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Based upon the example of a narrow band gap covalent CdSb crystalsD2h
16d, it is shown that a spatial electron

density distribution in the unit cell is related to the Zak’s elementary energy bands creating the valence band
and to the corresponding Wyckoff positions. A role of particular electronic states in the creation of the
elementary energy bands was analyzed by conductingab initio band structure calculations of CdSb. The
investigations of the topology of the elementrary energy bands allows one to predict the nature of chemical
bondings in rhombic crystals.
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I. INTRODUCTION

In a series of papers by Zak, Michel,1,2 and Bercha3–6 it
was shown that energy spectra of crystals are composed of
some distinguished structural units called “elementary en-
ergy bands.” Zak has introduced in his first publications on
this subject the concepts of band representation and then ir-
reducible band representation1 which contains energy states
of high-symmetry points in the Brillouin zone(BZ). Follow-
ing papers of Cloizeaux,7 Burneika and Levinson,8 as well as
Kovalev,9 he associated the elementary energy bands with a
local symmetry of the specific Wyckoff positions.10 Repre-
sentations describing energy states of the elementary energy
bands can be obtained by the inducing procedure applied to
the representations of the local group of the Wyckoff
positions.9,11

On the other hand, it was shown4,12–16 that the closed
valence band of a semiconducting crystal is composed of the
elementary energy bands and the energy states that describe
them can be obtained in the empty-lattice approximation
with the use of some general data about a crystal(the exis-
tence of the forbidden energy gap, lattice constants, number
of valence electrons in the unit cell, space symmetry group).
The presence of a few Wyckoff positions in a unit cell, as-
signed to every space symmetry group(except for a few
groups which have only one general Wyckoff position, of
symmetryE), leads to the fact that one cannot know which
of those positions “induces” representations describing en-
ergy states of the elementary energy bands which create the
real valence band of a given crystal.

We have recently shown15 that in the case of orthorhom-
bic crystals it is the position in a unit cell that is selected in
the empty-lattice approximation(in the sense described
above) and that it is at the same time characterized by the
largest valence electron density. To summarize, it is possible
to obtain information about a structure(symmetry and topol-
ogy) of the valence band and about the spatial electron den-
sity distribution in a unit cell of wide band gap orthorhombic
crystals, on the basis of the empty-lattice approximation
supplemented by the general data concerning the crystal.
This result was demonstrated on the basis ofab initio band
structure calculations conducted for orthorhombic wide band
gap YAlO3, SbSI,15 Tl3AsS4

17 crystals with a prevailing
ionic bonding.

A problem arises. Can analogous information about the
symmetry and topology of the valence band as well as about
the spatial electron density distribution be obtained in the
empty-lattice approximation for a narrow band gap semicon-
ductor with predominant covalent bonding? Moreover, is the
maximum electron density still observed in the Wyckoff po-
sitions selected by the empty-lattice approximation in the
case when none of the atoms overlap with a Wyckoff posi-
tion in the unit cell? Hence, in this paper we analyze these
topics by performingab initio band structure calculations as
well as calculations of the spatial and energetic distribution
of electron density in a narrow band gap CdSb semiconduc-
tor with the prevailing covalent character of bonding. For a
comparison, we analyze a connection between the elemen-
tary energy bands and the valence electron density in a typi-
cal covalent crystal of silicon. In this crystal some of the
Wyckoff positions overlap with positions of atoms. The
CdSb crystal, on the other hand, gives an exceptional possi-
bility to analyze the issue of the elementary energy bands
and their connection with the spatial electron density distri-
bution in a situation when none of the atoms of the com-
pound overlap with the Wyckoff position.

II. CRYSTALLINE STRUCTURE OF CdSb AND ITS
PROPERTIES

Cadmium antimonide is an anisotropic semiconducting
AIIBV crystal which found wide practical application. Due to
its thermoelectrical properties and specific topology of the
forbidden band gap, it is a promising material for thermo-
electrical devices as well as infrared sensors. Based on these
crystals some thermoelements, converters of infrared radia-
tion, and other electronic devices were created.18–20 Owing
to the approximately equal mobilities of electrons and holes
as well as a small thermal conductivity, this crystal is a good
material for an application in Nernst-Ettingshausen
detectors.21 Furthermore, a variety of interesting physical
properties and effects were revealed in CdSb crystals: the
existence of the magnetophonon resonance,22 superconduc-
tive response near the localization threshold,23 and the
Shubnikov–de Haas effect.24–26

Single CdSb crystals without dopants arep-type crystals,
while n-CdSb crystals can be obtained by doping with In and
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Te.27 CdSb crystallizes in the orthorhombic system and its
symmetry is described by theD2h

15 (Pbca) space group.28,29

According to Ref. 29 the lattice constants are the following:
a1=6.469s1dÅ, a2=8.251s2dÅ, a3=8.522s2dÅ, whereas
atomic coordinates are provided in Table I. According to Ref.
30 the minimal value of the forbidden energy gap is 0.44 eV
which testifies to the low ionicity of the compound. The band
structure of CdSb crystal has been calculated by the semi-
empirical pseudopotential method so far.31–33,13 Unfortu-
nately, neither wave functions describing energy states nor
information about the electron density distribution is pro-
vided in those papers. This information is necessary for our
analysis. Except for Ref. 13, the valence band described in
the aforementioned papers was not treated as the one com-
posed of the elementary energy bands. It is known that the
absolute maximum of the valence band is located in the di-
rection ofSskx,0 ,0d axis, near pointXsp /a,0 ,0d in the BZ.
The minima of the conduction band are nonequivalent ellip-
soidal valleys, localized alongDs0,ky,0d and Ls0,0,kzd
axes.

It should be noted that a model of nonequivalent ellipsoi-
dal vallyes was proposed in Ref. 34 devoted to the investi-
gation of piezoresistivity anisotropy effect. The presence of
ellipsoidal valleys in the CdSb spectrum was confirmed ex-
perimentally by the cyclotron resonance,35 Shubnikov–de
Haas effect,24–26 and negative magnetoresistance phenom-
enon inp-CdSb crystals.36

III. ELEMENTARY ENERGY BANDS IN THE CdSb BAND
STRUCTURE

The elementary energy bands can be composed of a vari-
ous number of branches, depending on the space group of a
crystal. In some cases one can trace a topologically unavoid-
able crossing(degeneracy) of branches. This peculiarity of
the rhomohedral system was mentioned by Tovstyuk and
Korolyshin.37,38 From Ref. 5 follows that a number of the
elementary energy bands with the topologically unavoidable
degeneracy(in particular, a double one for theD2h

15 space
group) is limited for the orthorhombic system. TheD2h

15 space
group describes the symmetry of the discussed CdSb crystal.

This group was also discussed recently by Zak39 as an
illustration of the topologically unavoidable degeneracy of
branches in the elementary energy bands. He introduced two
laws for this degeneracy to exist in spectra of orthorhombic
crystals.

D2h
15 space symmetry group has two specific Wyckoff po-

sitions of a multiplicitym=4 Ref. 10:
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Inducing representations of theD2h
15 space group from irre-

ducible representations of the local groups of the above po-
sitions we obtain the representations existing in the elemen-
tary energy bands and then, using the compatibility relations,
we are able to draw their scheme. A scheme of the elemen-
tary energy bands consisting of 4 branches is presented in
Fig. 1.

From Refs. 15 and 17 it follows that a symmetry of the
representations existing in the elementary energy bands con-
stituting the valence band is that one which is obtained in the
empty-lattice approximation. It was demonstrated13 on the
basis of the empty-lattice approximation applied to CdSb
crystal that 28 branches of the valence band in theG point of
the BZ are described by irreducible representations of the
symmetry

4sG1,G3,G5,G7d + 3sG2,G4,G6,G8d. s2d

It follows from Fig. 1 that a double, forced crossing of
branches exists inD2h

15 space group. This crossing can be
obtained also for other directions in the BZ if the sequence of
the energy states in theG point is changed.

We have done calculations of the band structure of a
CdSb crystal using the full-potential nonorthogonal local-
orbital minimum basisFPLO®23 scheme40 within the local
spin density approximation. In these scalar relativistic calcu-
lations we used the exchange and correlation potential of
Perdew and Wang.41 We utilized the values of lattice con-
stants and atomic positions presented in Sec. II. The follow-
ing configuration as a minimum basis set for the valence
states was chosen: Cd-4d, 5s, 5p, Sb-4d, 5s, 5p. All lower
lying states were treated as core states. In the case of cad-
mium atom, 5p states were included in order to increase the
quality of the basis set. Ak mesh of 150 points in the BZ(36
in the irreducible part) was used. Since the full-electron

TABLE I. Atomic coordinates of the CdSb crystal(Ref. 29).

Atom x y z

Cd 0.5503(1) 0.6238(1) 0.63426(8)

Sb 0.13980(9) 0.07390(9) 0.10390(7)

FIG. 1. Scheme of four-branch elementary energy bands of the
D2h

15 space group.
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method implemented in theFPLO®23 scheme does not allow
one to conduct calculations with “frozen” valence electron
configurations, we have done additional calculations of the
band structure by means of theABINIT package.42 A formal-
ism of the pseudopotentials in the density-functional theory43

is implemented there and it is based on an effective algo-
rithm of a fast Fourier transformation of the wave functions.
To calculate a self-consistent potential the method of conju-
gate gradients44,45 is applied. We used the Troullier-Martins
norm-conserving pseudopotentials in our calculations. The
following configuration of Sb electrons was utilized: 5s, 5p.
In order to find pseudopotentials of Cd atoms we have cho-
sen in the first case the configuration 4d, 5s and then, the
configuration 5s by “freezing” cadmium’sd electrons in a
pseudopotential core. The exchange-correlation effects were
taken into account in the local approximation.41 Integration
in the BZ has been performed by means of 8k special points.
A set of approximately 13 100 plane waves was restricted by
the maximum kinetic energy of 40 Ry. Comparison of the
band structure calculation results of both program packages
(FPLO®23 andABINIT ) shows a good agreement between the
energy positions of bands. It testifies that the basis chosen for
the calculations of the band structure and the electron density
distribution is enough. The utilization of both packages en-
ables to explain a role ofs, p, andd electrons of cadmium
and antimony in the creation of the CdSb band structure.
Figure 2 displays the band structure of a CdSb crystal with
an account ofd electrons. It can be seen that the upper part
of the valence band is created by five elementary energy
bands, each consisting of four branches. The band gap is an
indirect one and the absolute maximum of the valence band
is located nearX point of the BZ, in theSsG−Xd direction.
The conduction band is a multivalley one, the absolute mini-
mum appears in theLsG−Zd direction and the additional
minima can be traced both in theDsG−Yd and SsG−Xd di-
rections. Such a multivalley character of a top of the valence
and a bottom of the conduction bands agrees qualitatevly
with the previous calculation results obtained by semiempir-

ical pseudopotential method. The value of the obtained indi-
rect band gap equals 0.44 eV. The elementary energy bands
overlap in the valence band and the most intersections(not
conditioned by the symmetry and topology) can be seen in
the Y-G-Z directions. Figure 3 presents the valence band in
the energy range(211 eV, 27 eV). The elementary energy
bands existing there do not overlap, furthermore, one can
trace double, unavoidable crossings of branches. On the ba-
sis of calculations of the energy density of states distribution
and partial density of states we can state that ten elementary
energy bands in the energy range(29 eV,27 eV) are created
by cadmiumd electrons and hybridized cadmium 4d and
antimony 5s states. Two lowest elementary energy bands in
the valence band originate mainly from Sb 5s states. Sb 4d
states do not take part in the creation of the CdSb valence
band. The top of the valence band is constituted mainly by
cadmium and antimonyp states with a small admixture ofs
states of both atoms. In addition,s-p hybridized states of Cd
and Sb atoms are responsible for the creation of the conduc-
tion band. The band structure calculation results show that if
cadmium d electrons are not taken into account then the
whole valence band of the CdSb crystal is composed of
seven elementary energy bands and, furthermore, that the
two lowest ones, which are separated from the others, are
created by antimonys states. Cadmiumd electrons make ten
additional elementary energy bands of a small dispersion ap-
pear in the lowest energy ranges. Energy states of the el-
ementary energy bands which arose without taking into ac-
count cadmiumd electrons are moved then to even lower
energy ranges.

By analyzing interatomic distances in CdSb crystal one
can distinguish that Cd2Sb2 is the smallest structural unit,
moreover, that there are four such structural units in a unit
cell of CdSb which surround thea1, a2, a3, anda4 Wyckoff
positions. The symmetry group of this unit isCi which con-
tains two elements: the identity element and inversion. This
group coincide with the local group of the Wyckoff position
a.

FIG. 2. Band structure of
CdSb crystal with an account ofd
electrons.
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Inducing representations of theD2h
15 space symmetry

group from irreducible representations of theCi group we
obtain in theG point two sets of irreducible one-dimensional
representations: a symmetrical set ofG1,G3,G5,G7 and an
antisymmetrical oneG2,G4,G6,G8. (By symmetrical and an-
tisymmetrical we understand such representations for which
the character of the inversion element in theG point is equal
to 1 and21, respectively. The same character is obtained for
irreducible representations of the local groupCi for both a
and b Wyckoff positions.) These two sets describe the el-
ementary energy bands and each of them is related to a func-
tion which is localized mainly on the Cd2Sb2 structural unit.
It should be noted further that the second Wyckoff positionb
sb1,b2,b3,b4d relates to identical sets of representations
G1,G3,G5,G7 andG2,G4,G6,G8. Therefore, it appears that on
the basis of the inducing procedure applied to theG point we
are not able to determine which of these positions(a or b)
is “responsible” for the creation of the valence band of
CdSb crystal. Unfortunately, the situation is analogous
for other high-symmetry points of the BZ, except
Rsp /a1,p /a2,p /a3d point. The symmetrical representation
of the local group of the Wyckoff positiona corresponds in
the R point to the representation 2R1s2d which is reduced in
the G point to four representationsG1,G3,G5, andG7, while
the antisymmetrical representation corresponds to the repre-
sentation 2R2s2d which is reduced in theG point to the anti-
symmetrical set of representationsG2,G4,G6, andG8.

A situation for the Wyckoff positionb is opposite: the
symmetrical representation corresponds to the representation
2R2s2d which is reduced to the set ofG1,G3,G5,G7, while the
antisymmetrical representation corresponds to the represen-
tation 2R1s2d which is reduced to the setG2,G4,G6,G8. A
group-theoretical analysis shows that irreducible representa-
tions of the wave vector group for theR point are two-
dimensional [2R1s2−dimensiond or 2R2s2d] and they are
joined due to the time-inversion symmetry. Hence, four
branches of the elementary energy bands are joined in theR
point.

Let us now analyze which information about a choice of
the Wyckoff position is obtained in the empty-lattice ap-
proximation applied to theR point. It appears that a sequence
of identical, eightfold degenerate states described by the fol-
lowing representations is obtained in the order of increasing
energies:

2R1s2d2R2s2d,2R1s2d2R2s2d,2R1s2d2R2s2d,

2R1s2d↓2R2s2d, . . . . s3d

The energy gap arises due to a splitting of the fourth eight-
fold degenerate state. A position of the splitting is marked in
Eq. (3) by an arrow. One can see that it is impossible to
foresee which of fourfold degenerate statesf2R1s2d or
2R2s2dg will stay in the valence band and which of them is
moved to the created conduction band. In our opinion, the
2R2s2d state, described by representations which are anti-
symmetrical with respect to inversion, is moved to the con-
duction band. Such a situation takes place in theG point, in
a typical covalent crystal, namely silicon. CdSb crystal is a
first case from a series of orthorhombic crystals discussed by
us (having different space symmetry groups) for which the
empty-lattice approximation does not distinguish unequivo-
cally the “actual” Wyckoff position from two of them. If our
suspection that a degenerate state described by the antisym-
metrical representation is moved to the conduction band is
proper, than the “actual” Wyckoff position which is respon-
sible for the creation of the valence band, will be the Wyck-
off positiona. A final answer to this problem give numerical
calculation results of the wave functions calculated for theG
andR points, presented below.

We calculated wave functions corresponding toG and R
points in the BZ by means of theABINIT program, both for
configuration comprisingd electrons and without them. A
symmetry of the valence band calculated withoutd cadmium
electrons is the following:

FIG. 3. Low energetic part of
the valence band of CdSb crystal
composed of the elementary en-
ergy bands.
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G point

G1,G7,G3,G5,G6,G4,G8,G2,G4,G5,G7,

G3,G6,G2,G1,G8,G7,G3,

G2,G5,G4,G8,G5,G6,G1,G3,G7,G1, s4d

R point

2R1,2R2,2R2,2R1,2R1,2R2,2R1. s5d

As a consequence, the valence band consists of the elemen-
tary energy band of the symmetry in theG point

4hG1,G3,G5,G7j + 3hG2,G4,G6,G8j s6d

and in theR point

4h2R1j + 3h2R2j. s7d

Four symmetrical sets of representationshG1,G3,G5,G7j cor-
respond to four sets ofh2R1j, while three antisymmetrical
setshG2,G4,G6,G8j correspond to 3h2R2j. Therefore, we are
able to claim that the Wyckoff positiona is responsible for
the creation of the valence band of CdSb crystal. This con-
clusion is confirmed by a fact that the band representations
of the D2h

15 space group which are induced from irreducible
representations of the local group of the Wyckoff positiona,
contain identical representations in theG andR points. The
same situation takes place when cadmiumd electrons are
taken into account.

From Refs. 15 and 17 it follows that the Wyckoff position
which is responsible for the creation of the valence band is
characterized by the largest valence electron density. There-
fore we calculated a spatial electron density distribution in a
unit cell of CdSb crystal which is displayed in Fig. 4. As can
be seen, the largest valence electron density(without cad-
mium d electrons) is focused arrounda1 and a4 positions
[Eq. (1)], in addition, the symmetry of that distribution is
described by theCi point group. Moreover, the electron den-
sity in every Wyckoff positionai is significant; namely,
0.057e/Bohr3 what is almost 88% of the maximum of the
whole distribution.

Now we compare this result with an analogous discussion
for a covalent crystal of silicon. It is known that due to the
covalent bonding the largest valence electron density is ob-
served along the main diagonal of a unit cell,46 in the point
given by coordinatessa/8 ,a/8 ,a/8d (here a is the lattice
constant). These coordinates point to the Wyckoff positionc.
According to our conception, this distinguished Wyckoff po-
sition is responsible for the symmetry and topology of the
valence band. Inducing representations for the high-
symmetry points in the BZ from the identity irreducible rep-
resentation of the local group of this position, we obtain the
elementary energy band whose symmetry and topology co-
incide with the respective one of the silicon valence band.
Let us note further that the physical meaning of the distin-
guished Wyckoff position, noticed by us for rhombic crys-
tals, i.e., an accumulation of the spatial electron density dis-
tribution, is also valid for crystals of the cubic system, e.g.,
silicon. The largest electron density, conditioned by a cova-
lent bonding, appears in the distinguished Wyckoff position
c, see, e.g., Ref. 46.

An interesting result can be obtained analyzing a cross
section of a spatial distribution ofucu2 wherec denotes the
wave functions corresponding to the states of the lowest first
two elementary energy bands in the valence band of CdSb
crystal. It follows from Fig. 3 that those elementary energy
bands do not overlap. The lowest elementary energy band is
created from the symmetrical linear combination of localized
functions formed from Sbs states, while the other one is
created from the antisymmetrical combination of the same
functions.

Figure 5(a) presents a cross section ofucu2 describingG1
state [belonging to the set of elementary energy bands
sG1,G3,G5,G7d], while that of Fig. 5(b) correspond to aG6

state[belonging to the set ofsG2,G4,G6,G8d]. The shape of
the distribution in Fig. 5(a) is identical to that of the spatial
distribution of the total electron density of CdSb crystal
around the Wyckoff positiona. However, a shape of the dis-
tribution corresponding toG6 state[Fig. 5(b)] is different. In
this case the partial electron density is minimal in the Wyck-
off position a. An analogous result is obtained for other
states belonging to the symmetrical and antisymmetrical
states of representations describing the elementary energy
bands. These results are justified since functions localized on
the Cd2Sb2 structural unit are formed by antimonys states. It
is known that the wave functions formed by atomics orbit-
als, symmetrical with respect to inversion, describe bonding
orbitals, while the antisymmetrical wave functions describe
antibonding orbitals. Such a situation is not observed for
partial electron density for energy states belonging to the
energetically higher elementary energy bands, since wave
functions describing those states originate from hybridizeds
andp states of cadmium and antimony. Moreover, the inter-
action between functions localized on the Cd2Sb2 structural
unit becomes stronger.

A shape of the partial electron density corresponding to
the energy states creating the upper part of the valence band
is similar to those presented in Figs. 5(a) and 5(b) (depend-
ing on if a representation belongs to the symmetrical or an-
tisymmetrical set). Calculations of the wave functions of ten
elementary energy bands, resulting in the case when cad-

FIG. 4. Cross section of the spatial valence electron distribution
of CdSb crystal with a planey=0. (d electrons were not taken into
account). Open squares denote the Wyckoff positions.
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mium d electrons were taken into account, show that the
number of symmetrical and antisymmetrical states is the
same. To symmetrical states correspond density distributions
analogous to that of Fig. 5(a), while to antisymmetrical states
the distributions of Fig. 5(b).

We shall show now that on the basis of the topology
analysis of the elementary energy bands of a rhombic crystal
from D2h

15 space group one can predict in an unambiguous
way if this crystal is a layered one with a weak bonding, or
not. As an illustration we utilize CdSb crystal. Two separated
groups of atoms forming two translationally nonequivalent
layers can be recognized in its unit cell. These layers are
perpendicular to thex asis. TheC2v

5 (Pca21) space group
which is a subgroup ofD2h

15 can be assigned to every layer. If
a weak van der Waals bonding exists between these layers
then, by inducing representations of the space group of the
crystal from irreducible representations of the space group of
the layer, one can check that the nearby energy states de-
scribed by representations(G1 andG8), (G6 andG3), (G4 and
G5), as well as(G7 and G2) should exist in theG point. To
achieve this, the valence band should contain in theG point
an equal number both the symmetrical and antisymmetrical
elementary energy bands with respect to inversion. More-
over, two sets of the elementary energy bands from Eq.(6)
should overlap, forming a complex of eight branches. Such a

situation we observed for a layered In4Se3 sD2h
12d crystal for

which the elementary energy bands consist of two branches,
while the real band structure is composed of overlapping
elementary energy bands, having four branches. Their energy
states reflect the Davydov splittings both in the electronic
and phonon spectrum.14,47

In the case of a CdSb crystal, the representations of an
eight-branch complex(two overlapping elementary energy
bands) can be induced only from the general Wyckoff posi-
tion, of the symmetryE. However, as we established in the
empty-lattice approximation(2) and conducting numerical
band structure calculations(6), the two aforementioned con-
ditions are not fulfilled. As a consequence, the valence band
of CdSb crystal must be composed of the elementary energy
bands, having four branches. Hence, we can claim that a
bonding between visible “layers” in the unit cell is not weak.
This analysis allows to predict a nature of bonding in re-
cently obtained, not investigated yet crystals of theD2h

15 space
group(e.g., Hg3TeCl4, Tl4P2S6, Tl3AsS3). Those crystals for
which, in the empty-lattice approximation, an equal number
of symmetrical and antisymmetrical representations is ob-
tained for the elementary energy bands seem interesting. We
can predict in the valence band of those crystals the overlap-
ping elementary energy bands, the lack of maximum of the
electron density in the Wyckoff positionsa andb, and as a
consequence, a different nature of chemical bonding than
that of CdSb crystal. In order to overlap two sets of the
symmetrical and antisymmetrical elementary energy bands,
one should handle eight states described by all representa-
tions fromG1 to G8. A necessary condition for those overlap-
ping elementary energy bands to create the valence band is
that the total number of valence electrons can be divided by
16. The set of representationssG1,G2, . . . ,G8d can be in-
duced only from the general Wyckoff position, of the sym-
metry E. Therefore, the maximum electron density can be
focused in any places in the unit cell of those crystals.

IV. CONCLUSIONS

Investigating the band structure of CdSb crystal we have
confirmed that it is composed of the four-branch elementary
energy bands which are obtained already in the empty-lattice
approximation supplemented by general data about this crys-
tal. Calculations of the total and partial density of states en-
abled us to check which atoms(and their electrons) are re-
sponsible for the creation of the particular elementary energy
bands in the valence band of the crystal.

A physical meaning of the Wyckoff position noticed ear-
lier by us for wide band gap rhombic crystals with prevailing
ionic bonding was confirmed also for narrow band gap co-
valent CdSb crystal. We showed that for a covalent crystal of
CdSb the specific Wyckoff position is a symmetry center
around which a dominant valence electron density is placed.
Since atomic positions in CdSb crystal do not coincide with
any specific Wyckoff position therefore, the accumulation of
electron density in those positions has no connection with a
placement of atoms. Since both specific Wyckoff positions of
the D2h

15 space group are situated in the corners, edges, and
center of walls as well as in the unit center, we can claim that

FIG. 5. Partial electron density distribution(cross section with a
plane y=0) resulting from (a) G1 state belonging to the deepest
symmetrical elementary energy band,(b) G6 state belonging to the
deepest antisymmetrical elementary energy band.
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a dominant covalent bonding can be traced in all those crys-
tals from this space group whose atomic positions do not
coincide with the specific Wyckoff positions. However, it
happens only then, when the empty-lattice approximation
gives a different number of the elementary energy bands de-
scribed by symmetrical and antisymmetrical representations.

We confirmed that only selected Wyckoff positions,
known from the International Tables for Crystallography, are
responsible for the symmetry and topology of the valence
band of rhombic crystals. Investigations of the topology of
the elementary energy bands allows one to predict a nature of
chemical bondings in those crystals.

Since irreducible representations of the local groups of the
all Wyckoff positions for rhombic crystals are one dimen-
sional, therefore, all the elementary energy bands corre-
sponding to a particular Wyckoff position in a given group
have the same topology. This particular feature of the ortho-
rhombic system, that differentiates it from high-symmetry

systems, allows one to predict a topology of the real energy
spectra already on the basis of the empty-lattice approxima-
tion.

The subject of a further analysis should be the explanation
of the unavoidable double crossing of branches in the el-
ementary energy bands(e.g., in the CdSb crystal) and of the
character of overlapping energy bands(e.g., in the In4Se3
crystal). In the case of a strongly anisotropic In4Se3 crystal,
which was discussed at the end of Sec. III, there exist the
overlapping elementary energy bands in the whole electronic
spectrum which create, for low-energy ranges, an isolated
group of bands. Since the elementary energy bands intro-
duced by Zak were obtained using a connection between
extended functions and localized orbitals, it seems that in
order to explain such a character of branches creating the
elementary energy bands a theory of maximally localized
Wannier functions48 and its latest modification for entangled
energy bands49 will be particularly useful.
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