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A 30-bandk·p method taking into account spin-orbit coupling is used to describe the band diagram of Ge,
Si, and GaAs over the whole Brillouin zone on an extent of 5 eV above and 6 eV under the top of the valence
band. The band diagrams provide effective masses in agreement with experimental data both for direct gap
semiconductors(GaAs) and for indirect gap semiconductors(Ge, Si). This method also gives explicit expres-
sions for Luttinger parameters and effective masses in theG valley.
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I. INTRODUCTION

Dispersion relations of bulk materials have been inten-
sively studied through two sets of methods: the first set con-
tains theories with few adjustable parameters such as
pseudopotential1 or linear muffin-tin-orbital methods.2 In the
best case, only one adjustable parameter, the forbidden band
gap, is required.1 The second set contains adjustable param-
eter theories namely the linear combination of atomic
orbitals,3 tight-binding,4 andk·p5 methods. Thek·p method
is known to be very efficient to accurately describe either the
conduction band6 or the valence band7,8 or even both of
them9,10 in the vicinity of a given point of the Brillouin zone.
For example, Pidgeon and Brown10 used Luttinger-like pa-
rameters inside an eight-function basis(taking into account
the spin) to describe the dispersion curves near the center of
the Brillouin zone. The Luttinger-like parameters allow one
to take into account the influence of the functions outside the
eight-function basis. The Pidgeon-Brown description is valid
up to about 15% of the Brillouin zone, the validity range
depending on some parameters as the forbidden gap. After-
wards, a 14-function basis(with spin)11 was used, the aim
being a more accurate description of both the band structure
and the eigen wave functions, more than an increase of the
validity range. Cardona and Pollak5 used thek·p method
with another point of view: they used a 15-function basis
(without spin) to describe the dispersion curve in the whole
Brillouin zone. They reproduced the band structure of silicon
and germanium without taking the influence of function out-
side the 15-function basis: Luttinger-like parameters are not
needed anymore and, in this sense, the Cardona-Pollak basis
is self-contained. This 15-band method leads to a 30-band
method if the spin is taken into account, which seems hardly
tractable. This is the reason why Cavassilaset al.12 used a
20-function basis(with spin) and introduced two bands
nameds* and pseudo-Luttinger parameters to mimicd levels
following the idea developed by Voglet al.4 for linear com-
bination of atomic orbitals(LCAO) calculations. With this
20-bandk·p Hamiltonian model, valleys useful for transport
(G, L, andX valleys in GaAs,D and L valleys in Si) were
obtained but this model contained ten adjustable parameters
to describes* bands, nine interaction energies between bands
for Td group semiconductors(only six for Oh group semicon-
ductors) and six pseudo-Luttinger parameters, i.e., 25 adjust-
able parameters. Moreover, this 20-band Hamiltonian gave
valid results up to 3.5 eV above the top of the valence band

and did not give access to theL valley of the second con-
duction band.

The purpose of this paper is to present a 30-bandk·p
Hamiltonian which allows us to calculate the band diagram
of bulk materials forTd or Oh group semiconductors. This
Hamiltonian looks like the one of Ref. 5 for Si and Ge: we
have taken the same basis states but we have introduced
spin-orbit interaction which cannot be neglected in Ge or
GaAs in which the spin-orbit splitting is more than 20% of
the band gap energy. Baileyet al.13 have taken into account
spin-orbit interaction in their band structure calculation in
GaAs over the whole Brillouin zone. We will compare their
results to ours before concluding. For Si, even if the spin-
orbit splitting may be neglectedsDso=44 meV!EG

=1.17 eVd to draw the band diagram, taking it into account
gives access to explicit expressions of the Luttinger param-
eters. With this Hamiltonian, the band diagram becomes
valid up to 5 eV above and 6 eV under the top of the valence
band all over the Brillouin zone. In particular this procedure
solves the problem of theL point of the second conduction
band of the 20-bandk·p approach. This paper is organized
as follows. In Sec. II, we present the procedure followed to
build the Hamiltonian, which is used in Sec. III to obtain Si,
Ge, and GaAs band diagrams. We show in Sec. III that ten
adjustable parameters inOh group and 18 inTd group (7 of
which are taken null to simulate GaAs) are sufficient. It is the
reason why the 30-band method is not only more accurate
than the 20-band method used in Ref. 12 butin fine more
simple to use. In Sec. IV, we discuss the results and the
validity of our Hamiltonian and compare them to other meth-
ods including the 20-bandk·p method.12

II. THE 30-BAND k·p HAMILTONIAN

We start from the 15315 k·p Hamiltonian without spin-
orbit interaction built by Cardona and Pollak.5 The 15 states
of the real crystal taken into account correspond to[000],
s2p /adf111g ands2p /adf200g plane-wave states of free elec-
trons in the “empty” germanium lattice. The large gap be-
tweens2p /adf200g ands2p /adf220g plane waves(more than
15 eV) suggests that these 15 states are enough to obtain a
correct energy band diagram. Introducing spin-orbit coupling
doubles the number of states to obtain the so-called 30330
k·p Hamiltonian.

We consider the Schrödinger equation with spin-orbit
coupling
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HC = F p2

2m0
+ Vsr d +

"

4m0
2c2s¹V 3 pd · sGC = EC, s1d

whereVsr d is a potential having the periodicity of the lattice,
m0 is the free electron mass,p=−i"¹ and the spin-orbit term
is written in standard notation. The solutions to Eq.(1) are
Bloch functionsC=expsik·r d un,ksr d, whereun,ksr d has the
periodicity of the crystal lattice. The equation verified by the
un,ksr d is

Hsoun,ksr d = F p2

2m0
+ Vsr d +

"2k2

2m0
+

"

m0
k · p +

"

4m0
2c2s¹V

3 pd · sGun,ksr d = En,kun,ksr d. s2d

The spin-orbit interaction terms" /4m0
2c2ds¹V3kd ·s also

exists but is negligible.14 The states chosen by Cardona and
Pollak5 diagonalize the following Hamiltonian without the
spin-orbit term

Hkpun,ksr d = F p2

2m0
+ Vsr d +

"2k2

2m0
+

"

m0
k · pGun,ksr d

= En,kun,ksr d. s3d

Let us first discuss thek·p terms associated with the
Hamiltonian (2). This model, schematically represented
at k=0 in Fig. 1, corresponds to the one used in Ref. 5;
the correspondence between the level notations used in
Ref. 5 and in this article is recalled in Table I and the
wave functions associated to these levels are indicated
in Fig. 1. For Oh group semiconductors(Si and Ge), the
ten k·p matrix elements of interest are:P=kSupxuiXl,
Pd=kSupxuiXdl, PX=kXCupyuiZl, PXd=kXCupyuiZdl,
P3=kD1upxuiXl, P3d=kD1upxuiXdl, P2=kS2upxuiXl,
P2d=kS2upxuiXdl, PS=kSvupxuiXCl, PU=kSUupxuiXCl. Figure 2
represents the additionalk·p matrix elements which

have to be taken into account for theTd group, because
there is no inversion symmetry. These are matrix elements:
P8=kSupxuiXCl, Pd8=kXdupyuiZl, P38=kD1upxuiXCl,
P28=kS2upxuiXCl, PS8=kSvupxuiXl, PSd8 =kSvupxuiXdl,
PU8 =kSUupxuiXl, PUd8 =kSUupxuiXdl.

Let us now consider the effect of spin-orbit interaction on
these states. They can be divided in three types associated
with the symmetry of the wave functions: theG1 levels (us-
ing theTd group notations)15 are associated tos-like atomic
functions and spin-orbit interaction transforms them in two
degenerate levelsS↑ andS↓ of G6 symmetry. The spin-orbit
interaction introduces no more splitting for these states. The
G3 level15 are d-like atomic functions which have the sym-
metry of D1=3z2−r2 andD2=Î3sx2−y2d. Spin-orbit interac-
tion does not introduce splitting and the following states are

FIG. 1. Wave functions in the 30-bandk·p model atk=0 for Oh

group. Td simple group notations are reported on the left, andTd

double group notations on the right. Only ten matrix elements are
enough to describe the band diagram.

TABLE I. Correspondence between Cardona and Pollak(Ref. 5)
and Koster(Ref. 15) energy level notations for simple and double
group.Td group notations are used in the paper even for Si and Ge.

Simple group Double group

Ref. 5 Oh Td Oh Td

G28
u G2u

− G1q G7q
− G6q

G258
u G5d

+ G5d G8d
+ /G7d

+ G8d/G7d

G128
G3

− G3 G8d
− G8−3

G1
u G1u

+ G1u G6u
+ G6u

G15 G4
− G5C G8

−/G6
− G8C/G7C

G28
l G2

− G1 G7
− G6

G258
l G5

+ G5 G8
+/G7

+ G8/G7

G1
l G1

+ G1v G6
+ G6v

FIG. 2. Td group: Additional matrix elements and spin-orbit
coupling due to the lack of symmetry inTd group. For the simula-
tion of GaAs, all these elements are taken null exceptP8 and D8.
D j8 are interband spin-orbit couplings.
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obtained:D1↑, D2↑, D1↓ andD2↓. The G5 levels are associ-
ated to p-like functions: they are split into two levels
sG7,G8d; the Bloch functions which diagonalize the spin-
orbit interaction within the multipletsG7,G8d are detailed in
Ref. 11. These Bloch functions do not diagonalize exactly
Hso [Eq. (2)]: coupling terms appear between the differentG5
levels or betweenG5 andG3 levels.

For Oh group semiconductors(Si and Ge), splitting intro-
duced in theG5 levels by spin-orbit interaction exists

Dso=
3"

4m0
2c2KXU ]V

]x
py −

]V

]y
pxUiYL ,

DC =
3"

4m0
2c2KXCU ]V

]x
py −

]V

]y
pxUiYCL ,

Dd =
3"

4m0
2c2KXdU ]V

]x
py −

]V

]y
pxUiYdL .

Dso is a well-known value,16 but a splitting also exists in
G5C sDCd andG5d sDdd bands as shown in Fig. 1. A coupling
between the two different multipletssG7,G8d and sG7d,G8dd
also exists

Ddso=
3"

4m0
2c2KXdU ]V

]x
py −

]V

]y
pxUiYL .

There is also a coupling betweensG7C,G8Cd multiplet which
stem fromG5C levels andG8 level which stem fromG3:

D3C =
3"

4m0
2c2KD1U ]V

]y
pz −

]V

]z
pyUiXCL .

For Td group semiconductors, the inversion asymmetry of
the zinc-blende lattice introduces additional spin-orbit cou-
pling terms between the differentsG7,G8d multiplets11 as
shown in Fig. 2. These couplings have the same expression
as insidesG7,G8d multiplets

D8 =
3"

4m0
2c2KXCU ]V

]x
py −

]V

]y
pxUiYL ,

DCd8 =
3"

4m0
2c2KXdU ]V

]x
py −

]V

]y
pxUiYCL .

There are also new couplings betweensG7,G8d multiplets
which stem fromG5 levels andG8 level which stem fromG3:

D38 =
3"

4m0
2c2KD1U ]V

]y
pz −

]V

]z
pyUiXL ,

D3d8 =
3"

4m0
2c2KD1U ]V

]y
pz −

]V

]z
pyUiXdL .

Figure 2 represents all theTd couplingsD8 which are null in
Oh because of inversion symmetry.

One of the interests of this method is that the matrix ele-
ments are enough to describe Luttinger parameters andG
effective mass of conduction band. The following formulas
give Luttinger parameters:

g1 = − 1 +
EP

3EG
+

EPX

3
S 1

EG + EGC
+

1

EG + EGC + DC
D +

2EPd8

3E5d

+
4

3

EP3

E3
+

EP2

3E6q
−

EPS8

3E6v
+

EPU8

3E6u
,

g2 =
1

6
SEP

EG
+

EP2

E6q
+

EPU8

E6u
−

EPS8

3E6v
D −

EPX

6sEG + EGCd
−

EPd8

6E5d

+
2

3

EP3

E3d
,

g3 =
1

6
SEP

EG
+

EP2

E6q
+

EPU8

E6u
−

EPS8

3E6v
D +

EPX

6sEG + EGCd
+

EPd8

6E5d

−
1

3

EP3

E3d
.

gC is also given by the matrix elements

gC =
m0

mC
= 1 +

EP

3
S 1

EG + D
+

2

EG
D −

EP8

3
S 1

EGC
+

2

EGC + DC
D

−
EPd

E5d − EG
.

No pseudo-Luttinger parameter is necessary to obtain va-
lence band masses in all the directions, contrary to the 20-

TABLE II. k=0 energy level used in the 30-bandk·p model.

eV Ge Si GaAs eV Ge Si GaAs

G8C 3.22 3.40 4.569 G6q 18.36 13.46 13.64

G7C 3.01 3.40 4.488 G8d 17.0 12.78 11.89

G6 0.90 4.185 1.519 G7d 17.0 12.78 11.89

G8 0 0 0 G8−3 10.47 9.66 10.17

G7 −0.290 −0.044 −0.341 G6u 7.77 7.07 8.56

G6v −13.14 −12.92 −12.55

FIG. 3. Band diagram of bulk Si atT=0 K. Spin-orbit coupling
is taken into account even if it does not appear on the diagram
because of its scale.Dso=44 meV in Si.
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band k·p Hamiltonian.12 This 20-band Hamiltonian was
built from the 14314 Hamiltonian,17 adding ans-symmetry
band 12 eV under the top of the valence band and twos*
levels to obtain nonmonotonic bands and give access toX, D,
or L valleys in the first conduction band. As theses* levels
were not sufficient to describe simultaneously theL point
and theG effective masses, the contribution ofd levels was
mimicked via Luttinger-like parameters which played a part
in the G7C and G8C levels and in theG7V and G8V levels by
second-order perturbations. It explains why Luttinger param-
eters could not be obtained directly from the matrix ele-
ments, contrary to thek·p 30-band method.

Taking into account strain can be made as in Ref. 18. The
same strain Hamiltonian with five parameters has to be
added to the 30330 Hamiltonian used for bulk semiconduc-
tors.

III. BAND DIAGRAMS OF Si, Ge, AND GaAs

After having built the 30330 Hamiltonian, we now give
the parameters used in ourk·p calculation and describe the
results for Si, Ge, and GaAs. Thek=0 energies are presented
in Table II. The left part of this table is known;16 for the right
part of Table II, we take the same values as in Ref. 5 for Si
and Ge. For GaAs, these levels are unknown but Cardona
and Pollak5 explain how to obtain an estimation of these
energies, knowing the form factors used in pseudopotential
calculations19 and assuming that only the pseudopotential in-
teraction between the 30 plane-waves states is important.
Anyway, thek=0 upper energy levels chosen are not key

parameter by themselves: the important data are the couples
energy level/matrix element. Briefly speaking, thek=0 en-
ergy levels are first fixed from Ref. 5 and the matrix elements
are then adjusted to obtain the band diagram; as a result there
are 10(18) adjustable parameters inOhsTdd.

After having chosen the unknownk=0 energy levels, the
key parameters are the matrix elements. Here, they were first
estimated at the center of the Brillouin zone, especially for
the valence band to obtain Luttinger parameters, and for the
first conduction band for Ge and GaAs, then at the extremaX
andL and finally to respect the continuity betweenUf1, 1

4 , 1
4
g

and Kf0, 3
4 , 3

4
g equivalent points of the Brillouin zone. This

continuity is not obtained by construction as in pseudopoten-
tial or LCAO: on the contrary, it is the strongest numerical
difficulty of this method. Figures 3–5 show the band struc-
tures of Si, Ge, and GaAs obtained with ourk·p model.
Numerical results are given in Table III. The band structure
is well reproduced on a width of about 11 eV: it describes
correctly the valence band over a 6 eV scale(see Fig. 6) and
the lowest four conduction bands over a 4 eV scale in four
directions namelyGX, GL, GK, XU. All the spin-orbit param-
eters were taken null exceptDso andDC.16

The 30-band method represents a great improvement of
thek·p method compared to the 20-band Hamiltonian whose
extension was only 1 eV for the valence band and 3 eV for
the conduction band.12 This 20-band method was built to
take into account thed level effects without directly consid-
ering this level in the Hamiltonian. The present calculation
shows that taking into account the reald levels with their

TABLE III. Matrix elements of the momentump: energiesEPj
s8d and matrix elementsPj

s8d are linked by
EPj

s8d=s2m0/"2dfPj
s8dg2. Pj

s8d are defined in the text(Sec. III) and in Figs. 2 and 3.

eV Ge Si GaAs eV Ge Si GaAs

Ep 24.60 19.96 22.37 EPd 0.0051 1.193 0.010

EPX 17.65 14.81 16.79 EPXd 12.23 7.491 4.344

EP3 5.212 4.475 4.916 EP3d 15.76 9.856 8.888

EP2 2.510 3.993 6.280 EP2d 27.59 20.76 23.15

EPS 1.071 1.092 2.434 EPU 17.84 16.36 19.63

EP8 0.0656 EPd8 ,EP38 ,EP28 ,EPS8 ,EPU8 ,EPSd8 ,EPUd8 0

FIG. 4. Band diagram of Ge atT=0 K. FIG. 5. Band diagram of GaAs atT=0 K.
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special symmetry, especially forD1 andD2 functions, makes
unnecessary the pseudo-Luttinger parameters. Second-order
perturbation used in 20-bandk·p Hamiltonian gave access to
a very good description of the center of the Brillouin zone
but the effect ofd levels on the edge of the Brillouin zone
were not accounted for whereas taking into account the real
d levels not only gives us an accurate description of the
center of the Brillouin zone but also gives access to theL
valley of second conduction band, valleys which have to be
considered for accurate high energy transport simulations in-
cluding impact ionization for example.20

In the case of GaAs, only 11 parameters were enough to
obtain this band diagram. Of course, all the 18 matrix ele-
ments are adjustable terms but an accurate GaAs band dia-
gram was obtained with only 11 nonzero matrix elements
detailed in Table III. The only nonzero parameter due to the
lack of inversion symmetry isP8, whose value is controver-
sial: EP8 =s2m0/"2dP82=65 meV, far too small compared to
2.36 eV11 or 6 or 11 eV.21 EP8 determines the energy splitting
E1–2 between the first and the second conduction band in
zinc-blende structure(EP8 =0 in diamond structure). In GaAs,
this splitting is equal to 0.2 eV22 at the relevant wave vector
k=0.34 Å−1 in [100] direction. E1–2 is equal to
2ÎEP8s"2k2/2m0d as far as the only matrix elementP8 has to
be considered. If we successively takeEP8 =11,6,2.36 eV,
we get E1–2=4.4,3.3,2 eV, respectively. Whatever theEP8
value, E1–2 is far too large. E1–2=0.3 eV leads to
EP8 =0.051 eV. The complete numerical calculation taking
into account all the bands leads to the valueEP8 =0.065 eV
and eventually gives a splitting ofE1–2=0.23 eV which is
quite reasonable. All the bands reach the edge of the Bril-
louin zone with zero slope or average zero slope, as required
by crystal symmetry.

The valence band is very precisely described: Table IV
compares the Luttinger parameters obtained with ourk·p
method to the well-known values from Ref. 16. The agree-
ment between experimental and calculated Luttinger param-
eters is of the order of 10% in the worst case(g2 of Si).
Furthermore, it does not affect the density of states in va-
lence band, which is in very good agreement with pseudopo-
tential calculation19 as shown in Fig. 6, andsp3d5 tight-
binding calculation.23 Figure 7 shows that the Si valence

band diagram calculated by ourk·p model is in good agree-
ment with the pseudopotential and tight-binding methods.

The conduction band is also described with a very good
accuracy, as shown by the comparison between energy levels
obtained in tight-binding,3 experimentally,16 and ink·p cal-
culation (our method) presented in Table V. Even effective
masses, shown in Table IV, are in very good agreement with
experience: the masses of the lowest valley(D for Si, L for
Ge, andG for GaAs) obtained with our method differ with
less than 1% from experimental data. The worst case con-
cerns transverse mass ofL valley of GaAs, which is still
nearer from the experimental value than the one obtained by
Jancuet al.3 in TB s0.117m0d but except this mass, all the
other differ from the experimental value with less than 10%.

The second conduction band in theGK direction results
from the free electron dispersions2p /adf2−x,2−x,0g
s0,x,3/4d which stems from thes2p /adf220g G point
whose energy is of the order of 20 eV above the bottom of
the first conduction band; bands which stem from this point
were not taken into account in ourk·p model as in Ref. 5.
That is why continuity is not assured for the second conduc-
tion band betweenK and U points but this discontinuity is
more than 4 eV above the bottom of the conduction band,
i.e., out of the scope of our model.

FIG. 6. Density of states in the valence band for Si. This density
of states is compared to empirical pseudopotential(Ref. 19) and
sp3d5 tight binding (Ref. 23) methods.

TABLE IV. Effective masses in the CB and Luttinger param-
eters obtained with the 30-bandk·p method, compared to experi-
mental data(Ref. 16).

g1 g2 g3 msGd mtsXd mlsXd mtsLd mlsLd

Si
sk·pd

4.21 0.427 1.42 0.1912 0.9167 1.65 0.128

Si
(exp)

4.26 0.38 1.56 0.1905 0.9163

Ge
sk·pd

12.60 3.93 5.39 0.0380 0.195 0.93 0.818 1.593

Ge
(exp)

13.35 4.25 5.69 0.038 0.815 1.59

GaAs
sk·pd

7.18 2.23 2.99 0.0676 0.23 1.16 0.108 1.67

GaAs
(exp)

6.85 2.1 2.9 0.067 0.23 1.3 0.075 1.9

FIG. 7. Comparison of Si valence band obtained by Empirical
Pseudopotential(Ref. 19), sp3d5 tight binding (Ref. 23), and 30-
bandk·p methods.
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Before concluding we briefly discuss the results of Ref.
13, where the band structure of GaAs is obtained over an
energy range between about 15 eV below and 10 eV above
the top of the valence bandG8v. As quoted in Ref. 5, the
continuity of the lowest valence bandsG6vd at equivalent
points of the Brillouin zone is difficult to obtain. As theG6v
band is more than 10 eV belowG8v and therefore not very
useful to account for transport properties, we have chosen
not to achieve the best continuity forG6v but instead to im-
prove the continuity of the other bands. This explains that the
range of our figures is not larger than 6 eV belowG8v. This
also explains why the continuity atX andU ,K points for the
highest valence band and the lowest conduction band is bet-
ter in the figures of the present paper than in Ref. 13.

IV. CONCLUSION

The 30 bandk·p model allows one to obtain a very pre-
cise description of the band diagram on the whole Brillouin

zone with only 10(for Oh group) or 11 (for Td group) ad-
justable parameters. Its accuracy is comparable to the
pseudopotential method with the advantages of ak·p
method, i.e., a rapid access to the valence band via an ex-
plicit expression of the Luttinger parameters and an easy way
to take into account strain. Compared to the 20-bandk·p
method, this article shows that it is easier and more efficient
to take into account reald states than to mimic them by
pseudo-Luttinger parameters ands* fictive bands. This 30-
band model gives access to the second conduction band: it
allows one to make accurate full band transport calculation
including impact ionization or other high field effects.
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TABLE V. Comparison of energies obtained in the present worksk·pd with the sp3d5 tight binding calculation(TB) and experimental
values(exp). The TB results are taken from Ref. 3 and the experimental data from Ref. 16. Energies are in electron-volts, with the origin at
the top of the valence band.

Si Ge GaAs

k·p TB exp k·p TB exp k·p TB exp

X5C 1.36 1.35 1.04 1.12 1.30 X7C 2.46 2.328 2.35

Dmin 1.17 1.17 1.17 0.95 1.00 X6C 1.94 1.989 1.98

X5V −2.90 −3.15 −2.90 −3.99 −3.37 −3.15 X7V −2.62 −2.929 −2.80

X6V −2.74 −3.109 −2.88

L8C 4.50 4.39 4.15 4.01 3.99 4.30 L8C 5.65 5.047 5.70

L6C 2.35 2.14 2.40 0.74 0.74 0.74 L6C 1.75 1.837 1.85

L8V −1.10 −1.08 −1.2 −1.62 −1.12 −1.40 L8V −1.25 −1.084 −1.20

L7V −1.12 −1.12 −1.2 −1.77 −1.37 −1.40 L7V −1.42 −1.330 −1.42
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