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We calculate the stopping force of charged particles traveling parallel to the axis of a cylindrical wire due to
collective excitations. We used a recently developed formalism, based on a semiclassical dielectric function
and the interaction of the particle with bulk and surface collective modes. The equivalence of both classical and
quantum-mechanical results is demonstrated. The different contributions to the stopping force are discussed in
detail on the basis of analytical and numerical results. We propose a simple way to handle the divergences due
to excitations of some bulk modes.
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I. INTRODUCTION

The subject of the interaction of charged particles with
small systems, with a typical length scale of several nm, has
attracted much interest recently. For example, it has been
shown that carbon nanotubes can steer charged particle
beams.1–4 In addition, studies of electron-energy-loss
spectroscopy5 and plasmon excitations6,7 have been carried
out. The excitation of bulk and surface plasmons by external
charges is one of the main sources of the stopping force for a
wide range of energies and is a very active field of research
by its own. In addition to cylindrical cavities and wires de-
scribed below, plasmon excitations were also studied in
quasi-one-dimensional quantum wires.8,9

There are several previous studies of electron spectros-
copy of nanosystems based on classical descriptions of the
medium, dealing, in particular, with semiclassical dielectric
models.10–13The transport and stopping force of charged par-
ticles inside cylindrical cavities has been studied using the
dielectric response formalism14–18 and linearized hydrody-
namic theory.19 These studies are relevant for single wall
nanotubes. In multiwall nanotubes a different physics is ex-
pected due to larger screening.20,21 Multiwall carbon nano-
tubes of,6.5 nm external diameter and,2.2 nm internal
diameter were produced using arc-discharge evaporation.22

The outer diameter can reach 30 nm.23 Recently manganite-
oxide-based nanotubes24 and nanowires of diameter between
50 and 100 nm25 were synthesized.

Two of us have studied plasmon excitations in cylindrical
wires by external charged particles using the dielectric
formalism,26 both classically and quantum mechanically. It
was shown that both approaches give identical results for the
contribution of each surface mode to the stopping power. For
bulk modes, some numerical results suggest that classical
and quantum results coincide within numerical errors, but a
rigorous proof is lacking. This proof is important for concep-
tual insight and also for practical calculations, since the clas-
sical expression is much simpler than the quantum one. Pre-
viously, the equivalence between classical and the quantum
descriptions has been studied by Lucaset al. for the case of
foil excitations,27 by Ferrell and Ritchie for the case of
spherical targets,28 by Dentonet al. for plane surfaces,29 and
by Arista and Fuentes for cylindrical cavities.17 However, in
most cases, no rigorous proof of the equivalence was given.

In this work we calculate the contributions of surface
and bulk plasmons to the stopping force of a charged particle

traveling inside a cylindrical massive wire and parallel to the
axis of it. A local approximation for the dielectric response
will be considered following the lines of previous
approaches,13–17,26 and the calculations will be restricted
to swift charged particles (v@v0, where v0=2.18
3108 cm/s is the Bohr velocity). The former approximation
means that the effects of spatial dispersion will be neglected.
These effects become relevant for interactions taking place
at close distances from the surface(typically, distances of the
order of 1 Å). The justification of these two approximations
comes from the fact that the excitations produced by a mov-
ing particle with velocityv satisfy the conditionv,kv (v
being the frequency of the excitation andk the wave
vector). Hence, assuming typical surface plasma frequencies
v,vs,10 eV/", the wavelengths of these excitations be-
come of the order ofl=2p /k,2pv /vs, which for velocities
in the nonrelativistic rangev /v0,10–30, yields values in
the range of several hundred Å. In these conditions, the use
of a local dielectric function is a convenient approximation.

In the bulk case, a quantitative calculation requires the
introduction of a short distance cutoff and also a cutoff in the
angular momentum of the modes to avoid divergences. We
justify these cutoffs by physical considerations. Fortunately,
the results are weakly dependent on them. We also present a
rigorous proof of the equivalence between classical and
quantum results.

The paper is organized as follows. In Sec. II, we present
the relevant expressions that follow from the dielectric
formalism26 and discuss the limitations of the approach and
the need to introduce cutoffs. The mathematical details of the
proof of the equivalence between classical and quantum re-
sults for the bulk part of the stopping force are left to the
Appendix. Section III contains the results for the stopping
force. Section IV is a summary and discussion.

II. FORMALISM AND RELEVANT EQUATIONS

A. Surface modes

The electrostatic surface modes are obtained from the
Laplace equation¹2f=0 matching the solutions inside and
outside the wire.26,13 In cylindrical coordinates, for a given
angular momentum projectionm, the solution takes the form

(a) for r,a

fsm
s1dsr,w,zd = Ameiskz+mwdImskrde−ivt, s1d
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(b) for r.a

fsm
s2dsr,w,zd = Bmeiskz+mwdKmskrde−ivt, s2d

wherea is the radius of the cylinder,k is a wave vector along
z (the wire direction), andImsxd, Kmsxd are Bessel functions.
From the matching conditions, and using a simple approxi-
mation for the dielectric constant

«svd = 1 −vp
2/vsv + ihd, h → 0+, s3d

wherevp is the plasma frequency, the dispersion relation of
the surface modes is obtained

vskm
2 = vp

2xIm8 sxdKmsxd, s4d

where the prime denotes the derivative with respect to
x=kma. The subscriptm in the wave vector is to remind us
that when a particle with velocityv travels along the wire,
the modes with wave vectorkmsvd=vskm

/v are excited.
The classical stopping force is calculated from the effect

of the induced reaction of the medium on the moving par-
ticle. The corresponding quantum result is obtained express-
ing the total energy of the system and the electrostatic poten-
tial in terms of creation and annihilation operators for
plasmon modes, and solving the evolution of the system due
to the particle-field interaction.26 It turns out that the classical
and quantum results coincide and the stopping power of a
particle traveling inside the wire at a distancer0 from the
axis, due to surface plasmons is

Fs = − F0o
m

fm
s , s5d

f m
s = kmaKmskmaduKm8 skmadufImskmr0dg2, s6d

F0 = SZevp

v
D2

, s7d

whereZe is the charge of the particle. For fixed velocityv,
vskm

should be obtained for eachm solving Eq.(4). Calling
k=vp/v, from now on, andrm=km/k=vskm

/vp, this equation
can be cast in the form

rm = kaIm8 skarmdKmskarmd. s8d

B. Bulk modes

The bulk plasma modes correspond to oscillations
of the electron densityn vibrating with the plasma
frequency vp and satisfying the Poisson equation
¹2fbsr ,z,wd=−4pensr ,z,wd. The solution of this equation,
for the modes with angular momentum projectionm leads to

fbmsr,z,wd =
4pe

k2 + q2nbsr,z,wd , Jmsqrdeiskz+mwde−ivpt.

s9d

The boundary conditionufbmur=a=0, yields Jmsqad=0, im-
plying that the transverse momentumq is quantized and the
allowed values areqm,n=xm,n/a, wherexm,n sn=1,2, . . .d are

the zeros of the Bessel functionJm. Proceeding in a similar
way as before, the bulk contribution to the stopping power
turns out to be26

Fb = − F0o
m

fm
b ska,kr0d, s10d

where the functionfm
b sx,yd has a different expression in the

classical and quantum cases:

fm
clsx,yd = Im

2 sydSKmsyd
Imsyd

−
Kmsxd
Imsxd

D , s11d

fm
qmsx,yd = o

n=0

` F 2

sxm,n
2 + x2d

Jm
2 sxm,ny/xd
Jm+1

2 sxm,nd G . s12d

We have found that both expressions are equivalent. The
proof is lengthy and requires the use of Cauchy theorem of
complex variables and several tricks. It is in the Appendix.
From now on, we use Eq.(11) for explicit evaluation.

C. Analysis of divergences from bulk modes

When using Eq.(10) two problems appear which can lead
to a divergent(unphysical) result for the stopping force.
First, if the particle travels along the axis of the wire
sr0=0d, f0

b diverges logarithmically due to the corresponding
divergence ofK0syd near the origin.30 Second, the sum over
angular momentum projectionsm somfm

b ,m=−` to +`d also
diverges logarithmically for any value ofr0. Both shortcom-
ings have the same origin: at wave vector larger than a criti-
cal onekc (or distances smaller thankc

−1), the expression(3)
for the dielectric constant ceases to be valid and particle-hole
excitations lead to additional screening and overdamping of
the plasma modes.31

Concerning the first problem, an analysis based on the
electric field when the charge distribution is replaced by a
point charge suggests replacingr0 by sr0

2+kc
−2d1/2 in the ar-

gument ofK0skr0d. We have simply avoided the calculation
of K0skr0d for very smallr0.

On the other hand, the modes for largeumu do not exist
and we must also introduce a cutoff. A reasonable criterion is
that the azimuthal wave length at a distancea/2 from the
center should be larger thankc

−1 or, in other words,

umu , pakc. s13d

In the next section we show that the results are weakly de-
pendent on this cutoff.

III. RESULTS

In order to discuss the order of magnitude of the different
relevant quantities, we take the case of carbon systems, with
four valence electrons per C atom. Using the density
of graphite, this gives an electron densityn=0.451/Å3,
suggestingkc=0.77 Å−1 and "vp=2"espn/md1/2.25 eV.
The condition k=vp/v,kc implies for the velocity
v.4.93106 m/s. Also, v,c=33108 m/s implies k
.0.013 Å−1. A typical external radius of a multiwall nano-
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tube is,30 Å or higher.22,23 Thus, from Eq.(13), the sum
overm in the expression ofFb [Eq. (10)] should be cut off at
umu=mmax,100.

The expressions(6) and (11) entering the stopping force
can be simplified considerably forka!1 (implying also
kr0!1), taking the leading behavior of the Bessel functions
for small arguments.30 Using this we obtain for the solution
of Eqs.(8):

r0 =
2

ka
expS−

2

skad2D ,

rm = 1/Î2, umu . 0. s14d

As a consequence of either a factorr0 or extra powers ofka,
the surfacef m

s is negligible in comparison with the bulk
contributions forka!1, except forr0=a, wherefm

b vanishes.
For the dominant bulk modes one obtains

f0
b > lnsa/r0d,

fm
b >

1

2m
F1 −Sr0

a
D2G, umu . 0. s15d

As discussed in the previous section,f0
b has a divergence

for r0→0, but our results are not valid forr0,kc
−1. For

umu.0, fm
b is smooth and falls rather abruptly to zero at

r0=a.
For ka@1, rm=1/Î2 for all m. If kr0!1 andka@1, the

bulk modes still dominate and

f0
b > − lnskr0/2d,

fm
b >

1

2m
, umu . 0. s16d

For kr0@1 (implying ka@1), and not too largeumu!8kr0,
one obtains independently ofm

fm
b >

1

2kr0
h1 − expf− 2ksa − r0dgj, s17d

while the corresponding amplitude due to surface modes is

f m
s >

1

2Î2kr0

expf− Î2ksa − r0dg. s18d

Note that whilefm
b is nearly constant and falls exponentially

to zero for r0,a, the surface part has an exponential in-
crease in that region, but with a smaller exponent. This is
reminiscent of the Begrenzung effect for particles traveling
perpendicular to a plane surface, in which the decrease of the
stopping force due to bulk plasmons near the surface is ex-
actly compensated by the corresponding increase of the con-
tribution of surface plasmons.32

To study the contribution of modes with largeumu for
ka@1, or the intermediate caseka,1, one has to do numeri-
cal calculations. In Fig. 1 we show the results of numerical
evaluation of Eqs.(5)–(7), (10), and (11) for ka=1 and
ka=10. We solved Eq.(8) for m=0. For the remaining
modes we took rm=1/Î2, which is an excellent

approximation.26 The cutoff inr0 was set at 0.01a and that of
umu at mmax=100. We also show results formmax=50 and
mmax=200. The changes are rather small, with a moderate
increase of the bulk contributionFb with mmax.

As suggested by the limiting behaviors discussed above,
the bulk contribution is the dominant part of the stopping
force except for the case of the particle traveling very near
the surfacesr0.ad. However, in the intermediate region
ka,1, the surface contribution is important even forr0=0.
This is due to the excitation of the uniform surface mode
m=0, which leads to a sizeablef0

s whenka,1. Instead, for
ka!1, f0

s is negligible due to the exponentially small factor
k0=kr0,expf−2/skad2g [see Eqs.(6) and (14)], while for
ka@1, k0=k/Î2, but K0sk0ad,exps−k0ad leading also to a
negligible contribution. The qualitative behavior offm

b for
ka=1 is similar to that forka!1 explained above.

For ka=10, bothFb and Fs are reduced in comparison
with the caseka,1. Forka=10, the slope of the total stop-
ping powerFt vs r0 is dominated by the bulk contribution of
the uniform modesf0

b. The remaining contributions are flat
except forr0.a, where the behavior ofFbsr0d and Fssr0d
resemble the exponential dependences discussed above for
kr0@1.

We note that in an infinite(nonbounded) medium, the
stopping force is31 F`=−F0 lnskcv /vpd=−F0 lnskc/kd. Using
kc=0.77 Å−1 and a=30 Å, this gives F`=−3.66F0 for
ka=1 and F`=−1.36F0 for ka=10, which can be directly
compared with the values plotted in Fig. 1.

FIG. 1. Total stopping forcesFtd and surface and bulk contribu-
tions sFs,Fbd as a function of the distance from the axis of the
cylinder for two different values ofk=vp/v. ForFb the modes with
umuømmax=100 have been summed. The results formmax=50 and
mmax=200 are shown with dotted lines.
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IV. SUMMARY AND DISCUSSION

Using a dielectric formalism developed previously,26 we
have demonstrated the equivalence of the quantum and clas-
sical expressions of the stopping force, due to excitation of
bulk plasmons. The corresponding result for surface plas-
mons was shown before.26 Therefore, our result completes
the equivalence of classical and quantum formulations,
which is important for the consistency of the approach and
allows us to use the simpler classical expressions for the
actual computation of the stopping force.

We have analyzed the limitations of the approach and the
need to introduce a high momentum(low distance) cutoff in
the dielectric constant for application of the formalism to real
systems. We discussed the general aspect of the stopping
force in several limiting cases and calculated it numerically
in complementary cases, providing a general guide to the
expected order of magnitude of the stopping force due to
collective excitations.

For the application of the theory to multiwall nanotubes,
the effect of a finite inner diameter should be considered.
However, the present results suggest that the stopping force
would change significantly only very near both surfaces,
while in the other more general case, the order of magnitude
of the stopping force can be inferred from our results. We
stress that our results are not valid at distances from the
boundaries less than the short distance cutoffkc

−1. Another
limitation is that we have not considered the effects of a
finite imaginary parth in the dielectric constant which could
be important for largeumu. In addition, for carbon nanotubes,
the anisotropy of the dielectric function is important.33 This
is not the case for manganite nanowires,25 since the basic
structure is that of a cubic perovskite.

An improvement of our theory requires a more elaborate
calculation of the dielectric constant, for example, using the
random-phase approximation.8,9 However, this formalism
leads to a coupling of all modes with the same angular mo-
mentum projectionm and in practice it can be used when
only a few number of modes is important.
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APPENDIX: EQUIVALENCE OF CLASSICAL AND
QUANTUM RESULTS FOR THE BULK STOPPING FORCE

In this appendix we show the equivalence of the classical
and quantum expressions for the contribution of each angular
momentum projectionm to the bulk stopping forceFb [see
Eq. (10)]. This reduces to show the equivalence of the func-
tions fm

clsx,yd and fm
qmsx,yd defined by Eqs.(11) and(12) for

yøx.
We start considering the following function of the com-

plex variablez:

Glszd =
1

sz2 + x2d
Jm

2 szy/xd
JlszdJl+1szd

. sA1d

Glszd is analytic except eventually atz=0, where it behaves
asz2sm−ld−1 (Ref. 30), at the simple poles atz= ± ix and at an

infinite number of simple poles given by the zerosxi,n of the
Bessel functionsJiszd of the denominator. In addition, for
yøx, Glszd decays forz→` as 1/z2 or faster. Then, its in-
tegral over a circular closed circuitz=expsiwdR with R→`
should vanish. Using Cauchy theorem this integral gives a
relation between the residues at the different poles:

0 =
1

2pi
R Glszd = o

j

Resszjd, sA2d

where the sum runs over all poleszj of Glszd and Resszjd is
the residue at that pole. Using properties of the Bessel
functions30 such asJms−zd=s−1dmJmszd,

J8mszd = Jm−1szd −
m

2
Jmszd = − Jm+1szd +

m

2
Jmszd sA3d

and some algebra, Eq.(A2) can be written in the form

Bl = Al + Bl+1 + Rl , sA4d

whereRl is the residue atz=0 and

Al =
1

ix

Jm
2 siyd

JlsixdJl+1sixd
, sA5d

Bl = o
n=1

` F 2

sx2 + xl,n
2 d

Jm
2 sxl,ny/xd
Jl+1

2 sxl,nd G . sA6d

Iterating Eq.(A4) we obtain

fm
qmsx,yd = Bm = BL+1 + o

l=m

L

fAl + Rlg, sA7d

whereL is a very large number that we shall make tend to`.
In this limit, using asymptotic expressions forJL and xL,n
(Ref. 30) [xL,n,L+2n, JL8sxL,nd,L−2/3] one can see that
BL+1→0, and we suppress it in the following expressions.

Up to now we have simply replaced the series Eq.(12) by
another one. However, we show below that the derivative of
the second member of Eq.(A7) with respect tox can be
summed. Using Eq.(A3) we can prove the relation

]

]x
S Al

Jm
2 siydD =

1

x
S 1

Jl
2sixd

−
1

Jl+1
2 sixdD , sA8d

and by replacing in Eq.(A7),

]

]x
fm
qm =

Jm
2 siyd

xJm
2 sixd

−
Jm

2 siyd
xJL+1

2 sixd
+

]

]x
o
l=0

L

Rl . sA9d

For simplicity in the third term of the second member we
added the sum froml =0 to m−1, sinceRl =0 for l ,m. We
can evaluate this term forxÞ0, making the change of vari-
ablez=xz8 and integrating over a very small circular closed
circuit z8=expsiwdR with R→0:

ALIGIA, GERVASONI, AND ARISTA PHYSICAL REVIEW B 70, 235331(2004)

235331-4



2ipRl =E
+

Glszddz=E
+

Glsxz8dxdz

=E
+

sdz8d
Jm

2 sz8yd
sz82 + 1d

1

x

1

Jlsxz8dJl+1syz8d
. sA10d

A similar analysis that led to Eq.(A8) gives

]

]x
S 1

xJlsxz8dJl+1sxz8d
D =

z8

x
S 1

Jl
2sxz8d

−
1

Jl+1
2 sxz8d

D .

sA11d

Then

2ip
]

]xo
l=0

L

Rl =E
+

sdz8d
z8Jm

2 sz8yd
xsz82 + 1dF 1

J0
2sxz8d

−
1

JL+1
2 sxz8d

G .

sA12d

The contribution of 1/J0
2sxz8d vanishes becauseJ0szd is regu-

lar atz=0. The remaining integral can be evaluated proceed-
ing in a similar way as Eq.(A2): the closed integral over a
large circular circuit vanishes. Then, the contribution of the
pole atz8=0 should cancel those atz8= ± i and those coming
from the zeros ofJL+1sxz8d at z8=xL+1,n/x. The contribution
of the latter is negligible for large enoughL using the corre-
sponding asymptotic expressions30 [xL+1,n,L+2n, JL8sxL,nd

,L−2/3, Jm
2 sxL+1,ny/xd,xL+1,n

−1 ]. Calculating the remaining
contributions atz8= ± i one has

lim
L→`

]

]xo
l=0

L

Rl =
Jm

2 siyd
xJL+1

2 sixd
. sA13d

Replacing this in Eq.(A9), taking the limitL→`, and using
Insxd=s−idnJnsixd30 one obtains

]fm
qm

]x
=

1

x
F Imsyd

ImsxdG2

. sA14d

Deriving Eq.(11) one gets

]fm
cl

]x
= −

Im
2 syd

Im
2 sxd

fKm8 sxdImsxd − KmsxdIm8 sxdg. sA15d

The expression between brackets is the wronskian
WsKm,Imd=1/x.30 Therefore, from the last two expressions

]

]x
fm
qmsx,yd =

]

]x
fm
clsx,yd. sA16d

Since obviously fm
qmsy,yd= fm

clsy,yd=0, we obtain the re-
quired result

fm
qmsx,yd = fm

clsx,yd. sA17d
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