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The Singwi-Sjölander-Tosi-Land(SSTL) approach is generalized to study the spin-correlation effects in a
one-dimensional(1D) electron gas. It is shown that the SSTL approach yields different and interesting results
compared with the more widely used Singwi-Tosi-Land-Sjölander(STLS) approach. We find out that the
self-consistent field approaches, STLS and SSTL, predict a Bloch transition for 1D electron-gas systems at low
electron densities.
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I. INTRODUCTION

The Singwi-Tosi-Land-Sjölander(STLS) approach1 is a
powerful theoretical tool in going beyond the random-phase
approximation(RPA) in studying the short-range correlation
effects of an interacting electron gas. It was originally devel-
oped for three-dimensional(3D) electron gas. In the STLS
approach the short-range correlation effects are described by
a local-field correction in the density response function. The
STLS approach is later applied to the two-dimensional
(2D)2–4 and one-dimensional(1D)5–7 electron-gas systems
with long-range Coulomb or short-range interactions. The
STLS approach gives correct pair-correlation function, but it
fails to satisfy the compressibility sum rule.

The Lobo-Singwi-Tosi(LST) approach,8 on the other
hand, was originally developed to calculate the spin-
correlation effects in the 3D interacting electron gas. Al-
though the calculated spin susceptibility is not in agreement
with experiment, the LST approach is applied to the 2D9–11

and 1D12,13 electron-gas problems.
In this paper, we study the validity of another attempt to

go beyond RPA, the Singwi-Sjölander-Tosi-Land(SSTL)
approach.14,15 It was proposed as an improvement over the
STLS approach to better take into account the compressibil-
ity sum rule. This sum rule requires that the compressibility
computed via the ground-state energy and the long-
wavelength limit of the static dielectric function of the sys-
tem be the same. The compressibility sum rule thus requires
that at long wavelengths the exact screened density response
function, and hence the local-field correction, is determined
by the isothermal compressibility. For a review of the STLS,
SSTL, and LST approaches see Ref. 16. It is curious that,
although it is not very widely used, the SSTL approach was
not investigated before for a low-dimensional electron-gas
problem. It is therefore of interest to study the SSTL ap-
proach, to investigate its range of validity, and to compare its
results with the very widely used STLS approach. This is
done in our recent work17 for density correlations in a 1D
electron gas. In that work, we showed that the SSTL satisfies
the compressibility sum rule better than the STLS approxi-
mation.

Our main motivation for studying the spin-correlation ef-
fects in 1D electron-gas systems is that these effects are con-
sidered to explain the so-called 0.7 structure, and may lead to
a phase transition from the paramagnetic to the ferromag-
netic state.

In some recent experiments18–22 carried with very clean
1D channels, in addition to the usual quantized conductance
plateaux, a clear plateaulike structure close to 0.7s2e2/hd has
been observed at zero magnetic field. Thomaset al.19 made
measurements with six 1D constrictions, which are fabri-
cated from 2D electron gases formed in modulation-doped
GaAs/Al0.33Ga0.67As heterostructures grown by molecular-
beam epitaxy(MBE) on a (100) semi-insulating GaAs sub-
strate, and in all of the samples investigated they observed
clean quantized conductance plateaux as well as the 0.7
structure. It is shown that the 0.7 structure observed in these
experiments is not due to transmission or resonance effects.
Moreover, the Tomanaga-Luttinger theory or a simple spin
polarization of the electron gas cannot describe the origin of
this unique structure.

Using the density-functional theory, Wang and Berggren23

solved the Kohn-Sham equation self-consistently for an infi-
nite quasi-1D channel with an in-plane magnetic field paral-
lel to the channel. The results show that full spin polarization
appears at low electron densitiess,105 cm−1d. Moreover, the
results are consistent with observations of the 0.7 structure
and its interpretation in terms of spontaneous spin polariza-
tion of the lowest subband. Obviously, whether the 0.7 struc-
ture reflects spontaneous spin polarization, or other many-
body effects, is a topic of considerable current debate. It is
therefore interesting to investigate the spin-correlation ef-
fects in a quasi-1D electron system within the SSTL approxi-
mation, which has not been done before.

The organization of the paper is as follows. In Sec. II we
present the formalism and the SSTL approach. Our results
and performance of the SSTL approach are discussed in Sec.
III.

II. FORMALISM

The ground state of a noninteracting electron gas is para-
magnetic. Therefore, the magnetic moments of the constitu-
ents are randomly distributed and their magnetic moment is
averaged to zero. If we apply a weak external magnetic field
to such a system, it will develop a paramagnetic spin mo-
ment. The response of the system to the field can be studied
via its wave-vector- and frequency-dependent paramagnetic
susceptibility function. On the other hand, in an interacting
electron system we have short-range exchange and correla-
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tion effects. In this study, we investigate these effects within
the self-consistent field approximation(SCFA) as in the case
of density-density correlations. It is assumed that the elec-
trons are embedded in a uniform positive background so that
the whole system is neutral. For ease of notation we will set
"=1 throughout this paper.

In the SCFA the wave-vector- and frequency-dependent
density and spin-density response functionsxdsq,vd and
xssq,vd, respectively, are given by

xdsq,vd =
x0sq,vd

1 − cssqdx0sq,vd
, s1d

xssq,vd = − g2mB
2 x0sq,vd
1 − casqdx0sq,vd

, s2d

wherex0sq,vd is the free-electron polarizability,cs scad is
the spin-symmetric(antisymmetric) effective potential,g is
the Landè factor, andmB is the Bohr magneton.

The system responds to the applied magnetic field through
the free particle susceptibility modified by a local-field cor-
rection. The static structure factorSsqd and magnetic struc-

ture factorS̃sqd are related to the dynamic response functions
by the fluctuation-dissipation theorem as

Ssqd = −
1

np
E

0

`

dv Imhxdsq,vdj, s3d

S̃sqd =
1

npg2mB
2E

0

`

dv Imhxssq,vdj, s4d

where n is the 1D electron-gas density. The Fermi wave
number kF is related to the linear electron density asn
=gsgnkF /p, with gs andgn as the spin and valley degeneracy,
respectively. In this paper, we takegn=1, which is the case
for GaAl/AlGaAs-based quantum wire structures. The sys-
tem is characterized by a dimensionless interaction param-
eterrs, defined as the ratio of the interelectron spacing to the
effective Bohr radius. Thers is related to the linear electron
density asrs=1/s2naB

!d, whereaB
! =e0/ se2m!d is the effective

Bohr radius with background dielectric functione0 and ef-
fective electron massm!.

In the SCFA the effective potentialscssqd and casqd are
defined as

cssqd = Vsqdf1 − Gsqdg, casqd = VsqdIsqd, s5d

whereVsqd is the 1D Fourier transform of the Coulomb po-
tential, andGsqd andIsqd are the static local-field corrections
arising from the short-range exchange and correlation effects
for the density and spin-density responses, respectively. In
the SSTL approximation they are given by

Gsqd = −
1

n
E dq8

2p

q8

q

Vsq8d
esq8dVsqd

fSsq − q8d − 1g, s6d

Isqd =
1

n
E dq8

2p

q8

q

Vsq8d
esq8dVsqd

fS̃sq − q8d − 1g, s7d

whereesqd is the static dielectric function of the electron gas,
which is related to the density response functionxdsqd as

1

esqd
= 1 +Vsqdxdsqd. s8d

In the STLS approach, the potential under the integral sign in
Eqs.(6) and (7) is not screened byesqd.

We model the 1D electron gas as obtained from the zero-
thickness 2D electron gas under a harmonic confinement
potential.24 The electrons are assumed to occupy only the
lowest subband. This model yields the Coulomb interaction
potential between electrons asVsqd=se2/e0dFsqd, where
Fsqd=expsxdK0sxd andx=b2q2/4 with b as the lateral width
of the quantum wire.

The RPA describes the dielectric properties of the electron
gas at high electron densities. In RPA the short-range corre-
lations are assumed to be absent, i.e., the local-field correc-
tion Gsqd=0. As the density of the system is lowered, the
exchange and correlation effects become important. The
Hubbard approach(HA) was developed to improve the RPA
by introducing a local-field correction which takes into ac-
count only the exchange hole around an electron. In the HA,
the local-field correction for spin correlations is given by

IHsqd = −
1

2

VsÎq2 + kF
2d

Vsqd
. s9d

The spin-symmetric and spin-antisymmetric pair-
correlation functionsgsrd and g̃srd, respectively, are related
to the static structure factor and magnetic structure factor by
a Fourier transform

gsrd = 1 +
1

2
E

0

`

dq cossqrdfSsqd − 1g, s10d

g̃srd =
1

2
E

0

`

dq cossqrdfS̃sqd − 1g. s11d

These may be written in terms of the parallel spin-pair-
correlation function g↑↑srd and antiparallel spin-pair-
correlation functiong↑↓srd as

gsrd =
1

2
fg↑↑srd + g↑↓srdg, g̃srd =

1

2
fg↑↑srd − g↑↓srdg.

s12d

The spin-dependent potentials may be obtained by combin-
ing cssqd andcasqd in the following form

c↑↑sqd = cssqd + casqd, c↑↓sqd = cssqd − casqd. s13d
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The excitation spectrumvq of the collective spin modes
are obtained by the poles of the spin susceptibility function
xssq,vd as

vq = Sv−
2 − v+

2eAsqd

1 − eAsqd D1/2

, s14d

where v±= uq2/2m!±qkF /m!u are the boundaries of the
particle-hole continuum, andAsqd=p2q/ f4rsFsqdIsqdg.

Spin-density susceptibility of the 1D electron gas in the
SCFA may be given by

xssqd =
g2mB

2rs«FdkF

q

lnUq + 2kF

q − 2kF
U

1 +
8rskF

p2q
FsqdIsqdlnUq + 2kF

q − 2kF
U ,

s15d

wherers«Fd=2m! /pkF is the density of states at the Fermi
energy in 1D electron gas. Note that the Pauli spin suscepti-
bility is xPauli=mB

2rs«Fd.25

The ground-state energy is the most important physical
property in determining the phase of a system. The ground-
state energy per particleeg of a 1D electron-gas system is
given by

FIG. 1. The magnetic structure factorS̃sqd in the SSTL(solid
line), STLS (dashed line), and Hubbard(dotted line) approxima-
tions atrs=1 for a quantum wire width ofb=2aB

!.

FIG. 2. The change of the critical density parameterrsc with
quantum wire widthb within the STLS approximation.

FIG. 3. The static structure factorSsqd for quantum wire width
b=2aB

! in the SSTL approximation atrs=0.5, 1, and 1.5.

FIG. 4. The spin-dependent pair-correlation functions(a) g↑↑srd
and (b) g↑↓srd calculated in the SSTL approximation atrs=0.5
(solid line), rs=1 (dashed line), and rs=1.5 (dotted line) for b
=2aB

!.
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«gsrsd/Ry! =
p2

12gs
2gn

2rs
2 +

1

2rsgsgn

3E
0

1

dlE
0

`

dq FsqdfSsq,ld − 1g, s16d

whereRy!=1/s2aB
!2m!d is the effective Rydberg andl is the

coupling constant. In this relation the first term is the kinetic
energy and the second term is the exchange-correlation en-
ergy of the system. Also note that here we normalized the
wave number bykF.

III. RESULTS AND DISCUSSION

The results presented in this section are obtained by solv-
ing Eqs.(1)–(4), (6), and(7) self-consistently. In Fig. 1, we

present the magnetic structure factorS̃sqd in different ap-
proaches atrs=1. It seems that the Hubbard approximation
has the most pronounced peak atq=2kF, whereas the sharp-
ness of the SSTL peak comes out to be the least. We could

not obtainS̃sqd for rs.1.8, even after 1000 iterations, within
the STLS approach. Thisrs value corresponds ton<3
3105 cm−1 for GaAl/AlGaAs-based quantum wire struc-

tures. It seems that an instability in the paramagnetic phase
sets in at this rs value, as observed in earlier STLS
studies.12,13 This unfortunately means that we are unable to
study different possible phases of the 1D electron gas as one
varies the density or equivalentlyrs. Similar instability in
S̃sqd has also been observed in 2D electron-gas systems.9–11

Moreover, for a 2D electron gas the peak appearing inS̃sqd
calculated within the HA is the highest we observe in a 1D
system. It is interesting to observe that the SSTL approach no
longer gives a peak inS̃sqd after rs=1.1. This result must be
due to the use of the screened potential in the SSTL approach
instead of the bare Coulomb interaction potential as in the
STLS.

The change of the critical interaction parameterrsc, where
the instability in the unpolarized 1D electron gas appears,
with quantum wire widthb within the STLS approach is
plotted in Fig. 2. Obviously, there is no linear relation be-
tweenrsc andb.

In contrast toS̃sqd, the static structure factorSsqd is easier
to obtain even for larger values ofrs. The Ssqd computed
within the SSTL approach for differentrs values is shown in

Fig. 3. The SSTLSsqd does not have a peak asS̃sqd, and
behaves like otherSsqd results.

FIG. 5. The(a) spin-symmetric and(b) spin-antisymmetric ef-
fective potentials in the SSTL approximation(solid line), STLS
approximation(dashed line), and HA (dotted line) at rs=1 andb
=2aB

!.
FIG. 6. The spin-dependent effective potentials in the SSTL

(solid line) and STLS(dashed line) approximations atrs=1 andb
=2aB

!.
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The spin-dependent pair-correlation functionsg↑↑srd and
g↑↓srd calculated within the SSTL approach are shown in Fig.
4 for different electron densities. We notice thatg↑↑srd has a
weak rs dependence and its value at zero separation de-
creases with increasingrs. We found that the zero separation
value of the spin-independent pair-correlation functiongsrd
becomes negative forrs.2.1.17 Sincegsrd is the probability
of finding an electron at a distancer when another electron is
located at origin, negativegs0d is a drawback of the SSTL
approach. It should also be noted that the SSTL approach
gives negative values forgs0d in 3D electron gas.14,15 Nega-
tive gs0d is the price that we have paid for satisfying the
compressibility sum rule better.

The spin-symmetric and spin-antisymmetric effective po-
tentialscssqd andcasqd, respectively, in units ofVsqd com-
puted within different approximations are shown in Fig. 5.
We notice that although the HA and STLS results are rather
similar, the SSTL result has a different behavior. The SSTL
casqd starts from a slightly positive value and, after a little
increase for smallq range, it decreases and finally reaches a
value closer to the HA result at largeq. Our STLS and HA
results are in good agreement with those of Ref. 12.

The results for the spin-dependent potentialsc↑↑sqd and
c↑↓sqd at rs=1 in SSTL and STLS approaches are compared
in Fig. 6. We find thatc↑↑sqd is less thanc↑↓sqd for the same
rs value. This is an expected result because the charge deple-
tion is more for a pair of electrons with parallel spins than
that with antiparallel spins. It is also observed thatc↑↑sqd is
slightly negative at largeq values in the SSTL. We therefore
conclude that the short-range correlations are overestimated
in the SSTL approach. According to the Pauli exclusion prin-
ciple, c↑↑sqd must tend to zero asq→`. Negativec↑↑sqd at
largeq values is also observed in the SCFA calculations done
for 2D electron gas.9

The wave-vector dependence of the paramagnon fre-
quencyvq is found by the complex poles ofxssq,vd. In Fig.
7 we presentvq at rs=1.5 computed within the SSTL and
STLS approximations for comparison. We notice that the
SSTL vq is larger than the STLS value. In both approaches
vq shows a linear behavior for smallq, as observed before.12

The static spin susceptibility of the 1D electron system in
our model is computed by using Eq.(15). In Fig. 8 we show
xssqd for rs=1 in both SSTL and STLS approaches. We no-
tice that xssqd has a singularity atq=2kF due to the free-
electron susceptibilityx0sqd, which shows a logarithmic di-
vergence atq=2kF. It is seen that the results in both
approaches are qualitatively and quantitatively similar. The

FIG. 7. The paramagnon dispersionvq in the SSTL(solid line)
and STLS(dashed line) approximations atrs=1.5 andb=2aB

!.

FIG. 8. The static spin response functionxssqd in the SSTL
(solid line) and STLS(dashed line) approximations atrs=1 andb
=2aB

!.

FIG. 9. The ground-state energy per particle of the paramagnetic
(solid line) and ferromagnetic(dashed line) phases calculated
within the SSTL and STLS approximations forb=2aB

!.
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peak atq=2kF is less pronounced in the SSTL approach,
which seems to be its dominant character.

We plot the ground-state energy per particle results up to
rs=5 in both paramagnetic and ferromagnetic phases,gs=2
and 1, respectively, within the SSTL and STLS approaches in
Fig. 9. It seems that the ferromagnetic phase becomes ener-
getically favorable after aroundrs=2. This result was re-
ported for a 1D electron-gas system interacting via a poten-
tial, which is slightly different than the one we employ
within the STLS approach.13,26The transition from an unpo-
larized to a polarized system in an electron gas due to the
many-body effects is called the Bloch transition.27 According
to the Lieb-Mattis theorem28 the ground state ofN electrons
in 1D subject to an arbitrary symmetric potential must be
unmagnetized, or paramagnetic. However, the theorem does
not apply to electrons in 3D interacting via Coulomb or cen-
tral forces, because such potentials are not separately sym-
metric. In our calculations, we considered that the electrons
interact via Coulomb potential. Hence, the Lieb-Mattis theo-
rem should not be applicable to our problem. Also, it is pro-
posed by Calmels and Gold13 that for rsù rsc the system
might still be unmagnetized but the spin degeneracy is lifted.
On the other hand, in a recent quantum diffusion Monte
Carlo study29 the energies are found to be in the same order
imposed by the Lieb-Mattis theorem.

The most important difference observed in Fig. 9 is that
the energy difference between the paramagnetic and ferro-

magnetic phases increases with increasingrs in favor of the
ferromagnetic phase in the SSTL approach. On the other
hand, within the STLS approach the energies in both phases
remain close to each other asrs increases.

In summary, we have studied the spin correlations in a 1D
electron system in detail and have shown that the SSTL ap-
proach yields different results compared with those obtained
within the STLS approach. For example, in the STLS ap-

proach the magnetic structure factorS̃sqd shows a peak at
some critical density, beyond which we could not compute

the S̃sqd, whereas the SSTL approach gives no peak in the

S̃sqd as we lower the density. It is also observed that the
short-range correlations are overestimated, and the energy of
the collective spin modes is higher in the SSTL approach.
Moreover, the ground-state energy difference between the
paramagnetic and ferromagnetic states at the same density is
larger in the SSTL approach.

The most important finding of this work is that the self-
consistent field approaches STLS and SSTL predict the
Bloch transition for 1D electron-gas systems at low electron
densities.
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