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Three well-known perturbative approaches to deriving low-energy effective theories, the degenerate
Brillouin-Wigner perturbation theoryprojection methoy the canonical transformation, and the resolvent
methods, are compared. We use the Hubbard model as an example to show how, to fourth order inthopping
all methods lead to the same effective theory, namelyt-thenodel with ring exchange and various correlated
hoppings. We emphasize subtle technical difficulties that make such a derivation less trivial to carry out for
orders higher than second. We also show that in higher orders, different approaches can lead to seemingly
different forms for the low-energy Hamiltonian. All of these forms are equivalent since they are connected by
an additional unitary transformation whose generator is given explicitly. The importance of transforming the
operators is emphasized and the equivalence of their transformed structure within the different approaches is
also demonstrated.
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I. INTRODUCTION pairs, Foldy and Wouthuysen derived non-relativistic quan-

There is a significant recent interest in higher-order corfum mechanics from the Dirac equatithThe local gauge
rections to effective low-energy theories for a broad range ofoupling to the electromagnetic potential in Dirac theory
strongly-correlated electronic problefé.For example, the Yielded three interactions, Zeeman, spin-orbit, and Darwin
effective low-energy Hamiltonians of the Hubbard-like mod- terms, that are all nonlocal since they involve derivatives of
els contain the so-called ring-exchange teffhese terms the electromagnetic potentials. This was done with the help
can alter the basic properties of excitatidrm, shift the bal-  of a canonical transformatidfibut the Brillouin-Wigner type
ance towards a new ground stateh addition, an accurate methods lead to the same residlin the case of the Hubbard
description of the experimentally observespectral weight model, when the interactiod is large compared with hop-
transfer over the Mott scale also necessitates high order coping t, the second-order effective Hamiltonian in the singly-
rections in the hopping ener§y.Although several methods occupied subspace is theJ model (including correlated
exist to derive higher-order low-energy theories, the unicityhopping where the spin-spin interaction is nonlocal in con-
of the low-energy effective theory may not be obvious. Intrast to the original local Hubbard interaction. In higher or-
fact, technical subtleties appear, even in a straightforwarder, n-body interactions, such as ring-exchange terms, also
application of Brillouin-Wigner perturbation theory, that may appeaf The appearance of-body interactions and of non-
lead to ambiguous resutfsbeyond second order in the hop- local terms in effective low-energy theories is familiar in the
ping. Further, unlike traditional applications of degeneratéWilsonian renormalization group contebt.
perturbation theory in which the eigenstates of the projected There are several ways to obtain an effective low-energy
Hamiltonian also diagonalize the perturbation, such is not thélamiltoniant® two of which are widely used in condensed
case heré! The unique difficulty that arises with Hubbard- matter physics. The first one is the canonical transformation
like models is that part of the kinetic energy perturbation(CT) method, mentioned abovéwhich is based on original
leaves the number of doubly occupied sites unchanged arideas of Van VlecK® The derivation of the-J model with
hence must still be iteratively diagonalized in the low-energyring exchange® from the Hubbard model and the derivation
subspace. of the Kondo model wusing the Schrieffer-Wolff

Low-energy effective theories play a crucial role in essentransformatio®’ from the Anderson model, are well-known
tially all fields of physics. When there are large energy scalegxamples where the CT method was applied. A modification
that are well separated from the low-energy sector, low-of that method, the continuous &1°and its predecesséft,
energy effective theories offer the enormous advantage dias also found recent applications in the derivation of flow
being formulated in an exponentially smaller Hilbert space.equations. Another equally popular method is the projection
The price for this simplification is that both the Hamiltonian method, or degenerate Brillouin-WignéBW) perturbation
andthe operators take a form that is more complicated thartheory. The projection method, based on ideas of Kto,
that of the original theory. In general, this form involves offers an alternative route to the derivation of, for example,
n-body interactions and operators that have a finite extent ithe t-J model with correlated hopping:23 It has been also
space, even if the original theory was local. For exampleused recently in the derivation of an effective Hamiltonian
making use of the large energy of virtual electron-positronfor the pyrochlores.The resolvent method, based on a pro-
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cedure known as Lowdin downfoldirfd, is yet another dressed. We also demonstrate the equivalence of the trans-
method that is available. formed structure of the operators within the different meth-
It is well known that the BW and the CT methods give ods.
equivalent results at lowsecond order, as exemplified by Our paper is organized as follows. Section Il introduces
thet-J model with correlated hopping. Although the equiva- the model and notations. Section Il escribes CT methods
lence of these approaches in higher order might be not obvigng introduces the unitary transformation that allows us to
ous, one mtwtl_vesly expects that they are. This has been suRtemonstrate the equivalence of the various low-energy effec-
ported by Kleit® who has given a formal proof of the e theories. Section IV is devoted to the BW method, Sec.
equivalence between various forms of degenerate perturbg eqcrines the resolvent method and finally Sec. VI presents
tion theory. Generally, in the presence of.a well defined smal{li generalized transformation from which all perturbative re-
parameter, the perturbative expansion in powers of such Its can be derived. In Sec. VIl we give a brief discussion of

parameter should not depend on the method employed. | . . i
other words, an effective low-energy theory can be presenter Ievgnt experiments. We conclude with Sec. VIIl. The Ap
endix contains miscellaneous results.

as annth order power series in the inverse of some Iargep

energy scalgt/U in the Hubbard modgl and all methods Il. MODEL
are expected to yield equivalent forms of the theory up to
that same orden. We consider the Hubbard model, conveniently written in

In this paper we show in some detail how CT, resolventthe forn?
and BW methods can be applied to the Hubbard model to
obtain equivalent effective low-energy Hamiltonians up to H=To+ Ty + T4V, (1)
fourth order, that i€D(t*/U%). By equivalence, we mean that where theO(t) kinetic energy operator in second quantized
all three methods yield Hamiltonians that are related via orm has been divided into three terms by using projection
unitary transformation. Although, in order to be specific, weoperators. The first operatdf,, includes the projection op-
work with the Hubbard model, it will be clear that the pro- erators that ensure that the number of doubly-occupied sites
cedure can be trivially extended to other models, includingdoes not change because of hopping. It is precisely this term
models that involve expansion of pure spin models about thenat complicates the application of traditional degenerate per-
Ising limit.*> Several new issues appear in deriving higherturbation theory to the Hubbard model. The projection op-
order low-energy effective theories. First, one may finderators included in the kinetic energy operatdssand T_;
amusing that the low-energy Hamiltonians obtained frommake sure that these operators increase or decrease the num-
three different CT methods, one of Refs. 5 and 6, one of Refper of doubly-occupied sites by 1, respectively. All of these
25, and the one introduced in this work, appear talffer-  terms are proportional to the hopping matrix elememMote
entin each case. However, we show that they are all conthat generally speaking, there can be hopping matrix ele-
nected by an additional unitary transformation that leaves thenents to arbitrary neighbors but we take all these terms to be
block-diagonal form invariam® That is, this unitary trans- of the same order in the expansion paramet&he Hubbard
formation converts these different Hamiltonians one into theon-site repulsion, written a¥, is proportional toU.
other. Second, in the case of the BW method one should be These notations implicitly use the classification of the Hil-
careful in dealing with(i) the orthonormalization of the pro- pert space in subspaces with different numbers of doubly-
jected eigenstates, since the latter are not necessarily asccupied sites. Namely, every eigenfunction of the Hubbard

thogonal even if the initial basis is, arid) the energy de- Hamiltonian (1) can be split in the series of orthogonal
pendence of the expansion, since the energy should hieces

evaluated iteratively using results from previous steps, in the .

spirit of Rayleigh-Schrédinger nondegenerate perturbation

theory. The final low-energy theory again appears to be dif- = E_ [Ym) = [t + |9 +[g) + -, 2

ferent from that obtained from the CT approach of Ref. 6, m=0

but a unitary transformation within the low-energy subspacevhere the subscript enumerates the states with

shows their equivalence. Third, in the so-called resolvent0,1,2,...doubly-occupied sites. Evidently, the operator

method, which is similar to the BW approach but worksis diagonal in this basis and has the eigenvailin a state

more directly with the Hamiltonian matrix rather than with containingm doubly-occupied sites. For the rest of the paper

the eigenstates, one needs to perform the orthonormalizatiome setU=1, and considetitself as a small parameter. When

of the eigenstates in an iterative procedure. For the derivaa clarification is needed we will restore the acttidl de-

tion of the t-J model with correlated hopping within this pendence of the expression.

method see, e.g., Ref. 26. The fourth-order low-energy At t=0, the solution of the eigenstate equation is simply a

theory obtained with this method is also unitarily equivalentset of highly degenerate states separated by erérdy is

to the results of the BW and CT approaches. assumed that is much larger than the bandwid¢bf order
Finally, as in Ref. 8, we emphasize that in order to com-t) so that, witht finite, states cluster around the valuet)

pute correlation functions or spectral weight within the low-and are separated from each other by a Mott gap where no

energy theory it is important to transform the operators corstates occur. In other words, we assume that switching on

responding to observables. The omission of such aoes not lead to a crossing of levels between the lowest

transformation(see, for example, the recent work using theenergy manifold,mU with m=0, and all other manifolds

BW method for the pyrochlorég?) has to be explicitly ad- with m>0.
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Evidently, many Hamiltonians can be cast in the form of or 1
Eq. (1). It suffices to have a large term in the Hamiltonian Heff =V +To= T_1Ty + T_1ToT; - 5(
that can be easily diagonalized and leads to states that are
separated by some large energy sdaleOther terms in the
Hamiltonian that couple these original states and are propor-
tional to some small parameter can be denoted Qywhere

Am indicates that the operator couples states separated by +ToToqToTy - }(T—1T1T3+T3T—1T1)- (6)
AmU. Although we consider onlAm=-1,0, +1, itwill be 2

obvious how to generalize our proof to more general value
of Am.

T TiTo+ ToT_1Ty)

1
+(T_4Ty)2- ETElTi — T T2T, + T ToTi T,

The value ol is taken to be zero since we are in the singly-
occupied subspace. In deriving this expression the identity
T_41|#o) =0, where| ) is any of the singly-occupied states, is
used.

The CT method is probably the most commonly used We would like to add an interesting technical detail to the
method to find low-energy effective theories. We briefly re-discussion of this method. Thé-term in the generatos;,

call the known results for the problem at hand and then mov@lthough necessary to eliminate th%orijﬁ&off—diagonal
’ 1

III. CANONICAL TRANSFORMATIONS

to another version of the CT approach that gives a result thderms in Eq.(3), does not contribute @7~ * explicitly.
is unitarily related to the first one. That is, the 4th-order effective Hamiltonian of £§) can be
obtained usings=S,;+S, only, simply neglecting the remain-
A. Method 1 ing off-diagonal terms. Similarly, the diagonal terms in the

3rd-order Hamiltoniarfhl(:;)f are all generated by, alone.

To derive the higher-order effective Hamiltonian for the . . ©f o
Hubbard model, the CT method was applied in Refs. 5 and 6Thls is because the original Hubbard Hamiltonian does not

There tha®- andtb-order Hamiltonians were obtained for the contain any "bare” off-diagonal terms of order higher than

half-filled case and*-order Hamiltonian was found for an All such higher-order off-diagonal terms are the result of

arbitrarv dopina. We will simplv repeat the basic idea and thecommutations off-terms. This shows some additional inter-
y doping. V Py rep , Lo nal structure of the model. Since we will need the generator
results obtained in Ref. 6. The effective Hamiltonian was

. : S; for the discussion of the transformed operators but it was
obtained from the Campbell-Baker-Hausdorff expression not written out explicitly in Ref. 6, we present it in the Ap-
oT s 1 pendix, Eq.(Al).
Heiit =€ He"=H +[H,S]+ Z/[[H.S].5]+ -, (3) The expression for the('?:°™ in Eq. (6) seems to have
' all possible combinations of,, T_;, andT,, except for one
where the generator of the transformat®is truncated as  “missing term:” T,T_;T;To. Although there is no general
S=S+S+ S+ principle which would require presence of such a term in the
effective Hamiltonian, its absence makes one curious about
whereS, «t". The role of eacl§, in this series is to eliminate its whereabouts. The fate of this term will be clarified in Sec.
the corresponding™order off-diagonal terms in the Hamil- 11l C.
tonian in Eq.(3), which change the number of doubly-
occupied sites. By assumption howevBrjoes not contain
terms that preserve the number of doubly-occupied sites. The B. Method 2

remaining freedom to perform a unitary transformation |n the same spirit, a different way to formulate an effec-
within the smgly-occupled subspace will be discussed latetiye theory using the CT approach is to apply consecutive

in this section. unitary transformations
Given the explicit form of the Hubbard Hamiltonian, Eqg. - -~ - -
(1), one readily finds that HSR= .. e SeS2e SiHe e%e™ . .. |
S =T,-T;. (4)  We call this the “consecutive CTs” approach. The idea for

Using S=S, and keeping terms up tO(t?) in Eq. (3) the't eachS, is to eliminate the off-diagonal terms of theh order

-J model with correlated hopping is obtained. To derive the'®maining from the previous)—-1 order CT. In each of the
higher-order Hamiltonians we have to trunc&at higher ~transformations the expansion formula E8j is applied and

order and determine the operator expressio8,sfrequired  all terms up to a desired order trare kept. Thus, afted,

to eliminate the off-diagonal terms of the order. These =% is applied to the original Hamiltonian the off-diagonal
off-diagonal terms are generated by the commutatorsl of terms of ordeO(t) are eliminated and show up only @(t?).
with §,’s in the previous orders. Generally, one neees  The next transformation moves the off-diagonal terms to
terms inSto obtain the theory valid to the ordél We list O(t%), and so on. Generally, the generaté;sin this ap-

here the generatd, for completeness proach are different from the ones in the previous approach,

S,=ToT — Ty To—T_ To+ ToTy, (5  that is~Sn¢ S.. However, one can check that for the Hubbard
and simply reproduce the result of the procedure describe@0del generator§; =S, and S,=S,, Egs.(4) and (5). Note
above carried out in Ref. 6 to thé-order, that S; is indeed different frons;.
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We would like to remark that the derivation of the higher-  Thus the 4th-order effective Hamiltonian for the Hubbard
order effective Hamiltonian within this “consecutive CTs” model can take an infinite number of unitary equivalent
approach is more straightforward than the approach of Reforms all connected by the transformation in E¢8) and

6. Also, the absence of thg; contribution toH(}} is much  (9)- All these models possess the same energy spectrum and
less enigmatic here. Namely. sin~8§is the off-diagonal or- correlation functions and thus are equivalent. From this point
der t® operator, its 6nly com’mutator which can gi@t4) of view, the reader should not be surprised when, in the next

contribution to the Hamiltonian is with the off-diagonal op- Z?fglr%?\'t \]f\r'gr:rgqt(%?t the BW method gives a result that is
erator of the ordet. However, aftere™ is applied the only Although the unitary equivalence of the models is a rather
operator of ordet remaining in the transformed Hamiltonian natural property, it is certainly unfamiliar in lower-order ef-

is the diagonal operatorT,. This removes the need to know fective theories. Furthermore, such a unitary equivalence

the explicit form of§3, although it is formally still necessary should be common to all higher-order theories. As the order

to eliminate the off-diagonaf-order terms irﬂ-{é‘?f. of the perturbation theory is increased the number of block-
Surprisingly, the final 4th order result of the “consecutivediagonal, anti-Hermitian operators one can construct will
CTs” approach iglifferentfrom Hé‘?f'CTl Eqg. (6): also grow, providing one with a broader variety of unitarily
equivalent forms of the effective Hamiltonian and corre-
1 sponding operators.
HE T = HE T ST+ T ~ T Tyl SPonaing op
(7) D. Operators

The difference concerns the above-mentioned “missing It is important to note that in a low-energy effective
term” ToT_1T,Ty and the termd ST_lT1 andT_lTlTé. In fact, theory all operators should be transformed along with the
in this version of the effective theory the original “missing Hamiltonian. Then the expectation values of the observables
term” is found, but the two analogous terms are missingcan be calculated in the singly-occupied manifold. The trans-
This “mystery” is unveiled below. formation is different depending on which canonical trans-
formation method is used. Using the first CT above, the stan-

N ) ) dard expression for the transformation is
C. Additional unitary transformation

Let us first make the following observation. One can con- D=eS068=0+ [0,S]+ i[[H,O],O] + ..
sider the following unitary transformation: 2!
1~ oS CTieS Again, we consider as an example the opera&er which
Her= € PHeif'€, ® ¢ - CF .

increases the number of doubly-occupied sites by one. Using

with the generator S=§,+S, from Egs.(4) and (5) and utilizing the property
T_4l¢o)=0 we obtain, to the ordd?

So=NToT4T1 = T4 T1To), 9) o 5
wherey is a real number and plays the role of an “angle of 0;=-T_10; + (T_1To = ToT-1Oy,

rotation.” Note that such a generatar) is explicitly anti-  \yhjch coincides with the expression we will obtain with the
Hermitian, (i) is diagonal(does not change the number of gy method, Eq(34). To obtain the next-order expression
doubly-occupied sitgs (i) is O(t), and (iv) is real. The o1 the transformed operator one needs to know an explicit
operatorS, is the lowest order operator satisfyifp—(iv) expression for the generat® [see Appendix, Eq(AL)].

which one can construct usifig andT.;. Itis also the only  ysing it, some algebra reveals that, to ortfer
operator of such kind in th®(t order. Therefore, the only

contribution from such a transformation ¢, will be from = _ 3
the [T, Sy] commutator and it will generatéef;additional terms 017~ T-101+ (T-aTo=ToT-)O; + T4 Ty 740
of t*order of the form 1
2 2 2

SHer= YToToa T+ T TiT5= 2T T TiTg).  (10) - 2T'1TlOl 7 ToT-101 = T-1Tg01 + 2ToT-1To0s
As we will see, the multiplicity of Hamiltonians that arise 1 1.,
once the high energy scale is eliminated all differ by the +§T—101T—1T1_§T—101T1' (11)
terms appearing idHq¢. Choosing the “angle of rotation” _ _
y=1/2 andapplying the transformatio, to the Hf:?f‘cn, vv_hlch _should be Compared with the result of the BW method
Eq. (6), one readily obtaing%°™2, Eq. (7). As a result 9Vén in the Appendix, EqA2).
T_1T1T3+ H.c. are replaced by the “missing termgT_;T; Tg.
Qlearly, differgnt choices of the “a_ngle of rotation” will give IV. BRILLOUIN-WIGNER METHOD
different fractions of those terms in the result. In fact, a re-
cent study, Ref. 25, used a continuous CT approach to the We proceed to show, up to ord@(t*) [=O(t*/U3)] for
Hubbard model and obtained an effective Hamiltonian whichthe Hamiltonian, that degenerate BW perturbation theory can
would be equivalent to the choicg=1/4 in Eq.(9). be organized in the spirit of the Rayleigh-SchrodingeBb)
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perturbation theory to lead to the same low-energy effectivainity. The above equation Eq15) generates the usual
theory for Hamiltonian and operators as the consecutive CBrillouin-Wigner perturbation theory. One recognizes that
method. We will take a detailed approach that shows all thehe second term and the last term in ELp) are components
subtleties. of the eigenvector in the subspace with=1 doubly-
Let us consider one eigenstat@ of the full Hamiltonian ~ occupied sitg¢,), while the third and the fourth terms are
(1) with the eigenvalu€. It obeys the Schrodinger equation components with m=2 (|¢,)) and m=3 (|i3)) doubly-
_ occupied sites, respectively. This fomithout |s)) suffices
(E-To-V-Ti-T-yl$)=0. (12)  ¢or our derivation of the effective theory to or|d©(t4). With
Although we have not explicitly written quantum numbersthis effective Hamiltonian, one will be able to find the com-
for E and i), we have to remember that we have a matrixponent of the eigenstate in the singly occupied subspiage
equation with many eigenvalues and corresponding eigerfsiven |¢), all the components of the eigenveci@ in the
states. We look for the effective theory that describes then=1 andm=2 subspaces are already completely determined
states that evolve from the lowest energy sectsr0, taking by Eq. (15).

into account virtual excitations inton>0 states perturba- The subsequent treatment of Ed5) to generate a low-
tively. One can also write effective theories that are valid forenergy theory is the following. The denominatdis—T,
any of the subspac&swith m>0. -V)~ ! are not singular because they correspond to the energy

in the bands withm>0. UsingV>E-T,, one has to expand
the energy denominators in E(.5) to the required order in

A. BW ion f . .
expression for|y) t. Let us list here the results of such an expansion of( Eg).
We would like to rewrite the eigenstal#) in a way that  order by ordefU=1). We find

will allow us to take into account higher-energy sectors with

m= 1 through an iterative procedure. L@tbe a projection [ =1y, (16)
operator that removes all components|#f that are in the
m=0 (singly-occupiedl subspace. We havgQ,E-Ty-V] |y = (1 =Ty, (17)
=0 sinceTy+V does not change double-occupancy. One can
find then an iterative expression f@{) directly from the |2y = (1 =T, = (E-To)Ty)|4?), (18
Schradinger equation E@12)

1 |y = (1 Ty + T, - T,E- }T_lTi -T,E>-ToT,

Q) =7 QM+ T-0l¥). (13 2

° 1, 1 3, 1
Inversion of the operatde—T,—V does not cause any prob- +2ToTE+ ETi - ETlTOTl + ZTiE - ZToTi)W/?)%
lem when there is a Mott gap since the denominator has only
nonvanishing eigenvalues. Indedtk: T, is at most of order (19

of the bandwidth(proportional tot) while the operatorQ where the superscript describes the order of approximation,

ensures that the smallest value tNatakes isU. The com- N . :
plete eigenvectof) has components in th@=0 subspace th%t) 'S.| g)> 'S the compongnt of the third-order %genstate
|0y =(1-Q)|¢) that we need to determine. We assume that?? ',g the singly-occupied,m=0 SHPfSpace:Wo =1
lJo) is @ member of an orthonormal subspabg| vq) -Q)|#¥). Note that, as usual, the ord&r* in the expansion
=5, ;. The subscript 0 to a ket means that it has compo-Of the eigenvectof) correspond to the ordét in the matrix

IO, 0'

] X elements of the Hamiltonian and of the corresponding
nents only in then=0 subspace. This procedure leads to theenergy?o That is, one computes the first-ordef? using
standard BW expression fdu)2° '

zeroth-order eigenstatég'?), the second-order theoit®
1 is formulated with the first-order basjg'V), etc. Thus, for
) = o) + mQ(TﬁT_QM), (14)  the fourth-order effective Hamiltonian we will neéd®).
Co Another detail concerns the explicit dependence/st) and
which can be solved perturbatively by iteration. Using|#®) in Egs.(18) and(19) on the energyE. This issue will
T_4h)=0 and the fact that we cannot come back to the be resolved later by evaluatirigin iterative manner.

=0 subspace in any of the intermediate stéQ3_,T,|p) One can see that in all orders the full eigenstateis
=0) we find, iterating Eq(14) three times, built from them=0 stated) by including the off-diagonal
) transitions to the upper-band. The zeroth-order approxima-
) = {1 N 1 T ( T ) tion |%) Eq. (16) corresponds to taking only the first term
E-To-V * \E-To-V ! in Eq.(15) and neglecting all the upper-band excitations. For
1 3 1 1 5 the first-order approximatioj'?), we needed to include the
+ ( 1) + _1< -|-1> ] second term in Eq15). Using thate— T, will be of the order
E-To-V E-To-V \E-To-V of t we have simply neglecte@—-T, in the denominator

X|gho) + -+ . (15) which yielded the first-order state, E¢L7). The second-
0 order statg/?) is obtained from the first three terms in the
We took into account the projection operat@ysso that the  BW series Eq(15). In the third term we can negle&-T,
above equation contains only the terms for wh@@grequals  again, but the second term needs to be expandest-in,.
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This leads to the second-order state given in([#8). Aterm  the t-J Hamiltonian with correlated hopping. Again, for fu-
of the formT2/2, which does not contribute to the effective ture reference, we write

Hamiltonian to that order, was dropped although it can ap- D\ — o1 (D)

pear in certain observables. To obtain the effective Hamil- (To=T-1Tolyo") = Elgrg")- (24)
tonian valid to ordert* one has to generate the third-order Contrary to the nondegenerate perturbation theory, the
wave function#/¥) from Eq.(15). This is obtained from the ~ states in then=0 subspace change as we improve the ap-
contributions of all terms in Eq(15), although the fourth  proximation. There is a link between the states at various

term «<T; can be neglected since it only contributes to thegrder as will be discussed in more detail in Sec. IV F below.
effective theory to ordet®. The expansion of the denomina-

tors provides us with th&-, andE>-dependent terms in the C. Transformation of operators in the t-J model

: . 3 .
resulting expression fofy/®), Eq. (19). Let us emphasize Let us pause momentarily to develop transformation rules

here that in thee-dependent terms of the second- and third-foy the operators that should be used at this level of approxi-
order eigenfunctions, one should expdhds well, and keep  mation. Consider. as an example, an oper@oy that de-

only the terms to the required order. Thus, [p”) we will  creases the number of doubly-occupied states by one. Na-

only need tge expression fé that is valid up to ordet,  jyely one would expect that it has zero expectation in the

while for |y/*) ordert® is required, .. case of the-J model that is defined in the singly-occupied
We also point out that Eq916)«19) relate the *full” g hspace. The correct way to proceed is to notice that the

eigenstatgy) to the the state in the “projectedit=0 sub-  matrix elements 0D_, in the basis of first-order eigenstates
space. Since our goal is to have a low-energy theory whlctEq_ (17) are given by

operates with the projectddgy) states only, one should take
into account the fact that although the eigenstates are ortho- (' V|01 |y = (Y| = O T ). (25)

normal(y’ | =4, , this is not true for then=0 component . L . . )
alone :#al l@ ,|‘/’"”>¢ s This is evident from E 5 Since the above expression is valid for any eigenstate, to first
' Yol tho) # Oy 42 order the effective operator

Therefore, if one wishes to obtain an effective theory that

takes the usual Hermitian form, one needs to orthonormalize O(_ll) =-0_4Ty (26)
the projected basis to the required ordet.ifThis difficulty
will appear in higher order, but let us first reproduce the
well-known second-order results.

should be used to compute any matrix element of the original
operator solely in terms of projected eigenstdigs. Both
the Hamiltonian Eq(23) and the operator Eq26) coincide

B. Derivation of the t-J model with the CT result.

We begin with the zeroth-order approximatia#®) given D. Third order
in Eq. (16). Since the eigenfunction involves only the=0
subspace, the diagonal part of the Hamilton{@n solely
contributes to the eigenvalue equation

There are new technical issues that appear in orders
higher than second. The first problem is that since
(@' P2y =(yP|1+T 4 T|y2)+O(t3), the second-order

(W O[O = (O Tolye”) = ESy - (20)  eigenvectors in the singly occupied subspagg)) in Eq.
° (18) do not form an orthonormal set to ord@r This issue is
Therefore,H.q =T, is our effective Hamiltonian to ordeér easily resolved. To obtain an eigenvalue problem in standard
We rewrite Eq.(20), for future reference, as form we define the orthonormal basttq()z)) by

Tol ) = E[y). (21) Y2y = (1+T_,T) Y2, (27)

To next order, we need the first-order staté”) from Eq.  where the square root needs to be expanded to dfdker

(17). One can see that the staﬂd%”) in Eqg. (17) are still  give
orthonormal to ordert, that is ('@ [yD)=(y |y

. . 1
+0(t%) =48, ,. With these states one obtains |2y = (1 -Ti-(E-ToT, - ET_1T1> o). (28

PO DY = (DT = T Tal oY = ECR O DYy + O(13
W PIHIFD) = 6 To = TaTalu”) = ECwg ™ g™ + O(E) This second-order eigenvectaf?) should be used to obtain

=Eby; 4o (22)  the third-order effective Hamiltonian. This is where one en-

) ) counters the second difficulty. It concelfaslependent terms
where we used th&=0(t) and that with the required accu- hat have to be treated carefully.

racy we can neglee(t3) term in the right-hand side and use Supposd#?) in Eq. (28) is an eigenstate with enerds

orthonormality to replacéy, ™| ") by Sy4y Itis clearthat  Since the order of th&-dependent term should match the
the content of the brackets in E(22) plays the role of an t>order of the eigenstatie/'?), E should be expanded in

effective second-order Hamiltonian Clearly, we can replack appearing in Eq(28) by its first-
@ _ order term in powers of. To this end we write
Hes=To—T_qTy. (23 , o o
Elet”) = He o). (29

Writing this result in terms of second-quantized operators

and recalling thad=4t?/U in the second term, one recovers Since we can anticipatb((3) to have the form

eff
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HE =Ty-T_ T, +O(t9), (30) (19 and(ii) to transform theE-dependent terms to equiva-
lent operator expressions found in the previous steps. The
we can useE|¢)=Tolgl)+O(t?). This is an iterative pro- procedure outlined for the second-ordigf2) should be fol-
cedure and it can always be justified by the consistency obwed here. From the normalization condition|¢f) in Eq.
the result with the initial expectation outlined in E@®0).  (19), one finds thaty.”) should be orthonormalized with the
The replacemenE|¢82)):T0|<pgz)> is valid for any of the help of
eigenvectoré,@gz)) of the effective Hamiltonian. After mak- 3 _12 (3
ing this change in Eq(28), the second-order eigenstate reads %0 )= (1 +T1T1 = 2T_4ToT, + 2T, T,E) ™ Hgg”).
(39

1
|yf?)y = (1 —T1=TiTo+ ToT1— ET—1T1>|<PE>2)>- (3)  The subsequent expansion of the square root to dfdisr
needed. The resulting expression for the eigenstat® will
This procedure allows us to find a Hamiltonian matrix. Wecontain a term F,E. One has to to replacE|<pé3>> with
will show in Sec. IV F that there is a relation between eigen-(TO_T_lTl)hP(s)), which givesE to second order it when
vectors and eigenvalues at different orders. With the abowv 0

@)y ; : ; ;
; is an eigenstate. This leads to the second- and third-
state|y/?), the eigenvalue problem takes the form fe) 9

order terms’ In all c()t)herE-dependent terms in Eq&L9) and
, , 1 (35) we can useE|¢\)=To|¢\”) as before since this already
(W PIH[YP) = (P To=T_1 Ty - 5 1-1Talo+ TiToTy produces the terms of ordét. Straightforward algebra fi-

nally leads to
1
~ Tl Tile) =E8, o, (32 1, 1 1
2 o100 = Eori W)= 1-Tot ToTy =TT+ ST - STTy = STt
which is clearly consistent with our expectation for the ei-

; ; 1 3
genvaluek expressed in Eq30). As in the lower orders, the ~ T T2 -T2T, + 2Ty To - —TiToTa + 12T,

effective low-energy Hamiltonian can be directly read off 4
this equation. Thus, up to ord@(t%), the effective Hamil- 1 3
tonian is given by - ZTOT% +TqToT = T4 T T+ ETlT—1T1)|<P§)3)>,
1 1
Hg?f = TO - T—lTl - ET—lTlTO + T—lTOTl - ETOT—lTli (36)

where |gog3)> is the orthonormal set of then=0, singly-

(33 occupied eigenstates. With the help of this form @) the
which agrees with the CT approach to this ordeze Sec. third-order expressions for the matrix element of an operator
. (O,) can be obtainefisee Appendix, EqA2)].

The last equation, when taken out of context, may suggest Rather cumbersome, but still straightforward calculations
that it contains terms that are not allowed within BW pertur-for the eigenvalue problem with®) yield the fourth-order
bation theory. Indeed, the general expression with projecteéffective Hamiltonian
wave function Eq(14) shows that one cannot come back to @ @.CT
the singly occupied state in any intermediate state. The series Hefi=Herf 2 37

should contain only “proper” terms. So, terms Iike;T:To  that isidentical to the one obtained by the consecutive CT
in the above expression leave the impression that they shouldethod, Eqs(7). This effective Hamiltonian, within a uni-

be forbidden sinc&, does not change the double occupancyary transformation in the singly occupied subspace, ist the
However, our derlva_tlon clearly shows that these terms comej " model with ring exchange and various correlated
from expandinge using lower order results. Hence they are hoppings®
in fact perfectly acceptable.

The matrix elements of any operator to second order
should be computed with the stdi¢?) from Eq. (31). For
the operatorO;, which increases the number of doubly- There is a connection between eigenvectors inrtived
occupied sites by one, we obtain subspace at different orderstinFor definiteness, let us con-
'@ M D) @ sider the eigenvalue problem defined (f)f in Eq. (33). If
(/@ |0|yf?) = (007l = T-101 + (T4 To = ToT-1)Oul¢g ), |qof)2)> is an eigenstate dflg)f then the corresponding energy
(34)  to ordert®is given by

F. Connection between eigenstates at different orders

that also coincides with the CT result for the transformed (To—T_iT1 + O(1)| ) = E| o). (38)

operator, as discussed in Sec. lll. ) ) ] ]
We wish to rewrite this equation as

E. Fourth order (To— T TD)le?) = (E- O(t%))| o). (39
To obtain the effective Hamiltonian valid to the ordér  Note that the left-hand side of this expression contdips
one needs agaifi) to orthonormalize the statewff)), EqQ. —T_lleHff)f, the effective Hamiltonian at the previous or-
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der. The eigenvaIiJe probliam f@tfj)f gives eigenstates at the To T4 | o) | o)
previous orderjcpf) )y [E|z,/;f) )Y in Eq. (17)]. Taking the Her- T. 1+T. T i) )
mitian product of Eq(39) with an eigenstatép,?| we have ' ° NG ’
. 0 ’ Ty 2+To T || | l) |
by applyingT,—T_;T; on the bra, 1
T Ho ) \[ge) |ih=)
(s 1 To = T-sTolel?) = /(o1 of?) o

=(E-0))eVef). (400 whereH-=P-HP-. Similarly to Eq.(15) in the BW for-
malism one needs to keep only terms upg) to derive the

From this, one concludes that to ordér effective theory to ordet*. Thus, Eq.(44) should suffice for
our goals. It is convenient to rewrite this equation by com-
(E _ E/)<(P(I)(l)|¢%2)> =0. (41) ponents
Elyo) = Toltho) + T_alth), (45)

Hence, to that order, eithéw, | ¢Z)=0 or E’=E or both.
The generalization of this result means that an eigenvector in

the low-energy subspace can have a nonzero overlap to order Elyn) = (1 +To)|gh) + Toltho) + T o), (46)
t" with an eigenvector of the ordé#* theory if and only if
the energies agree to ordéfr’. Note, by the way, that the Elyn) = (2 +To) ) + To| ) + Toa|b), (47

diagonalization 01’Hf§'})f will in general give us energies that
contain all powers of. Neverthelessk: will be valid only to _
ordert" since the higher orders can be modified when the Elipe) = Holye) + Tol ). (48)

matrix elements off{e are calculated to higher order. A 4 e eliminate all components pf) one by one, starting
degeneracy that exists at a given order @an be lifted atthe |, ..y |-} until only |y) is left. From Eq.(48) we obtain
next order. Energy levels of different symmetry can cross

when evaluated at different orders inso that the ground —(E- -1 =
state of, for example, thed model with correlated hgopping 195) = (B~ H=)"Tily) = O0lvs).
can be different from that of the model that includes ringwhere we take into account the fact that the operator in
exchange. brackets is nonsingular and@(1). This expression fof-.)
is substituted in Eq47) for |¢) to give

V. RESOLVENT METHOD

1
=(E-2-To-Ot)™'T =<——T +Ot2) :
Another approach to deriving the low-energy effective 2= 0= OM) Tl 511+ 0) [
theory is the resolvent method. It is based on an iterative (49)
execution of a procedure known as Lowdin downfoldffds.

bears a lot of similarity with BW perturbation theory but where we expanded the denominator and kept terms of order
works more directly with the Hamiltonian matrix rather than ¢ since the higher order terms do not contribute to the theory

with the eigenstates. Of all the approaches considered in thisf the required? order. This latter equation is used to elimi-
paper the resolvent method requires the least amount of ahate|¢2) from Eq. (46). Thus we have

gebra.

We start by defining the projection operatofs, m 1 5 , 4
=0,1,2 andP-. OperatorP,, projects on a subspace with lp)=|-T1—(E-To)Ty - ET—lTl —(E=Tp) T, +O(t")
doubly occupied sites. Operatéx. projects on a subspace

with more than two doubly-occupied sites X o), (50)
2 where again the expansion of a denominator has been per-
P.=1- 2 P.. (42) formed to the required order. Finally, we obtain an equation
m=0 for |¢0>
L : : 1
For our purposes it is convenient to rewrite E2) as E|o) = (To T Ty~ T ET + T ToTy - ETngi ~T,E’T,
= + + +
|¢> |l//0> |¢/l> |¢/2> |lr//>>! - T—lT%Tl + 2ET_1TOT1 + O(ts)) | l,bo> . (51)
Pi|¢’J> - ‘Sii|‘r/’j>’ (43) This is not the “true” eigenvalue equation since it contains

E-dependent terms in the right-hand side, similar to the BW
wherei, j=0,1,2, and *>.” The eigenvector equation can case. We rewrite it then by transferriBgdependent terms to
then be written in the following block form the left as
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E(L+T4T, +ET T, - 2T ToTo)| o) V1. BIG PICTURE: GENERAL TRANSFORMATION

1 Thus far, we have shown that while different methods of
= (To — T T+ T ToTy - ETngi - T—1TST1> o), performing perturbation theory preserve the original energy
spectrum of the Hubbard model, the effective Hamiltonians,

(52)  Egs.(6), and Eq.(54) differ from each other and from Egs.

. ] (7) and(37) that agree with each other. The terms in question
where we omitted®-order terms. Below we will assume that | arise at fourth order and are all reducilwith respect to
operator expression accuracy is upQa*). the zero-double occupancy sector. That is, they contain hop-

The derived equation fdl) still does not have the form  ping processes that do not originate from excitation to the
of the Schrodinger equatioB|y)="H|¢). To transform EQ.  doubly occupied subspact,T_,T,To, nor terminate once an
(52) into a Schrddinger equation an orthogonalization proceelectron is returned to the singly occupied subspace, for ex-
dure similar to the one we used in BW calculations must b%mp]e,T_lTlT_lTl_ All such processes can be viewed as aris-

performed. We introducyo) such as ing from a transformatioi of the eigenstates in the low-
1o energy sector. To lay plain how the effective Hamiltonian is
o) = alxo) = (L + T4 Ty + ET4 Ty = 2T_1ToTy) 2 x0)- unavoidably affected by this transformation, we now formu-

o o late a general method which makes it possible to derive all of
Substituting in Eq(52), left multiplying by « and then ex-  {he Hamiltonians presented thus far within a single compu-
panding the square root keeping third order terms, the leftiation scheme. Our starting point is BW integral equation,
hand side isE|y,) and the right-hand side still has some Eqg. (14), whose solution we write symbolically as
E-dependent terms. Transferring them to the left we find that

|xo) satisfies ) = G(t,E)| o) - (55
1 The exact expression for the energy-dependent operator
E<1 + ‘(T—1T1T0+T0T—1T1)>|Xo> G(t,E) is obtained by iterating Eq14). Applying P=1-Q
2 (see Sec. IYto the left-hand side of the Schrédinger equa-
< 1 1 tion, Eq.(12), we obtain
=\ To=Toq Ty T T To— ZToTo Te + T_1ToT.
e R P I (E=Tolvho) = PT-1Qy) =0, (56)
+ T ToT To+ ToT_ ToTy + (T_ Ty)? which can be recast as a nonlinear eigenvalue problem
1 Elvio) = (To + PT_1G(t,E)) [ o), (57
- ETngi - T—lT(2)T1) IXo)- (53 ° ° ' 0

using Eq.(55). Taylor expansion o6(t,E) results in a poly-

The left-hand side of this equation still does not have thefri]r?anlﬁlain the energy eigenvalue. Through fourth order we

desired form. An extra orthogonality transformation analo-

ous to that performed withr above is required 1
¢ P q E| o) = (TO =T T+ Ty ToTy = T4 T3T, - ETﬁle

1 1 )—1/2
=1+ 3T T To+ =T T T ,
Xo) ( 2 1107500 [¢0 +(- ET_lTl—E2T_1T1+2ET_1T0T1))|1//0>.

with the subsequent square root expansion. The resulting ei- (58)

genvalue equation fofp,) by the resolvent method finally o ) )
takes the Schrodinger equation fOlﬂ_ffi‘KPoFH(?thPo) with  To eliminate the energy-dependence on the right-hand side of
e

the effective Hamiltonian given, to fourth order, by this equaf[ion, we substitute E(p7) for each occurrence of
E| o until all the energy dependence has disappeared. The

iR por. 1 , 1 result of this procedure is an eigenvalue problem
Heif = Hei 4 Z(TaTaTo+ Ty = SToT 4T To. i
Elgo) = (To T T+ T ToTy = Ty ToTy = ET—1T1

(54)
This effective Hamiltonian does not coincide with the other —TT(To=T_ 4Ty + T_lTng + 2T_1T0T1T0)|z//0)
forms ofo;?f we have obtained so far, namely E@), (7),
and(37). It is however unitarily related to all others through - F||¢O>, (59)
the transformation Eq$8) and(10). For example, the “angle 5
of rotation” y=1/4 transforms Eq(54) back ton;?f'CTl in  with a non-Hermitian operatdd. All the terms in the second
Eq. (6). parenthesis arise explicitly from eliminating the energy de-

We note that transformation of operators can also be dependence in Eq(58) and as a consequence are products of
vised within the resolvent approach in a manner similar tathe proper BW terms in the first parenthesis. It is in this
the BW calculations, Sec. IV, using the above relations besense that such terms are reducible with respect to the zero
tween|¢y) and the states witm>0 doubly-occupied sites. double occupancy sector. The lack of Hermiticity surfaces
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because projection does not respect the mutual orthogonalitpyg. Canonical transformations, on the other hand, are by

of the eigenstates in any of the degenerate subspaces.  definition unitary and hence no additional orthogonalization
Hermiticity can be restored by a suitable global transfor-transformations are necess&#.

mation of the eigenstates within each degeneracy subspace.

To proceed, we consider the operator

Z=1+aT T+ bTTiTo+ CToT4 Ty + AT ToTy, Several experimental groupbave pointed out that high-
which is explicitly not unitary. As such, it can be used to temperature superconductors show spectral weight rear-

VII. SOME COMMENTS ON EXPERIMENT

construct an effective Hamiltonian rangements over the Mott sc&feRearrangement of spectral
o~ weight over large energy scales is expected in strongly cor-
Hett=ZHZ (60)  related systems simply because many of the eigenstates are

localized or almost localized. Using the Lehman representa-
tion, one can easily see that the momentum eigenstates
probed by photoemission or optical spectroscopy, for ex-
ample, have nonvanishing projection on essentially all the
1 true eigenstates of the interacting problem. When the Mott
a=- 2’ gap is closed, this means that spectral weight changes will
occur over all the energy scales when doping or temperature
is changed. When the Mott gap is opened, this will continue
b=y-=, (61)  to be the case but, nevertheless, the spectral rearrangements
2 over the lower Hubbard band will be describable to a high
degree of accuracy using only the effective low-energy
1 theory,as long as one uses the operators that are appropri-
2 ate for the low-energy sectomlhese operators take into ac-
count rearrangements in the upper Hubbard band through
d=1. virtual states. For example, upon doping by an amount
) o exact calculations on the Hubbard model show that the spec-
The resultant effective Hamiltonian, tral weight transfered from the upper to the lower Hubbard
1 band exceedsxX? while 2x was argued to be the prediction of
Hf;Pf =To—T T+ T_(ToTy - E(T_lTlTO +ToT_1Ty) the t-J model by some early worl Even at the level of the
t-J model, however, there is a correctidho the low-energy

by placing appropriate conditions on the coefficieatsy, c,
andd so thatH¢ is Hermitian. Through fourth order, Her-
miticity is restored by demanding that

> 1, spectral weightLESW) from the transitions across the Hub-
~TaToTy - ET—lTl +TqToTiTo+ ToT-1ToTy bard gap that arise from transforming the electron operators.
Through order(t/U)?, the LESW agrees well with the exact

1 _ o
(T T2~ > (T Ty T2+ T2T,T.) diagonalization on small systems.

+ Y(2ToT_ Ty To— T_ Ty T3 - T3T_4Ty) (62) VIIl. CONCLUSION

contains three reducible terms whose magnitude is set by an We have studied several methods for performing degen-
arbitrary constanty. These terms are given precisely by the erate perturbation theory. We have shown that, to fourth or-
“additional” canonical transformation in E@10). Because der, they lead to low-energy effective theories that appear
all the terms controlled by the magnitude pfre reducible, different but, in fact, are all related through a unitary trans-
they provide no more than a transformation of the eigenstateformation in the low-energy subspace, E@.and(10). The
within the degeneracy subspace with zero double occupancgecessity of a unitary transformation in the low-energy sub-
The multiplicity of Hamiltonians we have derived here all space to prove the equivalence of the theories does not nor-
arise from different choices foy. For example, within the mally occur in lower-order theories and thus is a rather un-
canonical transformation method of Ref. 6, we hawe0. familiar property. The most systematic approaches are the
Effective Hamiltonians within a sector with a fixed number two canonical transformation methods, the easiest algebra-
of doubly occupied sites can only be determined up to arcally are the general transformatig8ec. V) and the resol-
arbitrary rotation of the eigenstates within the degeneracyent method, while the Brillouin-Wigner method, modified
space. To understand what happens in the case of BW pen the manner of Rayleigh-Schrodinger, becomes rather cum-
turbation theory, we recall that, although one starts from a sdtersome in higher orders. Nevertheless, the latter method
of wave functions that are orthogonal in the full Hilbert gives some insight into the other approaches. In particular, it
space, the projection into a degeneracy subspace is a proced®ws to understand the appearance of terms in intermediate
that does not respect the orthogonality. To get a Hermitiarstates that appear, at first glance, to be in the low-energy
Hamiltonian we have to perform a general transformation orsubspace‘improper terms). Also, it shows that in the low-
the degeneracy subspace in such a way that the orthogonalignergy subspace, eigenvectors at ottlérave nonzero pro-

of the projected components is restored. This is what thgection on eigenvectors at ord€r? only if the expansions of
general nonunitary transformation defined by B&f) is do-  the corresponding energies agree to odel. The need to
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Hubbard model has not been addressed in the present work,
it is generally assumed that such projected schemes should

capture all the physics of the original Hubbard model to a ]
given order int/U. Note, however, that this presupposes that APPENDIX: MISCELLANEOUS ADDITIONAL RESULTS

in the strong coupling limit all observables can be expanded The third-order CT generatd®,, version of Ref. 6, is
in powers oft/U. For an infinite system, this may not always given by

be true. Also, as is the case with any perturbation theory;,

such projected schemes obviously fail to adequately describe 2 5 5 5

phase transitions. For example, at half-filling the interaction S= §(T—1T1 TS — T - Tl + 21T T,y

tuned Mott transition is beyond the domain of applicability

of the projected theory. In the case of the doping-induced = 2T 4Ty T9) + ToT_y + T4 T3 - T,T5— T2T,

Mott transition, the projected theory cannot address the ques- _

tion of the chemical potential, which is of order Nonethe- 2ToT1To+ 2ToT-1To- (A1)
less, as long as the interactidh is much larger than the The BW third-order expressions for the matrix element of
bandwidth, it is possible to write a uniqap to a unitary an off-diagonal operatokO;) increasing the number of
transformation in the target spacéow-energy effective doubly-occupied sites by one is given by

theory whose range of applicability is limited by the condi- @ @

tion that physical observables have a well-defined expansion<¢’ O,]¢/7)

in t/U. We reiterate that consistency of such procedures re- 3

quires that all operators be transformed as well. Although we = ((,06(3) | =T 10+ (T_1Tp—ToT_1)O; + ET—lTlT—lol
presented the results within the Hubbard model, all methods

are easily generalizable to other models. 1, > >
- ET_lTlol - TOT_lol - T_1T001 + 2TOT_1Tool
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