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Two interacting charged particles in an Aharonov-Bohm ring: Bound state transitions,
symmetry breaking, persistent currents, and Berry’s phase
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By using a Green’s function procedure we determine exactly the energy spectrum and the associated eigen-
states of a system of two oppositely charged particles interacting through a contact potential and moving in a
one-dimensional ring threaded by a magnetic flux. Critical interactions for the appearance of bound states are
analytically determined and are viewed as limiting cases of many-body results from the area of interaction-
induced metal-insulator transitions in charged quantal mixtures. Analytical expressions on one-body probabil-
ity and charge current densities for this overall neutral system are derived and their single-valuedness leads to
the possibility of states with broken symmetry, with possible experimental signatures in exciton spectra.
Persistent currents are analytically determined and their properties investigated from the point of view of an
interacting mesoscopic system. A cyclic adiabatic process on the interaction potential is also identified, with the
associated Berry’s phase directly linked to the eleqpirsistent currents, the probability currents having no
contribution for a neutral system.
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[. INTRODUCTION ever,doesappear in the relativginterna) state and if this
can be determined exactly it can give valuable information

Quantum correlations in systems of interacting chargedn an exciting topic in mesoscopic physiés? coexistence
particles moving in nonsimply connected spaces and in thef Aharonov-Bohm effect with interparticle interactions. It
presence of Aharonov-Bohm fluxes is an especially impor€an also serve as a model in effective two-particle theories of
tant topic in condensed matter physics. It is still a wide-operarbitrary many-body mixtures in Aharonov-Bohm configura-
area for both experimental and theoretical discoveries. In thdons.
present work a simple model problem of this type is exactly In this paper we follow a Green’s function procedure in
solved and some interesting properties are revealed that aceder to study such a simple two-particle system interacting
associated with the interplay of interactions, topologywith a contact potential and moving in such an Aharonov-
(double-connectednessand the characteristics of a charged Bohm ring. We solve the problem exactly, giving all possible
mixture. These properties are exact and are determined igigenstates in closed analytical form, and determining the
closed analytical forms. energy spectrum through a graphical procedure. Unlike pre-

The model problem consists initially of a neutral systemvious works, we focus on the issue of possible bound states
of two interacting charged particles moving in a one-and we find critical interactions in closed form as functions
dimensional ring, threaded by a magnetic flux, and with eof the magnetic flux and the center of mass angular momen-
contact interaction. It is a model that can be applied, fortum. Excited state energies are also investigated and an in-
example, to a system of an electron and a hole moving in ateresting pattern of discontinuities in the graphical solution is
Aharonov-Bohm ring of sufficiently small size and at suffi- found with possible experimental consequences. We also ex-
ciently low temperatures so that full quantum coherenceamine carefully the issue of single-valuedness of measurable
around the ring has been established and the Aharonowuantities, such as the probability and the charge current den-
Bohm effect is fully operational. However, some generaliza-sity, and present cases where energy lowering can occur with
tions are also made at the end of this paper to a non-neutratates that break the periodicity of the problem. This symme-
system and to higher dimensionality. try breaking is shown to lead to an interesting band-mode

Magnetic field effects on electron-hole systems in a nanstructure that has not been considered before in the exciton
oring have recently been studied both theoretidallyand  literature. Persistent currents for our interacting model sys-
experimentally° Manifestations of the Aharonov-Bohm tem are analytically determined and their properties are in-
effect® in ring geometry are well knowh at the single- vestigated, especially with respect to variations of the mag-
particle level: the physical origin of the flux sensitivity of the netic flux and of the ring size. Comparisons are also made
state of a single particle in a quantum ring is its charge anavith the noninteracting behavior as well as with a rigorous
its coupling to the vector potential. This coupling to the flux upper bound known in the literature. In particular, a cross-
will consequently have opposite signs for two oppositelyover is found for typical experimental values, where an at-
charged particles, i.e., an electron and a hole. An exciton, fatractive contact potential is shown to lead to enhanced con-
instance, being a bound state of an electron and a hole, hendaction compared to the noninteracting case, for a
a neutral entity, is not sensitive to the flux as a whole, andufficiently small ring radius. Finally, we generalize our
this is demonstrated in the free-particle behavior of its centemodel interaction by considering a theoretical process of
of mass. Such sensitivity of the Aharonov-Bohm type, how-slow variation of the interparticle interaction center and with
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a potential of arbitrary form. A cyclic adiabatic variation of
this type is found to be characterized by a geometric Berry’s
phasé* which, apart from the usual Aharonov-Bohm contri-
bution, also involves a term directly proportional to the elec-
tric (andnot the probability current density. It is also shown
that a contribution from the probability currents would only
arise for a non-neutral system. These properties are briefly
shown to have a higher generality and, with appropriate
modifications, to apply to systems with a more general po-
tential and higher dimensionality.

Section Il defines the problem, presents the center of mass
behavior, and then proceeds to formulate the more interesting
relative problem in terms of an integral equation for the rela-
tive wave functions. Section Il determines appropriate . .
Green’s functions through a matching procedure and com- FIG. 1. Qur model system and a choice of the vector potential
pares with other methods in the literature, which are compatA:(q’/ZWR)‘P-

ible \.Nith standard symmetry arguments in exciton. phySiCst:ircular one-dimensional ring of radil® which is threaded
Section 1V presents an exact condition that graph|_cally deby a magnetic fluxb. The position of each particle is de-
termines the entire energy spectrum of the two-particle prObécribed by angular variables, and ,. The two particles

lem and focuses on the issue of possible bound state transi- : : _ PR
tions. We find that the total angular momentum of the pair, irifhteract through an interactidd(¢, - ) which i this paper

combination with the Aharonov-Bohm flux, plays a crucial ' taken as a contact interaction of the fotig, — ¢,), with
role in determining the corresponding critical interactions for! & réal constantof either sign with dimensions of energy.
binding. The transitions are viewed as particular cases of Although contacts are periodic in the relative variable
interaction-induced metal-insulator transitions in a neutralb1~ $2 With period 27, we can always restrict values of this
system of two charged components, and the critical interac¥ariable to the interval-a, 7], in which case the interaction
tions determined here in closed form are shown to be comis simply of the above forniwith just a single contact, for
patible with earlier many-body results. Section V gives the¢:—¢,=0, within this interval. The Schrodinger equation
corresponding eigenfunctions in closed analytical form andlescribing all the eigenfunctionB(¢,, ¢,) of this system is

discusses their cusp and symmetry properties. Section VI . - . -
{ L[t A, 1[0 6A

takes up the issue of the exact form of measurable quantities, L L

such as the probability and charge density, as well as the 2m R c om R c

probability current and electric current density: a more care-

ful analysis than usual stresses the difference of physical

information contained in each. The imposition of single- +U5(‘P1‘902)]‘1’(901,902)25‘1’(401,%02). (2.1
valuedness on such quantities leads to the possibility of

states that have not been earlier discussed in the exciton lifghere the most natural choice for the vector poterﬁia'ﬁ a
erature and that violate the usual periodicity or antiperiodiCyector tangential to every point of the circular ring with a
ity properties of ordinary states. This introduces a band onstant magnitudgd| =®/27R (see Fig. 1

mode structure with some interesting behaviors in botr The ab i be d led if written in t
ground state energy lowering and excited state energy dis-, ' ¢ @POVe e€qualion can be decoupied It written in terms

continuities with possible experimental consequences. Peff center of masé®) and relative(¢) variables(see Fig. 2,
sistent currents for arbitrary interactions and arbitrary symdefined by
metry breaking parameters are analytically determined in @1+ @
Sec. VI, their properties are carefully studied, and compari- &= T
sons are made with the noninteracting behavior and with a

rigorous upper bound known in the literature. Section VIl and if ¥ (¢4, ¢,) is written as a produc? (®.)®(¢). Equa-
presents a cyclic adiabatic process that leads to Berry'don (2.1) then separates into two independent equations, one
phases directly related to persistent currents, a result that is
shown to also be valid for an arbitrary interaction. Further
important extensions of our model system are also made ir
this section that clarify the connection between the geometric
phase and the various currents. It is shown, for example, tha
this connection is valid for a charged mixtufié would be
completely absent in a system of a single charged compo!
neny. Section IX presents our conclusions and gives a dis-
cussion of our results in a more general context.

©=@1~ @2, (2.2

FIG. 2. Change of the original variables to center of mass and
relative angular coordinates: the mapping of combined domains of
For reasons of simplicity we consider two oppositely definition is shown, which will be crucial for considerations of

charged spinless patrticles of equal massesoving alonga  Sec. VI.

Il. THE SYSTEM

235327-2



TWO INTERACTING CHARGED PARTICLES IN AN.. PHYSICAL REVIEW B 70, 235327(2004)

for each variable. The center of mass corresponds to a free The relative problem described 68.3b) contains most of

uncharged particle with mass2 namely the interesting physics associated with possible bound state
W v transitions and symmetry breakings and incorporates the in-
- S E (D), (2.39  fluence of the center of mass on the internal behavior of the

4mR? d<I>§ pair through the presence & (and the associated integer

N). In what follows, we will study2.3b) through the method
6f Green’s functions.

First, it is more convenient to writ€2.3b) in a different
form, namely

while the relative system corresponds to a charged patrticl
with mass equal to the reduced mésg2) of the system and
subject to the interactiob 8(¢) as well as the minimal sub-
stitution, namely

- {(_.__f) -B}p«p)-——a«p)@(@), 2.8
[l<_li_$) ‘(E-EC)}(D(@):-U&@)‘D(QD)- de :

which defines the following important quantitiesA
(2.30  —%2/mR that will later be used as our energy un,

In (2.39 and(2.3b) E. and ¥, are the energy and eigen- =E/A-N?/4, a dimensionless form for the internal pair en-
functions of the center of mass, whileis always the total ~ €'9%, andf=®/®,, the so-called reduced flux, witkbg
energy of the two-particle system. The solutiong28g are ~ =hc/e=4.14x 107'°T m?, the magnetic flux quantuniNote

easy to find and are given in normalized form by that we can restrict ourselves to the range f0<1 because
of the expected Aharonov-Bohm periodicity>® of all
1 _ [4mRE, properties with respect tb with period 1) Equation(2.8)
Wc(®c)=EeX ! w2z Pl (2.4 can be viewed as an inhomogeneous differential equation

and has a solution that can be written in integral form,
where the allowed energielS. can be determined by the namely
requirement that all wave functions are single-valued when

&, changes by an integral multiple of72 This leads to the D(o) = fﬂ do'G / 95 ND(o' 2.9
energy spectrum (o) e (@) LA )P(e), (2.9

E - N2 (2.5 where an appropriate Green’s function for this problem
¢ AmR ' should satisfy
with N being aninteger (%N being the total angular momen- _.d 2_ N .
tum of the paiy, the eigenstates then taking the simple form 'do f] -B|Gle¢)=-de-¢) (210
V(D) = 1 N (2.6 and will be determined in the next section, after the issue of
R V’Er ' ' imposition of appropriate boundary conditions is addressed

_ N rather carefully. We note that, althoug®.9) is actually an
It should be noted at the outset that the usual imposition ofntegral equation fofP(¢), nevertheless the solution can eas-

single-valuedness on the wave functions is not entirely rigily be found due to thes-function form of our model inter-
orous although it leads to the correct results. A more propejction.

argument should be based on single-valuedness of measur-

able quantities such as the probability dengitgp.) or the

probability current density(®.) and such a more careful !ll. SYMMETRY PROPERTIES AND GREEN’'S FUNCTION
treatment will actually be given later for the relative prob- PROCEDURE

lem. In the case of the center of mass states, if one considers
for instance, a linear combination of two states of the form
(2.6), namely

' The appropriate Green's functidd(¢, ¢') to be used in
(2.9) must satisfy the defining equatio®.10), as well as the
same boundary conditions that must be imposed6q) at
V(D) = CeN1Pe + C,eN2Pe the ends of the intervdt-, 77]. In order to see which type of
boundary conditions is appropriate for this problem, it is ad-
vantageous at this point to temporarily extend the definition
of the relative variablep to the entire real ling—o,) and
— 2 2 * Li(Nj=Np) D follow a line of approach that is based on a standard argu-

P[P =[Cyf+[C"+ 2 RACLCETT] (2.7 ment from the exciton literature. In this way we can exploit
and imposition of single-valuedness p(d,.) leads to the the 27 periodicity of contacts with respect to the relative
condition thatN;—N, should be an integer. An additional variable and therefore draw conclusions about the symmetry
assumption then that the stafg=const is an allowed solu- properties of relative wave functions when these are viewed
tion (corresponding tdN=0) leads finally to the condition as functions on the entire real line. At the end, this will
that all Ni's must be integers. This more rigorous argumentimpose the proper boundary conditions that we need at the
therefore gives an indirect justification for the easier standarénds of our interval—, ]. It should be emphasized, how-
approach based on wave functions. ever, that later, in Sec. VI, this standard argument will need

but with the correspondingl; and N, being arbitrary real
numbers, them(®d,) turns out to be
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to be generalized to states that break these usual symmetaydn should be of the same type, either both even or both
properties; this will be taken into account in anticipation odd (this follows fromN=n;+n, andn=n;—n, and will be
even in the present section, where the most general mixedgsed repeatedly in later sectign8ut the most important
boundary conditions will actually be usddee below, Eq. conclusion of this section is drawn from a combination with
3.7]. (3.1 which simply leads to

Following initially the standard approatkve first set

D(¢) = €Mu(p) (3.5
D(p) =€ (o) with u(¢) being 27-periodic andn being an integetof the
in (2.8), so thaty(¢) satisfies same type as the center of mass inteygr This describes
5 the usual symmetry properties of relative states: they are
(d_ + B) (¢) = !5( (@) 4-periodic, and they can be eithetrzeriodic(for n evern)
de? @)= N AP or 2m-antiperiodic(for n odd). At the same time we can now

go back to our interval-, 7] and see that, because(8f5),
the appropriate boundary conditions that we need to impose
on ®(¢) are mixed, and of the following type:

®(7) = "D (- ) and D' (7) = "D’ (- 7), (3.6)

where ®'(¢) denotes the derivativel®/de. Correspond-

ingly, these are the boundary conditions that the Green’s

function G(¢, ¢'), viewed as a function ob only, should

also satisfy.

(3.2 We have, however, already warned the reader that single-

valuedness arguments for wave functions are not entirely rig-

The usual argument then involves the total wave function®rous, and that more general consideratitiesed on mea-

W (@1, 00) =V (P)Ex(@) written in terms of the original surable quantitiaswill be made later in Sec. VI. As a result,

angular variables. Combining.1) with (2.6) and(2.2) we  more general boundary conditions thé6) will emerge,

obtain and will be of the form

and then we exploit the fact that, fore< <o, U(¢) is
periodic in¢ with period 2. The functionsy(¢) must there-
fore have the Bloch formi,namely

x(¢) =€%u(p) with u(p+2m) =u(p), (3.1

whereq is a real dimensionless numhghe analog of “crys-
tal momentumj that lies within the first Brillouin zone
(=7l 27,7l 2], namely

1 1
—_= = =
5 <(g=3.

V(py, @p) ~ ENe1r92/ 2l (er-e2glaeredy (o, — ) O(m) =eDd(-m), D' (m=e’d'(-m) (3.7
= ei[<N/2>+f+q]<f>1ei[(N/2)—f-q]¢zu((pl— ). (3.3 with 6 an arbitrary real numbewhich we will later set to

i i f=nm+ 9, with 9 accounting for deviations from the ordi-
The standard argument then imposes the requirement that thy

s : - @ry casg For reasons of economy, we will now use these
total wave function3.3) must be single-valued with respect ,5re general conditions in determining the appropriate

to ¢, and¢; independentlyhence periodic with respect i Green's function for this problem, and we will have in mind
and ¢,, each with period 2. This leads to the independent ot ordinary states will correspond to the special céise
conditions =nar. What remains for this section is the finding®fe, ¢')

N N that solveq2.10 for -7 < ¢, ¢’ <, under boundary condi-

>t f+g=ny, e f-q=n,, (3.4 tions that are dictated by3.7). A mathematical procedure

leading to relevant matching conditions @te,¢’) is pre-

with n; andn, arbitrary (and uncorrelatedintegers. Adding sented in detail in Appendix A. It is then a tedious but rather
and subtracting the two conditions finally leadsNban in-  straightforward exercise to find that imposition @Al1),
teger(as seen earligrand f+qg=half integer orf+gq=n/2,  (A5), and(A6) on the formg(A3) and(A4) finally results in
with n: an integer, with the observation that the integhdrs the following Green'’s function:

( e—i(ﬁlz)ei(f+\5§)(w+¢—<p’) e—i(alz)ei(f—\fﬁ)(wcp—«p’) )
; T p<¢
4\@ Sinl a(f + \J'E) - £:| 4\Esin|: (f - \r’E) - £:|
Gle.¢') =4 . . 0, (3.9
ei(0/2)e—i(f+\fB)(7T+<P'—<p) ei(H/Z)e—i(f—\fB)(wﬂp'—sa)
o e=9
- . — 0 - — 0
4B sin| w(f+VB)-—| 4\VBsin| m(f - \VB) - —
\ 2 2 )
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which will later be used in2.9) in order to give all relative This closed form of relative eigenfunctions will be modi-
eigenstatesthe ordinary ones correspondingdens, n: an  fied to more convenient and transparent expressions in later
integer of the same type &¥. sectiondi.e., seg5.1), for #=n] ; what we will be focusing

For comparison with other methcdi should be noted on here is its use to derive a condition that will give the
that an alternative series method could be used for derivatioantire energy spectrum of the problem. Indeed by taking the
of (3.8), provided that one is restricted to ordingperiodic  limit ¢— 0 in (4.1) and by canceling the constad{(0) from
or antiperiodi¢ states. A Fourier transformation ¢2.10 both sides, we obtain after some trigopnometric manipulations

leads to a series representation of the form the following result:
112 < (V2 (e=¢") sin2m\B] _2A\B
G(‘P!QD,) P 2 2012 2 2 _ _ J'_ - (43)
2mmRZZ AN _ﬁ_<9_2> cog2nf - 6] - cog2m/B] U
4mR mR\2 @ with B=E/A-N?/4. This is an exact and general condition

(3.9  thatwill provide the whole set of allowed energi&s of this
two-particle problem(We remind the reader that the arbi-
trary real parameted can be set to9=nw+ 9, with J ac-
counting for deviations from ordinary stajest should be

N noted that in Appendix B an alternative series method is
eXpHnl - E)(QD - qo’)]

which, upon changing integers t8=n;+n, and n=n;—n,
and for a fixed center of mass quantum numieyields

A e ]
Gle,¢')=—
(¢,¢") 27Tn1§—oc E-E©®_gD a i
oo (3.10 sin2m\B] _2A\B
" " ' co§2nf+ 7N]-co§2m/B] U
whereE;® = (#2/2mR)(1-)? andE, " = (42/2mR®) (I +f)? are . . » . .
separatle single-particle energiesI of an electron and a hole This is an aIternatlve_exaqt condition that_ will prowdv_a the
respectively, and =®/®d,. The sum(3.10) can actually be €hergy spectrum, and since it has been derived by a different

evaluated with appropriate use of the complex plane amgghotg I;enee?ﬁzttoint()jiecgr?ﬁatfs Z\;;Z %L;rgﬁﬁgfr)' I;l(:tes
residue calculus to derive directly the relative wave functions” y ’ ' Y

[through(2.9)]. This is carried out in Appendix Bsee Eq. =nm) (4.3 and(4.4) are equivalent, becauseandN must be

outlined that applies to the case of ordinary stdtésnar)
and that leads to a slightly different result, namely

(4.4)

(B2)] and is used in later sectiof&q. (5.2)]. _of the same typéeither both even or both Qgidls discussed
in Sec. lll. An analogous equivalence will also be shown
IV. ENERGY SPECTRUM AND BOUND STATE about the eigenstates in the next sect|@&ys. (5.1 and
TRANSITIONS (5.2)]. However, it will be seen that expressions of the type

of (4.4) that contain the center of mass quantum nuniter
rather than the relative quantum numibénvolve the risk of
obtaining wrong results when asymptotic limits are taken—

Let us first use our resuiB.8) in order to obtain a closed
form for the relative eigenstates. Substitution int@.9)

yields for the limit U— 0, for instance(4.4) would give
U 2 2 PIN
D(g) = L PO[GH($,00(¢) + G (6,00(- )], Eo ﬁ_(f . N) LN
mR2 2 4mR?
4.3 andnot the correct
where®(¢) is the Heaviside step function, and 52 n\2 A2N2
a1 (02) i (1+VB)(m+¢) E= mR2< - 5) + AMPR
G(e,0)= _ 0 _ , _
4B sin| =(f + \@) _b that (4.3) gives f0r0:n77. Besides, the methqd of matching
2 that we followed here is more general, as it allows for the
i (02)gi (- B)(m+) possibility of 6 nm as we already saw in Sec. Ill. We pro-
- , ceed therefore with the use ¢£.3) to determine graphically
3 = 4 the energy spectrum of our model system.
4B sm{ (f-B) zJ Let us focus for this and the next section on the ordinary
case 6=nm (periodic or antiperiodic states in the interval
gl(012) i (F+B) (7-¢) (=, ]). Furthermore, since we are mostly interested in
Ggrl(¢,0) = bound states we will only deal with an attractive interaction
4B sin{ a(f + \;E) _ fJ (U<O0). [It is easy to see tha4.3) does not provide any
2 bound energieé.e., E/A <N?/4) whenU >0, but only scat-
o (012) i (- B)(m-¢) tering states, which can of course also be found through the
- . (4.2 same graphical procedure that folloys.
R o _ & _ 0 Let us first start with the casi=0 (constant center of
4B sin| 7(f - VB) . O
2 mass wave function and vanishing total angular momentum
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rhs
o=
o
o

Balray

= C e
o

1hs,

+18 0.

FIG. 3. (Color onling Graphical solution of the self-consistency
condition for bound energy in the absence of magnetic flux.

and examine the differences in behavior between a flux-free

and anf#0 case. Fof=0 we obtain from(4.3)

PHYSICAL REVIEW B70, 235327(2004

0.4 0.6 0.8

]
a

FIG. 4. (Color onling Graphical solution of the self-consistency
condition for bound energy in the presence of magnetic flux.

Inclusion of a nonvanishing center of mass angular mo-
mentum(N # 0) yields in the limit|E/A—-N?/4|>1 the fol-
lowing ground state energy:

E| 2A |E
cot W\/j:| :—\/: 4.5 APN? U2 _
| A Uu VA 4.9 Eground—> o= E(l +4 comN]e Uy (4.9
which for U=~|U| andE<0 reads o
~ that, apart from the center of mass kinetic energy, shows the
|E]| 2A [|E] manner in which the relativéinterna) problem is affected
cothy m\/ 7 | = o Va (4.6) by the motion of the pair as a whole.

It should be noted that the existence of a bound state in

and a graphical representation of its left- and right-hand sidéhe caseN +# 0 is not always guaranteed, a point to which we

(denoted by Ihs and rhs, respectively given in Fig. 3. We

shall return after we discuss ttie 0 case[see(4.10)].

find one and only one intersection, which determines the Let us now include the Aharonov-Bohm flut+0, or
energy of the only bound state. This exists irrespective of thgenerallyf # integer, but we can always restrict values to 0
weakness of the attractive interaction, and it has to do with=f<1) and see the important qualitative differences with

the fact that the lhs af4.6) diverges at the origiisomething
that will change when we include a magnetic flukn ex-
periments with nanorings!’ with a typical radius of 20 nm,
with an effective massn’ =~0.067n, and dielectric constant
e=~12.4 (in GaAs/AlGaAy, the ground state energy is

found to be|Eg| ~ 13 meV. This value is actually consistent t

with the above rough model: if we choolé| as a charac-
teristic Coulomb energy, name|y|=€?/2ex, with x, taken

as a characteristic length of a one-dimensional hydrogen

aton?® which is xy=a,/2, with the effective Bohr radius be-
ing ay=eh?/me&?=97.9 A, then U~-11.85 meV. Using
this value in(4.6) together with an effective\" =#2/m’R?
=2.84 meV we find that the bound state solution(4®) is
E,=-12.37 meV, a value very close to the experimental
one?

In the limit of largeR (R>#/\Vm|U| and alsgE|/A> 1),
a Taylor expansion of4.6) around 1R?>~0 yields

u? _
Eground— ~ E(l t4e n-(|U\/A)). (4.7)

The first term 0f(4.7) is the energy of a particle of masy 2
that is bound on a potentialRlU|8(x—Xo) in infinite one-

the above case. Since the left-hand sidg48) no longer
diverges(in fact it vanishegat the origin, an intersection is
not guaranteedeven forN=0); its existence depends on a
comparison between the slope of lhs and the slope of rhs at
the origin. The former is 2/(cog2= f]-1) (for N=0) and

he latter is 2A/U, and an intersectioand therefore a bound
statg exists only ifU < Uisica With

U ritical = —~ %(1 - cog2m f]). (4.9

A bound statgfor N=0) exists only if the attraction is suf-
ficiently strong(and this is determined by the Aharonov-
Bohm flux) and such a case is shown in Fig. 4. Generally
speaking, the presence bfnakes it more difficult to have a
bound state, the worst case being ferl/2. Theexistence
of a critical interaction is a reflection of the competition be-
tween the effect of the magnetic fie(that drives the two
oppositely charged particles in opposite sensesl the at-
tractive interaction(that drives the particles to cluster to-
gethej. It is interesting to see, however, thatUif<—-2A/ 1,
then we always have binding irrespective of the valué.of
For E>0 andN=0, the Ihs of(4.3) diverges at two points

dimensional straight line, and the second term can be viewedithin the interval[0, 1), namely atyB=f and VB=1-f, and

as a correction due to curvature, which in this linjit)|
> A) decays exponentially fast.

these two converge into a single divergence wlierl/2,
which is shown in Fig. 5 with an intersection corresponding
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p=1 | ]
— E>
0.02

20 b

-0.02
N=1

U=-1A

0 0.2 0.4 0.6 0.8 @
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FIG. 6. (Color onling Ground state energy as a function of

FIG. 5. (Color onling An example of the graphical solution for
( 9 P grap &J’laronov-Bohm flux with both negative and positive energies.

the energy spectrum of excited states: a special case of merg
divergencegsee Fig. 11 for a case that these divergences sejparate
form B=Cf? and we look at the analytical behavior ©fas a

to an excited statéE>0), one of the infinite ones that exist function off in the limit f— 0 (to be taken at the endAt the
on the right(the pattern of divergences repeats itself Eor pomt whereC vanishes we should haV(_a a transition from an
>A). It should be noted that these excited states can exhibf‘lXCItEd state(the analog of the metallic statéo a bound
discontinuities whenever two divergences converge into étate(the analog of an insulating statd.et us look, for ex-

single one and this can have experimental consequences & ple, at the casi=0 and the lowest excite_d state energy
willgbe discussed in Sec. VI P g W|gt1h E®>0 (always forU <0 andf # 0). Equation(4.3) now

For the case oN+ 0 and arbitraryf one can show, again reads
by comparison of slopes, that there is a critical interaction 5 £
A sin{ 271/ —] 20—
Ugriticar = — —(1 — co$27 f + 7iN]) (4.10 (4.1
o EO U
below which we have bindingnow in the sense thaE co§2m f]-cog 2m VA

<AN?/4, i.e., with respect to the center of mass engrgy
This reproduces the ever-existence of a bound statef for and cannot be solved analytically to obt&f(f), but it can
=0 andN: even, as well ag4.9) for f#0. It is interesting provide the necessary information through the graphical pro-
that for N: odd, we have a nonvanishingdy. ;.o (hence more cedure: If we had a noninteracting systéth— 07) then the
difficult binding) even for the flux-free caséwhile for f  straight line of the rhs would be vertical pointing down-
=1/2, itis theN: even case that produces a nonzégg.,).  wards, and the first intersection point would therefore be at
It seems that the symmetry of the center of mass wave func-
tion and the type of the associated angular momentum plays EO
a major role on the binding of the pair. These factors also A =f.
play a role in the appearance of discontinuities of excited
state I(Ianergiles with possible experimental clonsequencehs, ARnce, in this limiting case we would obtai=Af? (which
we will see later in Sec. VI. It is interesting also to note that ; - 2 ; ;
for generalN, it is possible to even havlé<% for the range agrees with the resdi E—(ezlmpz?A for nonmtgractmg

' particleg and, naturally, the coefficiedt never vanishes, as
of values off where expectedno transition forU=0).

U N If we now turn on a smallJ<0, we can determine the
A < m(coﬂw f + 7N] - cosh=wN]) lowest correction to the above trivial result, namely the small
displacement of the intersection point away from the above
is valid. Such an example is given fd=1 in Fig. 6. value f. By following a Taylor expansion of4.1]) in the

Although this problem of two interacting particles is ex- neighborhood off E/A ~f and solving with respect th, we
actly soluble and the transition from an excited to a boundPbtain
state can be easily seen through the above graphical solution, 5
it would be instructive to compare with a many-body E0~ A(f + U ) (4.12)
criterion'® from the area of interaction-induced metal- m(— 4Af+U cof 27 f])/) '
insulator transitions in charged quantal mixtures: the analytic
behavior of the energy as a function bshould also deter- If this is further expanded in powers bf, and if the result is
mine the point of the transition according to the following written in the formE°=Cf?, we finally obtain that the coef-
procedure. We write the lowest excited state energy in théicient C vanishes whenever
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2
Ug=—2mAf2+ §A773f4 +oee (4.13 0.2

E/A

This indeed agrees with our earlier regt9) for Ugiticar, if o5
this is expanded with respect falerm by term.

We conclude that the value of the critical interaction that,
for this soluble problem, has been determined exactly, is alsc
compatible with another more general many-body criterion
for the transition(that is valid also for insoluble problems of 0.2
more than two particlgs

We finally give the asymptotic form of the ground state
energy in the general case- 0, N+ 0, for the limit of large
radius. This turns out to be 0 0.2 0.4 0.6 0.8

L
ground™ gmpR2 - 4A

-0.24

® 1
®ﬂ

(1+4 cog2m f + mN]Je 1VI2)

(4.14

and it naturally generalize@.8). Apart from the role of the  some disconnectedness property of eigenfunctions that we
center of mass on the internal energy, we also observe thghall see belowend of the next sectignWe will also see in
expected periodic dependen@haronov-Bohm oscillations  Sec. VI that Figs. 6 and 7 can be viewed as special cases
with respect to the magnetic flux with the period equal to theshifted bandsof a band-mode structure that will be intro-

flux quantumd,. ~ duced later.
A final comment is that the energy values as a function of

f are symmetric aroundzl(z,where we have.a maximum V. SYSTEM EIGENEUNCTIONS

for N: even(in agreement with measurements in experiments

with excitong as shown in Fig. 7, and a minimum fik odd The entire set of eigenfunctions for the relative problem is
(see Fig. &. It is interesting to note that fdr=1/2, wehave given by (4.1) with the quantitiesGg and G, being defined
the lowest binding folN: even and the highest binding en- by (4.2), a result that was based on the Green'’s funcot®8)
ergy for N: odd. This observation correlates well with our and which is very genergfor arbitrary 6). For the ordinary
earlier conclusion orUicar [EQ. (4.10], as well as with casef=nm, (4.1) yields

FIG. 7. (Color onling Similar to Fig. 6 but with a vanishing
center of mass angular momentum.

’

exp[— 2i 7T<f - g) Sir{\e’g(p] - Sir[\e’E(go -2m)]

= , O=o=27

| sin2m/B]
D(p) = D(0)€® X ¢ . (5.1
n
- exp{Zi ’7T<f - E) Sir{\r’EQD] + Sir‘[\ﬂE(go +2m)]
— = , —2r<=¢=<0.
L sin27/B]
For comparison with the series method we note that(Bg), in combination with the exact summati¢oB3), yields
r _
. N . = . —
exp{— 2i w(f + E) sin VBe] — sin VB(¢ — 27)]
= = , O<sop<27
_ sin2mVB]
D(p) = D(0)€"® X § _ (5.2)
N — —
- exp{ 2i '7T<f + E) siVBe] + sin VB(¢ + 27)]

, —2mse<Q0,

sin2mB]

which is equivalent to(5.1) because of the already an- what follows we briefly discuss the general form and prop-
nounced fact thah andN are integers of the same type. In erties of these relative eigenstates.
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First, for f=0 all states turn out to be reflie will always tive variablee by +27, are neither periodic nor antiperiodic.
set ®(0)=1]. For the attractive potentigu <0) a typical We shall determine the most general form of four distinct
form of the single bound state, fdd=0, demonstrates a one-body physical quantities: the probability density),
combination of a local exponential decregaeounde~0)  the electric charge densipg(¢), the probability current den-
with a 27 periodicity (valid for all N: even and with no  sity J(¢), and the electric current density (@), where ¢
nodes. The behavior aroung0 is generally of the form  always denotes an angular variable on the physical circle that
describes the point on the ring, where each quantity is locally

gl (5.3 . ,
determined. Since we have a system of more than one par-
with the characteristic angbe, determined by Taylor expan- ticle, each of the above quantities is given by the expectation
sion of (5.1) that finally yields value of an appropriate many-body operator with respect to a
general two-particle state of our model system. The corre-
o= - 2A (5.4) sponding operators are defined by
U .

a result independent dfl, f, and the actual value of the R N 18
energyE. This is related to the cuggliscontinuity of deriva- ple) = 2 8(x=x) = F_QE o=@y, (6.2)
tive) at the origin, which can very generally be found to be =1 =1
(U/A)®(0), and can be more generally shown at the level of
the Schrédinger equatigi2.8) without knowledge of the ac-
tual solutions. These findings generalize well-known results
in infinite straight space.

For cases wittE>0 (excited statesthe wave functions
have more nodeghey are oscillatory, apart from the cusp at

N N
hel@ =3 aoT-1)= =S qop-¢), (62
i=1 i=1

the origin and for a repulsive potentigU >0) the cusp has N . N
positive sign(making the wave function locally increasing j(;) = iz (ﬂg(;_ @) + 8o - ‘Pi)ﬂ>
for ¢=0). 2Riz\my m
Cases of nonzertN (both even and odd again for an - N
attractive potential, demonstrate the expectedp2riodicity _ @ D Gi So- o 6.3
for N: even and the 2-antiperiodicity forN: odd, as well as Rc i m e '

the appropriate cusp in the neighborhoodyof 0. For cases
of E>0, we have more oscillatory behavior and in special
cases wher&=A(N?/4) the states become linear, namely

- 1< (B — N
Jll@) == qi(%‘s(@_ﬁpi)"' Ne— o %)

1_2401 0=0 2RS
a N
D(p) = D(0) X (5.5) AQw
-—=2 -, 6.4
1+2¢7’T' 0<0. chlm (¢~ ¢i) (6.4)

Finally, when we introduce a nonvanishing flUik+ 0), the _ _ . " .
relative wave functions now acquire an imaginary part. It can\'\/here'\l_2 for our casex;=Rg; is the position of thath

be shown that the imaginary part always has a continuougartide(mc chargeq; and massn,) on the physical ring, and

derivative ato~ 0, and the proper cusiJ/A)d(0) appears b denotes %(&/axi):_(iﬁ/R)(a/f?(P‘)' The variablesy V\./i”
only in the real part of the wave functions. It is interesting tobecome dummy integration variables in the expectation val-

note that in the special case 1/2, themodulus of the wave ues to be evaluated below, so that, at the end, each quantity

functions becomes disconnectétvanishes at #) for even will depend on the absolute angular variablenly. [The last
N (while for f=0 the same happens for odd valuedNpflt is terms (.)f (6.3 angl (6.4) have emerged 'from prodycts
actually easy to show that these cases are immediately rg-f minimal - couplings with delta functions, "e'.[pi
lated to cof2rf+mN]=-1 and hence, by4.10), to cases of ~ (Gi/OAX)]oX=x), and use of elementary-function
more difficult binding (|Ugiical takes its maximum value properties, .
2A/a, and even in case of binding we observe the local NOt€ that in our case oR=2 and withm=m,=m and
maximum of Fig. J. Again, these cases will be shown to ql=—q2=e,Athere is an immediate connection of the probabil-
correspond to the band edges of a band-mode structure iy currentJ with the electric charge densify, [the last term
troduced in the next section. of (6.3)], and of the electric currenl, with the probability
densityp [the last term 016.4)], and these connections will
be important in the following sections. The measurable quan-
tities that correspond to the above operators, for an arbitrary
Let us now investigate the issue of single-valuedness ofwo-particle statéW (¢, ¢,)), would be given by appropriate
various measurable quantities and see if this can lead to casespectation values with the use @f, ¢, as dummy vari-
of 6+ n, namely to states that, under a change of the relaables, for instance

VI. BROKEN-SYMMETRY STATES
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p@=<‘l’|ﬁ(5)|‘1’>=fd¢1j Ao, ¥ (@1, 0)P(@ V(1 00), wso '
= —=0.4
65 = rete(9)) o
E 0.5 - 5
which would give an expected result, namely e
1 _ .1 , s
ple) =7 | deV(e,0o)*+ T | den|V(er, )" (6.6 = o
o :
for the probability density(Integrals with respect to each “ " RS
are always understood to be from 0 t@.2 o5 |
In a similar fashion, the remaining three quantities turn .
out to be . :
_2n o 0 n 1% 2n
pel(@) = Ef de,| W (e, @)% - —f deq|W(@q, )2 FIG. 8. (Color onling An example of a broken-symmetry state
R (with energy at the minima of Fig.)9
(6.7
: : transformed into more complex results that involve the fa-
for the elect h density, - .
or the electiic charge denstly miliar wave functionslV((®.) and®(¢) of Sec. Il. Examples
IV (@, ) of such expressions appear in Appendix C.
o) = om R2 deo| W(e, Qoz)—(P Let us use these new expressions in examples of how one
can reach conclusions associated with single-valuedness with
V(e )f?‘l’ . ¢2) respect top. If one considers, for instance, linear combina-
# 2 tions of center of mass eigenfunctiofsich as in(2.6) with
i . N;, N, arbitrary real numbetsand of relative wave functions
+ij dey \p((pl,a‘”’ (il’ ¢) [such as in(3.5) but with ny, n, again arbitrary real param-
2mR e eter§, namely
. V(e @) | f D pele) W(De, @) = (AN1Pe + BENZP) (CE 2w (o)
V(e —— |- —57 . (68 .
d © qu)o e + De'(nz/z)(puz((P)) (610)
for the probability current density, and then the following observations can be made: The fo@)
ize oV (pey) remains invariant undep— ¢+ 27 if
Jel(@) = omiz | 9%z q’(w,@z)? ) )
¢ «Irc(ax g) = ‘xpc<a: §+ 271') . (6.1))
V(G )(9‘1’(@ 12
$p2 which leads to the requirement thi; —N, be an integer.
” IV (01D This is actually a generalization of the argument following
Ine dipl{\p((pl,j# (2.7, and acceptance of the constant solutiénO leads to
2mR X the usual integer values for al’'s. A more useful conclu-
* 07\1’(@11@
- o) — —— 6.9 67
(¢1,9) PP qu)Op(_j (6.9 s e
for the electric current density, all quantities determined l0- -0
cally at ¢. [In the above we have again choséo) D e
=(®/27R)p]. The slightly different structure of signs in *
these expressions will be essential for the results of the fol- ¢

lowing sections. It is easy to verify that, in case of noninter- 5
acting particlesfwhen W(¢1, ¢,) =V1(@1)V,(¢,)] they can
all be written as simple sums of separate single-particle con:

-1.002

tributions, i.e., of the fornp(e)=p;(¢)+p(¢), I(¢)=J1(¢) 1,004
+J,(¢), etc., as expected. e b
However, in order to reach useful conclusions on the in-
teracting case, it is advantageous to change dummy variable 25 -&n-n
to center of mas$®d.) and relative angular coordinatég)
[see Eq(2.2)], and this requires some caisee Fig. 2 where FIG. 9. (Color onling Effect of the symmetry breaking param-

the proper combined variation db, and ¢ is showr). It is  eter on the bound state energy spectrum for a nontrivial choice of
then a rather tedious exercise to show tt&6)—6.9) are  Aharonov-Bohm flux.
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sion, however, comes from the for(@2) which is invariant  affects other physical properties, such as the energy and the
under ¢— ¢+27 when the modulus of the relative wave electric current§as will be demonstrated later in Fig. 9 and
function ®(¢) is 44 periodic, and use of6.10) leads to the in Eq. (6.28)].

requirement tham, —n, be an integer; this does not, however,  Similar conclusions can be reached through the use of
imply that eachn; should separately be an integer, as theforms (C3) and (C4) for the probability current. The evi-
value n=0 does not correspond to any special state thaglence is that the usual for3.5) should permit noninteger

should necessarily be acceptgtbm (3.5 n=0 would just  values forn, or, alternatively, we could generalize it to
correspond to a 2-periodic state and there is no physical

reason to be restricted to such periodic relative stasch D(p) = €12mey(p) (6.12
a relative state, which breaks the symmetry of the problem
is shown in Fig. §where Re denotes its real part and Im its
imaginary part in spite of the 4r periodicity of its modulus,
there is a nontrivial phase difference that connects the values
of the overall complex wave function at the two ends of our
interval (-, 7]. This additional phase cannot be gaugedwith 9=0 accounting for the ordinary case described by
away/[it is directly linked to the reduced flux as will be seen (3.5). This freedom in the choice af has already been taken
below(i.e., Eq.(6.18] and it is essentially a manifestation of into account for the derivation ¢8.8) and the relative eigen-
the Aharonov-Bohm effect at the two-particle level. It is astates(4.1). The most general form of relative wave func-
measurable quantity and, as will be shown below, it directlytions now turns out to be

by introducing a general real angular parameterhich can
always be set to

0=nm+ 3, niinteger, J: real (6.13

—2imf N (mn+9) o / ol / -
e“m¢d sif\B sin VB 27
r[\ <P] r[\ ((P )]’ O<g=<2

B(g) = B(0)&'* X sir(2m\E] (6.14
¢ — @1 s Bg] + sin{ VB(¢ + 277)] '
- = , —2r=¢=<0
sin27\B]
[
and generalizes the ordinary states given(®y). In fact it Wy, @+ 2m) = V(g )7, (6.16)

can be shown that6.14) satisfies the relative Schrodinger . ) .
equation(2.8) (with the appropriate cusp at~ 0) indepen- henced indeed accounts for the violation of the usual sepa-
dent of the value of9, but giving a modified energy spec- 'at€ single-valuedness. _Equati(ﬁnl_?) can be derived from
trum that is now given by (3.7 [in combination with®(¢)=€"?x(¢) and (3.1)] that
gives&?=e27 (9 with ¢ the “crystal momentum” of3.1),
sin2mVB] 2A\B which effectively yields(mod 2i)

— = . (6.1
cog 27f — nw— 3] - cog2m7VB] u (6.19 0=2=(f+q) (6.1

This in fact is the conditiorf4.3) obtained at the beginning and
of Sec. IV [through the limit¢— 0 and cancellation of the N n
common factord(0)]. 19:277(f+q+—) =27 f+q- ], (6.18
. . . 2 2
Let us now elaborate on this more general consideration.
By going back to(3.3) it is straightforward to show that the last equality being valid because integdrandn are of

(6.12 implies the same typegEquation(6.18 will be useful for the results
and figures of the next section, if viewed as the definition of
_ (N g with respect to physical quantities such fasN, and 9].
Vo +2m 07 = Wley, (PZ)eXp[I( > f q>277]' With use of the above it is rather easy to show tf@al4)

indeed satisfies the Bloch forg3.1): if d(p) is written as
N O(p) =Dy, (o) =€d(@2mey, (), it turns out that indeed

W@y, @2+ 2m) = V(g1 o)X I(E -f- Q>27T : U(o-2m=up) (for 0= ¢=<2m)
which are in turn simplified into and

V(@ + 21, 0,) = V(@y, 0,)e? U(p+2m=ule) (for-2m<¢=<0),
¢ ™, @2) = WY(ey, @
l 2 o showing thatu(e) is always 2r periodic and demonstrating,

and therefore, the consistency of our approach.
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It is interesting to note that our introduction éfdefines a

band problem for the relative coordingtee(3.7)], and this 2
in turn induces separate band problems for each particle witt <

a Bloch phase¥ (when the physical circle is viewed as the “
unit cell). The usual imposition of separate single-valuedness
[that led to(3.4)] is then a very special case that corresponds
to the centef9=0) of each separate band. By returning then
to (6.17) and(6.18 we also observe that this corresponds to
0=nm (as noted earligrand to a very special value of the 0.2
“relative crystal momentum,” namely

q=-f- N (6.19

i i A i
2 0.4 -0.2 0 0.2 0.4

-0.24

9

for ordinary states. These observations will be useful in un- FIG. 10.(Col line Bound for a fixed .

derstanding the behavior of energy, other measurable quan-t t - o‘?r Ont.'ne fo#]n ds_tate e.ne:gy ora tlxle attractive

tities, and the states themselves under the general brokefjieraction as a function of the dimensioniess crystal momerum
. . In the first Brillouin zone.

symmetry case in the results that follow, where we will see

that other points of the “relative bandg’e., q=0, +3) are i _ _
even more special and can lead to observable effects. relative band” edges A typical ground state band is shown

Consideration of such broken-symmetry states raises & Fig- 10.[We shall see below an alternating inversion of
plausible question: would a choice o+ 0 lead to energy these roles for excited staté8>0) but with some superim-
gain? Let us examine whether introduction of a nonvanishing?©sed discontinuity structufieFrom this viewpoint, behav-
9 could lead to energy lowering compared to ordinary cased0rs such as Fig. 6 or Fig. 7 are qualitatively equivalent to
and let us temporarily focus on bound stafEs< A(N2/4)]  Fig. 10(merely shiftediin view of (6.18. In case of absence
since this would be the most dramatic effasymmetry of a magnetic flux, ordinary cas¢described by6.19] cor-
breaking leading to stronger binding respond to minimum ground state energy only foreven

Starting from the newand most generglcondition for ~ (@nd to a maximum foN: odd); the symmetry breaks in a
the energy spectruiiior bound states namely Eq(6.15) for nontrivial way only for anf # integer/2, because it is those

B<0, we obtain cases that the minimun(rq:O) corresponds to nontrivial val-
— . ues ofd or 6 (Fig. 9 shows such an examjlét should also
JE _ AA?(|B|)3sin27rf — mn — 9] be noted that the ground state energy b&nq) in the first
d9  (U-4mA|B|)sini2m|B[] - 27U+ |B|costi2|B]] Brillouin zone, although numerically determined, can always

be fitted accurately with a simple sine or cosine functeee
(6.20 Fig. 10), with the position of the middle of the band and the
[which will actually be related td.(p) and also to the per- bandwidth following behaviors which, in the case of strong

sistent currents beldw The local extrema of bound state |Ul, follow patterns glways cor215istent with.14): the band
energy can be found at values 6fwhere(6.20 vanishes, fluctuates around U</4A+A(N</4) and the bandwidth is

and this occurs whenever (2U?/A)e VI Also, for the range of values off for
which
O=27f+aN-km (6.22)
with k an integer.[Note from (6.18 that k=—2q, so this v < ,L(cos{%rq] - costiN]), (6.22)
happens fog=integer/2, namely the edges or centers of the A sinf{ 7N]

“relative bands.] Correspondingly the sign of the corresponding part of the band lies at negative energies

PE 4A3(Vﬁ)5wg{kﬁ] (Fig. 6 provides such an example, with only a part of the

92 A 2a(IBh3 ~ = band being negative
79 4r MBI cogkm] + (mlU] - A)costizmB]] The corresponding analysis for excited sta@s-0) pre-

shows that these extrema are local minima whenéviexr  Sents some interesting features, not present in the ground
even(and maxima whenevecis odd). This is demonstrated state energy behavior, which we briefly discuss in the follow-
in Fig. 9 for a nontrivial choice of. The corresponding wave ing. We should emphasize in advance that these features can
function (that breaks the symmetry with the energeticallybe directly linked to experimental resultsence providing a
optimal value ofd) was earlier shown in Fig. 8. means of actually detecting the symmetry breakisgd, al-

It is instructive to classify these results from the point of though they come up naturally in the context of the band-
view of the band-theoretic consideration advanced above. Agheoretic formulation advanced here, they are also present in
combination of(6.18 and (6.20) shows that alwaysE/g9  ordinary (9=0) casegprovided that the various parameters
xsin2mq] and ¢’E/d9?«cog2mq], and that the ground are connected in the appropriate way, nanggty-(f+N/2)].
state energy takes its minimal value fprinteger(or, within The key observation for thB>0 cases is that the |Ihs of
the First Brillouin Zone, forg=0, at the center of the “rela- the energy spectrum conditigi6.15), which due to(6.18
tive band’) and becomes maximum far.odd/2(i.e., at the can be written in a more suggestive form, namely
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N=0
N=0 N=1
q=0.48 U=-0.74

1 U=-0.1a
) ‘ uo
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FIG. 12. (Color onling First excited state energy band with
FIG. 11. (Color onling An example of a graphical solution of discontinuities at the ends of the zonapper curvg shown to-
(6.23 with two very close divergencesvhenq is very close to the  gether with the ground state baddwer curve to emphasize en-
band edgen=1/2). ergy differences.

sir{Zm/E] 2A\B (upper curve shows an example of such a discontinuous

cog 2] - cos{zm’E] = u ' (6.23 structure for the fi_rst excited state: on top of an inverted band
— with a local maximum atg=0, there appear two specific

has points of divergence aB=+q+p (p integer, playing the discontinuous positive jumps at the two band erjttsturns
role of a reciprocal lattice vectpiprovided of course that out that for the second excited band and all the higher ones,
VB>0. Consequently, when the parametbitsf, and are  a similar discontinuity also appears g0 (a result of the
such thatq is [through (6.18)] located exactly at the band same merging of two discontinuitighSuch a discontinuous
edgeg(i.e.,q=+1/2) then, because qf, we have two diver- behavior is never present in the ground state b@ssen-
gences on top of each oth@fig. 5 actually providing such tially because of the presence of hyperbolic rather than trigo-
an example of double divergence for an ordinary gage nometric functions Therefore, the discontinuous rise ob-
indeedq is moved infinitesimally(i.e., g=-1/2+e, e>0)  served atq==1/2 for the excited band makes the energy
then there appear two divergences, placed infinitesimallglifferencebetween the first excited and the ground state en-
close to each othefi.e., at \B=1/2+¢ and 1/2-); one ergy always be larger af=*1/2than it is forq=0, actually
diverges at positive and the other at negative infinity and théeing larger by more thaN?/4 (for N=+1, at least This is
lhs of (6.23) connects the two infinities with a necessarily apparent in Fig. 12 where both bands are shown together,
smooth way, hence with a rapidly decreasing curve tha@nd it can have interesting consequences in exciton spectra
passes through zersee Fig. 11 As a result, there always (where transitions between the bands are involvédwe
exists an intersection with the rhs (6.23 which gives an compare two cases of differei, i.e., N=0 andN=-1 (a
allowed energy. However, this isot the case wherg is  chiral state, with a nonvanishing total angular momentimm
exactly+1/2: the two divergences are now “merged” into aan experiment with a fixed, then the above ordering of
double one, and at this poi(6.23 doesnothave an allowed energy differences might have consequences on the position
solution forB. Whenever this merging happens, a solution isof peaks of exciton absorption or photoluminescence spectra
“lost” (and is recovered whenevgmoves slightly from the (the simplest case being for ordinary state &rd /2, when
band edgg (An example was earlier shown in Fig. 5 of Sec. N=0 corresponds to the band edge and hence to a higher
IV, where, because of this merging of divergences, there ignergy difference compared to the chiral state
not any intersection of rhs with the vertical dashed iren Let us finally see the effect of symmetry breaking on the
important consequence of this peculiarity is that the “lost’modulus of the relative wave functions and on the other
solutions cause discontinuous raising of the allowed valuephysical quantities, such &§.6)—6.9). First a straightfor-
of B whenever we arexactlyat the band ends, since a so- ward determination of the relative normalization constant
lution of (6.23 (hence an intersection with its thean only  [C=®(0)] for a generab can be madgby using(6.14)] with
be found if we move to the next branch of the Ihs. Figure 12the result

VB Sinz[ZW\"E]
(4B - 4m\/B cod2m/Blcog 2nf + Nar— 9] - sir{4m\B] + 2 sif2m\B]cog 2af + N — 9])

|C|2_
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and direct substitution of a normalized relative wave func-be made analytically with the following results:
tion in (C1) results in a simple form for the probability den-

sity, namely
N
p@=r (624 (3w
Je) = Wﬁ(@ a1 (6.26

a constant density that is simply equal to the expected
2/27R for two particles moving in a length of72R. This
should actually be expected from the general fof@L) ]
whenever the center of mass has a well-defined angular m&ecause the internal parts (@3) are cancelled and only the
mentum#%N. The analogous calculation of the local chargecenter of mass contribution survives.

density pe(@) gives, again for a fixed\, It should be noted that, althougi® ()| is affected by the
— symmetry-breaking parametér at the encp(¢), pe(e), and
pell¢) =0. (6.2 J(¢p) are independent of), a result stronger than their re-

The corresponding calculation for the remaining two quanti-quired single-valuedness. On the contrary, Jgf¢), which
ties is rather tedioufi.e., they require use ¢fC3)] but it can  turns out to be

- @)M *<— ;P)M

ihe (¢
Je|(@= d‘P|(I)(<P)|2 q’c(‘P—_ _\ch -7
i), — —
Jd QD—E d QD—E

2
ihe ¢ ID(9) .. ID(@)| ke (e
+— d -® — d
2msz;_27T ¢ Jdo ((P) Jdo 2mR2 -7 ®

2 (I)*
®(p)” a;“’)

Kiat
S P PP

de|®(0)? \If<_+— — 2 et | ————L |- == )(9),
o|®()| Y| @ 5 . o\t . qu)op@
J (p+z J (,D+E

2
wc(a— §) [cb«p)

acp(go)]_ ihe [27¢
Jo 4mR -7

-D'(g)

(6.27)

the opposite signs of the last two integrals compare(C®) cal to the persistent currents as we demonstrate in the next
make the center of mass contributions essentially vanish angkction.

the internal(relative) part to give a nontrivial result. After

straightforward manipulations this turns out to be VIl. PERSISTENT CURRENTS

[Sl~120: B The persistent currentss,, usually definedat T=0) for

AmeVB|Clsin(2nt :WN 9] single-particle states with enerdgy, asl,=-c(JE,/sP) with

mRZsin 27\B] @ the magnetic flux, are here determined in a similar manner
but with use of the total energl of the interacting two-
particle system(when this is in a particular eigenstate

Jel(@) = -

or, alternatively,

o= 4£A2(\e’§)3sir{27rf + N - 9] _ namely
#{sinN2m\B](47wAB + U) — 27U+B cog 27VB]} JE
(6.29 lpers=~C5 g 7.9
showing a direct dependence of the electric current on symwhere for notational simplicity we omit two indices that
metry breaking. specify the eigenstate, namdlyand one more index identi-

We note thatJ, is a nontrivial function of the various fying the particular intersection point in the graphical solu-
parameters and it depends bnthrough the appropriate so- tion of (6.15). For the particular systeiftwhereA=d/27R)
lution of (6.15 for B. We also note from(6.18) that Jo(¢)  we havel = —(c/27R)(JE/ 9A), but JE/JA can be very
«sinf27rq], and that, therefore, for a choice dfcorrespond- generally determined through the use of the Hellmann-
ing to the centelg=0 or the edgeg=+1/2 of therelative = Feynman theorem witiA being treated as a parameter: fol-
bands, we havé,(¢)=0. The electric current is here identi- lowing earlier work®2°we have
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IJE 9 .~ JH
— = —(V|H|¥) = (V| —|¥ 7.2
A= AR = (=), (72
a statement equivalent to havikdg'| ¥): constant(indepen-
dent of A). On the other hand, by making use of the syste
Hamiltonian
2
" 1 Gi )2
H=— - —A 7.3
m= (p. . (7.9
we easily obtain foK7.2) that
JE 27R
—=-— 7.4
AT o e (7.9

with the averagéglobal) electric current being defined by

2
1 Ch( g )
=—V|2, —|p——A|T). 7.
T =5 lzm pi= A1) (7.5
Equation(7.1) then rigorously leads to
pers= (Jep)- (7.6

On the other hand, thecal electric current densitye(¢)
[such ag6.28)] is the expectation value of the opera{brd)
and it directly gives the global currefdy) if integrated for
all ¢, namely

27
J ‘]el(a Rdﬁ?: 27TR<‘]el>r (7.7)

0

m

PHYSICAL REVIEW B 70, 235327(2004)

which is the expected result for noninteracting parti¢leish
J=0 for ordinary states in which case the total energy is
simply

K2NZ 42 n 9
E(U—0)=

2
R mR f‘“:) (712

andn can always be written as=n;-n, (n; integers, (7.1
simply indicating that the current results from the opposite
contributions of separate single-particle currents. It should,
however, be kept in mind that there is a periodicity of these
results if written in terms of the “relative crystal momentum”
g of the last section, with period (kee below. Furthermore,

it is interesting to see how the persistent current is affected
by the interaction in the limit of strongJ|, which is equiva-
lent to the large radius limit and results such(4d4) could

be used in(7.1); for the ground staté turns out to be
exponentially small and it is equal to

el?
I pers= E _W(‘U‘/A)Sirizqul-

(7.13
It should be noted that in this strong coupling limit all the
excited state energies can also be given in closed form from
which the associated persistent currents can also be found
[through(7.1)], a matter that we will not pursue analytically
any further. However, typical behaviors bf..s with respect
to the flux and the size of the ring will be shown in the
figures at the end of the section.

It is more interesting to discuss briefly the general form of
persistent current&’.10) for an arbitrary interaction strength

which through(7.6) gives the general connection betweeny gy temporarily going back to noninteracting particles, we
the local electric current and the persistent current, namely,, ;o that(7.11) can be writterfwith use of(6.18)] as

1 (% _
Ipers: ZTJ Jel(@)de. (7.9

0

In the case 0f6.28 Jg turns out to be homogeneodsde-

pendent ofp), leading therefore to the expectation that, very

generally(for a particular two-particle eigenstatee have

(7.9

Je1 = lpers

lperdU — 0) = (7.149

_eh
——
and the corresponding energy spectr@iil? can now be
written in a compact form as merely
B(U — 0) = ¢?. (7.15

It should, however, be kept in mind that, because of the ring
topology and the associated periodicitygriwhich can vary

an identification that should be expected on general physicatithin the first Brillouin zone, Eq(3.2)], there is a period-
grounds. To check that this equality actually holds in ouricity of both (7.15 and(7.14) with respect tag with period

case, it is possible to independently determiipgs through
(7.1) by differentiating the energy spectrum conditi@15

with respect tod®. Although tedious, it is straightforward,

and this gives thalyesis

~ 4eA2(\'/E)3Sir[27Tf - an— Y]
#{sin27/B](4wAB + U) - 27U\B cog§2m\B]}’
(7.10

Ipers:

which is exactly equal t@6.28 (sinceN andn are of the

1. Restricting ourselves therefore to the z¢B) this can be
explicitly demonstrated by writing

eh
Ipers(u —0)= 7Tm—R2(q +p) (7.16
and correspondingly
B(U — 0) =(q+ p)? (7.17

with p an appropriate integefof any sign that bringsq
within the first zone. This is essentially equivalent to the

same typg hence satisfying the expectét9). These results points of divergence that we found earlier @8==q+p
are valid for arbitrary symmetry breaking. In the limiting [which are indeed the only allowed solutions(6f15) in the

case that) — 0 it is possible to show thaf7.10) yields

limit U—0, as the rhs tends to vertical lije§he above
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o.m ] 3Ae [ sin2wq] )
| B—0)|=

. perd B — O) 2772ﬁ<2 + co$27q]
% 0,025 [ oemoieeeon e - /l G SR W | ] _ 3( S"{z’ﬂq] )
£ / == ———=]|l 7.20
g 0 4&@ q=0.5 T 2+C0$2’7TC]] | |b0und ( )
a q=0.1 U=0 < . . . 1 .
8w 0.2 =0y \ ] with a maximum value corresponding ¢z ; and being
= & % r<\ : 4 q=0.2 - ] —

U=0 SOl 3 V3
-0.075 - / ] |Iper4B < O)|max= ;|I|boundz 0-55]“|bound’ (7-21)

= hence demonstrating the validity of the expected upper
bound in the particular interacting systerit should be
FIG. 13. (Color onling Persistent currents as a function of di- noted that although existence of this bound was pré\lﬁm

mensionless internal energwith interaction potential eliminatgd @ System of only a single charged component, it seems to be
for various values ofg, demonstrating the comparison with the also valid for our mixture of different charged components,

upper bound7.18 (horizontal dashed lineand with the noninter- ~and this could be shown in a more general setting in future
acting (U=0) behavior(black curve. work.) The qualitative reason why the inclusion of interac-

tions leads to a lowering df .. in the first zone with re-
spect to the noninteracting case is the fact that0 leads to
the opening of gaps at the ends of the zone that were not
present in the so-called empty lattice approximaiion-0).
In Fig. 13 the current for the noninteracting case is also
shown for comparison and provides a better understanding of
the general interacting behavior. The combination(of.4
with (7.15) yields ayB behavior(black curve which, how-
ever, changes sign whenevBrcorresponds to values af
that move to higher zones: the procedure of reduction to the
first zone effectively changes the sign gfand, through
he (7.14), of the noninteracting current itself. The general inter-
AR (7.18 acting behavior demonstrates more interesting oscillatory
variations withB but it qualitatively follows a similar pattern
of sign changes, as expected. A feature of the interacting
which is exactly the result found by Vigndleas a rigorous behavior (that is naturally absent in the=0 casg is the
upper bound for persistent currents of any one-dimensionglresence of &< 0 tail (cases of binding this now being
mesoscopic system of lengthwith N particles, namely monotonic(nonoscillatory. A final comment on Fig. 13 re-
fers to the exact vanishing of,.s at special pointsB
_ =(integer/2? (with a nonzero integgrfor all possibleq.
Nhe (7.19 These are related to the caké| — o, in which all bands
omL2’ ) become flatzero bandwidth hence with vanishing current
for all g, the flat ground state band’s contribution to the en-
. ergy (for B<0) having moved to ¢, as is apparent from the
where in our cas&l=2 andL=2#R. Having an equality for left part of Fig. 13.
Vignale’s bound folU=0, it is now interesting to lety have The behavior of the persistent currgmiith interactions
any arbitrary value and see wheth€f.10 is generally included with combined variations odj (essentially the flux
smaller than(7.19). To check this, we first eliminatd from  andB (essentially the energyfor excited state¢B>0) and
(7.10 with use of the energy spectrum conditig23) and  after elimination ofU, is shown in Fig. 14 for a typical size
in this way we obtain the general valueslgfsas a function  of a GaAs/AlGaAs nanoring. Figures 15 and 16 show ex-
of g [that containd, N, and through(6.18)] and also of the amples of typical behavior for such a system as a function of
allowed values oB (which are now forming a continuous flux (recall thatq=-f-N/2+9/2). Figure 15 focuses on a
set, and can be varied independentlyqf We plot these fixed attractive interactioand varying energigswhile Fig.
values ofles in Fig. 13 for several values aoff and we 16 focuses on fixed energi¢and elimination ofu through
compare them with the upper bouid.18 as well as with  (6.23)]. Both cases of positive and negative valueBddre
the noninteracting behavi@?7.14) and(7.15. First, we note shown and the noninteractingnear in ) behavior is also
that, for B>0 the upper bound can be violated, but ®r superimposed for comparison. Several observations can be
<0 we always havel ,e;d <|l|poung In fact, the ground state made but we only mention the tangential behavior of the
persistent currents seem to take their maximum absolute va0-line on the interacting curve for certain positive values of
ues whenevelB— 07, and this limit can be found analytically B, but also casegagain forB>0) where|l . exceeds the
to be magnitude of the noninteracting current. WhBn-0, the

H
=)
wi
n
w

B

presence op is also equivalent to the expected periodicity
when the relative integer changes by multiples of @.e., by
an even integer @, as this is the only change allowed for
to be of the same type as the center of mass intdgéx
taken as fixed and givén

Having clarified this, it is easy to find the maximum value
taken by|l,e{ for the first zone and fotJ=0; this can be
given by(7.14 with |q|:%. The result is

lg=1/2U — 0)| =

| I |bound:
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R=10nm
g an | U=-12meV
8 B<0 U=0
B>0
2m )
B<0

=200

-0.4 -0.2 o 0.2 0.4

q

FIG. 15. (Color onling Persistent currents g for fixed attrac-
tive interaction and for both signs of internal enelgyhich is not

fixed but varies along the curveand a comparison with the non-
FIG. 14. (Color onlineg Behavior of persistent currentsvith interacting behavior.

interaction eliminatedfor a GaAs/AlGaAs nanoring of a typical
size with respect to combined variations of energy and (rexall
B=E/A-N?/4 andgq=-f-N/2+9/2m).

namig phases is currently considered in possible design of
quantum gate&’ we are now presenting some exact proper-
ties that relate the electripersistentcurrents of our system
behavior approaches the noninteracting line. Finally, Figswith the Berry’s phase of some particular cyclic adiabatic
17-20 present typical behaviors of persistent currents witlprocess, to be defined below. It should be reemphasized that
respect to the size of the ring. Figures 17 and 18 focus ogyclic adiabatic evolution can find useful application in fault
fixed attractive interactions, while Figs. 19 and 20 showtolerant quantum computation, and we consider it important
cases with fixed energigand withU being eliminatefl We  to have a direct connection between corresponding Berry’s
note that, for cases of bindingB<0),|l,ed is always phases and concretand controllable physical quantities,
smaller than the magnitude of the noninteracting current, anguch as the electric current.

it very quickly approaches zero above some values of the Let us initially generalize the form of our interparticle
radius close to the typical ones in experiments withinteraction toUd(¢;— @,—@g) With ¢y a real angular param-
GaAs/AlGaAs nanoringgFig. 18. On the contrary, foB  eter that is supposed to move adiabatically in the region
>0, we note an interesting crossover arotyd 20 nm(Fig. [0,27]. This means that € ¢y(t) <27 with ¢g(t) changing

17); for rings with radius smaller than this value, the attrac-in such a way that at every instant the raig(t) satisfies
tive interaction seems to enhance conduction compared 9, (t)< (absolute value of the lowest energy difference be-
the noninteracting casét is intere_sting that a similar Cross- tween states of our systgenwe find that such a simple adia-
g%ear"g?‘iﬁ‘;‘r)]t %%pizrr\rr?tre?arc?i%ls\l\;i’ gggggp%% ;i( :cliwsgzi batic criterion isf¢(t)<A/4 (corresponding to transitions
tive energy(with U eliminated present some additional os- gk_:asN ;_the).HSaL:ﬁirlwtoanizlr?vcv)f\;zzastlon Ok along a fL-j"- qrcle .

) A ystem back to its initial form;
cillatory structure, and examples are shown in Figs. 19 anghe oigenstates howevgthe ones that were analytically de-
20 (where because of differefts, both cases correspond t0 o rmined in this workwill pick up an additional phase, of a
the same value of flux, namefy=-0.1, if we constraint our-
selves to ordinary state8=0). We note different behaviors
for very small rings depending on chirality, as well as several
crossovers wherd .| again exceeds the magnitude of the <
noninteracting current. It should be added that such cross ™
overs donot appear in cases of bindirge., a fixed negative E
B) where [lI,e:{ is monotonic and always smaller than the %
noninteracting value. 0

The exact form of the persistent currents that we have ai
our disposal for this particular interacting mixture leads usto
a final observation that seems, however, to have a more ger
eral validity and is presented in the following sectfén.

B=0.2 B=-0.1 B=0 U=0

20

VIIl. BERRY'S PHASE - h ’ T oaq

.Since eIe_ctron or hole sysFems in a nanoring have recently F|G. 16.(Color onling Persistent currents \gfor fixed internal
raised considerable interest in the area of quantum computanergies of both signgvith interaction being eliminatgdand com-
tion, and in particular the use of geomet(rather than dy- parison with the noninteracting behavior.
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@ |

30 40 0
R [nm]

FIG. 17. (Color onling Persistent currents vs ring radius for
fixed attractive interaction and for positive energiggich vary

along the curvesshowing a crossover with noninteracting behavior.

purely geometric nature, that was found by Bétrp be

Yn=1i jg d‘Po< N(¢g) >

where the symboh now denotes collectively the particular
eigenstate considered.

dNn(eg)
d ¢g

(8.1

With use of a resolution of the identity operator in relative

and center of mass variablg8,1) can be written as
. 2 2 2 . é)\I}‘PO((p,(DC)
Yn= |f d(Pf dq)cf d‘PO\P‘PO(ipy(Dc) )
2r Jo 0 d o
(8.2

where W, denotes the total eigenfunctigfor each instan-
taneous value of the adiabatic parameggr which in vari-
ablese,®,. is simply a product, namely

\I}gpo(@yq)c) =V (P)P(p— ¢p).

In (8.3) ¥.(d,) is basically given by2.6) and is indepen-
dent of ¢g, and ®(¢p—¢p) is given by(5.1) [or (6.14) if we
allow for symmetry breakingbut with variable¢ simply

(8.3

[nA]

Ipers

80 120 140,
[nm]

FIG. 18. (Color online Persistent currents vs ring radius for
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FIG. 19. (Color online Persistent currents vs ring radius for
fixed positive energyandU eliminated showing a series of cross-
overs with noninteracting behavior.

substituted bye—¢y. Use of all this in(8.2) gives, after
rather tedious but straightforward manipulations, the Berry’s
phase picked up by the total eigenstate during this cyclic
process, the result being

Vo= 2T ——
0

_ah 4eA2(\B)3sin 2af — mn — 9]
Aefi(sin2m\B](4mAB + U) - 27U \Bcog 27\B])
(8.4)

Direct comparison witli7.10 leads to an exact propergfor
any symmetry-breaking paramet&y, namely

— 2 2 + W_hJ
= Wq)o Ae el
The first term is recognized as the Aharonov-Bohm contri-
bution, i.e., the one found by Berry for the adiabatic trans-
port of a bound statéin a box with rigid wallg around the
enclosed magnetic flub=fd,. The second term is a contri-
bution due to the extended coherent nature of the eigenstates

(8.5)

0 [\ /\ F i, 0 ¥ o ~
T~
— -1 E-0 U=0 =
£l .
= 3, =-0.1
n 2 $=0
o E =10meV
Ho 3L U=0

20 30 40

50
R [nm]

FIG. 20. (Color onling Similar to Fig. 19(if we are constrained

fixed attractive interaction and for cases of binding, compared to théo ordinary states, both cases correspond to the same vafjibdutf

noninteracting behavior.

for a chiral state.
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around the ring, and it is found here to be directly linked to J(W|W)

the electric(persistent current[and not the probability cur- W =U. (8.9
rent(6.26)] determined forkpy=0 (although the value ol is

actually independent oy, as will be shown beloy Consequently, we can always make the following important

Let us now briefly investigate the generality or possiblesypstitution:
extensions 0f8.5). An initial plausible question is whether
(8.5) could also be valid for a more general form of inter- IW(X=X))  dW(X—Xo)
particle interactiorlJ(¢; - ¢,), even in cases when the prob- JIX - 9%o
lem might be impossible to solve exactly. The answer seems
to be positive and makes full use of the operator formswhich if used in(8.7) leads to
(6.1)—(6.4); but before we demonstrate this, let us first di- " e
gress and discuss the corresponding one-particle problem. a e|>_| QJ X () (X) q fdx AX) [T

(8.10

This is not entirely equivalent to our charged mixture, as we dXg  mcL

will see (since electric and probability currents now differ (8.11)
only by a global charge factprbut it will set a large part of

the logic that needs to be followed. (It should be noted that use (8.10) in (8.8) simply leads to

We first consider, therefore, a single parti¢té chargeq  (8.9), showing the self-consistency of the argumefiqua-
and massn) moving along a ring of circumferende=27R  tion (8.11) gives the global current for any instantaneous
(or, equivalently, in a region of sizé& in straight one- value ofx,.
dimensional space, with periodic boundary conditions im- On the other hand, afteg, is adiabatically moved around
posed and under the action of a potentld{x—xg) with xo(t)  the circle[0=<x,(t) <27]), the Berry’s phase picked up by
denoting the slowly varying parameter, but otherwise theany eigenstat@labeled by index) is

form of U being arbitrary.
The average€global) electric current when the system is o 2m 2m A4
9eglona) Y fﬂgdxo v >:iJ dxof ax ¥ (0
%o 0 0 %o
i AV (x) . V(X (8.12
(3o = 2k f dx{«wx)T - (x)—]

in stateW(x) [essentially7.5)] is

2mL X Comparison 0{8.11) and(8.12 immediately gives
9 f 2
-— | d v , 8.6
[ Aol (8.6 - —35 e + 1o droAC), (813
where integrations are along the regian(or around the  which is a first important result. This can be simplified fur-
ring). This can be further simplified into ther if we make the choicéA(x)|=d/27R (with & some

. Aharonov-Bohm flux threading the ripngnd if we note that
inq a\lf(x) q° 5 (Je) is expected to be independent of the instantaneous value
(Jai) = mL (=== cL dx AT I, of X,. This is true because direct evaluation @fdxo){(Je), in
8.7 combination with(8.10) and after integration by parts, yields

_ kg

as is easily seen with integration by parts and the vanishing —< o) = (\If( )(92\1, ) - )aZ\y(X))
of [W(x)]? at the end pointgsingle-valuedness of¥|?). 9% “amL
Equivalently, one could use the requirement of reality of mo- (8.14

mentum(W¥|p|¥) (as the momentum operator is self-adjoint ) o
in a ring), that also leads to which is zero due to the expected reality of kinetic endrgy

the self-adjointness of operatpf).
deqf( )‘W ¥ _ jdX\P( )N(X). 8.9

The independence df,) of X, turns(8.13) into
(We place emphasis on this, since a similar argument of self-
adjointness will also be used below for kinetic energy leadwith A=#2/mR, a result that is the analog (8.5), the fac-
ing to interesting consequencellow a key observation can  tor of 2 difference being due to the single-particle system. It
be made about any eigenfunctioh(x): since the natural should be reemphasized th@15) is valid independent of
variable is (x—Xg) (position measured with respect to the the interaction potential. Before we return to our two-particle
potential center we expect that eigenfunctions will depend problem, we should note that properties sucli@3) seem
on parameterx, only in the form ¥(x-X,), a statement to be generalizable to higher dimensionality, to relations of
equivalent to the fact that any normalization constant will bethe form (for a two-dimensional system of ar&with r,
independent ok, hamely being the adiabatic parameter moving in a closed )path

a®
Yn= A <‘]el> 27— e d, (8.19
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relation to the probability current, although this conclusion
= _jg dfp - (Je) + § dfp-(A()) (816  will be generalized further to a non-neutral system at the end.

First, operator6.4) with the choiceA(¢)=(P/27R)¢ and
and this leads to interesting properties concerning twouse of(6.1) takes the form
dimensional quantal behavior in an external magnetic feld.
Similar forms appear for the three-dimensional analog. - (@) =— E (
After this digression let us go back to our system of two™® 2R G
particles but with an arbitrary interparticle interaction poten-
tial. We introduce again the angular adiabatic paramgjéy (8.17)

in U(e1— @~ ¢o(t)) which is now varied in the “relative with the understanding that it points to t@edirection, and
circle” [0= ¢o(t) <27] and study the possible connection of for our system we setj;=-q,=¢. Taking the expectation
the Berry's phase picked up by any eigenstate with somealue of (8.17) with respect to any eigenstate of this two-
average current. We will here find that, for a neutral systemparticle system, butithoutcarrying out the integration with
the connection involves only the electric current and has n@espect top; or ¢,, leads to the local electric current

hg- @

P - )+ dp- sol)—)—KRgp(j

_ IV (¢1,02)
" 2 5(90-%)‘1’(901,902)(9—;2 he? @
Jol(@) = ——= | deyd : ' -———p(9). 8.18
el(a 2 sz P1 (PZE qi - . IV (@1, ) meR(I)OP(a ( )
-de-¢)¥ (<P1,<P2)—a
bi
|
An eventual integration with respect tp will lead to the d 19 K d 19 J 8.22
. B A _
average(%lrokzib ele.ctrlc cgrrent[s_ee (7._7)], namely (Jg) s 2(9(1) ie dgy 200, de
=(1/2m) [§7dede(¢); the integration will set all delta-
functions to unity giving the result which, for our neutral system, will cancel all derivatives in
(8.21) with respect tod,, leaving the form
i% i IV (@1, ¢0)
J >=—f deyde Q-<‘I’(<p ) i IV (p,®
el Jp—— 1 2i=1 i 1, P2 J @ (o) = _Inq fd(Pf dd, N (0,®,) (‘P(P o

. Y (e, P @
-V (<P1a<P2)(9 (1 902)) - —(p), (8.19 ﬁqz d

I meR @, - ———(p). (8.23

where (p)=(1/2m) [3"dep(¢), which is quite generally ex-
pected to bép)=2/27R. By following then a similar line of
approach as in the digression, we use

If we finally consider the adiabatic motion of parameggr
the dependencén the new variablesof the potential is
U(e—¢p) and of the two-particle wave functions ¥ (¢

IV (01, 00) - ¢g, D), which allows the important substitution
f drdea W (1, 02) ——
¢ IV (e~ oo _ V(e 0o, Po) (8.24
" IV (@1, ¢p) Je J @o '
= | dedp, W (Q%‘Pz)a— (8.20
@i to yield
(essentially due to the single-valuednes$¥if with respect i o PR
to eachg; and an integration by pait$o bring (8.19) to the (Jop) = 179 f dgof dq)c(“’*(@,q)c)ﬂ)
form 0 d o
_ if V(1,02 - ﬁ_qg 8.2
<Je|>——mf d<P1d<Pz<0|‘1’ (<P1,<P2)T mdQ(I)O<p>’ (8.29
. IV (@1, ¢5) ho® @ a result that gives the global electric current for any instan-
- q¥ (o1, ¢2) P meRCPTo<p>' (8.2)  taneous value ofp,. On the other hand, aftep, is varied

around the relative circle, the Berry’s phase picked up by the
Now, the important step is to change to center of mass antivo-particle wave functioridenoted again by symbal) will
relative variableg2.2), namely be
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2 2w 2m . ) '(I)c N4 y ¥e
7n=iJ d%f d¢f d¢c\P<¢,q>c>%‘;) @=- szd*Dfd‘I’(“’(‘”’ T a(i )>
0 -2 0
826 _Mql_wg
o (I)0<p> (8.32

and direct comparison wit(8.25 leads to _ ) )
so that the first term of8.31) can be immediately connected

71_mRz gmR to (J).
f deo(Je + —— o deo(py. (8.27) The second term ai8.31) can then be connected with the
€ %o Berry’'s phase(8.26) if the important substitutior{8.24) is

o _ o made. The final result of all this has the form
This is a first important result that can be simplified further

if we again note thatJ,) is expected to be independent B 2mmR Zﬂd 1 — 2mmR(qy +qp) (2™ ]
of ¢y This can again be shown by direct evaluation of Vn_ﬁ(ql_qz) o Po(Jep fi(0y - Op) deo(J)
(91 dpp){Jep that yields .
2nRqq, P f "
- deo(p) (8.33
< )= lﬁq Jd qu’< Al q,ﬁz_\lf) elg - ) Py OV
dgp mRe) 7 J ¢ 9 ¢

provided, of course, thaty;#q,. In the special case
(8.28  ,=-0g,=q, this recoverg8.27) for a neutral system.

Two major comments should be made on the above gen-
which can be taken as zero since the relative kinetic energgralization. First, the probability current does not appear in
is real. This independence @J) of ¢ turns(8.27) into any way if the system is neutral. Second, the aasey, [not

covered by(8.33)], which is actually the most common case
q® of a single-component syste(ne., of identical particlesin
= _<‘Jel> 2m oo (8.29  many-body treatments of charged particles, does not lead to
0 any connection of the Berry’s phase with eitkdf or (Jg).

: The reason is that, for; =05, the second term of8.3)) is
an exact general property in agreement wWitb) that was . o L2 :
earlier derived for ou-function potentialwith g=e). [To missing, the derivativeg/de are therefore entirely absent

derive (8.29 we used thatp)=2/27R ] [from both (8.31) and (8.32] and the important property

A better understanding of the above properties can be ac- 8.24) does not have any role whatsoever, so that no connec-
9 prop ion can be made between either of the currents and the Ber-
quired if we briefly mention a generalization to an arbitrary

. -~ 7ry's phase(8.26).
e of sargess and s I auch case, e probabiNy ™ inough general retations such 4839, connecing
> y ' geometric phases with controllable physical quantities, such
The analog 018.21) is now

as currents, could be useful in the design of qubits based on
two-particle nanorings, a further generalization to arbitrary

T =- ify fd%J dwz(qlw*(¢1,¢2)aw(¢l’¢2) interacting mixtures of N particles would be important as a
2mmR d @1 general constraint on many-body treatments of relevant sys-
+ 0 (o1 00) IV (p1, @) ) B f(qf + 0) g(p), tems.
J (2] meR CDO
(8.30 IX. CONCLUSIONS

In the present work the simplest model problem of an
interacting quantal charged mixture moving in a doubly con-
nected space and in the presence of an Aharonov-Bohm flux
Q) = lﬁ(Ql Q2) dd| W' ) 228 Do) IV (&) was exactly solved, revealing some interesting properties
el ¢ Dc P, that seem to have a higher generality. These properties, to-
gether with all other results derived in this paper, are exact

——(q,-q )J d<Pf dD I (o, B) —2—¢ ‘I'(‘P’ o and were determined in closed analytical forms. They might,

2m mR2 e e therefore, be useful in advancing possible effective two-

WP+ @ particle descriptions of more complicated many-body sys-

M —(p). (8.31)  tems in Aharonov-Bohm settings.

meR &g The model problem consisted initially of a neutral system

of two interacting charged particles moving in a one-

We note the extra appearance of the first term, which is acdimensional ring, threaded by a magnetic flux, and with a
tually related to the global probability currefd). Indeed, contact interaction. The energy spectrum and the associated
direct use of(6.3) and transformation to the new variables eigenstates were exactly determined and analytical criteria
yields for transitions from excited to bound states were given and

which in new variables reads
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compared with earlier literature on many-body interactingmiliar Aharonov-Bohm phase factef'¢ that connects corre-
mixtures. A closer investigation of measurable quantities angponding problems in a ring, with vanishing and nonvanish-
their single-valuedness led to states with broken symmetring magnetic flux. Then, by following the usual matching
and to a new band-mode structure with possible experimerprocedure, we first choose an arbitrary(within the interval

tal consequences in exciton physics. Probability and electri¢-, 7r]) treating it as a constant, and soli&2) for ¢ # ¢’,

(persistent currents were also analytically determined for 55 5 homogeneous Helmholtz equationéjj:o). Then, after

this interacting quantal mixture and some of their interesting, o go back to the original Green’s function we obtain
properties were revealed. In particular, the exact form of per-

sistent currents enabled us to make an investigation of their ~ Gg(¢,¢') =ad™®Be+pd B for o> (A3)
behavior with respect to combined variations of several pa-

rameters such as the energy, interaction strength, size of ynd

ring, magnetic flux, symmetry breaking parameter, a_md pair GL((P'QDI):Cé(f+\§)<p+dé(f—\§)go for o< ¢, (Ad)
angular momentum. We compared these results with exact

theorems on persistent currents, such as a rigorous uppethere the four coefficients can be determined by four con-
bound known in the literature and also with the noninteractditions: two of them are the boundary conditio&l)

ing behavior, where an interesting crossover was found fo(whereGg andGf;, must be used fop=m andG_ andG, for
attractive interaction and sufficiently small rings. Finally, a ¢=-), and another two results from matching the functions
cyclic adiabatic process on the interaction potential centeGg andG,, as ¢ approaches’ from right and left, respec-
was identified that led to a geomet(Berry’s) phase directly tively. An integration of(2.10 along a small interval that
linked to the electrigpersistentcurrents, with no relation to containse’ provides these two matching conditions that are
the probability currents for a neutral system. It was showras follows: the continuity o6 when¢— ¢’, or equivalently
how these results can be generalized to systems of higher , .,
dimensionality, as well as tc(‘;J non-neutral mi>¥tures, in whi%h CGrle".¢") =Gile".¢"), (A5)
case the geometric phase is directly connected to both typeghd a discontinuity in the first derivative that is given by

of currents. The link to the probability current was shown 5 5

always to appear only through _the total charg_e of t_he system 2 Grle¢) - 2 GUe ) =1. (A6)
(and it disappears under conditions of neutralifyhe link of de ogl 0O P

the geometric phase to either current was shown not to ap-

pear for systems of a single charged component, the charabinposition then of(Al), (A5), and(A6) on (A3) and (A4)

ter of a mixture hence being crucial for the properties retesults in the final forn(3.8) used in Sec. IIl.

vealed in this work. Such properties may possibly find useful APPENDIX B

application not only to exciton physics but also to the field of

fault tolerant quantum computation. Moreover, possible gen- A series method is presented here, alternative to the
eralization to an arbitrary charged quantal mixture of anymatching method of Sec. lll, that can be used for determin-
number of interacting components would be of obvious im-ing both the wave functions and the energy spectrum, but
portance to many-body physics, and it is an issue that isnly in the ordinary casé=nsr. Direct substitution 0f3.10

currently under investigation. into (2.9) leads to a series representation of relative eigen-
functions, namely
) N
APPENDIX A u = eRin-Te ®(0)

We here present the mathematical details associated with ~ ®(¢) = —

2my .  E-Ey-EQ

the finding of G(¢,¢’) that solves(2.10 for —7m<¢,¢’ N-ny
<, under boundary conditions that are dictated (Byr), with
namely
i (e) — A 2 (hy _ A 2
G(m,¢') = €G(- m¢"), En, = E(nl_ )%, En=n, = E(N -ny+f)
Al
d o 0 (AD (B1)
— 4 N ’
3¢G(‘P’(P) oo © 3¢G((p’¢) - that can be transformed into
Equ_atlon(2.1() can first b(_af s[npllfled by ?n |n|t.|al trf";msfor B(¢) = - D(0) JN2)e
mation, namehG(¢, ¢’')=€" ¢G(¢, ¢’), which brings it to a 27A
new and simpler equation fB, namely * e
2 \= X2 T TE ] (B2
—+B|G(e,¢")=8le—¢'). A2 M= —(f+—) —{———J
((9<P2 )(qoqo) (¢=¢") (A2) {nl ZJ N

[This can either be viewed as a transformation to the normahn exact summation result derived by contour integration,
form of (2.10) involving the Wronskiare?¢, or as the fa- namely
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1 “ dne 1 ( ei(A—\s’E)(—quW)
2my. N+ A2-B 4B\ 4\B sinm(A - \B)]
glA+B)(-pzm)]
- = . —. [l (Bg)
4B sinm(A +\B)]
with the upper signs holding fap=0 and the lower forp

PHYSICAL REVIEW B 70, 235327(2004)

sin27\B] _2A\B
cog2xf + wN] - cos{27r\f§] U

(B5)

This condition is shown in Sec. IV to be indeed equivalent to
the energy spectrum conditiad.3) in the case of ordinary
states.

=<0, can then be used to give all relative states in closed

form. This is actually done in Sec. }see Eq.(5.2)]. Even

before determining the states, however, one can immediately

derive the energy spectrum by considering the lignit-0 in
(B2). In this limit the sum(B3) yields

©

1ls_ 1
2m . (N+A)?-B

= #{COI[TF(A ~B)]-colm(A +\B)]}
4\B

1 sin2m/B]
=-—F =, (B4)
2VBcog2#f + wN] - cog2m\VB]

which in combination with(B2), with

N E N?
A=- f+5, B=—-—

and after cancellation of the common factb(0), leads to

APPENDIX C

We present here analytical expressions of various measur-
able quantities with the use of variablds and ¢ (and their
combined variation shown in Fig.)2that are essential for
the arguments of Sec. VI. In particular, frai$.6) and trans-
formation to the new variables, the probability density takes
the form

2

— @

\I} - =
C(‘P 2)

4
qfc(‘P"' E)

when integration with respect t®. is carried out first, or
equivalently

1
ple) = R de|P(e)|?

27

1 2m—¢@ 5
+ — do|d
FJ—? oD (g)|

2

(CY

2 ((el)tm o o
ple)=1o f dD | W (D) T|P(2¢ = 20 + [D(2D, - 2¢)|*] (C2
@l2
when integration with respect tp is performed first. Similarly, for the probability current density we obtain
[ — @ — @
. = IV |leo— = IV lo—= ) —
i (¢ _ °< 2) *<_ (p) C( 2) in (¢ <_
o)=—— do|® Z\P( ——)——\If - + do|W¥
(@) =2 . ‘P| (QD)| c| ¢ 2 (_ (P) c\ ¢ 2 (_ (P) =2 o @ Fec|l P
le—= Ne—= ¢
2 2
2 * i 2 2 *
¢ (e . (7<1)(<P)} N (_ cp> { IV (g) . 0<I>(<P)}
- Dlo)—— - (o9— |- —= do|Vleo+= Dlo)———-D (¢)——
2) [ (@) e (¢) e omie) ¢ Vel @+ (o) P (@) e
y — — @
— IV \o+— IV o+
L L ‘1’<_+£> C(¢ 2>"‘1’*(+£) C((P 2) - L odd (c3)
amR ) _ eI o\ ® _ P75 _ mR®, e ’
d go+§ d (p+§

or equivalently,
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in (@27 _ JV(DY) . aW (D) |
Jo)=—— dd [|®(2¢ - 20,2 + |[® (2D, - 20)|4]| V(D) ——F - V(P )—=—L
(Q_Dj ZmRZJEZ c[| ( [ c)| | ( c a| ] c( c) (9(1)0 c( c) &q)c
i (@27 _ ID (20— 20 . ID(20 - 20,) |
L dD W (D)2 @(2@-2@&#-@ (2¢—2¢C)y
mR J 5, d(2¢-2d,) d(2¢-2d,) |
T oD (2d,. -2 . IDRD,-20)| K @
_ d®c|q’c(q)c)|2 (D(Z(Dc_za(—ca_q) (Zq)c_za(—ca ___@,
mR J 920, - 2¢) d(2d.-2¢) | MRD, e

(C4)

and similar formgbut with a different structure of sighsesult forpg andJg [See in particular Eq6.27)]. Such expressions
lead to the possibility of symmetry breaking as discussed in the text.
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