PHYSICAL REVIEW B 70, 235331(2004)

Stopping force on point charges in cylindrical wires
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We calculate the stopping force of charged particles traveling parallel to the axis of a cylindrical wire due to
collective excitations. We used a recently developed formalism, based on a semiclassical dielectric function
and the interaction of the particle with bulk and surface collective modes. The equivalence of both classical and
guantum-mechanical results is demonstrated. The different contributions to the stopping force are discussed in
detail on the basis of analytical and numerical results. We propose a simple way to handle the divergences due
to excitations of some bulk modes.

DOI: 10.1103/PhysRevB.70.235331 PACS nuniper73.63—b, 73.20.Mf, 71.45.Gm, 72.38q

I. INTRODUCTION traveling inside a cylindrical massive wire and parallel to the

The subject of the interaction of charged particles with@XIS of it. A qual approximation for the_dlelectrlc response
small systems, with a typical length scale of several nm, ha¥ill be considered following the lines of previous
attracted much interest recently. For example, it has bee@Pproaches}7?®and the calculations will be restricted
shown that carbon nanotubes can steer charged particle swift charged particles (v>v, where v,=2.18
beams* In addition, studies of electron-energy-loss X 10° cm/s is the Bohr velocity The former approximation
spectroscopyand plasmon excitatioR$ have been carried means that the effects of spatial dispersion will be neglected.
out. The excitation of bulk and surface plasmons by external' hese effects become relevant for interactions taking place
charges is one of the main sources of the stopping force for at close distances from the surfatgpically, distances of the
wide range of energies and is a very active field of researcbrder of 1 A). The justification of these two approximations
by its own. In addition to cylindrical cavities and wires de- comes from the fact that the excitations produced by a mov-
scribed below, plasmon excitations were also studied inng particle with velocityv satisfy the conditionw~ kv (w
quasi-one-dimensional quantum wifes. being the frequency of the excitation arid the wave

There are several previous studies of electron spectrogectop. Hence, assuming typical surface plasma frequencies
copy of nanosystems based on classical descriptions of thg._ ,, —10 eV/#, the wavelengths of these excitations be-
medium, dealing, in particular, with. semiclassical dielectricome of the order of =27/ k~ 270/ w, which for velocities
r'nodel-sl.o.‘le’The.trar!sport anq stopping force of 'charge.d Pan the nonrelativistic range /vy~ 10-30, yields values in
ticles inside cylindrical Cayg;frslghas been studied using thepe range of several hundred A. In these conditions, the use
dielectric response formali and linearized hydrody- of a local dielectric function is a convenient approximation.

i o . .
namic theory? These studies are relevant for single wall In the bulk case, a quantitative calculation requires the

nanotubes. In multiwall nanotubes a different physics is ex- . . .
pected due to larger screeni?i? Multiwall carbon nano- introduction of a short distance cutoff and also a cutoff in the

tubes of ~6.5 nm external diameter and2.2 nm internal gng_ular momentum of the ”_“’des to_avoid_ divergences. We
diameter were produced using arc-discharge evapor%?cion.J”St'fy these cutoffs by physical considerations. Fortunately,
The outer diameter can reach 30 AhRecently manganite- the results are weakly dependent on them. We also present a
oxide-based nanotub¥sand nanowires of diameter between figorous proof of the equivalence between classical and
50 and 100 nrf? were synthesized. quantum results. .

Two of us have studied plasmon excitations in cylindrical  The paper is organized as follows. In Sec. II, we present
wires by external charged particles using the dielectridh® relevant expressions that follow from the dielectric
formalism?® both classically and quantum mechanically. It formalisn?® and discuss the limitations of the approach and
was shown that both approaches give identical results for thi¢ need to introduce cutoffs. The mathematical details of the
contribution of each surface mode to the stopping power. FoProof of the equivalence between classical and quantum re-
bulk modes, some numerical results suggest that classicgHIts for the bulk part of the stopping force are left to the
and quantum results coincide within numerical errors, but £'PPendix. Section Il contains the results for the stopping
rigorous proof is lacking. This proof is important for concep- force. Section 1V is a summary and discussion.
tL_JaI insight ar_ld a_lso for pra}ctical calculations, since the clas- Il. FORMALISM AND RELEVANT EQUATIONS
sical expression is much simpler than the quantum one. Pre-
viously, the equivalence between classical and the quantum A. Surface modes
descriptions has been studied by Lueasl. for the case of The electrostatic surface modes are obtained from the
foll e>I<C|tat|ons,27 by Ferrell and Ritchie for the case of Laplace equatioV2¢=0 matching the solutions inside and
spherical target&} by Dentonet al. for plane surface®}and  qgyside the wir€®12 In cylindrical coordinates, for a given

most cases, no rigorous proof of the equivalence was given. (a) for p<a

In this work we calculate the contributions of surface @ ezt m) ot
and bulk plasmons to the stopping force of a charged particle bern(ps @,2) = A€ (kp)e ™, (1)
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(b) for p>a the zeros of the Bessel functidh, Proceeding in a similar
. B way as before, the bulk contribution to the stopping power
PP, @,2) = B MK (Kkp) e, (2 turns out to b&
wherea is the radius of the cylindek is a wave vector along B b
Z (the wire direction, andl(x), K(x) are Bessel functions. Fp=- FO% fm(ka,kpo), (10)
From the matching conditions, and using a simple approxi-
mation for the dielectric constant where the functiorf?(x,y) has a different expression in the
) ) . classical and quantum cases:
o(0) =1~ wffo(w+iy), n— 0, 3
; ; . . cl —12 Km(y) Km(x)
wherewy, is the plasma frequency, the dispersion relation of fyY) =W ———-———1, (11
the surface modes is obtained lm(y) 1)
w5, = OXI00K(), @) oy S [ 2 P ny/x)}
i (X,y) = ’ : (12
where the prime denotes the derivative with respect to " nmo L (%60 + %) Jraq (Xen )

x=k,a. The subscripim in the wave vector is to remind us . .
m b We have found that both expressions are equivalent. The

that when a particle with velocity travels along the wire, . .
b y g proof is lengthy and requires the use of Cauchy theorem of

the modes with wave VeCt%(U):wsKn/ v are excited. . . e .
. . . complex variables and several tricks. It is in the Appendix.
The classical stopping force is calculated from the effectF s )
rom now on, we use Eq11) for explicit evaluation.

of the induced reaction of the medium on the moving par-
ticle. The corresponding quantum result is obtained express-
ing the total energy of the system and the electrostatic poten- C. Analysis of divergences from bulk modes

tial in terms of creation and annihilation operators for \ynen using Eq(10) two problems appear which can lead

fo a divergent(unphysical result for the stopping force.
First, if the particle travels along the axis of the wire
?po=0), f8 diverges logarithmically due to the corresponding
divergence oK(y) near the origirt® Second, the sum over
angular momentum projectiom(Emf%,m:—w to +«) also
Fo=- Foz s (5) diverges logarithmically for any value @f. Both shortcom-

m ings have the same origin: at wave vector larger than a criti-
cal onek; (or distances smaller thakjl), the expressioli3)

to the particle-field interactioff It turns out that the classical
and quantum results coincide and the stopping power of
particle traveling inside the wire at a distangg from the
axis, due to surface plasmons is

s — / 2 for the dielectric constant ceases to be valid and particle-hole

Fin = kn@Kin( K[ Ki(r@) [ (o) I ©® excitations lead to additional screening and overdamping of
’ the plasma mode¥.

Fo= (@E) , (7) Concerning the first problem, an analysis based on the

v electric field when the charge distribution is replaced by a

whereZe s the charge of the particle. For fixed velocity PPNt charge suggests replacipg by (pgfkcz)m in the ar-

wg. should be obtained for each solving Eq.(4). Calling gument ofKy(kpg). We have simply avoided the calculation

k=wp/v, from now on, and =ky/k=wg / w;, this equation of Ko(kpo) for very smallpy. .

can be cast in the form On the other hand, the modes for larige do not exist
and we must also introduce a cutoff. A reasonable criterion is

rm=kal/(kar,)K(kar,). (8)  that the azimuthal wave length at a distarad@ from the
center should be larger tha@® or, in other words,
B. Bulk modes m| < make. (13)

The bulk plasma modes correspond to oscillationdn the next section we show that the results are weakly de-

of the electron densityn vibrating with the plasma Péendent on this cutoff.
frequency o, and satisfying the Poisson equation
Veey(p,z,¢)=—4men(p,z,¢). The solution of this equation, Il. RESULTS

for the modes with angular momentum projectiorieads to ) . )
In order to discuss the order of magnitude of the different

relevant quantities, we take the case of carbon systems, with
four valence electrons per C atom. Using the density
9) of graphite, this gives an electron density=0.451/%,
suggestingk,=0.77 A and #iw,=2fie(mn/m)*2=25 eV.
The boundary condition ¢p,-,=0, yieldsJ,(qa)=0, im-  The condition k=w,/v<k; implies for the velocity
plying that the transverse momentugris quantized and the v>4.9x10° m/s. Also, v<c=3x10°m/s implies k
allowed values ar€,,=Xy./a, wherex,, (n=1,2,..) are  >0.013 A%, A typical external radius of a multiwall nano-

47re . _
(P2, @) = szqznb(p,L @) ~ Jn(qp)ekFmegriopt,
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tube is~30 A or highe??23 Thus, from Eq.(13), the sum
overm in the expression dfy, [Eq.(10)] should be cut off at
|m| =My~ 100.

The expressiong) and (11) entering the stopping force
can be simplified considerably fdka<<1l (implying also
kpg<<1), taking the leading behavior of the Bessel functions
for small argumentd? Using this we obtain for the solution

of Egs.(8):
r -2 exp(— 2 )
°" ka (ka)2)’

rm=1A2, |m> 0. (14)

-F/F,

As a consequence of either a factgror extra powers oka,
the surfacef 3, is negligible in comparison with the bulk
contributions forka<1 except forpg=a, wherefb vanishes.
For the dominant bulk modes one obtains

fo=1In(a/po),

f&zi[1—<%)2}, Im| > 0. (15)

2m

-FIF,

As discussed in the previous sect|d|§ has a dlvergence
for pp— 0, but our results are not valid fqni0<kc For
Im/>0, 2 is smooth and falls rather abruptly to zero at
po=2a

For ka>1, r,=1/y2 for all m. If kpy<1 andka>1, the
bulk modes still dominate and

FIG. 1. Total stopping forcéF,;) and surface and bulk contribu-
tions (Fg,Fp) as a function of the distance from the axis of the
cylinder for two different values df=w,/v. ForFy, the modes with
|m| <m,2=100 have been summed. The results rfgg,,=50 and
- In(kpg/2), Mmax=200 are shown with dotted lines.

approximatior?® The cutoff inp, was set at 0.0dand that of

b~ 1 m>0 (16 Im| at my»=100. We also show results fon,,,=50 and
m oy’ ' Mmax=200. The changes are rather small, with a moderate
increase of the bulk contributiof, with My,
For kpo>1 (implying ka>1), and not too largém| < 8kpy, As suggested by the limiting behaviors discussed above,
one obtains independently af the bulk contribution is the dominant part of the stopping
force except for the case of the particle traveling very near
0 = _{1 exfg- 2k(a- po)1}, (17)  the surface(py=a). However, in the intermediate region
2Kkpo ka~ 1, the surface contribution is important even fgr=0.

This is due to the excitation of the uniform surface mode
while the corresponding amplitude due to surface modes 'Sm 0, which leads to a sizeabf§ whenka~ 1. Instead, for
s 1 ka<1, f3 is negligible due to the exponentially small factor
fn= 2V2kng exl— \2k(a - po)]. (18 ko= kr0~ex;{ 2/(ka)?] [see Egs(6) and (14)], while for
v ka> 1, ky=k/\2, but Ko(koa) exp(-kya) leading also to a
Note that whilef®, is nearly constant and falls exponentially negligible contribution. The qualitative behavior &, for
to zero forp,~a, the surface part has an exponential in-ka=1 is similar to that forka<1 explained above.
crease in that region, but with a smaller exponent. This is For ka=10, bothF, and F¢ are reduced in comparison
reminiscent of the Begrenzung effect for particles travelingwith the case&ka~ 1. Forka=10, the slope of the total stop-
perpendicular to a plane surface, in which the decrease of th@ng powerF, vs py |s dominated by the bulk contribution of
stopping force due to bulk plasmons near the surface is exhe uniform modes‘ The remaining contributions are flat

actly compensated by the corresponding increase of the coexcept forpy=a, Where the behavior ofy(py) and F¢(pg)

tribution of surface plasmor. resemble the exponential dependences discussed above for
To study the contribution of modes with large| for  kpg>1.
ka>1, or the intermediate caga~ 1, one has to do numeri- We note that in an infinitgnonboundey medium, the

cal calculations. In Fig. 1 we show the results of numericalstopping force i F..=-F, In(kcv/wp)——FOIn k./k). Using

evaluation of Egs(5)«7), (10), and (11) for ka=1 and k,=0.77 A'* and a=30 A, this gives F..=-3.66, for

ka=10. We solved Eq(8) for m=0. For the remaining ka=1 andF.=-1.36, for ka=10, which can be directly
modes we took r,=1/y2, which is an excellent compared with the values plotted in Fig. 1.
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V. SUMMARY AND DISCUSSION infinite number of simple poles given by the zerps of the

Using a dielectric formalism developed previouywe Bessel functionsl,(z) of the denominator. In additic_)n, _for
have demonstrated the equivalence of the quantum and cla=% CGi(2) decays forz— o as 12 or faster. Then, its in-
sical expressions of the stopping force, due to excitation ofegral over a circular closed circuit=exp(i@)R with R—
bulk plasmons. The corresponding result for surface plasshould vanish. Using Cauchy theorem this integral gives a
mons was shown befo8. Therefore, our result completes "elation between the residues at the different poles:
the equivalence of classical and quantum formulations,
which is important for the consistenpy of the approach and 0 :ijg G@2=> Regz), (A2)
allows us to use the simpler classical expressions for the 27 i
actual computation of the stopping force.

We have analyzed the limitations of the approach and thg/here the sum runs over all polgsof G|(2) and Re€z) is
need to introduce a high momentutow distance cutoff in  the residue at that pole. Using properties of the Bessel
the dielectric constant for application of the formalism to realfunctions® such asl,(-z)=(-1)"J,(2),
systems. We discussed the general aspect of the stopping
force in several limiting cases and calculated it numerically m m
in complementary cases, providing a general guide to the I (2 =312 - E‘]m(z) ==Jm1(2) + E‘Jm(z) (A3)
expected order of magnitude of the stopping force due to
collective excitations.

For the application of the theory to multiwall nanotubes,
the effect of a finite inner diameter should be considered. B=A+B. +R, (A4)
However, the present results suggest that the stopping force
would change significantly only very near both surfaces,yhereR is the residue at=0 and
while in the other more general case, the order of magnitude
of the stopping force can be inferred from our results. We 1 J%(iy)
stress that our results are not valid at distances from the A=———T—,
boundaries less than the short distance cukptf Another X Jy (%) Jy-+1(ix)
limitation is that we have not considered the effects of a
finit_e imaginary party in the diel_e_ctric constant which could * 2 BB(x .y
be important for larggm|. In addition, for carbon nanotubes, B=2> TR R :
the anisotropy of the dielectric function is importaafThis ne1 L (X5 + X0 Jha(xg )
is not the_ case for manganite nan_owi?ésaince the basic lterating Eq.(A4) we obtain
structure is that of a cubic perovskite.

An improvement of our theory requires a more elaborate L
calculation of the diele(_:tric constant, for exa_mple, usi_ng the fIMx,y) = Bn=Bra1 + X [A+ R, (A7)
random-phase approximatié. However, this formalism I=m
leads to a coupling of all modes with the same angular mo-
mentum projectiorm and in practice it can be used when whereL is a very large number that we shall make tenebto
only a few number of modes is important. In this limit, using asymptotic expressions fdr and x,_

(Ref. 30 [x_,~L+2n, J/(x.,)~L %3 one can see that
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the second member of E@gA7) with respect tox can be

APPENDIX: EQUIVALENCE OF CLASSICAL AND summed. Using EqA3) we can prove the relation
QUANTUM RESULTS FOR THE BULK STOPPING FORCE

and some algebra, E¢A2) can be written in the form

(A5)

(A6)

In this appendix we show the equivalence of the classical i( A ) - l(L _ L) (A8)
and quantum expressions for the contribution of each angular ax\J2(iy)) x\J4ix) J2,.ix)/)’
momentum projectiomn to the bulk stopping forcé&, [see

Eqg. (10)]. This reduces to show the equivalence of the func-and by replacing in EqA7),

tions f(x,y) and fa™(x,y) defined by Eqs(11) and(12) for )

y<X. ] B(iy) Ry 4
We start considering the following function of the com- &_Xf?nm: e ﬂ—XE R. (A9)
plex variablez: XIn(iX)  XJL41(0X) =0
1 Jﬁ](zy/x) For simplicity in the third term of the second member we
G(2) = 2D 123D’ (A1) added the sum fro=0 to m-1, sinceR =0 for | <m. We

can evaluate this term for# 0, making the change of vari-
G,(2) is analytic except eventually a0, where it behaves ablez=xz and integrating over a very small circular closed
asz2™ -1 (Ref. 30, at the simple poles @=+ix and at an  circuit z =exp(ig)R with R— 0:
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2i7rR|—f |(z)dz—f G|(xZ')xdz

= [ 02)

A similar analysis that led to EqA8) gives

L BZy) 1 1
(2'2 +1) X J(xZ)J4a(yZ)

(A10)

a( 1 )_z’ ( 1 1 >
x\x3(x2)Ju(x2)) ~ x le(xz’) J2,(xZ)

(A11)
Then

2
2|W_2R| ( )zJ(zy){ 1 B 1 }

(Z2+1)]| B(xZ) I,,(x2)
(A12)

The contribution of 12 5(xZ') vanishes becausk(z) is regu-

lar atz=0. The remaining integral can be evaluated proceed-
ing in a similar way as EqA2): the closed integral over a

PHYSICAL REVIEW B 70, 235331(2004)

~ L7218, 32(X_41,y/X) ~X+1,]. Calculating the remaining
contributions atz’ = +i one has

T iy)

E o) (A13)

I|m —E R=—7—"—

Replacing this in Eq¢A9), taking the limitL — <, and using
I,(x)=(-1)"J,(ix)%° one obtains

x X[Im(X) ' (AL4)
Deriving Eg.(11) one gets
It 1ay) ,
oX - |r2n(x) m(X)lm(X)]_ (A15)

The expression between brackets is the wronskian
W(Kp,, 1) =1/x.3° Therefore, from the last two expressions

9 P
0y == Thy). (A16)

large circular circuit vanishes. Then, the contribution of the

pole atz’ =0 should cancel those at=*i and those coming
from the zeros of) ,;(xZ) at z' =x_,; ,/X. The contribution
of the latter is negligible for large enoughusing the corre-
sponding asymptotic expressidhgx . ,~L+2n, J/ (X )

Since obviously fa™(y,y)=f¢(y,y)=0, we obtain the re-
quired result

fm(x,y) = fa(x,y). (A17)
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