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By using a Green’s function procedure we determine exactly the energy spectrum and the associated eigen-
states of a system of two oppositely charged particles interacting through a contact potential and moving in a
one-dimensional ring threaded by a magnetic flux. Critical interactions for the appearance of bound states are
analytically determined and are viewed as limiting cases of many-body results from the area of interaction-
induced metal-insulator transitions in charged quantal mixtures. Analytical expressions on one-body probabil-
ity and charge current densities for this overall neutral system are derived and their single-valuedness leads to
the possibility of states with broken symmetry, with possible experimental signatures in exciton spectra.
Persistent currents are analytically determined and their properties investigated from the point of view of an
interacting mesoscopic system. A cyclic adiabatic process on the interaction potential is also identified, with the
associated Berry’s phase directly linked to the electric(persistent) currents, the probability currents having no
contribution for a neutral system.
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I. INTRODUCTION

Quantum correlations in systems of interacting charged
particles moving in nonsimply connected spaces and in the
presence of Aharonov-Bohm fluxes is an especially impor-
tant topic in condensed matter physics. It is still a wide-open
area for both experimental and theoretical discoveries. In the
present work a simple model problem of this type is exactly
solved and some interesting properties are revealed that are
associated with the interplay of interactions, topology
(double-connectedness), and the characteristics of a charged
mixture. These properties are exact and are determined in
closed analytical forms.

The model problem consists initially of a neutral system
of two interacting charged particles moving in a one-
dimensional ring, threaded by a magnetic flux, and with a
contact interaction. It is a model that can be applied, for
example, to a system of an electron and a hole moving in an
Aharonov-Bohm ring of sufficiently small size and at suffi-
ciently low temperatures so that full quantum coherence
around the ring has been established and the Aharonov-
Bohm effect is fully operational. However, some generaliza-
tions are also made at the end of this paper to a non-neutral
system and to higher dimensionality.

Magnetic field effects on electron-hole systems in a nan-
oring have recently been studied both theoretically1–7 and
experimentally.8,9 Manifestations of the Aharonov-Bohm
effect10 in ring geometry are well known11 at the single-
particle level: the physical origin of the flux sensitivity of the
state of a single particle in a quantum ring is its charge and
its coupling to the vector potential. This coupling to the flux
will consequently have opposite signs for two oppositely
charged particles, i.e., an electron and a hole. An exciton, for
instance, being a bound state of an electron and a hole, hence
a neutral entity, is not sensitive to the flux as a whole, and
this is demonstrated in the free-particle behavior of its center
of mass. Such sensitivity of the Aharonov-Bohm type, how-

ever, doesappear in the relative(internal) state and if this
can be determined exactly it can give valuable information
on an exciting topic in mesoscopic physics:12,13 coexistence
of Aharonov-Bohm effect with interparticle interactions. It
can also serve as a model in effective two-particle theories of
arbitrary many-body mixtures in Aharonov-Bohm configura-
tions.

In this paper we follow a Green’s function procedure in
order to study such a simple two-particle system interacting
with a contact potential and moving in such an Aharonov-
Bohm ring. We solve the problem exactly, giving all possible
eigenstates in closed analytical form, and determining the
energy spectrum through a graphical procedure. Unlike pre-
vious works, we focus on the issue of possible bound states
and we find critical interactions in closed form as functions
of the magnetic flux and the center of mass angular momen-
tum. Excited state energies are also investigated and an in-
teresting pattern of discontinuities in the graphical solution is
found with possible experimental consequences. We also ex-
amine carefully the issue of single-valuedness of measurable
quantities, such as the probability and the charge current den-
sity, and present cases where energy lowering can occur with
states that break the periodicity of the problem. This symme-
try breaking is shown to lead to an interesting band-mode
structure that has not been considered before in the exciton
literature. Persistent currents for our interacting model sys-
tem are analytically determined and their properties are in-
vestigated, especially with respect to variations of the mag-
netic flux and of the ring size. Comparisons are also made
with the noninteracting behavior as well as with a rigorous
upper bound known in the literature. In particular, a cross-
over is found for typical experimental values, where an at-
tractive contact potential is shown to lead to enhanced con-
duction compared to the noninteracting case, for a
sufficiently small ring radius. Finally, we generalize our
model interaction by considering a theoretical process of
slow variation of the interparticle interaction center and with
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a potential of arbitrary form. A cyclic adiabatic variation of
this type is found to be characterized by a geometric Berry’s
phase14 which, apart from the usual Aharonov-Bohm contri-
bution, also involves a term directly proportional to the elec-
tric (andnot the probability) current density. It is also shown
that a contribution from the probability currents would only
arise for a non-neutral system. These properties are briefly
shown to have a higher generality and, with appropriate
modifications, to apply to systems with a more general po-
tential and higher dimensionality.

Section II defines the problem, presents the center of mass
behavior, and then proceeds to formulate the more interesting
relative problem in terms of an integral equation for the rela-
tive wave functions. Section III determines appropriate
Green’s functions through a matching procedure and com-
pares with other methods in the literature, which are compat-
ible with standard symmetry arguments in exciton physics.
Section IV presents an exact condition that graphically de-
termines the entire energy spectrum of the two-particle prob-
lem and focuses on the issue of possible bound state transi-
tions. We find that the total angular momentum of the pair, in
combination with the Aharonov-Bohm flux, plays a crucial
role in determining the corresponding critical interactions for
binding. The transitions are viewed as particular cases of
interaction-induced metal-insulator transitions in a neutral
system of two charged components, and the critical interac-
tions determined here in closed form are shown to be com-
patible with earlier many-body results. Section V gives the
corresponding eigenfunctions in closed analytical form and
discusses their cusp and symmetry properties. Section VI
takes up the issue of the exact form of measurable quantities,
such as the probability and charge density, as well as the
probability current and electric current density: a more care-
ful analysis than usual stresses the difference of physical
information contained in each. The imposition of single-
valuedness on such quantities leads to the possibility of
states that have not been earlier discussed in the exciton lit-
erature and that violate the usual periodicity or antiperiodic-
ity properties of ordinary states. This introduces a band-
mode structure with some interesting behaviors in both
ground state energy lowering and excited state energy dis-
continuities with possible experimental consequences. Per-
sistent currents for arbitrary interactions and arbitrary sym-
metry breaking parameters are analytically determined in
Sec. VII, their properties are carefully studied, and compari-
sons are made with the noninteracting behavior and with a
rigorous upper bound known in the literature. Section VIII
presents a cyclic adiabatic process that leads to Berry’s
phases directly related to persistent currents, a result that is
shown to also be valid for an arbitrary interaction. Further
important extensions of our model system are also made in
this section that clarify the connection between the geometric
phase and the various currents. It is shown, for example, that
this connection is valid for a charged mixture(it would be
completely absent in a system of a single charged compo-
nent). Section IX presents our conclusions and gives a dis-
cussion of our results in a more general context.

II. THE SYSTEM

For reasons of simplicity we consider two oppositely
charged spinless particles of equal massesm moving along a

circular one-dimensional ring of radiusR, which is threaded
by a magnetic fluxF. The position of each particle is de-
scribed by angular variablesw1 and w2. The two particles
interact through an interactionUsw1−w2d which in this paper
is taken as a contact interaction of the formUdsw1−w2d, with
U a real constant(of either sign) with dimensions of energy.

Although contacts are periodic in the relative variable
w1−w2 with period 2p, we can always restrict values of this
variable to the intervals−p ,pg, in which case the interaction
is simply of the above form(with just a single contact, for
w1−w2=0, within this interval). The Schrödinger equation
describing all the eigenfunctionsCsw1,w2d of this system is

F 1

2m
S− i"]w1

R
−

euAW u
c
D2

+
1

2m
S− i"]w2

R
+

euAW u
c
D2

+ Udsw1 − w2dGCsw1,w2d = ECsw1,w2d, s2.1d

where the most natural choice for the vector potentialAW is a
vector tangential to every point of the circular ring with a

constant magnitudeuAW u=F /2pR (see Fig. 1).
The above equation can be decoupled if written in terms

of center of masssFcd and relativeswd variables(see Fig. 2),
defined by

Fc =
w1 + w2

2
, w = w1 − w2, s2.2d

and if Csw1,w2d is written as a productCcsFcdFswd. Equa-
tion (2.1) then separates into two independent equations, one

FIG. 1. Our model system and a choice of the vector potential
A=sF /2pRdŵ.

FIG. 2. Change of the original variables to center of mass and
relative angular coordinates: the mapping of combined domains of
definition is shown, which will be crucial for considerations of
Sec. VI.
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for each variable. The center of mass corresponds to a free
uncharged particle with mass 2m, namely

−
"2

4mR2

d2Cc

dFc
2 = EcCcsFcd, s2.3ad

while the relative system corresponds to a charged particle
with mass equal to the reduced masssm/2d of the system and
subject to the interactionUdswd as well as the minimal sub-
stitution, namely

F 1

m
S− i"

R

d

dw
−

euAW u
c
D2

− sE − EcdGFswd = − UdswdFswd.

s2.3bd

In (2.3a) and (2.3b) Ec andCc are the energy and eigen-
functions of the center of mass, whileE is always the total
energy of the two-particle system. The solutions of(2.3a) are
easy to find and are given in normalized form by

CcsFcd =
1

Î2p
expSiÎ4mR2Ec

"2 FcD , s2.4d

where the allowed energiesEc can be determined by the
requirement that all wave functions are single-valued when
Fc changes by an integral multiple of 2p. This leads to the
energy spectrum

Ec =
"2N2

4mR2 s2.5d

with N being aninteger("N being the total angular momen-
tum of the pair), the eigenstates then taking the simple form

CcsFcd =
1

Î2p
eiNFc. s2.6d

It should be noted at the outset that the usual imposition of
single-valuedness on the wave functions is not entirely rig-
orous although it leads to the correct results. A more proper
argument should be based on single-valuedness of measur-
able quantities such as the probability densityrsFcd or the
probability current densityJsFcd and such a more careful
treatment will actually be given later for the relative prob-
lem. In the case of the center of mass states, if one considers,
for instance, a linear combination of two states of the form
(2.6), namely

CcsFcd = C1e
iN1Fc + C2e

iN2Fc

but with the correspondingN1 and N2 being arbitrary real
numbers, thenrsFcd turns out to be

rsFcd = uC1u2 + uC2u2 + 2 RefC1C2
*eisN1−N2dFcg s2.7d

and imposition of single-valuedness onrsFcd leads to the
condition thatN1−N2 should be an integer. An additional
assumption then that the stateCc=const is an allowed solu-
tion (corresponding toN=0) leads finally to the condition
that all Ni’s must be integers. This more rigorous argument
therefore gives an indirect justification for the easier standard
approach based on wave functions.

The relative problem described by(2.3b) contains most of
the interesting physics associated with possible bound state
transitions and symmetry breakings and incorporates the in-
fluence of the center of mass on the internal behavior of the
pair through the presence ofEc (and the associated integer
N). In what follows, we will study(2.3b) through the method
of Green’s functions.

First, it is more convenient to write(2.3b) in a different
form, namely

FS− i
d

dw
− fD2

− BGFswd = −
U

D
dswdFswd, s2.8d

which defines the following important quantities:D
="2/mR2 that will later be used as our energy unit,B
=E/D−N2/4, a dimensionless form for the internal pair en-
ergy, and f =F /F0, the so-called reduced flux, withF0
=hc/e=4.14310−15T m2, the magnetic flux quantum.(Note
that we can restrict ourselves to the range 0ø f ,1 because
of the expected Aharonov-Bohm periodicity11,15,16 of all
properties with respect tof with period 1.) Equation(2.8)
can be viewed as an inhomogeneous differential equation
and has a solution that can be written in integral form,
namely

Fswd =E
−p

p

dw8Gsw,w8d
U

D
dsw8dFsw8d, s2.9d

where an appropriate Green’s function for this problem
should satisfy

FS− i
d

dw
− fD2

− BGGsw,w8d = − dsw − w8d s2.10d

and will be determined in the next section, after the issue of
imposition of appropriate boundary conditions is addressed
rather carefully. We note that, although(2.9) is actually an
integral equation forFswd, nevertheless the solution can eas-
ily be found due to thed-function form of our model inter-
action.

III. SYMMETRY PROPERTIES AND GREEN’S FUNCTION
PROCEDURE

The appropriate Green’s functionGsw ,w8d to be used in
(2.9) must satisfy the defining equation(2.10), as well as the
same boundary conditions that must be imposed onFswd at
the ends of the intervals−p ,pg. In order to see which type of
boundary conditions is appropriate for this problem, it is ad-
vantageous at this point to temporarily extend the definition
of the relative variablew to the entire real lines−` ,`d and
follow a line of approach that is based on a standard argu-
ment from the exciton literature. In this way we can exploit
the 2p periodicity of contacts with respect to the relative
variable and therefore draw conclusions about the symmetry
properties of relative wave functions when these are viewed
as functions on the entire real line. At the end, this will
impose the proper boundary conditions that we need at the
ends of our intervals−p ,pg. It should be emphasized, how-
ever, that later, in Sec. VI, this standard argument will need
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to be generalized to states that break these usual symmetry
properties; this will be taken into account in anticipation
even in the present section, where the most general mixed
boundary conditions will actually be used[see below, Eq.
(3.7)].

Following initially the standard approach1 we first set

Fswd = eif wxswd

in (2.8), so thatxswd satisfies

S d2

dw2 + BDxswd =
U

D
dswdxswd,

and then we exploit the fact that, for −̀,w,`, Uswd is
periodic inw with period 2p. The functionsxswd must there-
fore have the Bloch form,1 namely

xswd = eiqwuswd with usw + 2pd = uswd, s3.1d

whereq is a real dimensionless number(the analog of “crys-
tal momentum”) that lies within the first Brillouin zone
s−p /2p ,p /2pg, namely

− 1
2 , q ø

1
2 . s3.2d

The usual argument then involves the total wave functions
Csw1,w2d=CcsFcdeif wxswd written in terms of the original
angular variables. Combining(3.1) with (2.6) and (2.2) we
obtain

Csw1,w2d , eiNfsw1+w2d/2geif sw1−w2deiqsw1−w2dusw1 − w2d

= eifsN/2d+f+qgw1eifsN/2d−f−qgw2usw1 − w2d. s3.3d

The standard argument then imposes the requirement that the
total wave function(3.3) must be single-valued with respect
to w1 andw2 independently, hence periodic with respect tow1
and w2, each with period 2p. This leads to the independent
conditions

N

2
+ f + q = n1,

N

2
− f − q = n2, s3.4d

with n1 andn2 arbitrary (and uncorrelated) integers. Adding
and subtracting the two conditions finally leads toN: an in-
teger (as seen earlier) and f +q=half integer or f +q=n/2,
with n: an integer, with the observation that the integersN

and n should be of the same type, either both even or both
odd (this follows fromN=n1+n2 andn=n1−n2 and will be
used repeatedly in later sections). But the most important
conclusion of this section is drawn from a combination with
(3.1) which simply leads to

Fswd = eisn/2dwuswd s3.5d

with uswd being 2p-periodic andn being an integer(of the
same type as the center of mass integerN). This describes
the usual symmetry properties of relative states: they are
4p-periodic, and they can be either 2p-periodic(for n even)
or 2p-antiperiodic(for n odd). At the same time we can now
go back to our intervals−p ,pg and see that, because of(3.5),
the appropriate boundary conditions that we need to impose
on Fswd are mixed, and of the following type:

Fspd = einpFs− pd andF8spd = einpF8s− pd, s3.6d

where F8swd denotes the derivativedF /dw. Correspond-
ingly, these are the boundary conditions that the Green’s
function Gsw ,w8d, viewed as a function ofw only, should
also satisfy.

We have, however, already warned the reader that single-
valuedness arguments for wave functions are not entirely rig-
orous, and that more general considerations(based on mea-
surable quantities) will be made later in Sec. VI. As a result,
more general boundary conditions than(3.6) will emerge,
and will be of the form

Fspd = eiuFs− pd, F8spd = eiuF8s− pd s3.7d

with u an arbitrary real number(which we will later set to
u=np+q, with q accounting for deviations from the ordi-
nary case). For reasons of economy, we will now use these
more general conditions in determining the appropriate
Green’s function for this problem, and we will have in mind
that ordinary states will correspond to the special caseu
=np. What remains for this section is the finding ofGsw ,w8d
that solves(2.10) for −p,w ,w8øp, under boundary condi-
tions that are dictated by(3.7). A mathematical procedure
leading to relevant matching conditions onGsw ,w8d is pre-
sented in detail in Appendix A. It is then a tedious but rather
straightforward exercise to find that imposition of(A1),
(A5), and(A6) on the forms(A3) and(A4) finally results in
the following Green’s function:

Gsw,w8d =5
e−isu/2deisf+ÎBdsp+w−w8d

4ÎB sinFpsf + ÎBd −
u

2
G −

e−isu/2deisf−ÎBdsp+w−w8d

4ÎBsinFpsf − ÎBd −
u

2
G , w ø w8

eisu/2de−isf+ÎBdsp+w8−wd

4ÎB sinFpsf + ÎBd −
u

2
G −

eisu/2de−isf−ÎBdsp+w8−wd

4ÎB sinFpsf − ÎBd −
u

2
G , w ù w86 , s3.8d

K, MOULOPOULOS AND M. CONSTANTINOU PHYSICAL REVIEW B70, 235327(2004)

235327-4



which will later be used in(2.9) in order to give all relative
eigenstates(the ordinary ones corresponding tou=np, n: an
integer of the same type asN).

For comparison with other methods3 it should be noted
that an alternative series method could be used for derivation
of (3.8), provided that one is restricted to ordinary(periodic
or antiperiodic) states. A Fourier transformation of(2.10)
leads to a series representation of the form

Gsw,w8d =
1

2p

"2

mR2 o
n=−`

`
eisn/2dsw−w8d

E −
"2N2

4mR2 −
"2

mR2Sn

2
−

F

F0
D2 ,

s3.9d

which, upon changing integers toN=n1+n2 and n=n1−n2
and for a fixed center of mass quantum numberN, yields

Gsw,w8d =
D

2p
o

n1=−`

` expFiSn1 −
N

2
Dsw − w8dG

E − En1

sed − En2

shd ,

s3.10d

whereEl
sed=s"2/2mR2dsl − fd2 andEl

shd=s"2/2mR2dsl + fd2 are
separate single-particle energies of an electron and a hole,
respectively, andf =F /F0. The sum(3.10) can actually be
evaluated with appropriate use of the complex plane and
residue calculus to derive directly the relative wave functions
[through (2.9)]. This is carried out in Appendix B[see Eq.
(B2)] and is used in later sections[Eq. (5.2)].

IV. ENERGY SPECTRUM AND BOUND STATE
TRANSITIONS

Let us first use our result(3.8) in order to obtain a closed
form for the relative eigenstates. Substitution into(2.9)
yields

Fswd =
U

D
Fs0dfGRsw,0dQswd + GLsw,0dQs− wdg,

s4.1d

whereQswd is the Heaviside step function, and

GLsw,0d =
e−isu/2deisf+ÎBdsp+wd

4ÎB sinFpsf + ÎBd −
u

2
G

−
e−isu/2deisf−ÎBdsp+wd

4ÎB sinFpsf − ÎBd −
u

2
G ,

GRsw,0d =
eisu/2de−isf+ÎBdsp−wd

4ÎB sinFpsf + ÎBd −
u

2
G

−
eisu/2de−isf−ÎBdsp−wd

4ÎB sinFpsf − ÎBd −
u

2
G . s4.2d

This closed form of relative eigenfunctions will be modi-
fied to more convenient and transparent expressions in later
sections[i.e., see(5.1), for u=np] ; what we will be focusing
on here is its use to derive a condition that will give the
entire energy spectrum of the problem. Indeed by taking the
limit w→0 in (4.1) and by canceling the constantFs0d from
both sides, we obtain after some trigonometric manipulations
the following result:

sinf2pÎBg
cosf2pf − ug − cosf2pÎBg

=
2DÎB

U
s4.3d

with B=E/D−N2/4. This is an exact and general condition
that will provide the whole set of allowed energieshEj of this
two-particle problem.(We remind the reader that the arbi-
trary real parameteru can be set tou=np+q, with q ac-
counting for deviations from ordinary states). It should be
noted that in Appendix B an alternative series method is
outlined that applies to the case of ordinary statessu=npd
and that leads to a slightly different result, namely

sinf2pÎBg
cosf2pf + pNg − cosf2pÎBg

=
2DÎB

U
. s4.4d

This is an alternative exact condition that will provide the
energy spectrum, and since it has been derived by a different
method it needs to be compared with our result(4.3). It is
easy to see that, indeed, in the case of ordinary statessu
=npd (4.3) and(4.4) are equivalent, becausen andN must be
of the same type(either both even or both odd) as discussed
in Sec. III. An analogous equivalence will also be shown
about the eigenstates in the next section[Eqs. (5.1) and
(5.2)]. However, it will be seen that expressions of the type
of (4.4) that contain the center of mass quantum numberN
rather than the relative quantum numbern involve the risk of
obtaining wrong results when asymptotic limits are taken—
for the limit U→0, for instance,(4.4) would give

E =
"2

mR2S f +
N

2
D2

+
"2N2

4mR2

andnot the correct

E =
"2

mR2S f −
n

2
D2

+
"2N2

4mR2

that (4.3) gives foru=np. Besides, the method of matching
that we followed here is more general, as it allows for the
possibility of uÞnp as we already saw in Sec. III. We pro-
ceed therefore with the use of(4.3) to determine graphically
the energy spectrum of our model system.

Let us focus for this and the next section on the ordinary
caseu=np (periodic or antiperiodic states in the interval
s−p ,pg). Furthermore, since we are mostly interested in
bound states we will only deal with an attractive interaction
sU,0d. [It is easy to see that(4.3) does not provide any
bound energies(i.e.,E/D,N2/4) whenU.0, but only scat-
tering states, which can of course also be found through the
same graphical procedure that follows.]

Let us first start with the caseN=0 (constant center of
mass wave function and vanishing total angular momentum)
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and examine the differences in behavior between a flux-free
and anf Þ0 case. Forf =0 we obtain from(4.3)

cotFpÎE

D
G =

2D

U
ÎE

D
, s4.5d

which for U=−uUu andE,0 reads

cothFpÎuEu
D
G =

2D

uUu
ÎuEu

D
s4.6d

and a graphical representation of its left- and right-hand side
(denoted by lhs and rhs, respectively) is given in Fig. 3. We
find one and only one intersection, which determines the
energy of the only bound state. This exists irrespective of the
weakness of the attractive interaction, and it has to do with
the fact that the lhs of(4.6) diverges at the origin(something
that will change when we include a magnetic flux). In ex-
periments with nanorings,4,17 with a typical radius of 20 nm,
with an effective massm* <0.067me and dielectric constant
«<12.4 (in GaAs/AlGaAs), the ground state energy is
found to beuE0u,13 meV. This value is actually consistent
with the above rough model: if we chooseuUu as a charac-
teristic Coulomb energy, namelyuUu=e2/2«x0 with x0 taken
as a characteristic length of a one-dimensional hydrogen
atom18 which is x0=a0

* /2, with the effective Bohr radius be-
ing a0

* =«"2/m*e2.97.9 Å, then U<−11.85 meV. Using
this value in(4.6) together with an effectiveD* ="2/m*R2

.2.84 meV we find that the bound state solution of(4.6) is
Eb=−12.37 meV, a value very close to the experimental
one.4

In the limit of largeR (R@" /ÎmuUu and alsouEu /D@1),
a Taylor expansion of(4.6) around 1/R2,0 yields

Eground→ −
U2

4D
s1 + 4 e−psuUu/Ddd. s4.7d

The first term of(4.7) is the energy of a particle of massm/2
that is bound on a potential −RuUudsx−x0d in infinite one-
dimensional straight line, and the second term can be viewed
as a correction due to curvature, which in this limitsuUu
@Dd decays exponentially fast.

Inclusion of a nonvanishing center of mass angular mo-
mentumsNÞ0d yields in the limit uE/D−N2/4u@1 the fol-
lowing ground state energy:

Eground
N → "2N2

4mR2 −
U2

4D
s1 + 4 cosfpNge−psuUu/Ddd s4.8d

that, apart from the center of mass kinetic energy, shows the
manner in which the relative(internal) problem is affected
by the motion of the pair as a whole.

It should be noted that the existence of a bound state in
the caseNÞ0 is not always guaranteed, a point to which we
shall return after we discuss thef Þ0 case[see(4.10)].

Let us now include the Aharonov-Bohm flux(f Þ0, or
generallyf Þ integer, but we can always restrict values to 0
ø f ,1) and see the important qualitative differences with
the above case. Since the left-hand side of(4.3) no longer
diverges(in fact it vanishes) at the origin, an intersection is
not guaranteed(even forN=0); its existence depends on a
comparison between the slope of lhs and the slope of rhs at
the origin. The former is 2p / scosf2p fg−1d (for N=0) and
the latter is 2D /U, and an intersection(and therefore a bound
state) exists only ifUøUcritical with

Ucritical = −
D

p
s1 − cosf2p fgd. s4.9d

A bound state(for N=0) exists only if the attraction is suf-
ficiently strong (and this is determined by the Aharonov-
Bohm flux) and such a case is shown in Fig. 4. Generally
speaking, the presence off makes it more difficult to have a
bound state, the worst case being forf =1/2. Theexistence
of a critical interaction is a reflection of the competition be-
tween the effect of the magnetic field(that drives the two
oppositely charged particles in opposite senses) and the at-
tractive interaction(that drives the particles to cluster to-
gether). It is interesting to see, however, that ifU,−2D /p,
then we always have binding irrespective of the value off.

For E.0 andN=0, the lhs of(4.3) diverges at two points
within the intervalf0,1d, namely atÎB= f andÎB=1−f, and
these two converge into a single divergence whenf =1/2,
which is shown in Fig. 5 with an intersection corresponding

FIG. 3. (Color online) Graphical solution of the self-consistency
condition for bound energy in the absence of magnetic flux.

FIG. 4. (Color online) Graphical solution of the self-consistency
condition for bound energy in the presence of magnetic flux.
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to an excited statesE.0d, one of the infinite ones that exist
on the right(the pattern of divergences repeats itself forE
.D). It should be noted that these excited states can exhibit
discontinuities whenever two divergences converge into a
single one and this can have experimental consequences as
will be discussed in Sec. VI.

For the case ofNÞ0 and arbitraryf one can show, again
by comparison of slopes, that there is a critical interaction

Ucritical = −
D

p
s1 − cosf2p f + pNgd s4.10d

below which we have binding(now in the sense thatE
,DN2/4, i.e., with respect to the center of mass energy).
This reproduces the ever-existence of a bound state forf
=0 andN: even, as well as(4.9) for f Þ0. It is interesting
that forN: odd, we have a nonvanishingUcritical (hence more
difficult binding) even for the flux-free case(while for f
=1/2, it is theN: even case that produces a nonzeroUcritical).
It seems that the symmetry of the center of mass wave func-
tion and the type of the associated angular momentum plays
a major role on the binding of the pair. These factors also
play a role in the appearance of discontinuities of excited
state energies with possible experimental consequences, as
we will see later in Sec. VI. It is interesting also to note that
for generalN, it is possible to even haveE,0 for the range
of values off where

U

D
,

N

sinhfpNg
scosf2p f + pNg − coshfpNgd

is valid. Such an example is given forN=1 in Fig. 6.
Although this problem of two interacting particles is ex-

actly soluble and the transition from an excited to a bound
state can be easily seen through the above graphical solution,
it would be instructive to compare with a many-body
criterion19 from the area of interaction-induced metal-
insulator transitions in charged quantal mixtures: the analytic
behavior of the energy as a function off should also deter-
mine the point of the transition according to the following
procedure. We write the lowest excited state energy in the

form B=Cf2 and we look at the analytical behavior ofC as a
function of f in the limit f →0 (to be taken at the end). At the
point whereC vanishes we should have a transition from an
excited state(the analog of the metallic state) to a bound
state(the analog of an insulating state). Let us look, for ex-
ample, at the caseN=0 and the lowest excited state energy
with E0.0 (always forU,0 andf Þ0). Equation(4.3) now
reads

sinF2pÎE0

D
G

cosf2p fg − cosF2pÎE0

D
G =

2DÎE0

D

U
s4.11d

and cannot be solved analytically to obtainE0sfd, but it can
provide the necessary information through the graphical pro-
cedure: If we had a noninteracting systemsU→0−d then the
straight line of the rhs would be vertical pointing down-
wards, and the first intersection point would therefore be at

ÎE0

D
= f .

Hence, in this limiting case we would obtainE0=Df2 (which
agrees with the result19 E=se2/mc2dA2 for noninteracting
particles) and, naturally, the coefficientD never vanishes, as
expected(no transition forU=0).

If we now turn on a smallU,0, we can determine the
lowest correction to the above trivial result, namely the small
displacement of the intersection point away from the above
value f. By following a Taylor expansion of(4.11) in the
neighborhood ofÎE/D, f and solving with respect toE, we
obtain

E0 . DS f +
U

ps− 4Df + U cotf2p fgdD
2

. s4.12d

If this is further expanded in powers ofU, and if the result is
written in the formE0=Cf2, we finally obtain that the coef-
ficient C vanishes whenever

FIG. 5. (Color online) An example of the graphical solution for
the energy spectrum of excited states: a special case of merged
divergences(see Fig. 11 for a case that these divergences separate).

FIG. 6. (Color online) Ground state energy as a function of
Aharonov-Bohm flux with both negative and positive energies.
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Ucr = − 2pDf2 +
2

3
Dp3f4 + ¯ . s4.13d

This indeed agrees with our earlier result(4.9) for Ucritical, if
this is expanded with respect tof term by term.

We conclude that the value of the critical interaction that,
for this soluble problem, has been determined exactly, is also
compatible with another more general many-body criterion
for the transition(that is valid also for insoluble problems of
more than two particles).

We finally give the asymptotic form of the ground state
energy in the general casef Þ0, NÞ0, for the limit of large
radius. This turns out to be

Eground
N =

"2N2

4mR2 −
U2

4D
s1 + 4 cosf2p f + pNge−psuUu/Ddd

s4.14d

and it naturally generalizes(4.8). Apart from the role of the
center of mass on the internal energy, we also observe the
expected periodic dependence(Aharonov-Bohm oscillations)
with respect to the magnetic flux with the period equal to the
flux quantumF0.

A final comment is that the energy values as a function of
f are symmetric aroundf =1/2, where we have a maximum
for N: even(in agreement with measurements in experiments
with excitons) as shown in Fig. 7, and a minimum forN: odd
(see Fig. 6). It is interesting to note that forf =1/2, wehave
the lowest binding forN: even and the highest binding en-
ergy for N: odd. This observation correlates well with our
earlier conclusion onUcritical [Eq. (4.10)], as well as with

some disconnectedness property of eigenfunctions that we
shall see below(end of the next section). We will also see in
Sec. VI that Figs. 6 and 7 can be viewed as special cases
(shifted bands) of a band-mode structure that will be intro-
duced later.

V. SYSTEM EIGENFUNCTIONS

The entire set of eigenfunctions for the relative problem is
given by (4.1) with the quantitiesGR and GL being defined
by (4.2), a result that was based on the Green’s function(3.8)
and which is very general(for arbitraryu). For the ordinary
caseu=np, (4.1) yields

Fswd = Fs0deif w 35
expF− 2ipS f −

n

2
DGsinfÎBwg − sinfÎBsw − 2pdg

sinf2pÎBg
, 0 ø w ø 2p

− expF2ipS f −
n

2
DGsinfÎBwg + sinfÎBsw + 2pdg

sinf2pÎBg
, − 2p ø w ø 0.

s5.1d

For comparison with the series method we note that Eq.(B2), in combination with the exact summation(B3), yields

Fswd = Fs0deif w 35
expF− 2ipS f +

N

2
DGsinfÎBwg − sinfÎBsw − 2pdg

sinf2pÎBg
, 0 ø w ø 2p

− expF2ipS f +
N

2
DGsinfÎBwg + sinfÎBsw + 2pdg

sinf2pÎBg
, − 2p ø w ø 0,

s5.2d

which is equivalent to(5.1) because of the already an-
nounced fact thatn andN are integers of the same type. In

what follows we briefly discuss the general form and prop-
erties of these relative eigenstates.

FIG. 7. (Color online) Similar to Fig. 6 but with a vanishing
center of mass angular momentum.
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First, for f =0 all states turn out to be real[we will always
set Fs0d=1]. For the attractive potentialsU,0d a typical
form of the single bound state, forN=0, demonstrates a
combination of a local exponential decrease(aroundw,0)
with a 2p periodicity (valid for all N: even) and with no
nodes. The behavior aroundw,0 is generally of the form

e−uwu/lc s5.3d

with the characteristic anglelc determined by Taylor expan-
sion of (5.1) that finally yields

lc = −
2D

U
, s5.4d

a result independent ofN, f, and the actual value of the
energyE. This is related to the cusp(discontinuity of deriva-
tive) at the origin, which can very generally be found to be
sU /DdFs0d, and can be more generally shown at the level of
the Schrödinger equation(2.8) without knowledge of the ac-
tual solutions. These findings generalize well-known results
in infinite straight space.

For cases withE.0 (excited states) the wave functions
have more nodes(they are oscillatory, apart from the cusp at
the origin) and for a repulsive potentialsU.0d the cusp has
positive sign(making the wave function locally increasing
for wù0).

Cases of nonzeroN (both even and odd), again for an
attractive potential, demonstrate the expected 2p periodicity
for N: even and the 2p-antiperiodicity forN: odd, as well as
the appropriate cusp in the neighborhood ofw,0. For cases
of E.0, we have more oscillatory behavior and in special
cases whereE=DsN2/4d the states become linear, namely

Fswd = Fs0d 3 51 −
w

2p
, w ù 0

1 +
w

2p
, w ø 0.

s5.5d

Finally, when we introduce a nonvanishing fluxsf Þ0d, the
relative wave functions now acquire an imaginary part. It can
be shown that the imaginary part always has a continuous
derivative atw,0, and the proper cuspsU /DdFs0d appears
only in the real part of the wave functions. It is interesting to
note that in the special casef =1/2, themodulus of the wave
functions becomes disconnected(it vanishes at ±p) for even
N (while for f =0 the same happens for odd values ofN). It is
actually easy to show that these cases are immediately re-
lated to cosf2pf +pNg=−1 and hence, by(4.10), to cases of
more difficult binding (uUcriticalu takes its maximum value
2D /p, and even in case of binding we observe the local
maximum of Fig. 7). Again, these cases will be shown to
correspond to the band edges of a band-mode structure in-
troduced in the next section.

VI. BROKEN-SYMMETRY STATES

Let us now investigate the issue of single-valuedness of
various measurable quantities and see if this can lead to cases
of uÞnp, namely to states that, under a change of the rela-

tive variablew by ±2p, are neither periodic nor antiperiodic.
We shall determine the most general form of four distinct
one-body physical quantities: the probability densityrsw̄d,
the electric charge densityrelsw̄d, the probability current den-
sity Jsw̄d, and the electric current densityJelsw̄d, where w̄
always denotes an angular variable on the physical circle that
describes the point on the ring, where each quantity is locally
determined. Since we have a system of more than one par-
ticle, each of the above quantities is given by the expectation
value of an appropriate many-body operator with respect to a
general two-particle state of our model system. The corre-
sponding operators are defined by

r̂sw̄d = o
i=1

N

dsx̄ − xid =
1

R
o
i=1

N

dsw̄ − wid, s6.1d

r̂elsw̄d = o
i=1

N

qidsx̄ − xid =
1

R
o
i=1

N

qidsw̄ − wid, s6.2d

Ĵsw̄d =
1

2R
o
i=1

N S p̂i

mi
dsw̄ − wid + dsw̄ − wid

p̂i

mi
D

−
AY sw̄d
Rc

o
i=1

N
qi

mi
dsw̄ − wid, s6.3d

Ĵelsw̄d =
1

2R
o
i=1

N

qiS p̂i

mi
dsw̄ − wid + dsw̄ − wid

p̂i

mi
D

−
AY sw̄d
Rc

o
i=1

N
qi

2

mi
dsw̄ − wid, s6.4d

whereN=2 for our case,xi =Rwi is the position of theith
particle(of chargeqi and massmi) on the physical ring, and
p̂i denotes −i"s] /]xid=−si" /Rds] /]wid. The variableswi will
become dummy integration variables in the expectation val-
ues to be evaluated below, so that, at the end, each quantity
will depend on the absolute angular variablew̄ only. [The last
terms of (6.3) and (6.4) have emerged from products
of minimal couplings with delta functions, i.e.,fp̂i

−sqi /cdAsxidgdsx̄−xid, and use of elementaryd-function
properties.]

Note that in our case ofN=2 and withm1=m2=m and
q1=−q2=e, there is an immediate connection of the probabil-

ity currentĴ with the electric charge densityr̂el [the last term

of (6.3)], and of the electric currentĴel with the probability
densityr̂ [the last term of(6.4)], and these connections will
be important in the following sections. The measurable quan-
tities that correspond to the above operators, for an arbitrary
two-particle stateuCsw1,w2dl, would be given by appropriate
expectation values with the use ofw1, w2 as dummy vari-
ables, for instance
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rsw̄d = kCur̂sw̄duCl =E dw1E dw2C*sw1,w2dr̂sw̄dCsw1,w2d,

s6.5d

which would give an expected result, namely

rsw̄d =
1

R
E dw2uCsw̄,w2du2 +

1

R
E dw1uCsw1,w̄du2 s6.6d

for the probability density.(Integrals with respect to eachwi
are always understood to be from 0 to 2p.)

In a similar fashion, the remaining three quantities turn
out to be

relsw̄d =
e

R
E dw2uCsw̄,w2du2 −

e

R
E dw1uCsw1,w̄du2

s6.7d

for the electric charge density,

Jsw̄d =
i"

2mR2E dw2FCsw̄,w2d
] C*sw̄,w2d

] w̄

− C*sw̄,w2d
] Csw̄,w2d

] w̄
G

+
i"

2mR2E dw1FCsw1,w̄d
] C*sw1,w̄d

] w̄

− C*sw1,w̄d
] Csw1,w̄d

] w̄
G −

"

mR

F

F0

relsw̄d
e

s6.8d

for the probability current density, and

Jelsw̄d =
i"e

2mR2E dw2FCsw̄,w2d
] C*sw̄,w2d

] w̄

− C*sw̄,w2d
] Csw̄,w2d

] w̄
G

−
i"e

2mR2E dw1FCsw1,w̄d
] C*sw1,w̄d

] w̄

− C*sw1,w̄d
] Csw1,w̄d

] w̄
G −

e"

mR

F

F0
rsw̄d s6.9d

for the electric current density, all quantities determined lo-
cally at w̄. [In the above we have again chosenAsw̄d
=sF /2pRdŵ]. The slightly different structure of signs in
these expressions will be essential for the results of the fol-
lowing sections. It is easy to verify that, in case of noninter-
acting particles[when Csw1,w2d=C1sw1dC2sw2d] they can
all be written as simple sums of separate single-particle con-
tributions, i.e., of the formrsw̄d=r1sw̄d+r2sw̄d, Jsw̄d=J1sw̄d
+J2sw̄d, etc., as expected.

However, in order to reach useful conclusions on the in-
teracting case, it is advantageous to change dummy variables
to center of masssFcd and relative angular coordinatesswd
[see Eq.(2.2)], and this requires some care(see Fig. 2 where
the proper combined variation ofFc and w is shown). It is
then a rather tedious exercise to show that(6.6)–(6.9) are

transformed into more complex results that involve the fa-
miliar wave functionsCcsFcd andFswd of Sec. II. Examples
of such expressions appear in Appendix C.

Let us use these new expressions in examples of how one
can reach conclusions associated with single-valuedness with
respect tow̄. If one considers, for instance, linear combina-
tions of center of mass eigenfunctions[such as in(2.6) with
N1, N2 arbitrary real numbers] and of relative wave functions
[such as in(3.5) but with n1, n2 again arbitrary real param-
eters], namely

CsFc,wd = sAeiN1Fc + BeiN2FcdsCeisn1/2dwu1swd

+ Deisn2/2dwu2swdd s6.10d

then the following observations can be made: The form(C1)
remains invariant underw̄→ w̄+2p if

UCcSw̄ 7
w

2
DU2

= UCcSw̄ 7
w

2
+ 2pDU2

, s6.11d

which leads to the requirement thatN1−N2 be an integer.
This is actually a generalization of the argument following
(2.7), and acceptance of the constant solutionN=0 leads to
the usual integer values for allN’s. A more useful conclu-

FIG. 8. (Color online) An example of a broken-symmetry state
(with energy at the minima of Fig. 9).

FIG. 9. (Color online) Effect of the symmetry breaking param-
eter on the bound state energy spectrum for a nontrivial choice of
Aharonov-Bohm flux.
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sion, however, comes from the form(C2) which is invariant
under w̄→ w̄+2p when the modulus of the relative wave
function Fswd is 4p periodic, and use of(6.10) leads to the
requirement thatn1−n2 be an integer; this does not, however,
imply that eachni should separately be an integer, as the
value n=0 does not correspond to any special state that
should necessarily be accepted[from (3.5) n=0 would just
correspond to a 2p-periodic state and there is no physical
reason to be restricted to such periodic relative states). Such
a relative state, which breaks the symmetry of the problem,
is shown in Fig. 8(where Re denotes its real part and Im its
imaginary part): in spite of the 4p periodicity of its modulus,
there is a nontrivial phase difference that connects the values
of the overall complex wave function at the two ends of our
interval s−p ,pg. This additional phase cannot be gauged
away[it is directly linked to the reduced flux as will be seen
below(i.e., Eq.(6.18)] and it is essentially a manifestation of
the Aharonov-Bohm effect at the two-particle level. It is a
measurable quantity and, as will be shown below, it directly

affects other physical properties, such as the energy and the
electric currents[as will be demonstrated later in Fig. 9 and
in Eq. (6.28)].

Similar conclusions can be reached through the use of
forms (C3) and (C4) for the probability current. The evi-
dence is that the usual form(3.5) should permit noninteger
values forn, or, alternatively, we could generalize it to

Fswd = eisu/2pdwuswd s6.12d

by introducing a general real angular parameteru which can
always be set to

u = np + q, n:integer,q: real s6.13d

with q=0 accounting for the ordinary case described by
(3.5). This freedom in the choice ofq has already been taken
into account for the derivation of(3.8) and the relative eigen-
states(4.1). The most general form of relative wave func-
tions now turns out to be

Fswd = Fs0deif w 3 5
e−2ipfeispn+qdsinfÎBwg − sinfÎBsw − 2pdg

sinf2pÎBg
, 0 ø w ø 2p

− e2ipfe−ispn+qdsinfÎBwg + sinfÎBsw + 2pdg
sinf2pÎBg

, − 2p ø w ø 0

s6.14d

and generalizes the ordinary states given by(5.1). In fact it
can be shown that(6.14) satisfies the relative Schrödinger
equation(2.8) (with the appropriate cusp atw,0) indepen-
dent of the value ofq, but giving a modified energy spec-
trum that is now given by

sinf2pÎBg
cosf2pf − np − qg − cosf2pÎBg

=
2DÎB

U
. s6.15d

This in fact is the condition(4.3) obtained at the beginning
of Sec. IV [through the limitw→0 and cancellation of the
common factorFs0d].

Let us now elaborate on this more general consideration.
By going back to(3.3) it is straightforward to show that
(6.12) implies

Csw1 + 2p,w2d = Csw1,w2dexpFiSN

2
+ f + qD2pG ,

Csw1,w2 + 2pd = Csw1,w2dexpFiSN

2
− f − qD2pG ,

which are in turn simplified into

Csw1 + 2p,w2d = Csw1,w2deiq

and

Csw1,w2 + 2pd = Csw1,w2de−iq, s6.16d

henceq indeed accounts for the violation of the usual sepa-
rate single-valuedness. Equation(6.16) can be derived from
(3.7) [in combination withFswd=eif wxswd and (3.1)] that
giveseiu=e2pisf+qd, with q the “crystal momentum” of(3.1),
which effectively yieldssmod 2pd

u = 2psf + qd s6.17d

and

q = 2pS f + q +
N

2
D = 2pS f + q −

n

2
D , s6.18d

the last equality being valid because integersN andn are of
the same type.[Equation(6.18) will be useful for the results
and figures of the next section, if viewed as the definition of
q with respect to physical quantities such asf, N, and q].
With use of the above it is rather easy to show that(6.14)
indeed satisfies the Bloch form(3.1): if Fswd is written as
Fswd=eisf+qdwu±swd=eisu/2pdwu±swd, it turns out that indeed

u−sw − 2pd = u+swd sfor 0 ø w ø 2pd

and

u+sw + 2pd = u−swd sfor − 2p ø w ø 0d,

showing thatuswd is always 2p periodic and demonstrating,
therefore, the consistency of our approach.
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It is interesting to note that our introduction ofu defines a
band problem for the relative coordinate[see(3.7)], and this
in turn induces separate band problems for each particle with
a Bloch phaseq (when the physical circle is viewed as the
unit cell). The usual imposition of separate single-valuedness
[that led to(3.4)] is then a very special case that corresponds
to the centersq=0d of each separate band. By returning then
to (6.17) and(6.18) we also observe that this corresponds to
u=np (as noted earlier) and to a very special value of the
“relative crystal momentum,” namely

q = − f −
N

2
s6.19d

for ordinary states. These observations will be useful in un-
derstanding the behavior of energy, other measurable quan-
tities, and the states themselves under the general broken-
symmetry case in the results that follow, where we will see
that other points of the “relative bands”(i.e., q=0, ±1

2) are
even more special and can lead to observable effects.

Consideration of such broken-symmetry states raises a
plausible question: would a choice ofqÞ0 lead to energy
gain? Let us examine whether introduction of a nonvanishing
q could lead to energy lowering compared to ordinary cases,
and let us temporarily focus on bound statesfE,DsN2/4dg
since this would be the most dramatic effect(symmetry
breaking leading to stronger binding).

Starting from the new(and most general) condition for
the energy spectrum(for bound states), namely Eq.(6.15) for
B,0, we obtain

] E

] q
=

4D2sÎuBud3sinf2pf − pn − qg

sU − 4pDuBudsinhf2pÎuBug − 2pUÎuBucoshf2pÎuBug
s6.20d

[which will actually be related toJelsw̄d and also to the per-
sistent currents below]. The local extrema of bound state
energy can be found at values ofq where (6.20) vanishes,
and this occurs whenever

q = 2pf + pN − kp s6.21d

with k an integer.[Note from (6.18) that k=−2q, so this
happens forq=integer/2, namely the edges or centers of the
“relative bands.”] Correspondingly the sign of

]2E

] q2 = −
4D3sÎuBud5cosfkpg

4p2DsÎuBud3cosfkpg + spuUu − Ddcoshf2pÎuBug

shows that these extrema are local minima wheneverk is
even(and maxima wheneverk is odd). This is demonstrated
in Fig. 9 for a nontrivial choice off. The corresponding wave
function (that breaks the symmetry with the energetically
optimal value ofq) was earlier shown in Fig. 8.

It is instructive to classify these results from the point of
view of the band-theoretic consideration advanced above. A
combination of(6.18) and (6.20) shows that always]E/]q
~sinf2pqg and ]2E/]q2~cosf2pqg, and that the ground
state energy takes its minimal value forq: integer(or, within
the First Brillouin Zone, forq=0, at the center of the “rela-
tive band”) and becomes maximum forq:odd/2 (i.e., at the

“relative band” edges). A typical ground state band is shown
in Fig. 10. [We shall see below an alternating inversion of
these roles for excited statessB.0d but with some superim-
posed discontinuity structure.] From this viewpoint, behav-
iors such as Fig. 6 or Fig. 7 are qualitatively equivalent to
Fig. 10(merely shifted) in view of (6.18). In case of absence
of a magnetic flux, ordinary cases[described by(6.19)] cor-
respond to minimum ground state energy only forN: even
(and to a maximum forN: odd); the symmetry breaks in a
nontrivial way only for anf Þ integer/2, because it is those
cases that the minimumsq=0d corresponds to nontrivial val-
ues ofq or u (Fig. 9 shows such an example). It should also
be noted that the ground state energy bandEsqd in the first
Brillouin zone, although numerically determined, can always
be fitted accurately with a simple sine or cosine function(see
Fig. 10), with the position of the middle of the band and the
bandwidth following behaviors which, in the case of strong
uUu, follow patterns always consistent with(4.14): the band
fluctuates around −U2/4D+DsN2/4d and the bandwidth is
s2U2/Dde−psuUu/Dd. Also, for the range of values ofq for
which

U

D
,

N

sinhfpNg
scosf2pqg − coshfpNgd, s6.22d

the corresponding part of the band lies at negative energies
(Fig. 6 provides such an example, with only a part of the
band being negative).

The corresponding analysis for excited statessB.0d pre-
sents some interesting features, not present in the ground
state energy behavior, which we briefly discuss in the follow-
ing. We should emphasize in advance that these features can
be directly linked to experimental results(hence providing a
means of actually detecting the symmetry breaking) and, al-
though they come up naturally in the context of the band-
theoretic formulation advanced here, they are also present in
ordinary sq=0d cases[provided that the various parameters
are connected in the appropriate way, namelyq=−sf +N/2d].

The key observation for theB.0 cases is that the lhs of
the energy spectrum condition(6.15), which due to(6.18)
can be written in a more suggestive form, namely

FIG. 10. (Color online) Bound state energy for a fixed attractive
interaction as a function of the dimensionless crystal momentumq
in the first Brillouin zone.
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sinf2pÎBg
cosf2pqg − cosf2pÎBg

=
2DÎB

U
, s6.23d

has points of divergence atÎB= ±q+r (r integer, playing the
role of a reciprocal lattice vector) provided of course that
ÎB.0. Consequently, when the parametersN, f, andq are
such thatq is [through (6.18)] located exactly at the band
edges(i.e., q= ±1/2) then, because ofr, we have two diver-
gences on top of each other(Fig. 5 actually providing such
an example of double divergence for an ordinary case): if
indeedq is moved infinitesimally(i.e., q=−1/2+«, «.0)
then there appear two divergences, placed infinitesimally
close to each other(i.e., at ÎB=1/2+« and 1/2−«); one
diverges at positive and the other at negative infinity and the
lhs of (6.23) connects the two infinities with a necessarily
smooth way, hence with a rapidly decreasing curve that
passes through zero(see Fig. 11). As a result, there always
exists an intersection with the rhs of(6.23) which gives an
allowed energy. However, this isnot the case whenq is
exactly±1/2: the two divergences are now “merged” into a
double one, and at this point(6.23) doesnot have an allowed
solution forB. Whenever this merging happens, a solution is
“lost” (and is recovered wheneverq moves slightly from the
band edge). (An example was earlier shown in Fig. 5 of Sec.
IV, where, because of this merging of divergences, there is
not any intersection of rhs with the vertical dashed line). An
important consequence of this peculiarity is that the “lost”
solutions cause discontinuous raising of the allowed values
of B whenever we areexactlyat the band ends, since a so-
lution of (6.23) (hence an intersection with its rhs) can only
be found if we move to the next branch of the lhs. Figure 12

(upper curve) shows an example of such a discontinuous
structure for the first excited state: on top of an inverted band
with a local maximum atq=0, there appear two specific
discontinuous positive jumps at the two band ends.[It turns
out that for the second excited band and all the higher ones,
a similar discontinuity also appears atq=0 (a result of the
same merging of two discontinuities.)] Such a discontinuous
behavior is never present in the ground state band(essen-
tially because of the presence of hyperbolic rather than trigo-
nometric functions). Therefore, the discontinuous rise ob-
served atq= ±1/2 for the excited band makes the energy
differencebetween the first excited and the ground state en-
ergy always be larger atq= ±1/2 than it is forq=0, actually
being larger by more thanN2/4 (for N= ±1, at least). This is
apparent in Fig. 12 where both bands are shown together,
and it can have interesting consequences in exciton spectra
(where transitions between the bands are involved): if we
compare two cases of differentN, i.e., N=0 andN=−1 (a
chiral state, with a nonvanishing total angular momentum) in
an experiment with a fixedf, then the above ordering of
energy differences might have consequences on the position
of peaks of exciton absorption or photoluminescence spectra
(the simplest case being for ordinary state andf =1/2, when
N=0 corresponds to the band edge and hence to a higher
energy difference compared to the chiral state).

Let us finally see the effect of symmetry breaking on the
modulus of the relative wave functions and on the other
physical quantities, such as(6.6)–(6.9). First a straightfor-
ward determination of the relative normalization constant
fC=Fs0dg for a generalu can be made[by using(6.14)] with
the result

uCu2 =
ÎB sin2f2pÎBg

ps4pÎB − 4pÎB cosf2pÎBgcosf2pf + Np − qg − sinf4pÎBg + 2 sinf2pÎBgcosf2pf + pN − qgd

FIG. 11. (Color online) An example of a graphical solution of
(6.23) with two very close divergences(whenq is very close to the
band edgeq=1/2).

FIG. 12. (Color online) First excited state energy band with
discontinuities at the ends of the zone(upper curve), shown to-
gether with the ground state band(lower curve) to emphasize en-
ergy differences.
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and direct substitution of a normalized relative wave func-
tion in (C1) results in a simple form for the probability den-
sity, namely

rsw̄d =
1

pR
, s6.24d

a constant density that is simply equal to the expected
2/2pR for two particles moving in a length of 2pR. This
should actually be expected from the general form(C1)
whenever the center of mass has a well-defined angular mo-
mentum"N. The analogous calculation of the local charge
densityrelsw̄d gives, again for a fixedN,

relsw̄d = 0. s6.25d

The corresponding calculation for the remaining two quanti-
ties is rather tedious[i.e., they require use of(C3)] but it can

be made analytically with the following results:

Jsw̄d =

"SN

R
D

2m
rsw̄d =

"N

2mpR2 , s6.26d

because the internal parts in(C3) are cancelled and only the
center of mass contribution survives.

It should be noted that, althoughuFswdu is affected by the
symmetry-breaking parameteru, at the endrsw̄d, relsw̄d, and
Jsw̄d are independent ofu, a result stronger than their re-
quired single-valuedness. On the contrary, forJelsw̄d, which
turns out to be

Jelsw̄d =
i"e

4mR2E
w̄−2p

w̄

dwuFswdu23CcSw̄ −
w

2
D ] Cc

*Sw̄ −
w

2
D

] Sw̄ −
w

2
D − Cc

*Sw̄ −
w

2
D ] CcSw̄ −

w

2
D

] Sw̄ −
w

2
D 4

+
i"e

2mR2E
w̄−2p

w̄

dwUCcSw̄ −
w

2
DU2FFswd

] F*swd
] w

− F*swd
] Fswd

] w
G+

i"e

2mR2E
−w̄

2p−w̄

dwUCcSw̄ +
w

2
DU2FFswd

] F*swd
] w

− F*swd
] Fswd

] w
G−

i"e

4mR2E
−w̄

2p−w̄

dwuFswdu23CcSw̄ +
w

2
D ] Cc

*Sw̄ +
w

2
D

] Sw̄ +
w

2
D − Cc

*Sw̄ +
w

2
D ] CcSw̄ +

w

2
D

] Sw̄ +
w

2
D 4−

e"

mR

F

F0
rsw̄d,

s6.27d

the opposite signs of the last two integrals compared to(C3)
make the center of mass contributions essentially vanish and
the internal(relative) part to give a nontrivial result. After
straightforward manipulations this turns out to be

Jelsw̄d = −
4peÎBuCu2sinf2pf + pN − qg

mR2sinf2pÎBg

or, alternatively,

Jelsw̄d = −
4eD2sÎBd3sinf2pf + pN − qg

"hsinf2pÎBgs4pDB + Ud − 2pUÎB cosf2pÎBgj
,

s6.28d

showing a direct dependence of the electric current on sym-
metry breaking.

We note thatJel is a nontrivial function of the various
parameters and it depends onU through the appropriate so-
lution of (6.15) for B. We also note from(6.18) that Jelsw̄d
~sinf2pqg, and that, therefore, for a choice ofq correspond-
ing to the centerq=0 or the edgeq= ±1/2 of therelative
bands, we haveJelsw̄d=0. The electric current is here identi-

cal to the persistent currents as we demonstrate in the next
section.

VII. PERSISTENT CURRENTS

The persistent currentsIn, usually defined(at T=0) for
single-particle states with energyEn asIn=−cs]En/]Fd with
F the magnetic flux, are here determined in a similar manner
but with use of the total energyE of the interacting two-
particle system(when this is in a particular eigenstate),
namely

Ipers= − c
] E

] F
, s7.1d

where for notational simplicity we omit two indices that
specify the eigenstate, namelyN and one more index identi-
fying the particular intersection point in the graphical solu-
tion of (6.15). For the particular system(whereA=F /2pR)
we have Ipers=−sc/2pRds]E/]Ad, but ]E/]A can be very
generally determined through the use of the Hellmann-
Feynman theorem withA being treated as a parameter: fol-
lowing earlier work19,20 we have
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] E

] A
=

]

] A
kCuĤuCl = kCu

] Ĥ

] A
uCl, s7.2d

a statement equivalent to havingkC uCl: constant(indepen-
dent ofA). On the other hand, by making use of the system
Hamiltonian

Ĥ =
1

2m
o
i=1

2 Spi −
qi

c
AD2

s7.3d

we easily obtain for(7.2) that

] E

] A
= −

2pR

c
kJell s7.4d

with the average(global) electric current being defined by

kJell =
1

2pR
kCuo

i=1

2
qi

m
Spi −

qi

c
ADuCl. s7.5d

Equation(7.1) then rigorously leads to

Ipers= kJell. s7.6d

On the other hand, thelocal electric current densityJelsw̄d
[such as(6.28)] is the expectation value of the operator(6.4)
and it directly gives the global currentkJell if integrated for
all w̄, namely

E
0

2p

Jelsw̄dRdw̄ = 2pRkJell, s7.7d

which through(7.6) gives the general connection between
the local electric current and the persistent current, namely

Ipers=
1

2p
E

0

2p

Jelsw̄ddw̄. s7.8d

In the case of(6.28) Jel turns out to be homogeneous(inde-
pendent ofw̄), leading therefore to the expectation that, very
generally(for a particular two-particle eigenstate) we have

Jel = Ipers, s7.9d

an identification that should be expected on general physical
grounds. To check that this equality actually holds in our
case, it is possible to independently determineIpers through
(7.1) by differentiating the energy spectrum condition(6.15)
with respect toF. Although tedious, it is straightforward,
and this gives thatIpers is

Ipers= −
4eD2sÎBd3sinf2pf − pn − qg

"hsinf2pÎBgs4pDB + Ud − 2pUÎB cosf2pÎBgj
,

s7.10d

which is exactly equal to(6.28) (sinceN and n are of the
same type), hence satisfying the expected(7.9). These results
are valid for arbitrary symmetry breaking. In the limiting
case thatU→0 it is possible to show that(7.10) yields

IperssU → 0d = −
e"

pmR2S f −
n

2
−

q

2p
D , s7.11d

which is the expected result for noninteracting particles(with
q=0 for ordinary states), in which case the total energy is
simply

EsU → 0d =
"2N2

4mR2 +
"2

mR2S f −
n

2
−

q

2p
D2

s7.12d

andn can always be written asn=n1−n2 (ni integers), (7.11)
simply indicating that the current results from the opposite
contributions of separate single-particle currents. It should,
however, be kept in mind that there is a periodicity of these
results if written in terms of the “relative crystal momentum”
q of the last section, with period 1(see below). Furthermore,
it is interesting to see how the persistent current is affected
by the interaction in the limit of stronguUu, which is equiva-
lent to the large radius limit and results such as(4.14) could
be used in(7.1); for the ground stateIpers turns out to be
exponentially small and it is equal to

Ipers=
eU2

"D
e−psuUu/Ddsinf2pqg. s7.13d

It should be noted that in this strong coupling limit all the
excited state energies can also be given in closed form from
which the associated persistent currents can also be found
[through(7.1)], a matter that we will not pursue analytically
any further. However, typical behaviors ofIpers with respect
to the flux and the size of the ring will be shown in the
figures at the end of the section.

It is more interesting to discuss briefly the general form of
persistent currents(7.10) for an arbitrary interaction strength
U. By temporarily going back to noninteracting particles, we
note that(7.11) can be written[with use of(6.18)] as

IperssU → 0d =
e"

pmR2q s7.14d

and the corresponding energy spectrum(7.12) can now be
written in a compact form as merely

BsU → 0d = q2. s7.15d

It should, however, be kept in mind that, because of the ring
topology and the associated periodicity inq [which can vary
within the first Brillouin zone, Eq.(3.2)], there is a period-
icity of both (7.15) and (7.14) with respect toq with period
1. Restricting ourselves therefore to the zone(3.2) this can be
explicitly demonstrated by writing

IperssU → 0d =
e"

pmR2sq + rd s7.16d

and correspondingly

BsU → 0d = sq + rd2 s7.17d

with r an appropriate integer(of any sign) that bringsq
within the first zone. This is essentially equivalent to the
points of divergence that we found earlier atÎB= ±q+r
[which are indeed the only allowed solutions of(6.15) in the
limit U→0, as the rhs tends to vertical lines]. The above
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presence ofr is also equivalent to the expected periodicity
when the relative integern changes by multiples of 2(i.e., by
an even integer 2r), as this is the only change allowed forn
to be of the same type as the center of mass integerN (N
taken as fixed and given).

Having clarified this, it is easy to find the maximum value
taken by uIpersu for the first zone and forU=0; this can be
given by (7.14) with uqu= 1

2. The result is

uIq=1/2sU → 0du =
he

4p2mR2 , s7.18d

which is exactly the result found by Vignale21 as a rigorous
upper bound for persistent currents of any one-dimensional

mesoscopic system of lengthL with N̄ particles, namely

uI ubound=
N̄he

2mL2 , s7.19d

where in our caseN̄=2 andL=2pR. Having an equality for
Vignale’s bound forU=0, it is now interesting to letU have
any arbitrary value and see whether(7.10) is generally
smaller than(7.19). To check this, we first eliminateU from
(7.10) with use of the energy spectrum condition(6.23) and
in this way we obtain the general values ofIpersas a function
of q [that containsf, N, andq through(6.18)] and also of the
allowed values ofB (which are now forming a continuous
set, and can be varied independently ofq). We plot these
values of Ipers in Fig. 13 for several values ofq and we
compare them with the upper bound(7.18) as well as with
the noninteracting behavior(7.14) and (7.15). First, we note
that, for B.0 the upper bound can be violated, but forB
,0 we always haveuIpersu, uI ubound. In fact, the ground state
persistent currents seem to take their maximum absolute val-
ues wheneverB→0−, and this limit can be found analytically
to be

uIperssB → 0du =
3De

2p2"
S sinf2pqg

2 + cosf2pqgD
=

3

p
S sinf2pqg

2 + cosf2pqgDuI ubound s7.20d

with a maximum value corresponding toq= 1
3 and being

uIperssB , 0dumax=
Î3

p
uI ubound< 0.551uI ubound, s7.21d

hence demonstrating the validity of the expected upper
bound in the particular interacting system.(It should be
noted that although existence of this bound was proven21 for
a system of only a single charged component, it seems to be
also valid for our mixture of different charged components,
and this could be shown in a more general setting in future
work.) The qualitative reason why the inclusion of interac-
tions leads to a lowering ofuIpersu in the first zone with re-
spect to the noninteracting case is the fact thatUÞ0 leads to
the opening of gaps at the ends of the zone that were not
present in the so-called empty lattice approximationsU=0d.
In Fig. 13 the current for the noninteracting case is also
shown for comparison and provides a better understanding of
the general interacting behavior. The combination of(7.14)
with (7.15) yields aÎB behavior(black curve) which, how-
ever, changes sign wheneverB corresponds to values ofq
that move to higher zones: the procedure of reduction to the
first zone effectively changes the sign ofq and, through
(7.14), of the noninteracting current itself. The general inter-
acting behavior demonstrates more interesting oscillatory
variations withB but it qualitatively follows a similar pattern
of sign changes, as expected. A feature of the interacting
behavior (that is naturally absent in theU=0 case) is the
presence of aB,0 tail (cases of binding), this now being
monotonic(nonoscillatory). A final comment on Fig. 13 re-
fers to the exact vanishing ofIpers at special pointsB
=sinteger/2d2 (with a nonzero integer) for all possibleq.
These are related to the caseuUu→`, in which all bands
become flat(zero bandwidth), hence with vanishing current
for all q, the flat ground state band’s contribution to the en-
ergy (for B,0) having moved to −̀ , as is apparent from the
left part of Fig. 13.

The behavior of the persistent current(with interactions
included) with combined variations ofq (essentially the flux)
andB (essentially the energy), for excited statessB.0d and
after elimination ofU, is shown in Fig. 14 for a typical size
of a GaAs/AlGaAs nanoring. Figures 15 and 16 show ex-
amples of typical behavior for such a system as a function of
flux (recall thatq=−f −N/2+q /2p). Figure 15 focuses on a
fixed attractive interaction(and varying energies), while Fig.
16 focuses on fixed energies[and elimination ofU through
(6.23)]. Both cases of positive and negative values ofB are
shown and the noninteracting(linear in q) behavior is also
superimposed for comparison. Several observations can be
made but we only mention the tangential behavior of theU
=0-line on the interacting curve for certain positive values of
B, but also cases(again forB.0) where uIpersu exceeds the
magnitude of the noninteracting current. WhenB→0, the

FIG. 13. (Color online) Persistent currents as a function of di-
mensionless internal energy(with interaction potential eliminated)
for various values ofq, demonstrating the comparison with the
upper bound(7.18) (horizontal dashed line) and with the noninter-
acting sU=0d behavior(black curve).
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behavior approaches the noninteracting line. Finally, Figs.
17–20 present typical behaviors of persistent currents with
respect to the size of the ring. Figures 17 and 18 focus on
fixed attractive interactions, while Figs. 19 and 20 show
cases with fixed energies(and withU being eliminated). We
note that, for cases of bindingsB,0d , uIpersu is always
smaller than the magnitude of the noninteracting current, and
it very quickly approaches zero above some values of the
radius close to the typical ones in experiments with
GaAs/AlGaAs nanorings(Fig. 18). On the contrary, forB
.0, we note an interesting crossover aroundR,20 nm(Fig.
17); for rings with radius smaller than this value, the attrac-
tive interaction seems to enhance conduction compared to
the noninteracting case.(It is interesting that a similar cross-
over doesnot appear for a repulsiveU, and uIpersu is always
smaller than the noninteracting value). Cases of fixed posi-
tive energy(with U eliminated) present some additional os-
cillatory structure, and examples are shown in Figs. 19 and
20 (where because of differentN’s, both cases correspond to
the same value of flux, namelyf =−0.1, if we constraint our-
selves to ordinary statesq=0). We note different behaviors
for very small rings depending on chirality, as well as several
crossovers whereuIpersu again exceeds the magnitude of the
noninteracting current. It should be added that such cross-
overs donot appear in cases of binding(i.e., a fixed negative
B) where uIpersu is monotonic and always smaller than the
noninteracting value.

The exact form of the persistent currents that we have at
our disposal for this particular interacting mixture leads us to
a final observation that seems, however, to have a more gen-
eral validity and is presented in the following section.22

VIII. BERRY’S PHASE

Since electron or hole systems in a nanoring have recently
raised considerable interest in the area of quantum computa-
tion, and in particular the use of geometric(rather than dy-

namic) phases is currently considered in possible design of
quantum gates,23 we are now presenting some exact proper-
ties that relate the electric(persistent) currents of our system
with the Berry’s phase of some particular cyclic adiabatic
process, to be defined below. It should be reemphasized that
cyclic adiabatic evolution can find useful application in fault
tolerant quantum computation, and we consider it important
to have a direct connection between corresponding Berry’s
phases and concrete(and controllable) physical quantities,
such as the electric current.

Let us initially generalize the form of our interparticle
interaction toUdsw1−w2−w0d with w0 a real angular param-
eter that is supposed to move adiabatically in the region
f0,2pg. This means that 0øw0stdø2p with w0std changing
in such a way that at every instant the rateẇ0std satisfies
"ẇ0std! (absolute value of the lowest energy difference be-
tween states of our system). We find that such a simple adia-
batic criterion is"ẇ0std!D /4 (corresponding to transitions
N→N±1). Such a slow variation ofw0 along a full circle
takes the Hamiltonian of the system back to its initial form;
the eigenstates however(the ones that were analytically de-
termined in this work) will pick up an additional phase, of a

FIG. 14. (Color online) Behavior of persistent currents(with
interaction eliminated) for a GaAs/AlGaAs nanoring of a typical
size with respect to combined variations of energy and flux(recall
B=E/D−N2/4 andq=−f −N/2+q /2p).

FIG. 15. (Color online) Persistent currents vsq for fixed attrac-
tive interaction and for both signs of internal energy(which is not
fixed but varies along the curves) and a comparison with the non-
interacting behavior.

FIG. 16. (Color online) Persistent currents vsq for fixed internal
energies of both signs(with interaction being eliminated) and com-
parison with the noninteracting behavior.
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purely geometric nature, that was found by Berry14 to be

gn = i R dw0Knsw0dU ] nsw0d
] w0

UL , s8.1d

where the symboln now denotes collectively the particular
eigenstate considered.

With use of a resolution of the identity operator in relative
and center of mass variables,(8.1) can be written as

gn = iE
−2p

2p

dwE
0

2p

dFcE
0

2p

dw0Cw0

* sw,Fcd
] Cw0

sw,Fcd

] w0
,

s8.2d

whereCw0
denotes the total eigenfunction(for each instan-

taneous value of the adiabatic parameterw0) which in vari-
ablesw ,Fc is simply a product, namely

Cw0
sw,Fcd = CcsFcdFsw − w0d. s8.3d

In (8.3) CcsFcd is basically given by(2.6) and is indepen-
dent of w0, andFsw−w0d is given by(5.1) [or (6.14) if we
allow for symmetry breaking] but with variablew simply

substituted byw−w0. Use of all this in (8.2) gives, after
rather tedious but straightforward manipulations, the Berry’s
phase picked up by the total eigenstate during this cyclic
process, the result being

gn = 2p
F

F0

−
ph

De

4eD2sÎBd3sinf2pf − pn − qg
"ssinf2pÎBgs4pDB + Ud − 2pUÎBcosf2pÎBgd

.

s8.4d

Direct comparison with(7.10) leads to an exact property(for
any symmetry-breaking parameterq), namely

gn = 2p
F

F0
+

ph

De
Jel. s8.5d

The first term is recognized as the Aharonov-Bohm contri-
bution, i.e., the one found by Berry for the adiabatic trans-
port of a bound state(in a box with rigid walls) around the
enclosed magnetic fluxF= fF0. The second term is a contri-
bution due to the extended coherent nature of the eigenstates

FIG. 17. (Color online) Persistent currents vs ring radius for
fixed attractive interaction and for positive energies(which vary
along the curves) showing a crossover with noninteracting behavior.

FIG. 18. (Color online) Persistent currents vs ring radius for
fixed attractive interaction and for cases of binding, compared to the
noninteracting behavior.

FIG. 19. (Color online) Persistent currents vs ring radius for
fixed positive energy(andU eliminated) showing a series of cross-
overs with noninteracting behavior.

FIG. 20. (Color online) Similar to Fig. 19(if we are constrained
to ordinary states, both cases correspond to the same value off) but
for a chiral state.

K, MOULOPOULOS AND M. CONSTANTINOU PHYSICAL REVIEW B70, 235327(2004)

235327-18



around the ring, and it is found here to be directly linked to
the electric(persistent) current[andnot the probability cur-
rent(6.26)] determined forw0=0 (although the value ofJel is
actually independent ofw0, as will be shown below).

Let us now briefly investigate the generality or possible
extensions of(8.5). An initial plausible question is whether
(8.5) could also be valid for a more general form of inter-
particle interactionUsw1−w2d, even in cases when the prob-
lem might be impossible to solve exactly. The answer seems
to be positive and makes full use of the operator forms
(6.1)–(6.4); but before we demonstrate this, let us first di-
gress and discuss the corresponding one-particle problem.
This is not entirely equivalent to our charged mixture, as we
will see (since electric and probability currents now differ
only by a global charge factor), but it will set a large part of
the logic that needs to be followed.

We first consider, therefore, a single particle(of chargeq
and massm) moving along a ring of circumferenceL=2pR
(or, equivalently, in a region of sizeL in straight one-
dimensional space, with periodic boundary conditions im-
posed) and under the action of a potentialUsx−x0d with x0std
denoting the slowly varying parameter, but otherwise the
form of U being arbitrary.

The average(global) electric current when the system is
in stateCsxd [essentially(7.5)] is

kJell =
i"q

2mL
E dxFCsxd

] C*sxd
] x

− C*sxd
] Csxd

] x
G

−
q2

mcL
E dx AsxduCsxdu2, s8.6d

where integrations are along the regionL (or around the
ring). This can be further simplified into

kJell = −
i"q

mL
E dxC*sxd

] Csxd
] x

−
q2

mcL
E dx AsxduCsxdu2,

s8.7d

as is easily seen with integration by parts and the vanishing
of uCsxdu2 at the end points(single-valuedness ofuCu2).
Equivalently, one could use the requirement of reality of mo-
mentumkCup̂uCl (as the momentum operator is self-adjoint
in a ring), that also leads to

E dxCsxd
] C*sxd

] x
= −E dxC*sxd

] Csxd
] x

. s8.8d

(We place emphasis on this, since a similar argument of self-
adjointness will also be used below for kinetic energy lead-
ing to interesting consequences.) Now a key observation can
be made about any eigenfunctionCsxd: since the natural
variable is sx−x0d (position measured with respect to the
potential center), we expect that eigenfunctions will depend
on parameterx0 only in the form Csx−x0d, a statement
equivalent to the fact that any normalization constant will be
independent ofx0, namely

] kCuCl
] x0

= 0. s8.9d

Consequently, we can always make the following important
substitution:

] Csx − x0d
] x

= −
] Csx − x0d

] x0
s8.10d

which if used in(8.7) leads to

kJell =
i"q

mL
E dxC*sxd

] Csxd
] x0

−
q2

mcL
E dx AsxduCsxdu2.

s8.11d

(It should be noted that use of(8.10) in (8.8) simply leads to
(8.9), showing the self-consistency of the argument). Equa-
tion (8.11) gives the global current for any instantaneous
value ofx0.

On the other hand, afterx0 is adiabatically moved around
the circle f0øx0stdø2pg), the Berry’s phase picked up by
any eigenstate(labeled by indexn) is

gn = i R dx0KCU ] C

] x0
UL = iE

0

2p

dx0E
0

2p

dx C*sxd
] Csxd

] x0
.

s8.12d

Comparison of(8.11) and (8.12) immediately gives

gn =
mL

"q
R dx0kJell +

q

"c
R dx0kAsxdl, s8.13d

which is a first important result. This can be simplified fur-
ther if we make the choiceuAsxdu=F /2pR (with F some
Aharonov-Bohm flux threading the ring) and if we note that
kJell is expected to be independent of the instantaneous value
of x0. This is true because direct evaluation ofs] /]x0dkJell, in
combination with(8.10) and after integration by parts, yields

]

] x0
kJell = −

i"q

2mL
E dxSCsxd

]2C*sxd
] x2 − C*sxd

]2Csxd
] x2 D ,

s8.14d

which is zero due to the expected reality of kinetic energy(or
the self-adjointness of operatorp̂2).

The independence ofkJell of x0 turns (8.13) into

gn =
2ph

qD
kJell + 2p

q

e

F

F0
s8.15d

with D="2/mR2, a result that is the analog of(8.5), the fac-
tor of 2 difference being due to the single-particle system. It
should be reemphasized that(8.15) is valid independent of
the interaction potential. Before we return to our two-particle
problem, we should note that properties such as(8.13) seem
to be generalizable to higher dimensionality, to relations of
the form (for a two-dimensional system of areaS with rW0
being the adiabatic parameter moving in a closed path)
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gn =
mS

"q
R drW0 · kJWell +

q

"c
R drW0 · kAW srWdl s8.16d

and this leads to interesting properties concerning two-
dimensional quantal behavior in an external magnetic field.22

Similar forms appear for the three-dimensional analog.
After this digression let us go back to our system of two

particles but with an arbitrary interparticle interaction poten-
tial. We introduce again the angular adiabatic parameterw0std
in Usw1−w2−w0stdd which is now varied in the “relative
circle” f0øw0stdø2pg and study the possible connection of
the Berry’s phase picked up by any eigenstate with some
average current. We will here find that, for a neutral system,
the connection involves only the electric current and has no

relation to the probability current, although this conclusion
will be generalized further to a non-neutral system at the end.

First, operator(6.4) with the choiceAW sw̄d=sF /2pRdŵ and
use of(6.1) takes the form

Ĵelsw̄d =
1

2R
o
i=1

2

qiS p̂i

mi
dsw̄ − wid + dsw̄ − wid

p̂i

mi
D −

"q2

meR

F

F0
rsw̄d

s8.17d

with the understanding that it points to theŵ direction, and
for our system we setq1=−q2=q. Taking the expectation
value of (8.17) with respect to any eigenstate of this two-
particle system, butwithoutcarrying out the integration with
respect tow1 or w2, leads to the local electric current

Jelsw̄d =
i"

2mR2E dw1dw2o
i=1

2

qi1dsw̄ − widCsw1,w2d
] C*sw1,w2d

] wi

− dsw̄ − widC*sw1,w2d
] Csw1,w2d

] wi

2 −
"q2

meR

F

F0
rsw̄d. s8.18d

An eventual integration with respect tow̄ will lead to the
average(global) electric current[see (7.7)], namely kJell
=s1/2pde0

2pdw̄Jelsw̄d; the integration will set all delta-
functions to unity giving the result

kJell =
i"

4pmR2E dw1dw2o
i=1

2

qiSCsw1,w2d
] C*sw1,w2d

] wi

− C*sw1,w2d
] Csw1,w2d

] wi
D −

"q2

meR

F

F0
krl, s8.19d

where krl=s1/2pde0
2pdw̄rsw̄d, which is quite generally ex-

pected to bekrl=2/2pR. By following then a similar line of
approach as in the digression, we use

E dw1dw2Csw1,w2d
] C*sw1,w2d

] wi

= −E dw1dw2C*sw1,w2d
] Csw1,w2d

] wi
s8.20d

(essentially due to the single-valuedness ofuCu2 with respect
to eachwi and an integration by parts) to bring (8.19) to the
form

kJell = −
i"

2pmR2E dw1dw2SqC*sw1,w2d
] Csw1,w2d

] w1

− qC*sw1,w2d
] Csw1,w2d

] w2
D −

"q2

meR

F

F0
krl. s8.21d

Now, the important step is to change to center of mass and
relative variables(2.2), namely

]

] w1
=

1

2

]

] Fc
+

]

] w
,

]

] w2
=

1

2

]

] Fc
−

]

] w
s8.22d

which, for our neutral system, will cancel all derivatives in
(8.21) with respect toFc, leaving the form

kJell = −
i"q

pmR2E dwE dFcSC*sw,Fcd
] Csw,Fcd

] w
D

−
"q2

meR

F

F0
krl. s8.23d

If we finally consider the adiabatic motion of parameterw0,
the dependence(in the new variables) of the potential is
Usw−w0d and of the two-particle wave functions isCsw
−w0,Fcd, which allows the important substitution

] Csw − w0,Fcd
] w

= −
] Csw − w0,Fcd

] w0
s8.24d

to yield

kJell =
i"q

pmR2E
−2p

2p

dwE
0

2p

dFcSC*sw,Fcd
] Csw,Fcd

] w0
D

−
"q2

meR

F

F0
krl, s8.25d

a result that gives the global electric current for any instan-
taneous value ofw0. On the other hand, afterw0 is varied
around the relative circle, the Berry’s phase picked up by the
two-particle wave function(denoted again by symboln) will
be
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gn = iE
0

2p

dw0E
−2p

2p

dwE
0

2p

dFcC
*sw,Fcd

] Csw,Fcd
] w0

s8.26d

and direct comparison with(8.25) leads to

gn =
pmR2

"q
E dw0kJell +

qpR

e

F

F0
E dw0krl. s8.27d

This is a first important result that can be simplified further
if we again note thatkJell is expected to be independent
of w0. This can again be shown by direct evaluation of
s] /]w0dkJell that yields

]

] w0
kJell =

i"q

2pmR2E dwE dFcSC
]2C*

] w2 − C* ]2C

] w2D ,

s8.28d

which can be taken as zero since the relative kinetic energy
is real. This independence ofkJell of w0 turns (8.27) into

gn =
ph

Dq
kJell + 2p

q

e

F

F0
s8.29d

an exact general property in agreement with(8.5) that was
earlier derived for ourd-function potential(with q=e). [To
derive (8.29) we used thatkrl=2/2pR.]

A better understanding of the above properties can be ac-
quired if we briefly mention a generalization to an arbitrary
mixture of chargesq1 and q2. In such case, the probability
current is also involved, as we finally demonstrate.

The analog of(8.21) is now

kJell = −
i"

2pmR2E dw1E dw2Sq1C*sw1,w2d
] Csw1,w2d

] w1

+ q2C*sw1,w2d
] Csw1,w2d

] w2
D −

"sq1
2 + q2

2d
meR

F

F0
krl,

s8.30d

which in new variables reads

kJell = −
i"sq1 + q2d

2pmR2 E dwE dFcSC*sw,Fcd
] Csw,Fcd

] Fc
D

−
i"

2pmR2sq1 − q2dE dwE dFcC
*sw,Fcd

] Csw,Fcd
] w

−
"sq1

2 + q2
2d

meR

F

F0
krl. s8.31d

We note the extra appearance of the first term, which is ac-
tually related to the global probability currentkJl. Indeed,
direct use of(6.3) and transformation to the new variables
yields

kJl = −
i"

2pmR2E dwE dFcSC*sw,Fcd
] Csw,Fcd

] Fc
D

−
"sq1 + q2d

meR

F

F0
krl s8.32d

so that the first term of(8.31) can be immediately connected
to kJl.

The second term of(8.31) can then be connected with the
Berry’s phase(8.26) if the important substitution(8.24) is
made. The final result of all this has the form

gn =
2pmR2

"sq1 − q2dE0

2p

dw0kJell −
2pmR2sq1 + q2d

"sq1 − q2d E
0

2p

dw0kJl

−
2pRq1q2

esq1 − q2d
F

F0
E

0

2p

dw0krl s8.33d

provided, of course, thatq1Þq2. In the special case
q1=−q2=q, this recovers(8.27) for a neutral system.

Two major comments should be made on the above gen-
eralization. First, the probability current does not appear in
any way if the system is neutral. Second, the caseq1=q2 [not
covered by(8.33)], which is actually the most common case
of a single-component system(i.e., of identical particles) in
many-body treatments of charged particles, does not lead to
any connection of the Berry’s phase with eitherkJl or kJell.
The reason is that, forq1=q2, the second term of(8.31) is
missing, the derivatives] /]w are therefore entirely absent
[from both (8.31) and (8.32)] and the important property
(8.24) does not have any role whatsoever, so that no connec-
tion can be made between either of the currents and the Ber-
ry’s phase(8.26).

Although general relations such as(8.33), connecting
geometric phases with controllable physical quantities, such
as currents, could be useful in the design of qubits based on
two-particle nanorings, a further generalization to arbitrary
interacting mixtures of N particles would be important as a
general constraint on many-body treatments of relevant sys-
tems.

IX. CONCLUSIONS

In the present work the simplest model problem of an
interacting quantal charged mixture moving in a doubly con-
nected space and in the presence of an Aharonov-Bohm flux
was exactly solved, revealing some interesting properties
that seem to have a higher generality. These properties, to-
gether with all other results derived in this paper, are exact
and were determined in closed analytical forms. They might,
therefore, be useful in advancing possible effective two-
particle descriptions of more complicated many-body sys-
tems in Aharonov-Bohm settings.

The model problem consisted initially of a neutral system
of two interacting charged particles moving in a one-
dimensional ring, threaded by a magnetic flux, and with a
contact interaction. The energy spectrum and the associated
eigenstates were exactly determined and analytical criteria
for transitions from excited to bound states were given and
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compared with earlier literature on many-body interacting
mixtures. A closer investigation of measurable quantities and
their single-valuedness led to states with broken symmetry
and to a new band-mode structure with possible experimen-
tal consequences in exciton physics. Probability and electric
(persistent) currents were also analytically determined for
this interacting quantal mixture and some of their interesting
properties were revealed. In particular, the exact form of per-
sistent currents enabled us to make an investigation of their
behavior with respect to combined variations of several pa-
rameters such as the energy, interaction strength, size of the
ring, magnetic flux, symmetry breaking parameter, and pair
angular momentum. We compared these results with exact
theorems on persistent currents, such as a rigorous upper
bound known in the literature and also with the noninteract-
ing behavior, where an interesting crossover was found for
attractive interaction and sufficiently small rings. Finally, a
cyclic adiabatic process on the interaction potential center
was identified that led to a geometric(Berry’s) phase directly
linked to the electric(persistent) currents, with no relation to
the probability currents for a neutral system. It was shown
how these results can be generalized to systems of higher
dimensionality, as well as to non-neutral mixtures, in which
case the geometric phase is directly connected to both types
of currents. The link to the probability current was shown
always to appear only through the total charge of the system
(and it disappears under conditions of neutrality). The link of
the geometric phase to either current was shown not to ap-
pear for systems of a single charged component, the charac-
ter of a mixture hence being crucial for the properties re-
vealed in this work. Such properties may possibly find useful
application not only to exciton physics but also to the field of
fault tolerant quantum computation. Moreover, possible gen-
eralization to an arbitrary charged quantal mixture of any
number of interacting components would be of obvious im-
portance to many-body physics, and it is an issue that is
currently under investigation.

APPENDIX A

We here present the mathematical details associated with
the finding of Gsw ,w8d that solves(2.10) for −p,w ,w8
øp, under boundary conditions that are dictated by(3.7),
namely

Gsp,w8d = eiuGs− p,w8d,
sA1d

U ]

] w
Gsw,w8dU

w→p

= eiuU ]

] w
Gsw,w8dU

w→−p

.

Equation(2.10) can first be simplified by an initial transfor-

mation, namelyGsw ,w8d=eif wG̃sw ,w8d, which brings it to a

new and simpler equation forG̃, namely

S ]2

] w2 + BDG̃sw,w8d = dsw − w8d. sA2d

[This can either be viewed as a transformation to the normal
form of (2.10) involving the Wronskiane2i f w, or as the fa-

miliar Aharonov-Bohm phase factoreif w that connects corre-
sponding problems in a ring, with vanishing and nonvanish-
ing magnetic flux.] Then, by following the usual matching
procedure, we first choose an arbitraryw8 (within the interval
s−p ,pgd treating it as a constant, and solve(A2) for wÞw8,

as a homogeneous Helmholtz equation forG̃swd. Then, after
we go back to the original Green’s function we obtain

GRsw,w8d = aeisf+ÎBdw + beisf−ÎBdw for w . w8 sA3d

and

GLsw,w8d = ceisf+ÎBdw + deisf−ÎBdw for w , w8, sA4d

where the four coefficients can be determined by four con-
ditions: two of them are the boundary conditions(A1)
(whereGR andGR8 must be used forw=p andGL andGL8 for
w=−p), and another two results from matching the functions
GR andGL, asw approachesw8 from right and left, respec-
tively. An integration of(2.10) along a small interval that
containsw8 provides these two matching conditions that are
as follows: the continuity ofG whenw→w8, or equivalently

GRsw8,w8d = GLsw8,w8d, sA5d

and a discontinuity in the first derivative that is given by

U ]

] w
GRsw,w8dU

w→w+8
− U ]

] w
GLsw,w8dU

w→w−8
= 1. sA6d

Imposition then of(A1), (A5), and (A6) on (A3) and (A4)
results in the final form(3.8) used in Sec. III.

APPENDIX B

A series method is presented here, alternative to the
matching method of Sec. III, that can be used for determin-
ing both the wave functions and the energy spectrum, but
only in the ordinary caseu=np. Direct substitution of(3.10)
into (2.9) leads to a series representation of relative eigen-
functions, namely

Fswd =
U

2p
o

n1=−`

` expFiSn1 −
N

2
DwGFs0d

E − En1

sed − EN−n1

shd

with

En1

sed =
D

2
sn1 − fd2, EN−n1

shd =
D

2
sN − n1 + fd2

sB1d

that can be transformed into

Fswd = − Fs0d
U

2pD
eisN/2dw

3o
n1=−`

`
ein1w

Fn1 − S f +
N

2
DG2

− FE

D
−

N2

4
G . sB2d

An exact summation result derived by contour integration,
namely
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1

2p
o

n1=−`

`
einw

sn + Ad2 − B
=

1

4ÎB
S eisA−ÎBds−w±pd

4ÎB sinfpsA − ÎBdg

−
eifsA+ÎBds−w±pdg

4ÎB sinfpsA + ÎBdg
D , sB3d

with the upper signs holding forwù0 and the lower forw
ø0, can then be used to give all relative states in closed
form. This is actually done in Sec. V[see Eq.(5.2)]. Even
before determining the states, however, one can immediately
derive the energy spectrum by considering the limitw→0 in
(B2). In this limit the sum(B3) yields

1

2p
o

n1=−`

`
1

sn + Ad2 − B

=
1

4ÎB
hcotfpsA − ÎBdg − cotfpsA + ÎBdgj

= −
1

2ÎB

sinf2pÎBg
cosf2pf + pNg − cosf2pÎBg

, sB4d

which in combination with(B2), with

A = − S f +
N

2
D, B =

E

D
−

N2

4
,

and after cancellation of the common factorFs0d, leads to

sinf2pÎBg
cosf2pf + pNg − cosf2pÎBg

=
2DÎB

U
. sB5d

This condition is shown in Sec. IV to be indeed equivalent to
the energy spectrum condition(4.3) in the case of ordinary
states.

APPENDIX C

We present here analytical expressions of various measur-
able quantities with the use of variablesFc andw (and their
combined variation shown in Fig. 2), that are essential for
the arguments of Sec. VI. In particular, from(6.6) and trans-
formation to the new variables, the probability density takes
the form

rsw̄d =
1

R
E

w̄−2p

w̄

dwuFswdu2UCcSw̄ −
w

2
DU2

+
1

R
E

−w̄

2p−w̄

dwuFswdu2UCcSw̄ +
w

2
DU2

sC1d

when integration with respect toFc is carried out first, or
equivalently

rsw̄d =
2

R
E

w̄/2

sw̄/2d+p

dFcuCcsFcdu2fuFs2w̄ − 2Fcdu2 + uFs2Fc − 2w̄du2g sC2d

when integration with respect tow is performed first. Similarly, for the probability current density we obtain

Jsw̄d =
i"

4mR2E
w̄−2p

w̄

dwuFswdu23CcSw̄ −
w

2
D ] Cc

*Sw̄ −
w

2
D

] Sw̄ −
w

2
D − Cc

*Sw̄ −
w

2
D ] CcSw̄ −

w

2
D

] Sw̄ −
w

2
D 4 +

i"

2mR2E
w̄−2p

w̄

dwUCcSw̄

−
w

2
DU2FFswd

] F*swd
] w

− F*swd
] Fswd

] w
G −

i"

2mR2E
−w̄

2p−w̄

dwUCcSw̄ +
w

2
DU2FFswd

] F*swd
] w

− F*swd
] Fswd

] w
G

+
i"

4mR2E
−w̄

2p−w̄

dwuFswdu23CcSw̄ +
w

2
D ] Cc

*Sw̄ +
w

2
D

] Sw̄ +
w

2
D − Cc

*Sw̄ +
w

2
D ] CcSw̄ +

w

2
D

] Sw̄ +
w

2
D 4 −

"

mR

F

F0

relsw̄d
e

, sC3d

or equivalently,
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Jsw̄d =
i"

2mR2E
w̄/2

sw̄/2d+p

dFcfuFs2w̄ − 2Fcdu2 + uFs2Fc − 2w̄du2gFCcsFcd
] Cc

*sFcd
] Fc

− Cc
*sFcd

] CcsFcd
] Fc

G
+

i"

mR2E
w̄/2

sw̄/2d+p

dFcuCcsFcdu2FFs2w̄ − 2Fcd
] F*s2w̄ − 2Fcd

] s2w̄ − 2Fcd
− F*s2w̄ − 2Fcd

] Fs2w̄ − 2Fcd
] s2w̄ − 2Fcd

G
−

i"

mR2E
w̄/2

sw̄/2d+p

dFcuCcsFcdu2FFs2Fc − 2w̄d
] F*s2Fc − 2w̄d

] s2Fc − 2w̄d
− F*s2Fc − 2w̄d

] Fs2Fc − 2w̄d
] s2Fc − 2w̄d

G −
"

mR

F

F0

relsw̄d
e

,

sC4d

and similar forms(but with a different structure of signs) result forrel andJel [see in particular Eq.(6.27)]. Such expressions
lead to the possibility of symmetry breaking as discussed in the text.
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