flow in the metallic wire
from x1 to x2. The corresponding physical processes are low-
energy (cold) electrons flow to x1, where they absorb
phonons, and high-energy(hot) electrons move tox2, where
they emit phonons. The net effect is the heat transfer in the
metallic wire from the hot point to the cold point.

The u functions in Eqs.(25)–(28) set several restrictions
on the electron transport processes. The most important fea-
ture is the two energy thresholds atV−"vD andV+"vD. If
an electron in the metallic wire has energye,V−"vD, it
cannot absorb a phonon to get into the barrier region. Simi-
larly, if an electron in the metallic wire has energye,V
+"vD, it cannot emit a phonon to get into the barrier region.
For V=0.2 eV, the two thresholdsV−"vD=0.168 eV and
V+"vD=0.232 eV are outside the energy range in Fig. 4,
wheredfsed is already negligibly small. This is the reason
why the corresponding curve is very smooth. For the two
lower values of barrier potentialV=0.11 and 0.1 eV, in each
curve we see two kinks at energye=V±"vD. Because we
have ignored multiphonon processes in our theory, all curves
in Fig. 4 merge into one another in both limits of largee and
small e.

We note that in Fig. 4, for each of the two curves with
V=0.11 and 0.1 eV, the area under the positivedfsed in the
low e region is larger than the area above the negativedfsed
in the high e region. Consequently, more low-energy elec-
trons absorb phonons around the high-temperature heat
source and travel into the barrier in clockwise direction, and
less high-energy electrons emit phonons around the low-
temperature heat source and travel into the barrier in coun-
terclockwise direction. This results in a positive thermionic
current in the ring system, when calculated with Eq.(33).

Using the above procedure to calculate the thermionic
current as a function of the barrier potential heightV.eF,
the result is plotted in Fig. 5. The current has its maximum
when the barrier height is equal to the Fermi energyeF
=0.1 eV, and decreases monotonically with increasing bar-
rier potential. The current diminishes whenV−seF+"vDd be-
comes larger thankBT0.

We continue to calculate the heat currentjq flowing in the
metallic wire, using Eq.(35). This is shown in Fig. 6 as solid
curve, which is negative because this heat flow is in a coun-
terclockwise direction. The heat current through the barrier
can be calculated similarly as

jq =
1

p"
E

0

`

dese − eFdsdfk+,b − dfk−,bd. s36d

This heat flow is along the clockwise direction, and is plotted
in Fig. 6 as the positive dashed curve. Both heat currents
flow from the hot region to the cold region, and the amount
of heat flow in the metallic wire is larger than that over the
barrier, as expected. When the barrier height becomes larger
thaneF+"vD, the heat flow over the barrier approaches zero
rapidly, while the heat flow in the metallic wire remains al-
most constant. This is the situation we discussed earlier in
connection to the barrier heightV=0.2 eV. We should men-
tion that we only needdfk+,a−dfk−,a to calculate the thermi-
onic current and the heat flow, although individual functions
dfk±,a can also be calculated.

VI. THERMIONIC COUPLE

The sample structure shown in Fig. 1 is essentially a ther-
mionic couple analogous to the conventional thermoelectric

FIG. 5. Thermionic current as a function of barrier potential
height foreF=0.1 eV,T1=100 K, andT2=80 K.

FIG. 6. Heat current as a function of barrier potential height, for
eF=0.1 eV,T1=100 K, andT2=80 K. Curve a is the heat flow over
the barrier, and curve b is the heat flow through the metallic wire.
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couple made from two metals. Since local temperature mea-
surement is important to nanoscale thermal transport,16 it is
then worthwhile to examine the performance of such a ther-
mionic couple. We will first use the result in Fig. 5 to dem-
onstrate the essential features of a thermionic couple. Since a
thermionic couple measures the relative temperatureDT just
as a conventional thermoelectric couple does, we need a ref-
erence temperature for calibration. This reference tempera-
ture can be eitherT1 or T2, and we will use liquid nitrogen
temperature as our reference temperature to setT2=77 K.
Then we have to determine the potential barrier heightV
such that within the temperature rangeDT a sufficiently large
thermionic current can be generated. From Fig. 5 we see that
a barrier heightV=0.11 eV will serve our purpose. For this
thermionic couple witheF=0.1 eV andV=0.11 eV, in Fig. 7
we show the thermionic current as a function of the tempera-
ture differenceDT=T1−T2 with T2=77 K. It is interesting to
notice that the current varies withDT almost linearly, which
is the desired property for a practical thermocouple.

The thermionic current depends on the potential barrier
heightV, the Fermi energyeF, as well as temperaturesT1 and
T2. Therefore, to make a thermionic couple with high effi-
ciency in a particular temperature range requires the proper
choice of these parameter values. For a given temperatureT,
the thermionic process is optimized with the condition7 that
the thermal energykBT is about the same as the energy dif-
ferenceV−eF. Consequently, to have a thermionic couple
operated in the temperature range betweenT1 and T2, we

should design a sample withV−eF comparable tosT1

+T2d /2. For the thermionic couple shown in Fig. 7, which is
designed to operate around the temperature 90 K, we have
sV−eFd /kB.120 K. Of course, what we provide here is just
a theoretical guideline. In reality, there are other possible
material problems and engineering difficulties to overcome.

VII. FINAL REMARKS

Before closing this paper, we should address the question
of pointlike heat sources shown in Fig. 1. To our knowledge
four methods of local heating exist. A pointlike source pho-
non cavity was used in the experiment to detect quantized
thermal conductance.17 With thermal excitation of impurity
atoms by an electron current, under a nonequilibrium condi-
tion local phonons can be created.18 This local heating tech-
nique was used to study electromigration in metal
nanobridges.19 Focused laser beam was also used to generate
acoustic phonons in a localized region which depends on the
size of the laser beam.20 Finally, a local heat reservoir can be
established by passing a current through a point contact.
With this method the thermopower21 as well as the Peltier
coefficient and the thermal conductance22 of a quantum point
contact were investigated.

Whether some of these local heating methods can be ap-
plied directly to our system or need modification to fit into
our sample structure, is outside the scope of the present work
which is the first theoretical study on thermionic emission in
a nanostructured material. However, we do realize one essen-
tial aspect as to the size of the local heat reservoir. In our
numerical study we have set the sizeLph of our heat source at
10 nm. However, this is not the lower limit, because from
Eq. (30) we see that an increase ofLph will increasedfsekd
and will therefore enhance the thermionic current. The physi-
cal picture of this phenomenon is that in a larger heat source
the more frequent electron-phonon scattering will increase
the thermionic transport over the barrier. We should point out
that an increase ofLph has no influence on the ballistic trans-
port both in the metallic wire and over the barrier. We should
also point out that the possible multiple phonon scattering
processes, which are not included in our theoretical analysis,
may affect the final numerical results quantitatively but not
qualitatively. Consequently, it is not unreasonable to expect
the realization of a submicron heat source to be attached to
our thermionic couple.
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