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Incorporating the spin-orbit interaction into the Hamiltonian of a quantum wire, we have calculated the
plasma excitation energies. We include both the Rashba term(a coupling) arising from the asymmetry of the
heterostructure forming the two-dimensional electron gas, and theb coupling due to the quantum wire con-
finement which we model with a harmonic potential. Thea coupling lifts the degeneracy of the spin states and
the b coupling causes the quantized transverse single-particle energy to have negative dispersion. Our model
yields several interesting features which may be observed with the use of inelastic light scattering and electron
energy loss spectroscopy(EELS). The collective excitations for the quantum wire are determined by the
allowed transitions between subbands. The collective plasma excitations split off from each branch of allowed
particle-hole modes. The subband structure gives rise to a plasmon mode with a negative group velocity.
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I. INTRODUCTION

Recently, one-dimensional(1D) electronic systems(ES’s),
i.e., quantum wires, have been fabricated from originally
two-dimensional(2D) ES’s, e.g., GaAs/AlxGa1−xAs hetero-
structures, by techniques involving deep mesa etching.1–3

Whenever the length scales of lateral confinement and the de
Broglie wavelength are comparable, there is lateral quantiza-
tion (LQ) which in turn gives rise to a set of discrete 1D
subbands for the free electron motion along the wires.4–8

When a perpendicular ambient magnetic fieldB is applied,
Landau quantization and lateral quantization are coupled to
one another to form discrete 1D Landau-subbands(LS’s).

In the present paper, we study the effect of spin-orbit(SO)
coupling in a quantum wire in the absence of an external
magnetic field. We include the contributions to the SO inter-
action from the Rashba effect9–12 due to the asymmetry of
the quantum well from which the quantum wire is fabricated
as well as a contribution from the lateral confinement, first
pointed out by Moroz and Barnes.13 Both the single-particle
properties, such as the electron energy levels, Fermi energy,
level occupation number, as well as the collective excitations
of a quantum wire are of interest. Our present formalism is
suitable for interpreting and predicting experimental data.
The first step is to calculate the single particle wave func-
tions and energy eigenvalues for a quantum wire system with
parabolic confinement.13 For weak Rashba coupling, we may
use perturbation theory to obtain approximate results for the
eigenstates for such a model. Our results can be employed in
a generalized formalism for the collective excitations of a
multiwire array with tunneling14,15 under strong or weak
modulation.

The motivation for the present study is due to the recent
work of Moroz and Barnes13 who reported interesting fea-
tures in the conductance due to SO interactions in a quantum
wire. The model for the wire corresponds to strong lateral
confinement by applying a depletion gate voltageVg in one
direction between the 2D ES and grating gate. In an experi-

ment, both the modulation strength and areal electron density
n̄s can be changed by varyingVg. For small negative values
of Vg, the experiments should show a decrease in the excita-
tion energy due to a decrease ofn̄s in the 2D regime.

The main results of this paper are as follows. In our cal-
culated results, we chose a Fermi energyEF for which only
the lowest subband is occupied atT=0 K. In the model,
harmonic confinement is assumed in the transverse direction
for the infinitely long wire. We show explicitly how the SO
coupling affects both the plasmon modes and single-particle
excitations(SPE’s), arising from transitions from the ground
subband. The SPE’s consist of branches corresponding to the
spin being flipped or remain unchanged during an intrasub-
band or intersubband transition from below to aboveEF. The
Coulomb interaction causes a plasmon excitation to split off
from the particle-hole SPE modes. In addition, we show that
Landau damping plays a key role in the allowed transitions
contributing to the plasma modes. When there is no SO in-
teraction present in the quantum wire, the lowest plasmon
arises from transitions from the ground subband to excited
states whose band edges are determined by the transverse
quantum confinement. In the presence of SO coupling, this
mode is dramatically modified in two ways. First, it anti-
crosses with a lower intrasubband plasmon mode. Secondly,
it has a negative group velocity for a range of values of the
longitudinal wave vector. We explain the anticrossing and
negative group velocity as being due to the lifting of the
degeneracy of the transverse energy subbandsex by the
Rashba SO interaction and the dispersion ofex produced by
the SO coupling arising from the parabolic confining poten-
tial.

The rest of this paper is organized as follows. In Sec. II,
we present our model Hamiltonian for the quantum wire with
SO coupling and briefly derive the dispersion equation for
plasma oscillations. Section III is devoted to numerical re-
sults for the plasma excitations. We conclude with some
comments in Sec. IV.
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II. MATHEMATICAL FORMULATION OF THE PROBLEM

In this section, we derive the dispersion relation for
plasma oscillations when spin-orbit interactions are present
in a quantum wire located in thex-y plane. We also restrict
ourselves to a model in which electrons with effective mass
m* are confined by a parabolic potential1

2m* V2x2 in the x
direction. The effective mass Hamiltonian for an infinitely
long wire in they direction is

H =
p̂2

2m*
+

m*

2
V2x2 +

a

"
sŝ 3 p̂dz +

b

"

x

l0
sŝ 3 p̂dx, s1d

wherep̂ is the momentum operator andŝ=hsx,sy,szj is the
vector of Pauli spin matrices. The spin-orbit interaction in
Eq. (1) has two contributions. One of them arises from the
asymmetry of the quantum well, i.e., the Rashba
mechanism9–12 and is described by the term involving the
parametera. The value ofa depends on the material16–19and
lies within the ranges1–12d310−10 eV cm. The second con-
tribution to the SO interaction arises as a result of the para-
bolic confining potential. This is given by the last term in Eq.
(1) with l0=s" /m* Vd1/2 a characteristic length andb a
SO-coupling parameter introduced by Moroz and Barnes,13

who estimatedb to be about ten percent that ofa.
Determining the eigenfunctionsC=Csr d and eigenvalues

e of the Schrödinger equationHCsr d=eCsr d is the natural
first step in our calculations. These calculations have been
discussed in detail in Ref. 13. The wave functionC
=hC↑sr dC↓sr dj is a two-component spinor where the eigen-
solutions may be expressed asCssr d=seikyy/ÎLydFssXd
since the Hamiltonian(1) is translationally invariant in they
direction. In this notation,Ly is a normalization length,X
=x/l0 is a dimensionless coordinate, andky is a wave vector
parallel to the wire direction.

In Fig. 1, we have plotted the dimensionless transverse
energy eigenvalues, i.e.,ex=2e / s"Vd−ky

2l0
2, as a function of

kyl0, for l0/ la=0.1 and l0/ lb=0.1. In this notation,la

="2/ s2m* ad and lb="2/ s2m* bd. As Fig. 1 shows, the low-
est energy levels corresponding ton=0, 1, 2, and 3 clearly
have their degeneracy lifted on the scale shown in the plot.
This splitting is due to thea coupling from the Rashba SO
interaction. The splitting of the↑- and↓-spin energy eigen-
values is decreased as the quantum numbernù4, in this
case, increases as shown in Fig. 1. For weaka coupling
l0/ la!1, the energy eigenvalues are approximately given by
2eky,n,s /"V<ky

2l0
2+2n+1−1

4Xb
2 +sdeky,n, where s= ±1, Xb

=l0
2ky/ lb. Also, the termdeky,n is due solely to thea coupling

and the effect ofb coupling is to make the transverse energy
ex;2eky,n/"V−ky

2l0
2 dependent on the wave vectorky.

Clearly, in the absence ofa coupling, the group velocity in
the y direction is negative. Also, to lowest order in perturba-

tion theory, we haved«ky,n=Îkf↓
snduP̂−uf↑

sndlkf↑
snduP̂+uf↓

sndl,
with P̂sskyd=sl0/ ladssd/dX+kyl0d. We have introduced har-
monic oscillator wave functions

f↑↓
sndsXd ; uF↑↓

sndsXdul0/la=0

=
1

Îp1/22nn!
e−s1/2dfX 7 s1/2dXbg2HnSX 7

1

2
XbD . s2d

With the use of standard many-body theory,14 the disper-
sion relation for plasmons can be obtained in the random-
phase approximation(RPA). If the quantum wire is embed-
ded in a medium with effective background dielectric
constanteb, then the in-plane Fourier transform of the in-
duced electrostatic potentialw̃ satisfies Poisson’s equation
which may be written as

S ]2

]z2 − qi
2Dw̃sqi,z;vd = dszdPsqi,vd, s3d

whereqi is the in-plane wave vector and

Psqi,vd =
4pe

esLy
o
ky

o
n,n8

o
s,s8

kky,n,sur̂1uky − qy,n8,s8l

3 Fsqx;ky − qy,n8;ky,nd, s4d

with es=4p«0eb and the form factor integral is defined by

Fsqx;ky8,n8;ky,nd =E
−`

`

dXe−iqxxfF↑
*sX,ky8,n8dF↑sX,ky,nd

+ F↓
*sX,ky8,n8dF↓sX,ky,ndg. s5d

The matrix element of the perturbed density matrixr̂1 is

kky,n,sur̂1uky8,n8,s8l = e
f0seky,n,sd − f0seky8,n8,s8d

"v + eky8,n8,s8 − eky,n,s

3 kky,nuw̃uky8,n8,s8l, s6d

where f0sed is the Fermi-Dirac distribution function. The
continuity of the induced potential and the discontinuity of

FIG. 1. The transverse energy eigenvaluesex=2eky,n
/"V−ky

2l0
2

as a function ofkyl0 for l0/ la=0.1 andl0/ lb=0.1. The degeneracy
of the↑- and↓-spin levels is is lifted for finiteky by the Rashba SO
term in the Hamiltonian in Eq.(1).
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its derivative atz=0 together yieldw̃sqi ,z;vd as the solution
of Eq. (3) with w̃sqi ,z=0;vd=−Psqi ,vd /2qi. Making use of
this result in Eqs.(4) and(6), we obtain the following equa-
tion for determining the induced electrostatic potential within
the z=0 plane:

w̃sqx,qy;vd +
2pe2

esqi

1

Ly
o
ky

o
n,n8

Pn,n8sqy,ky;vdFsqx;ky

− qy,n8;ky,ndo
kx

F * skx;ky − qy,n8;ky,ndw̃skx,qy;vd, s7d

where the polarization function is given by

Pn,n8sqy,ky;vd = o
s,s8

f0seky,n,sd − f0seky−qy,n8,s8d

"v + eky−qy,n8,s8 − eky,n,s
. s8d

The plasma modes correspond to the nontrivial solutions of
Eq. (7). We now present numerical results for the plasmons
and the single-particle excitations.

III. NUMERICAL RESULTS FOR THE PLASMON
EXCITATIONS AND PARTICLE-HOLE MODES

Since our aim is to understand the effect of spin-orbit
interaction on the charge density excitations in a quantum
wire, we plot in Fig. 2 the dispersion relation atT=0 K in
the absence of either spin-orbita or b coupling. Scaling all
energies in units of"V /2, we chose the Fermi energyEF
=2s"V /2d which corresponds to only the lowest degenerate
subband being occupied. On this energy scale, the transverse
energy levels occur at 2n+1, wheren=0,1,2,3, . . . . In the
long wavelength limitqyl→0, the excitation energies corre-
spond to transitions between the transverse energy levelsv̄
;2v /V<2un−n8u, wheren and n8 are zero or a positive
integer. For our choice ofEF, the boundaries of the particle-
hole mode regions are given by 2un−n8u+sqyl0±2dqyl0.

These regions show where the plasmon, a coherent mode,
has Landau damping corresponding to the transfer of energy
to a SPE. In the SPE region, the imaginary part of the dielec-
tric function is nonzero. However, not all intersubband
single-particle transitions contribute to Landau damping as
seen in Fig. 2. This is determined by the form factors in the
response function. Then=0→n8=2,3 single-particle transi-
tions do not contribute to Landau damping. The collective
plasmon branch in Fig. 2 is due to transitions from the
ground subband below the Fermi energy to above and can be
better understood by examining the response function
x0sqx,qy;vd in the long wavelength limit. Settingqy=0, it is
a simple matter to show that

ux0sqx,qy = 0;vdul0/la=0 = −
1

Ly
o
ky

o
n8ù0

f0seky,n=0d

3 uFsqx;ky,n8;ky,n = 0du2
4n8

v̄2 − 4n8 2 , s9d

whereeky,n are degenerate energy eigenvalues in the absence
of SO coupling. Clearly then8=0 term does not contribute to
the response function and only intersubband transitions could
give rise to a collective mode of finite frequency in the long
wavelength limit. The intersubband transitionsn=0→n8=2
and n=0→n8=3 also do not contribute to the collective
plasma oscillation. This is the case for anyEF as long as only
the ground subband is occupied. This is because the form
factor Fsqx;ky−qy,n8 ;ky,nd=0 for a=0 and b=0 for the
transitionsn=0→n8=2,3. In therange of energies where
the single-particle transitions have no Landau damping, we
obtain a solution of the dispersion equation corresponding to
an undamped collective plasma excitation. This result is
stimulating in itself but we now discuss what effect the SO
coupling has on these particle-hole modes and collective ex-
citations.

In Fig. 3, we plot the form factor as a function ofkyl0 for
l0/ la=0.1 and l0/ lb=0.1. The transitions are from the
ground subbandn=0 to n8=0, 1, 2, and 3. We choseqxl0

FIG. 2. For a=0 and b=0, the normalized frequenciesv̄
=2v /V of the plasmon excitations and particle hole modes are
plotted as a function ofqyl0. The values form*, eb, and EF are
given in the text. The shaded regions denote the single-particle ex-
citations giving rise to Landau damping.

FIG. 3. Fora=0 andb=0, the form factor is plotted as a func-
tion of kyl0.
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=0.1 andqyl0=0.5. Clearly, the intrasubband form factor is
much larger than the intersubband form factor. Of course, the
wave functionsF↑↓ are normalized to unity which gives a
value of uFu→2 for ukyl0u@1 whenn=n8. We will use these
results to determine how the SO coupling affects the Landau
damping of the plasmons and what additional collective ex-
citations are obtained as a result of the lifting of the spin
degeneracy due toa coupling (see Fig. 1).

We have calculated the SPE energies when SO coupling is
present and found features which are due to botha and b
coupling. Settingqy=0 in the polarization function, we ob-
tain

x0sqx,qy = 0;vd = −
2

Ly
o
ky

o
n,n8ù0

o
s,s8

f0seky,n,sd

3uFsqx;ky,n8;ky,ndu2

3
2sn8 − nd + s8deky,n8 − sdeky,n

v̄2 − f2sn8 − nd + s8deky,n8 − sdeky,ng2 .

s10d

The only allowed transitions within an occupied subband are
spin-flip transitions. For transitions between subbands, the
spin orientation could remain unchanged. The energies of the
single particle excitations forqy=0 are given by the zeros of
the denominator in Eq.(10), whereky takes on a range of
values withukyuøksn with ksn determined from the following
equation:

EF

"V/2
= ksn

2 l0
2 + 2n + 1 −

1

4
Sksnl0

2

lb
D2

+ sdeksn,n. s11d

When there is no SO coupling, there is only one particle-hole
mode atqy=0 for every allowed transition within a chosen
subband or between a pair of subbands. However, witha
coupling present there is a range of frequencies within each
branch of the particle-hole mode region atqy=0.

In Fig. 4, we plotted our results obtained by solving Eq.
(7) at T=0 K. We chosel0/ la=0.1 andl0/ lb=0.1. Also,
eb=13.0 andm* =0.067me, as appropriate for bulk GaAs,
whereme is the bare electron mass andEF / fs"V /2dg=2.0.
For this choice ofEF, only the ground subband is occupied at
T=0 K. We also setqxl0=0.1 andl0=10.0aB, whereaB is
the Bohr radius. We show both the particle-hole mode re-
gions where Landau damping occurs and the undamped
plasma excitations. Referring to the lowest two plasmon ex-
citations, there is a plasmon branch lying just above the
particle-hole mode region and another whose separation is
much larger. This latter mode is the plasmon in Fig. 2 that is
modified by the SO coupling. In the long wavelength limit,
the depolarization shift for each mode initially decreases as
qy is increased. As a matter of fact, the energy of the second
highest plasmon decreases as the wave vectorqy is increased
and eventually anticrosses with the lowest plasmon mode.
The negative dispersion for the second highest plasmon
branch in the long wavelength limit is a new feature not
present in Fig. 2 and is due to the dependence of the trans-

verse energyex on the wave vectorky arising fromb cou-
pling. Also, comparing Figs. 2 and 4, the SPE region with
normalized frequencyv̄<2 in the long wavelength limit
qyl0!1 does not give any Landau damping when there is
SO coupling. Since only the lowest subband is occupied for
our choice ofEF, the lowest plasmon mode corresponds to
transitions within this subbandsn=n8=0d and the higher
modes correspond to transitions to higher subbands.

In addition to intrasubband excitationssn=n8 where the
nth 1D subband is occupied), there are intersubband excita-
tions (nÞn8 where thenth 1D subband is occupied but the
n8th 1D subband is unoccupied). These higher subband ex-
citations are also shown in Fig. 4. There are two plasmon
branches which split off from the particle-hole mode region
nearv̄=8. These correspond to transitions from the ground
subband to then8=4 unoccupied subband, with and without
the spins changing directions. There are also two distinct
particle-hole mode regions nearv̄=8 corresponding to
single-particle spin excitationsn=0→n8=4. The particle-
hole modes merge asqy increases. The plasma modes lie
above the particle-hole modes from which they are split as a
result of the electrostatic interaction. At higher density, there
are edge-state excitations(nÞn8 where bothn and n8 1D
subbands are occupied).

IV. CONCLUDING REMARKS

In conclusion, our model for a quantum wire in conjunc-
tion with the RPA has successfully demonstrated some new
features in the plasma excitation spectrum and SPE region
due to SO coupling. Comparing Fig. 2 with Fig. 4, both the
SPE’s and plasmon modes are affected by the SO coupling.
Our calculations yield plasmon branches which can be iden-
tified with intrasubband and intersubband transitions in the
presence of SO coupling within a quantum wire. The plas-
mons may be observed in inelastic light scattering20 and
electron energy loss spectroscopy(EELS)21–25 experiments,
as was recently done for carbon nanotubes. A theoretical for-

FIG. 4. The plasmon excitations and particle hole mode fre-
quenciesv, in units ofV /2, are plotted as a function ofqyl0. The
SPE’s are shown as the shaded regions. The values fora, b, m*, eb,
andEF are given in the text.
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mulation of EELS for quantum wires can be obtained in
terms of the inverse dielectric function. The contribution to
EELS from the SPE’s and plasmons can be determined and
the results compared with experiment. Our results were ob-
tained for chosen material parameters and transverse wave
vector qx. However, our analysis of the excitation spectrum
should not be affected for a different set of values.
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