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We develop a theoretical model for slow light using excitonic population oscillation in a semiconductor
quantum well. In a two-level system, if the resonant pump and the signal have a difference frequency within
the range of inverse of the carrier lifetime, coherent population beating at this frequency will be generated. We
analyze the excitonic population oscillation using an atomiclike model extended from semiconductor Bloch
equations for both spin subsystems of the excitonic population and the electrical polarization density. The two
spin subsystems are coupled by the excitation-induced dephasing rate, which depends on the net population
difference in conduction and heavy hole quantized bands and the population exchange due to flip of the spins
of electrons or holes. We present our theoretical results for the absorbance, the refractive index spectra, and the
slowdown factor due to population oscillation at various pump intensities, and show very good agreement with
experimental data. It is shown that a slowdown factor of 3.123104 has been achieved for a semiconductor
quantum-well structure. We also obtain analytical solutions from our theory and account for different response
behaviors of the signal when its polarization is either parallel or orthogonal to that of the pump, which has also
been confirmed by experiments.
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I. INTRODUCTION

Recently, the slowdown of a light pulse has been demon-
strated by using electromagnetically induced transparency
(EIT)1–6 or population oscillation.7 Group velocities as low
as 8 and 57.5 m/s have been achieved by using EIT5 and
population oscillation,7 respectively. In either case, the quan-
tum coherence will induce a transparency window and a
steep variation of the real part of the refractive index within
a narrow frequency range. This steep variation can reduce
the group velocity of the light pulse significantly if the car-
rier frequency of the light pulse lies within this frequency
range. However, unlike the slow light via EIT which requires
a long dephasing time, the slow light via population oscilla-
tion only requires a long relaxation time and is relatively
easier to implement, especially in the material system with
significant dephasing.

In a simple two-level system, if the dephasing time is
much shorter than the relaxation time of the population dif-
ference, the coherent population beating induced by the fre-
quency difference between the signal and the pump can cre-
ate a dip in the absorption spectrum within a range of pump
intensity. The corresponding refractive index dispersion will
create a group velocity reduction at the dip of the absorption
spectrum at zero signal-pump detuning.8 Usually, the phe-
nomenon of population oscillation is accompanied by four-
wave mixing (FWM) because they emerge from the same
origin—the beating caused by frequency difference between
pump and signal. On the other hand, take resonant pump for
example, if the relaxation time and the dephasing time are
about the same, one will observe the triple absorption peaks

resembling the optical Stark effect instead of the absorption
dip.9–11 The splitting will reflect the Rabi frequency of the
pump. The short dephasing time is thus critical for the popu-
lation oscillation.

Population oscillation in semiconductor lasers was dis-
cussed by Agrawal.12 The quantum approach describing the
nondegenerate four-wave mixing(NDFWM) in semiconduc-
tors has been explored in the case of quasiequilibrium by
neglecting the Coulomb attraction between electrons and
holes.13 In semiconductor gain media, the many-body model
of multiwave mixing including the population oscillation of
total carrier density has also been discussed.14 Recently, the
excitonic population oscillation has also been successfully
demonstrated by Kuet al.15 In the experiment, a linearly
polarized pump tuned to the resonance energy of the 1s
heavy-hole(HH) exciton in quantum wells(QWs) is incident
in the QW growth direction, as shown in Fig. 1. A weak
signal with the polarizationês either parallel or orthogonal to
the polarization of the pumpêp propagates along with the
pump to probe the variation of the absorbance and the phase
delay induced by the pump. In semiconductor quantum struc-
tures, the effective dephasing time for the excitons is usually
very short due to various scattering mechanisms caused by
impurity, phonon, piezoelectricity, carrier-carrier scattering,
size fluctuations of quantum structure, and so on.16–20 How-
ever, under considerable carrier concentration due to optical
excitation, the relaxation of net population difference, the
difference between electron occupation in conduction(C)
and HH subbands, is dominated by radiative recombination.
The various scattering mechanisms exciting carriers from
certain momentum states will contribute to the relaxation of
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the total population into the reservoir. Physically, it corre-
sponds to the diffusion of the excitons out of the area cov-
ered by the pump. If the fractional loss of the population due
to diffusion out of the pump area is small, the main effect of
the scattering is to redistribute the occupations in the phase
space rather than affecting the relaxation time of the popula-
tion difference significantly. In semiconductor QWs, al-
though the radiative lifetime of excitons with zero center-of-
mass momentum is about 10–30 ps, the distribution of the
excitons in phase space will significantly increase the aver-
age value of radiative lifetime.21–23At low temperature, the
average lifetime is usually in the order of several hundred
picoseconds. In this way, the short dephasing time ranging
from picoseconds to subpicoseconds and the much longer
excitonic radiative recombination time, which is in the nano-
second range, can be utilized to demonstrate excitonic popu-
lation oscillation in semiconductor quantum structures.

Unlike atomic gases or solid-state laser crystals, the struc-
ture and many-body effects in semiconductor quantum sys-
tems usually bring about various new phenomena absent in
those cases. Among those observed phenomena, aside from
the typical expectations of energy shift due to band-filling
and reduction of the oscillation strength due to electron-hole
plasma screening, the dephasing mechanisms can also ex-
hibit observable features in absorption spectra.24–26 The
dephasing of the polarization in semiconductor quantum
structures under intense pump cannot be simply described by
a decay constant and is a contrast to the atomic case. A
population dependence of dephasing, or so-called excitation
induced dephasing(EID), has to be included. In semiconduc-
tors, the spin orientation of electrons and holes can only last
for a finite period.27–29 In addition to EID, the spin flip of
electrons or holes in excitons can also influence the observed
phenomena. Both EID and spin flip will cause different sig-
nal responses in the cases where the signal and pump polar-
izations are either parallel or orthogonal. Without EID and
spin flip, the formulation of population oscillation will result
in identical signal response for the two polarization configu-
rations, which is a contradiction to the experiment.
Polarization-dependent phenomenon is also present in the
atomic case for EIT.5 However, the origins of the phenomena
are completely different in the cases of atomic gases and
semiconductor quantum structures.

In Sec. II, we present our theoretical formulation starting
from semiconductor Bloch equations for two spin sub-
systems of the 1s HH exciton in a QW. We then derive the
coupled equations of polarization and excitonic population
density by taking EID and spin flip into account. The polar-
ization of the pump and signal fields as well as the selection
rules of their corresponding transitions from HH subband to
C subband are properly included in the dipole moments and
their spin dependence. We then derive the complex permit-
tivity function for the optical signal field in the presence of
the pump. The refractive index change and the absorption
spectrum caused by the population oscillation with a fre-
quency determined by the signal-pump detuning is then de-
rived. In Sec. III, we show our theoretical results for the
absorption, the refractive-index spectra, the slowdown factor
as a function of the pump-signal detuning, and their depen-
dence on the polarization configurations, which cannot be
simply explained by the usual theory of population oscilla-
tion. We then compare our theoretical results with the experi-
mental data for a slowdown factor of 3.123104 with very
good agreement. We then summarize in Sec. IV.

II. FORMULATION

We start from semiconductor Bloch equations.30,31 For
simplicity, we neglect the Hartree-Fock energy shift caused
by electron-electron as well as hole-hole interactions and the
collision terms due to incoherent Coulomb interaction first.
The relaxation of the population difference and the dephas-
ing of the polarization will be included phenomenologically
later. Also, only the first C-like and HH-like quantized bands
are taken into consideration because they are the main con-
tributors for the first discrete excitonic peak in the QW. We
define the interband polarizationsPk,s, carrier occupation
numbers of electronsnc,k,s, and those of holesnh,k,s̄ in the
two-dimensional phase space of the two subsystems with
spin indicess= ↑ ,↓ by the creation and annihilation opera-
tors of electronsak,s

† , ak,s and holesb−k,s̄
† , b−k,s̄

Pk,s = kb−k,s̄ak,sl, s1ad

nc,k,s = kak,s
† ak,sl, s1bd

nh,k,s = kb−k,s̄
† b−k,s̄l, s1cd

wherek is the wave vector of the state;s̄ is the opposite spin
projection ofs.

The coherent dynamics equations for the interband polar-
izations and carrier occupation numbers in phase space are
then as follows:

]

]t
Pk,s = −

i

"
sec,k + «h,kdPk,s − isnc,k,s + nh,k,s − 1dVk,sstd,

s2ad

]

]t
nc,k,s = 2 ImfVk,s

* stdPk,sg, s2bd

FIG. 1. Schematic diagram of the pump and signal polarizations
for the parallelsêpi êsd and orthogonalsêp' êsd configurations.
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]

]t
nh,k,s = 2 ImfVk,s

* stdPk,sg, s2cd

Vk,sstd =
1

"FIcher ch,s ·Estd + o
qÞk

Vuk−quPq,sG , s2dd

whereec,k andeh,k are the electron and hole energies,Vk,sstd
is the time-dependent generalized Rabi frequency of the sub-
system with spins, Ich is the wave-function overlap integral
between the quantized C-like and HH-like states along the
growth direction,er ch,s is the bulk interband dipole moment
of the QW material, andVq is the matrix element of the
Coulomb potential in the phase space.

Following the procedure outlined in Ref. 31, we neglect
the polarization parts of the generalized Rabi frequency
when substituting Eq.(2d) into Eqs.(2b) and (2c) but keep
them in Eq.(2a). This two-band model with sybsystems can
be effectively transformed into two independent two-level
subsystems if only the two lowest 1s HH excitons of oppo-
site spins are included, as shown in Fig. 2. The quantities of
interests in the excitonic population oscillation for this effec-
tive two-level model are theeffective polarizations Pex,↑,
Pex,↓ and theeffective population differencesbetween the
higher and lower statesNex,↑, Nex,↓ of the two spin sub-
systems. The quantityNex,s is actually an analogy of the
function nc,k,s+nh,k,s−1 in the phase space.

The electric field can be decomposed into two compo-
nents:

Estd =
1

2
fEstd + E*stdg s3d

whereEstd contains the positive-frequency components while
its complex conjugate contains the negative-frequency ones.
Under rotating-wave approximation(RWA), the coherent dy-
namics equations of these quantities are as follows:

]Pex,s

]t
= − ivexPex,s − i

Icher ch,s ·Estd
2"

Nex,s, s4ad

]Nex,s

]t
= 4 ImF Ich

* er ch,s
* ·E*std
2"

Pex,sG , s4bd

wherevex is the resonant frequency of the 1s HH exciton.
The electric polarization density in real space can be writ-

ten in terms ofPex,s:

P =
uFexsr = 0du2

Lz
o
s

Ich
* er ch,s

* Pex,s, s5d

whereuFexsr=0du is the magnitude of the variational 1s ex-
citonic in-plane wave function of the relative coordinate at
origin,32 andLz is the width of QW.

Define theeffective total population difference Nex:

Nex= Nex,↑ + Nex,↓. s6d

To account for the relaxation of the population differences,
the exchange of the population difference between two sub-
systems, and the dephasing of the polarizations, the popula-
tion relaxation constantG1, the spin-flip constantGs, and the
polarization dephasingG2sNexd, which is a function of the
effective total population differenceNex, are inserted into
equations(4a) and (4b):

]Pex,s

]t
= − ifvex− iG2sNexdgPex,s − i

Icher ch,s ·Estd
2"

Nex,s,

s7ad

]Nex,s

]t
= − G1sNex,s − Nex,s

s0d d − GssNex,s − Nex,s̄d

+ 4 ImF Ich
* er ch,s

* ·E*std
2"

Pex,sG , s7bd

whereNex,s
s0d is the respective effective population difference

of the two subsystems in equilibrium, andNex,s̄ is the effec-
tive population difference with opposite spin indexs̄. The
quantity Nex,s

s0d will be close to −1 no matter whether the
intrinsic material is at room temperature or low temperature.

Equations(7a) and(7b) are actually only valid in the low-
excitation regime. In this approximation, the effects of
electron-hole-plasma screening and phase-space filling are
not included. Therefore, the decrease of the oscillator
strength and energy shift are beyond the scope of this model.
However, due to the balance of band-gap shrinkage and the
reduction of excitonic binding energy, the energy of the ex-
citonic absorption peak does not shift much in a certain
range of pump intensity.31 We will show later that our model
gives very good agreement with the experimental data.

For simplicity, we assume that the dependence of the re-
laxation constantG1 and spin-flip constantGs on the effective
population difference is weak. Also, the relaxation constant
G1 is not directly related to the microscopic population re-
laxation of the states in the phase space. The microscopic
intraband scattering makes the relaxation of a certain mo-
mentum state extremely fast. However,G1 is a quantity de-
scribing the macroscopic population difference in C-like and
HH-like subbands, which is determined mostly by radiative
recombination in semiconductors. Typically, the average ex-
citonic radiative lifetime at low temperature in direct-band-
gap semiconductors is of the order of a nanosecond, which is
long compared with subpicosecond intraband scattering
times. On the other hand, the polarization dephasing does not
have many distinctions between macroscopic and micro-
scopic processes. Whatever contributes to the microscopic

FIG. 2. The level configuration of the excitonic population os-
cillation. The positive-helicity components of the pump and signal
as well as the spin-down C and HH bands consist of one subsystem
while their counterparts form the other.
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dephasing can still show up in the current model. Therefore
the polarization dephasing rate in the current model is much
higher than the population relaxation rate.

The optical excitation will induce an effective population
difference deviated from the one in equilibrium. It will bring
about another contribution of dephasing due to exciton-
exciton scattering or excitation induced dephasing. We adopt
the following model:24–26

G2sNexd = G2
s0d + gsNex− Nex

s0dd, s8d

Nex
s0d = Nex,↑

s0d + Nex,↓
s0d , s9d

whereG2
s0d is the intrinsic dephasing whileg is a phenom-

enological constant describing EID. The discussions and
similar approximations can be found in the literature in order
to explain the dependence of the experimental results on the
pump-probe polarization configuration for FWM.24–26,33At
very high excitation, the dependence of the dephasing on the
population is not simply a linear relation. In that case, one
can model the parameterg as a function of the total effective
population differenceNex. However, to a first approximation,
we take the parameterg as a constant and will show that this
approximation gives good agreement with experimental re-
sults. Without the constantsg and Gs, the total system is
composed of two independent subsystems labeled by two
spin indices. However, the existence of these two constants
couples the two subsystems and thus complicates the whole
problem.

Denote the QW plane as thex−y plane. The positive-
frequency part of the optical electric field is written as fol-
lows:

Estd = Ese
−ivstês + Epe

−ivptêp, s10d

where Es and vs are the amplitude and frequency of the
signal whileEp and vp are those of the pump. We assume
that uEsu is much weaker thanuEpu. Although the spatial de-
pendence is not explicitly shown in Eq.(10), we assume both
the signal and pump are traveling along the growth direction
(positive z direction) so that their electric fields can be de-
composed into positive-helicity and negative-helicity compo-
nents:

Esês = Es,+
x̂ + iŷ
Î2

+ Es,−
x̂ − iŷ
Î2

, s11ad

Epêp = Ep,+
x̂ + iŷ
Î2

+ Ep,−
x̂ − iŷ
Î2

, s11bd

where x̂ and ŷ are the unit vectors along thex and y
axes, respectively. The bulk dipole moments between C and
HH subbands have similar forms due to theirs-like (uS, ↑ l
and uS, ↓ l) as well as p-like (usX+ iYd /Î2,↑ l and
usX− iYd /Î2,↓ l) periodic parts of Bloch wave functions,
respectively,

er ch,↑ = erch
x̂ + iŷ
Î2

, s12ad

er ch,↓ = erch
x̂ − iŷ
Î2

. s12bd

We define the following Rabi frequencies corresponding to
the positive-(negative-)helicity components for the signal
and pump:

Vs,± =
IcherchEs,±

2"
, s13ad

Vp,± =
IcherchEp,±

2"
. s13bd

Due to the selection rule from the conservation of the total
angular momentum along the growth direction, Equations
(7a) and (7b) can be explicitly written as follows:

]Pex,↑
]t

= − ifvex− iG2sNexdgPex,↑

− isVs,−e
−ivst + Vp,−e

−ivptdNex,↑, s14ad

]Nex,↑
]t

= − G1sNex,↑ − Nex,↑
s0d d − GssNex,↑ − Nex,↓d

+ 4 ImfsVs,−
* eivst + Vp,−

* eivptdPex,↑g, s14bd

]Pex,↓
]t

= − ifvex− iG2sNexdgPex,↓

− isVs,+e
−ivst + Vp,+e

−ivptdNex,↓, s14cd

]Nex,↓
]t

= − G1sNex,↓ − Nex,↓
s0d d − GssNex,↓ − Nex,↑d

+ 4 ImfsVs,+
* eivst + Vp,+

* eivptdPex,↓g. s14dd

In the later equations, the first spin index of↑ (↓) [or ↓ (↑)]
and the upper sign of7 (or 6) appear in the same equation
while the second spin index and the lower sign are present
together. Equations(14a)–(14d) can be approximately solved
by perturbation theory because of the weak signal. The basic
approach follows from that by Boydet al.9 In typical popu-
lation oscillation, a FWM signal should also be generated.
However, we assume that the FWM signal itself is weak or
the phase-matching condition is not fulfilled so that the
FWM signal is not built up to feedback. The effective polar-
ization and population difference can then be separated into
parts corresponding to the signal and pump, respectively,

Pex,↑s↓d = Pex,↑s↓d
ssd + Pex,↑s↓d

spd , s15ad

Nex,↑s↓d = Nex,↑s↓d
ssd + Nex,↑s↓d

spd . s15bd

The partsPex,↑s↓d
spd and Nex,↑s↓d

spd will provide the steady-state

solution under intense pump. The intense pump causes
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power-broadening for the two subsystems. We substitute
Eqs. (15a) and (15b) into Eqs. (14a) as well as(14b) and
then discard the signal terms. Under the standard procedures
of density-matrix formulation, the steady-state partPex,↑s↓d

spd

can be written asP̃ex,↑s↓d
spd e−ivpt, whereP̃ex,↑s↓d

spd is a slowly vary-
ing variable. The steady-state solution to this power-

broadening phenomenon can be solved numerically by itera-
tion:

P̃ex,↑s↓d
spd =

Vp,7Nex,↑s↓d
spd

vp − vex+ iG2
spd , s16ad

Nex,↑s↓d
spd =

Gs

G1
Nex

s0d + S1 +
4G2

spduVp,±u2/G1

svp − vexd2 + sG2
spdd2DNex,↑↓

s0d

S1 +
2Gs

G1
D + S1 +

Gs

G1
DF4G2

spd/G1suVp,+u2 + uVp,−u2d
svp − vexd2 + sG2

spdd2 G + S 4G2
spd/G1uVp,+Vp,−u

svp − vexd2 + sG2
spdd2D2 , s16bd

Nex
spd = Nex,↑

spd + Nex,↓
spd , s16cd

G2
spd = G2sNex

spdd = G2
s0d + gsNex

spd − Nex
s0dd. s16dd

For convenience in the following derivations, we write the

slowly varying partP̃ex,↑s↓d
spd in terms of the newly defined

functionsH↑s↓dsvpd:

H↑s↓dsvpd =
Nex,↑s↓d

spd

vp − vex+ iG2
spd , s17ad

P̃ex,↑s↓d
spd = Vp,7H↑s↓dsvpd. s17bd

After the steady-state parts have been obtained numeri-
cally, the dynamics equations related to the weak signal can
be derived by comparing the terms of the signal up to the
first order on the right-hand and the left-hand sides of Eqs.
(14a) and (14b):

]Pex,↑s↓d
ssd

]t
= − isvex− iG2

spddPex,↑s↓d
ssd − gPex,↑s↓d

spd sNex,↑
ssd + Nex,↓

ssd d

− iVs,7e−ivstNex,↑s↓d
p − iVp,7e−ivptNex,↑s↓d

s , s18ad

]Nex,↑s↓d
ssd

]t
= − sG1 + GsdNex,↑s↓d

ssd + GsNex,↓s↑d
ssd

+ 4 ImfVs,7
* eivstPex,↑s↓d

spd + Vp,7
* eivptPex,↑s↓d

ssd g.

s18bd

We apply the techniques of slowly varying variables again.
However, this time, both the polarizations and population
fluctuations corresponding to the signal have two frequency
components:

Pex,↑s↓d
ssd = P̃ex,↑s↓d

ssd svsde−ivst + P̃ex,↑s↓d
ssd s2vp − vsde−is2vp−vsdt,

s19ad

Nex,↑s↓d
ssd = Ñex,↑s↓d

ssd e−ivst + Ñex,↑s↓d
ssd* eivst. s19bd

For the termsNex,↑s↓d
ssd , although there are two frequency com-

ponents in each of them, we only need one variable for each
because the population fluctuations must be real. Equations
(19a) and(19b) are substituted into Eqs.(18a) and(18b). For
steady-state solutions, the comparison of the magnitude of
each frequency component on the right-hand and the left-
hand sides of Eqs.(18a) and (18b) results in a set of six-
variable coupled equations. Several functions are defined to
simplify the result:

Dsvs,vpd = 2S 1

vs − vex+ iG2
spd −

1

vp − vex− iG2
spdD ,

s20ad

F±svs,vpd = vs − vp + isG1 + 2Gsd

+ 2uVp,±u2S 1

2vp − vs − vex− iG2
spd

−
1

vs − vex+ iG2
spdD , s20bd

G↑s↓dsvs,vpd = − Gs + 2guVp,7u2

3S H↑s↓d
* svpd

2vp − vs − vex− iG2
spd +

H↑s↓dsvpd

vs − vex+ iG2
spdD .

s20cd

After a detailed calculation, the expressions for the slowly

varying variablesP̃ex,↑s↓d
ssd svsd are as follows:
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P̃ex,↑s↓d
ssd svsd =

1

vs − vex+ iG2
spdHNex,↑s↓d

spd Vs,7F1 +
Dsvs,vpduVp,7u2hf1 − igH↑s↓dsvpdgF±svs,vpd + iG↓s↑dsvs,vpdj

F+svs,vpdF−svs,vpd + ifF−svs,vpdG↓svs,vpd + F+svs,vpdG↑svs,vpdg
G

− iNex,↓s↑d
spd Vs,±

Dsvs,vpdVp,±
* Vp,7fgH↑s↓dsvpdF7svs,vpd + G↑s↓dsvs,vpdg

F+svs,vpdF−svs,vpd + ifF−svs,vpdG↓svs,vpd + F+svs,vpdG↑svs,vpdg
J . s21d

For the caseuVp,+ u = uVp,−u, such as a linearly polarized
pump, Eq.(21) can be simplified by the following auxiliary
equations:

uVp,+u = uVp,−u ; uVpu, s22ad

Nex,↑
spd = Nex,↓

spd ; Nex
spd/2, s22bd

H↑svpd = H↓svpd ; Hsvpd, s22cd

F+svs,vpd = F−svs,vpd ; Fsvs,vpd, s22dd

G↑svs,vpd = G↓svs,vpd ; Gsvs,vpd. s22ed

We note that the dot productEs·Ep
* can be rewritten as fol-

lows:

Es ·Ep
* = Es,+Ep,+

* + Es,−Ep,−
* . s23d

We will only focus on the linear response of the signal. The
FWM term will be dropped. Denote the linear electric polar-
ization density in real space generated by the signal as
Pssvsd. With the aid of Eqs.(22a)–(22d) and (23), we sub-
stitute Eq. (21) into Eq. (5) and obtain the linear electric
polarization density of the signalPssvsd as follows:

Pssvsd =
uIcherchu2uFexsr = 0du2

2"Lz

Nex
spd

vs − vex+ iG2
spde

−ivst

3HF1 +
uVpu2Dsvs,vpd

Fsvs,vpd GEs

2

− i
2uVpu2Dsvs,vpdfgHsvpdFsvs,vpd + Gsvs,vpdg

Fsvs,vpdfFsvs,vpd + 2iGsvs,vpdg

3SEs

2
· êp

*DêpJ . s24d

Assume that both the signal and pump are linearly polarized.
From Eq.(24), this linearly polarized pump results in aniso-
tropy in the QW plane. The signal electric field must be
decomposed into the component parallel to the pump polar-
ization as well as the one perpendicular to it. Two compo-
nents will generate two different linear electric polarization
densities and thus experience different permittivities. If the
parametersg andGs describing EID and spin flip both van-
ish, respectively, the functionGsvs,vpd also vanishes. Thus
the second term proportional toEs·êp will not be present.
The system will be isotropic in the QW plane no matter what
the configuration of the signal and pump polarizations is.
Therefore EID and spin flip play the roles in transforming a
uniaxial system into a biaxial one.

Assume that the pump polarization is polarized along the
x axis, êp= x̂, and we write the components of the signal in
the form of a column vector. For the signal, the generated
linear electric displacement densityDssvsd is related to its
linear electric polarization density as follows:

Dssvsd = e0ebgdI% ·
Es

2
e−ivst + Pssvsd = e0e%s

Lsvsd ·
Es

2
e−ivst,

s25ad

Es = SEs
sxd

Es
syd D , s25bd

whereI% is the two-by-two identity matrix,e0 is the vacuum
permittivity, ebgd is the relative background permittivity, and
e%s

Lsvsd is the linear relative permittivity tensor experienced
by the signal. The explicit expression ofe%s

Lsvsd is then as
follows:

e%s
Lsvsd = Ses

sxdsvsd 0

0 es
sydsvsd

D = Sebgd 0

0 ebgd
D +

uIcherchu2uFexsr = 0du2

2"Lze0

Nex
spd

vs − vex+ iG2
spd

311 +
uVpu2Dsvs,vpdf1 − 2igHsvpdg

Fsvs,vpd + 2iGsvs,vpd
0

0 1 +
uVpu2Dsvs,vpd

Fsvs,vpd
2 . s26d
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III. THEORETICAL RESULTS AND COMPARISON WITH
EXPERIMENTS

Because the analytical solutions of the linear relative per-
mittivities for the two polarizations are available, we can
utilize them to calculate the real part of the refractive index
Refns

xsydsvsdg and the absorptionAs
xsydsvsd of the signal as a

function of the detuningsvs−vpd /2p. Furthermore, from the
real part of the refractive index, we can calculate the slow-
down factorRs

xsydsvsd, which is the ratio of speed of light in
free space to the group velocity of a signal wave packet with
center frequencyvs in the QW in the presence of the exci-
tonic population oscillation caused by the pump-signal beat-
ing. The refractive indices, the absorptions, and the slow-
down factors of the signals polarized at the two orthogonal
directions are as follows:

ns
xsydsvsd = Îes

xsydsvsd, s27ad

As
xsydsvsd = 2

vs

c
Imfns

xsydsvsdg, s27bd

Rs
xsydsvsd = Refns

xsydsvsdg + vs

] Refns
xsydsvsdg

]vs
. s27cd

We have simulated the transmission spectra by taking the
variation of the refractive index and absorption in the QW
region into account. The simulation shows that extracted ab-
sorbance in the experiment15 can be directly treated as the
single-pass absorbance in the QW region. We use the follow-
ing parameters for our theoretical calculations and fittings to
some of the experimental data. The excitonic energy"vex is
1.5358 eV. The photon energy of the pump"vp is the same
as the excitonic energy. The magnitude of the variational 1s
excitonic in-plane wave function of the relative coordinate at
the origin uFexs0du2 is 3.18310−5 Å−2. The bulk dipole mo-
ment erch is 6.45eÅ. The relaxation constantG1 is
2.5133 ns−1. The spin-flip constantGs is set to 50 ps due to
the exchange effect of holes and electrons in intrinsic mate-
rials after Ref. 29. The intrinsic dephasing constantG2

s0d is
0.4716 ps−1. The EID parameterg is 2.24 ps−1. The relative
background permittivityebgd is 12.25. The sample used in the
experiment consists of 15 GaAs/Al0.3Ga0.7As QWs. The bar-
rier width between two QWs is 150 Å. The width of each
QW is 135 Å. The effective length of the absorption region
Leff is thus 153135 Å=2025 Å.

Figure 3(a) shows the calculated absorbance spectra for
the parallel-polarization configuration under different pump
intensities. This calculation is performed by matching the
background saturated absorption and magnitude of the depth
under the variations of pump intensities as well as the pa-
rametersG1, G2

s0d, and g. The absorbance spectrum is the
product of the absorption spectrum and the effective length
of the absorption region. The corresponding real parts of the
refractive index are shown in Fig. 3(b). As the pump inten-
sity is increased, the background absorbance is gradually
saturated due to power-broadening. When the signal detun-
ing is roughly within the range of the population relaxation

constantG1, an absorption dip is created. For direct-band-gap
semiconductors, the spectral widths are about a few giga-
hertzs. The width of the dip also gets broadened as the pump
intensity is increased. The ratio between the depth and back-
ground saturated absorbance increases as the pump intensity
gets higher. However, theoretically, the real depth of the dip
has a maximum at a certain pump intensity. From the
Kramers-Kronig relation due to the causality of linear re-
sponses, the real part of the refractive index corresponding to
the absorption dip must have a rapid increase as the fre-
quency of the signal increases. In Fig. 3(b), the slope of the
real part of the refractive index at zero detuning first in-
creases as the pump intensity gets higher, which reflects the
increase of the depth of the dip. However, two factors stop
the increase of the slope at high pump intensity. The first one
is the increase of the spectral width of the dip as the pump
intensity gets higher. This will broaden the range in which
the fast variation of the real part of the refractive index takes
place and thus reduces the slope. The second one is the satu-
rated background absorption limiting the absolute depth of
the dip. The variation of the real part of the refractive index
will be subjected to this saturation and result in the decrease
of the slope.

Besides the rapid change of refractive index in a local
frequency range, the global offset of the refractive index also
varies as the pump intensity changes. Theoretically, if the

FIG. 3. Parallel-polarization configuration between the signal
and the pump polarization.(a) The calculated absorbance spectra
and(b) the real part of the refractive indices of the optical signal are
plotted as a function of the detuning frequency between the signal
and pump.
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change of dielectric constant caused by the optical transition
is small compared with the background dielectric constant,
the offset should remain constant as the pump increases. This
constant will reflect the background dielectric constant only.
On the other hand, if the change of the dielectric constant is
significant enough, this offset will be modified by the change
or dielectric constant itself. For excitonic population oscilla-
tion, because a large and rapid change is created in a narrow
frequency range, there is no guarantee for the constancy of
this offset.

The presence of EID and spin flip break the isotropy in
the QW plane and makes the phenomena for orthogonal-
polarization configuration completely different from those of
the parallel-polarization one. Figures 4(a) and 4(b) show the
counterparts in Fig. 3. There are significant differences be-
tween the two configurations. The absorption dip of the
orthogonal-polarization configuration is unobservable. The
flat absorbance in this narrow frequency range is caused by
the relative phase between the two population pulsations of
the two subsystems. The positive-helicity and negative-
helicity components of the signal have distinct phase differ-
ences from their counterparts of the pump. For the parallel-
polarization configuration, we have the following equations
for the signal-pump phase differences/Es,±− /Ep,±:

s/Es,− − / Ep,−d − s/Es,+ − / Ep,+d = 0. s28ad

On the other hand, for orthogonal-polarization configuration,
we have

s/Es,− − / Ep,−d − s/Es,+ − / Ep,+d = p. s28bd

For the orthogonal-polarization configuration, the two in-
duced positive-frequency components of the population pul-

sations Ñex,↑s↓d
ssd , which have the phase following/Es,7

− /Ep,7 when EID and spin flip are not present, will oscil-
late out of phase, and so are the negative-frequency compo-
nents. If EID is included, these out-of-phase oscillations of
the effective population differences will cancel each other.
There will be no extra contribution to linear electric polar-
ization density from the pulsations of dephasing terms. The
presence of spin flip is also a mechanism killing the coherent
population oscillation in orthogonal-polarization configura-
tion. The fast population exchange tends to bring the effec-
tive population differences of the two spin ensembles close
to each other and hence significantly suppresses the magni-
tude of the population variations when the two effective
population differences oscillate out of phase. On the other
hand, for the parallel-polarization configuration, the contri-
butions from the two population oscillations tend to add in
phase and thus enable the observation of significant dips.
Also, spin flip is not a problem in parallel-polarization con-
figuration because the two effective population differences
oscillate in phase and are always close to each other at any
moment. This can be easily checked by the observation that
the x component of the permittivity tensor in Eq.(26) does
not depend on spin-flip constantGs. The argument of EID
has been applied to the generated FWM signals in semicon-
ductor quantum structures and can account for the
polarization-dependent phenomena qualitatively.24,25

Figure 5 shows the experimental data on excitonic popu-
lation oscillation for parallel-polarization configuration.15 It
should be compared with the theory curves in Fig. 3(a). In
the experiment, a single-mode Ti-sapphire laser provides the
continuous-wave pump while a tunable diode laser works as

FIG. 4. Orthogonal-polarization configuration between the sig-
nal and the pump polarization.(a) The calculated absorption spectra
and(b) the real part of the refractive indices of the optical signal are
plotted as a function of the detuning frequency between the signal
and pump.

FIG. 5. Experimental results of the absorbance due to excitonic
population oscillation in GaAs/AlGaAs quantum wells, which
should be compared with the theory curves in Fig. 3(a).
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the signal. For details, please refer to Ref. 15. The pumping
intensities for the fitting are set as 0.00059, 0.00298,
0.00593, 0.0212, 0.0466, and 0.423 kW/cm2. They are cho-
sen to match the background saturated absorbance. The ac-
tual pump intensities in the experiment are 0.00254, 0.0127,
0.0254, 0.127, 0.25, and 1.25 kW/cm2. The intensities used
in theoretical fitting are about one-third or one-fifth of the
experimental values. The discrepancy may result from the
fact that the actual pump intensity entering the absorption
region is not so high as the estimated intensity outside the
sample. Compared with experiment, the theoretical fitting
tends to overestimate the depth of the dips. It may be due to
the neglect of several factors in our models including the
phase-space filling and the reduction of oscillation strength
due to electron-hole plasma screening.

Figure 6(a) shows another experimental measurement of
the absorbance corresponding to the two different polariza-
tion configurations at a certain pump intensity. Figure 6(b)
shows the corresponding theoretical results. The experi-
ment was done near the excitonic absorption peak. We use
the relaxation constantG1=7.79 ns−1 and the intrinsic
dephasing constantG2

s0d=0.37 ps−1. The pump intensity is
0.019 kW/cm2, and the parameterg describing EID is
1.76 ps−1. The absorption dip vanishes in the orthogonal-
polarization configuration. Theoretically, it will be hard to
observe coherent absorption dip for orthogonal-polarization
configuration due to EID and spin flip.

Figures 7(a) and 7(b) show the theoretical slowdown fac-
tors corresponding to Figs. 3 and 4 for the signal as a func-
tion of its center frequency. For parallel-polarization configu-
ration, the rapid variation of the real part of the refractive
index has a positive slope with respect to the signal fre-
quency and can give rise to a significant slowdown of the
wave packets whose main frequency components lie within
the frequency range of the dip. Other parts with negative
slope will cause superluminal phenomena of the wave pack-
ets and are not our main concern here. A rule of thumb is that
the narrower and the deeper the dip, the higher the peak
slowdown factor. For the parallel-polarization configuration,
the extra contribution from the EID can still result in a sig-
nificant slowdown factor. The magnitude of the slowdown
factor is of the order of 104. However, for the orthogonal-
polarization configuration, the out-of-phase cancellations of
the two population oscillations due to EID and spin flip
eliminate the dip in the absorbance spectra. No significant
slowdown factor of the wave packet is present. Only the
superluminal phenomena due to the saturated background
absorption can be observed.

Figure 8(a) shows the experimental result of the phase
delay of the signalDPxsydsvsd and the corresponding absor-
bance as a function of detuning for the parallel-polarization
configuration. The phase delay of the signal optical field de-
scribes the variation of the real part of the refractive index
when the pump is present. It is described by the following
equation:

FIG. 6. (a) Experimental results of the polarization dependence
of the absorbance spectrum in the presence of excitonic population
oscillation. The experiment was done near the excitonic absorption
peak.(b) Our theoretical results.

FIG. 7. The slowdown factor of the excitonic population oscil-
lation (a) whenêsi êp and(b) whenês' êp are plotted as a function
of the detuning frequency between the signal and pump.
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DPx,sydsvsd =
vs

c
RefnxsydsvsdgLeff + a, s29d

wherea is an arbitrary constant. In the experiment, the mea-
surement was carried out by a Mach-Zehnder interf-
erometer.15 From this phase difference, we can extract the
variation of the real part of the refractive index and estimate
the slowdown factor. Figure 8(b) shows the theoretical result
for the corresponding experiment. We use the relaxation con-
stant G1=4.65 ns−1, and the intrinsic dephasing constant
G2

s0d=0.448 ps−1. The pump intensity is 0.028 kW/cm2, and
the parameterg describing EID is 2.1299 ps−1. The constant

a has been adjusted to match the experimental result. The
shape and magnitude of the phase delay and absorbance
agree well with those obtained from the experiment. Figure
8(c) shows the calculated slowdown factor from our theoret-
ical results. The peak slowdown factor is about 3.133104,
which agrees well with the value 3.123104 from the experi-
ment.

Figure 9 shows the peak slowdown factor of the parallel-
polarization configuration as a function of the pump inten-
sity. Due to the broadening of the spectral width and the
saturation of the overall excitonic absorption, there is an op-
timal pump intensity that maximizes the peak slowdown fac-
tor. The optimized peak slowdown factor can be as high as
9.43104. The experiment corresponding to Fig. 5 also con-
firms the magnitude of this slowdown factor.15

IV. CONCLUSION

We use an atomiclike model extended from semiconduc-
tor Bloch equations to describe the phenomena of excitonic
population oscillation in QW for two spin subsystems
coupled by EID. Given a reasonable recombination lifetime,
a significant but narrow absorption dip can be observed. The
corresponding slowdown factor can be close to 105. How-
ever, depending on the polarization configurations of the
pump and signal, the in-phase and out-of-phase population
oscillations will result in completely different absorption
spectra. The unobservable dip for the orthogonal-polarization
configuration implies insignificant slowdown compared with
that of the parallel-polarization configuration. We also show
theoretical results for the absorbance and refractive index
spectra of the signal in the presence of population oscillation
caused by the signal-pump beating. Our theoretical results of
the absorbance spectra and slowdown factor agree very well
with the experimental data and their polarization depen-
dence.
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FIG. 8. (a) Experimental results of the phase delay and absor-
bance due to excitonic population oscillation in GaAs/AlGaAs
quantum wells.(b) Our theoretical result.(c) The theoretical slow-
down factor as a function of the detuning frequency between the
signal and pump. The peak slowdown factor agrees with the value
extracted from the experiment.

FIG. 9. Peak slowdown factor as a function of pump
intensity.
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