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Effect of spin-orbit interaction on the plasma excitations in a quantum wire
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Incorporating the spin-orbit interaction into the Hamiltonian of a quantum wire, we have calculated the
plasma excitation energies. We include both the Rashba (i®rocoupling arising from the asymmetry of the
heterostructure forming the two-dimensional electron gas, an@ tbeupling due to the quantum wire con-
finement which we model with a harmonic potential. Tdheoupling lifts the degeneracy of the spin states and
the B coupling causes the quantized transverse single-particle energy to have negative dispersion. Our model
yields several interesting features which may be observed with the use of inelastic light scattering and electron
energy loss spectroscog£ELS). The collective excitations for the quantum wire are determined by the
allowed transitions between subbands. The collective plasma excitations split off from each branch of allowed
particle-hole modes. The subband structure gives rise to a plasmon mode with a negative group velocity.
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I. INTRODUCTION ment, both the modulation strength and areal electron density
ng can be changed by varying,. For small negative values
Recently, one-dimensionglD) electronic system&ES's),  of V,, the experiments should show a decrease in the excita-
i.e., quantum wires, have been fabricated from originallytion energy due to a decreasemgfin the 2D regime.
two-dimensional2D) ES’s, e.g., GaAs/AlGa,As hetero- The main results of this paper are as follows. In our cal-
structures, by techniques involving deep mesa etchig. culated results, we chose a Fermi eneBgyfor which only
Whenever the length scales of lateral confinement and the d@e |owest subband is occupied &0 K. In the model,
Broglie wavelength are comparable, there is lateral quantiza;armonic confinement is assumed in the transverse direction
tion (LQ) which in turn gives rise to a set of discrete 1D ¢, the infinitely long wire. We show explicitly how the SO
subbands for the_ free eIecFron motlon.alc_)ng the V\ﬂrés. coupling affects both the plasmon modes and single-particle
When a perpgndlpular ambient magngtlc leIds applied, excitations(SPE’9, arising from transitions from the ground
Landau qhuant|z;5\tlon "’?”d lateral quantization are coupled tgubband. The SPE’s consist of branches corresponding to the
On?namthzsfgntoggpglrsagtsetul@ tﬁ;gﬁg;ﬁiﬁ?ﬁé@) spin being flipped or remain unchanged during an intrasub-
! Pand or intersubband transition from below to ab&¢eThe

coupling in a quantum wire in the absence of an externa

magnetic field. We include the contributions to the SO inter-COUlomb inteéraction causes a plasmon excitation to split off

action from the Rashba efféct? due to the asymmetry of from the partigle—hole SPE modes.lln addition, we show that
the quantum well from which the quantum wire is fabricated-@ndau damping plays a key role in the allowed transitions
as well as a contribution from the lateral confinement, firsgcontributing to the plasma modes. When there is no SO in-
pointed out by Moroz and Barné3Both the single-particle teraction present in the quantum wire, the lowest plasmon
properties, such as the electron energy levels, Fermi energgfises from transitions from the ground subband to excited
level occupation number, as well as the collective excitationstates whose band edges are determined by the transverse
of a quantum wire are of interest. Our present formalism igguantum confinement. In the presence of SO coupling, this
suitable for interpreting and predicting experimental datamode is dramatically modified in two ways. First, it anti-
The first step is to calculate the single particle wave funccrosses with a lower intrasubband plasmon mode. Secondly,
tions and energy eigenvalues for a quantum wire system witlt has a negative group velocity for a range of values of the
parabolic confinemer® For weak Rashba coupling, we may longitudinal wave vector. We explain the anticrossing and
use perturbation theory to obtain approximate results for th@egative group velocity as being due to the lifting of the
eigenstates for such a model. Our results can be employed degeneracy of the transverse energy subbagdby the

a generalized formalism for the collective excitations of aRashba SO interaction and the dispersiorgoproduced by
multiwire array with tunneling®!® under strong or weak the SO coupling arising from the parabolic confining poten-
modulation. tial.

The motivation for the present study is due to the recent The rest of this paper is organized as follows. In Sec. I,
work of Moroz and Barné$ who reported interesting fea- we present our model Hamiltonian for the quantum wire with
tures in the conductance due to SO interactions in a quantu®O coupling and briefly derive the dispersion equation for
wire. The model for the wire corresponds to strong lateraplasma oscillations. Section Ill is devoted to numerical re-
confinement by applying a depletion gate voltagein one  sults for the plasma excitations. We conclude with some
direction between the 2D ES and grating gate. In an expericomments in Sec. IV.
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e mn RN RERRS RARES RERRE L =2/ (2m* a) andlz=%2/(2m* B). As Fig. 1 shows, the low-

10 - - est energy levels correspondingne0, 1, 2, and 3 clearly
have their degeneracy lifted on the scale shown in the plot.
L - This splitting is due to thex coupling from the Rashba SO
interaction. The splitting of thé- and |-spin energy eigen-
values is decreased as the quantum numbe#, in this
case, increases as shown in Fig. 1. For weakoupling
No/1,<<1, the energy eigenvalues are approximately given by
26 .ol BOU=KNG+20+ 1355+ 0Se o, Where o=+1, Xg
=N\oky/1 5. Also, the termde , is due solely to ther coupling

and the effect of3 coupling is to make the transverse energy
=26 n/h0~IC\S dependent on the wave vectdy.

m Clearly, in the absence af coupling, the group velocity in

0 4 8 12 ) ;6 20 24 28 they direction is negative. Also, to lowest order in perturba-
v tion theory, we haveéskyyn=\/<¢(l”)|P_|¢>(T”)><¢%”)|P+|¢(l”)>,
FIG. 1. The transverse energy eigenvalags2e, o/AQ-K\G  with P,(ky)=(No/l,)(cd/dX+k/\o). We have introduced har-

as a function ok \q for \o/1,=0.1 and\y/15=0.1. The degeneracy monic oscillator wave functions
of the T- and |-spin levels is is lifted for finitek, by the Rashba SO

©
|

o = N W A~ OO N ®©

term in the Hamiltonian in Eq(1). d’(ﬂ)(x) = (D(Tq)(x)|>\o/|a=0
1 _ - 2 _1
Il. MATHEMATICAL FORMULATION OF THE PROBLEM = - T e (U2[X = (1/2)Xg] Hn<X = —Xﬂ>. (2)
N !

In this section, we derive the dispersion relation for
plasma oscillations when spin-orbit interactions are present
in a quantum wire located in they plane. We also restrict
ourselves to a model in which electrons with effective mas
m* are confined by a parabolic potentifin* Q%2 in the x
direction. The effective mass Hamiltonian for an infinitely
long wire in they direction is

With the use of standard many-body thedtyhe disper-
Ssion relation for plasmons can be obtained in the random-
phase approximatiotRPA). If the quantum wire is embed-
ded in a medium with effective background dielectric
constante,, then the in-plane Fourier transform of the in-
duced electrostatic potentig satisfies Poisson’s equation

2 which may be written as

H_

m* o, BX . .
=om 7QZX2+ %(a' X P+ —(0XP)y (1)

i No F# L\

o . . <Ez - qH ) (P(QIle; w) = 6(Z)P(q||’w)! (3)
wherep is the momentum operator awad={oy, 0y, 0} is the
vector of Pauli spin matrices. The spin-orbit interaction in ) _
Eq. (1) has two contributions. One of them arises from thewhereg, is the in-plane wave vector and
asymmetrryigrlzof the quantum well, i.e., the Rashba Ao
mechanis and is described by the term involving the _ a7 A ro
parameteg. The value of dependgon the mater%é‘rlga?]d P(a,©) = eSLy2 2 2 (k. ofpulky = gy’ o)
lies within the rangé1—12 x 1071° eV cm. The second con-
tribution to the SO interaction arises as a result of the para- X F(aky = ay,n";ky,n), (4)
bolic confining potential. This is given by the last term in Eq.
(1) with No=(2/m* Q)Y a characteristic length ang a  With e;=4mee, and the form factor integral is defined by
SO-coupling parameter introduced by Moroz and Bafdes, .
who estimated3 to be about ten percent that af EYASN — 90T ro

Determininggthe eigenfunctioﬂ%:\lf(r) and eigenvalues F(algn"sky,n) = f_w AXETHD (X kg, ") (X, ko)

e of the Schrédinger equaticgRW(r)=€V(r) is the natural . )
first step in our calculations. These calculations have been + @) (X, k)P (X Ky, )] (5)
discussed in detail in Ref. 13. The wave functioh . ) .
={W,(r)¥,(r)} is a two-component spinor where the eigen-The matrix element of the perturbed density mafrjxis
solutions may be expressed aEU(r):(e‘kyV/\e'E,)d)U(X)
since the Hamiltoniaigl) is translationally invariant in thg

Ky nn' o0

f( na')_f( /n'u")
eo'fky,, L€k,

~ ! ! I\ —
direction. In this notationl, is a normalization lengthX (k. alpilign’,o’) = ho+ € o = €gna
=x/\q is a dimensionless coordinate, akds a wave vector o -
parallel to the wire direction. X (ky,n[@lky,n",0"), (6)

In Fig. 1, we have plotted the dimensionless transverse
energy eigenvalues, i.es,=2¢/ (7iQ) - K\, as a function of  where f(e) is the Fermi-Dirac distribution function. The
kAo, for Ao/l,=0.1 and \y/lz=0.1. In this notation,l,  continuity of the induced potential and the discontinuity of
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FIG. 2. For =0 and g=0, the normalized frequencies FIG. 3. Fora=0 andB=0, the form factor is plotted as a func-

=2w/Q) of the plasmon excitations and particle hole modes argjgn of Ky\o.
plotted as a function ofj\,. The values form*, e, and Er are
given in the text. The shaded regions denote the single-particle e

citations giving rise to Landau damping. hese regions show where the plasmon, a coherent mode,

has Landau damping corresponding to the transfer of energy
: o . ) to a SPE. In the SPE region, the imaginary part of the dielec-
its derivative az=0 together yieldp(q),z; ) as the solution i function is nonzero. However, not all intersubband
of Eq. (3) with ©(q;,z=0;w)=-P(q;, w)/2q,. Making use of  gingle-particle transitions contribute to Landau damping as
this result in Eqs(4) and(6), we obtain the following equa- seen in Fig. 2. This is determined by the form factors in the
tion for determining the induced electrostatic potential withinyesponse function. The=0— n’=2, 3 single-particle transi-

the z=0 plane: tions do not contribute to Landau damping. The collective
2me? 1 plasmon branch in Fig. 2 is due to transitions from the

®(0x,Qy; ) + =>> I, o (ay, Ky 0)F(ay: Ky ground subband below the Fermi energy to above and can be

€0y Ly ky nn’ better understood by examining the response function

0 AR L A
. _ . ~ _ X"(0x,0y; w) in the long wavelength limit. Setting,=0, it is
~ Gy’ iky, m? F* (kaky = ayn' sk, me(kaay ), (7) 3 simple matter to show that

where the polarization function is given by 1
X200y = 050) |\ g1 =0= = L_Z > folé,n=0)
fO(E ,n,a) - fo(e —q ,n’,(r’) YKy n'=0
Mo (Gkyi ) = 3 — = AT (@ "
oo w €ky—qy,n"g-/ ka,n,(r X |F(qx;ky,nl ;ky,n — 0)|2_2—4n’2’ (9)
w2 —

The plasma modes correspond to the nontrivial solutions of
Eq. (7). We now present numerical results for the plasmonsvhereg, , are degenerate energy eigenvalues in the absence
and the single-particle excitations. of SO coupling. Clearly the’ =0 term does not contribute to
the response function and only intersubband transitions could
give rise to a collective mode of finite frequency in the long
wavelength limit. The intersubband transitiomns0—n’'=2
and n=0—n’=3 also do not contribute to the collective
Since our aim is to understand the effect of spin-orbitplasma oscillation. This is the case for éfyas long as only
interaction on the charge density excitations in a quantunthe ground subband is occupied. This is because the form
wire, we plot in Fig. 2 the dispersion relation &0 K in  factor F(q,;k,—qy,n";k,,n)=0 for =0 and =0 for the
the absence of either spin-orkitor S coupling. Scaling all  transitionsn=0—n’=2,3. In therange of energies where
energies in units ofi()/2, we chose the Fermi enerd  the single-particle transitions have no Landau damping, we
=2(h€/2) which corresponds to only the lowest degenerateobtain a solution of the dispersion equation corresponding to
subband being occupied. On this energy scale, the transverae undamped collective plasma excitation. This result is
energy levels occur atr-1, wheren=0,1,2,3,.... In the stimulating in itself but we now discuss what effect the SO
long wavelength limigyA — O, the excitation energies corre- coupling has on these particle-hole modes and collective ex-
spond to transitions between the transverse energy levels citations.
=2w/Q=2|n-n’|, wheren andn’ are zero or a positive In Fig. 3, we plot the form factor as a function kg, for
integer. For our choice dE, the boundaries of the particle- \o/l,=0.1 and\y/1;=0.1. The transitions are from the
hole mode regions are given byin2n’|+(q\o%2)gy\o. ground subbaneh=0 ton’=0, 1, 2, and 3. We chosg\,

Ill. NUMERICAL RESULTS FOR THE PLASMON
EXCITATIONS AND PARTICLE-HOLE MODES
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=0.1 andgy\,=0.5. Clearly, the intrasubband form factor is 10 - : , . |
much larger than the intersubband form factor. Of course, the __’/
wave functions®,, are normalized to unity which gives a 8
value of|F| — 2 for |k,\o|>1 whenn=n’. We will use these

results to determine how the SO coupling affects the Landau

damping of the plasmons and what additional collective ex- 6 .
citations are obtained as a result of the lifting of the spin g
degeneracy due ta coupling(see Fig. 1 N4k i

We have calculated the SPE energies when SO coupling is
present and found features which are due to hethnd 8
coupling. Settingg,=0 in the polarization function, we ob- 2 -
tain //
0 1 1 1 1 1

2 00 01 02 03 04 05 06 07
25 5 S folagnd s

y ky n,n'=0 o,0’

Xo(qxvqy =0,w)=-

><|F(q kon' -k n)|2 FIG_. 4, _The plasmon excitations and particlt_a hole mode fre-
Ty oy guenciesw, in units of (1/2, are plotted as a function of\o. The
2(n"=n)+ o'/éeky’n, - (Téeky’n SPE’s are shown as the shaded regions. The values f@rm*, ¢,
andEg are given in the text.

X .
w’-[2(n" -n)+¢o’ Sk = 0'5eky’n:|2

(10)  verse energy, on the wave vectok, arising from 3 cou-

pling. Also, comparing Figs. 2 and 4, the SPE region with
The only allowed transitions within an occupied subband areormalized frequencyw=2 in the long wavelength limit
spin-flip transitions. For transitions between subbands, thg o<1 does not give any Landau damping when there is
spin orientation could remain unchanged. The energies of thBO coupling. Since only the lowest subband is occupied for
single particle excitations fay,=0 are given by the zeros of our choice ofEg, the lowest plasmon mode corresponds to
the denominator in Eq(10), wherek, takes on a range of transitions within this subban@n=n"=0) and the higher
values withlk | <k, with k,, determined from the following modes correspond to transitions to higher subbands.
equation: In addition to intrasubband excitatiofie=n’ where the
nth 1D subband is occupigdthere are intersubband excita-
tions (n#n’ where thenth 1D subband is occupied but the
n’th 1D subband is unoccupigdlhese higher subband ex-
citations are also shown in Fig. 4. There are two plasmon

When there is no SO coupling, there is only one particle-hol@ra@nches which split off from the particle-hole mode region
mode atq,=0 for every allowed transition within a chosen nearw=8. These correspond to transitions from the ground
subband {)r between a pair of subbands. However, with subband to the@’ =4 unoccupied subband, with and without

coupling present there is a range of frequencies within eaci!® SPINS changing directions. There are also two distinct
branch of the particle-hole mode regionggt=0. particle-hole mode regions neap=8 corresponding to

In Fig. 4, we plotted our results obtained by solving Eq.Single-particle spin excitationa=0—n’'=4. The particle-
(7) at T=0 K. We chose,/l,=0.1 and\o/1,=0.1. Also, hole modes merge ag, increases. Thg plasma mode_s lie
€=13.0 andm*=0.067m,, as appropriate for bulk GaAs, above the parncle—hole_m_odes frpm whlch they are _spllt as a
wherem, is the bare electron mass afg/[ £Q/2)]=2.0. result of the electrostatic interaction. At higher density, there

For this choice of, only the ground subband is occupied at &€ €dge-state excitatioa#n’ where bothn andn’ 1D

T=0 K. We also set\o=0.1 andi,=10.0as, Whereag is  Subbands are occupied

the Bohr radius. We show both the particle-hole mode re-

gions wherg I__andau damping occurs and the undamped IV. CONCLUDING REMARKS

plasma excitations. Referring to the lowest two plasmon ex-

citations, there is a plasmon branch lying just above the In conclusion, our model for a quantum wire in conjunc-
particle-hole mode region and another whose separation ion with the RPA has successfully demonstrated some new
much larger. This latter mode is the plasmon in Fig. 2 that ieatures in the plasma excitation spectrum and SPE region
modified by the SO coupling. In the long wavelength limit, due to SO coupling. Comparing Fig. 2 with Fig. 4, both the
the depolarization shift for each mode initially decreases aSPE's and plasmon modes are affected by the SO coupling.
ay is increased. As a matter of fact, the energy of the secon@ur calculations yield plasmon branches which can be iden-
highest plasmon decreases as the wave vegtisrincreased tified with intrasubband and intersubband transitions in the
and eventually anticrosses with the lowest plasmon moderesence of SO coupling within a quantum wire. The plas-
The negative dispersion for the second highest plasmomons may be observed in inelastic light scattefingnd
branch in the long wavelength limit is a new feature notelectron energy loss spectroscoBELS)?1-2° experiments,
present in Fig. 2 and is due to the dependence of the trangs was recently done for carbon nanotubes. A theoretical for-

Er

2 2 1 k(rn)\(z) 2
502 k(,n)\0+2n+1—4—1 . +ode n. (11)

B
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