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Three well-known perturbative approaches to deriving low-energy effective theories, the degenerate
Brillouin-Wigner perturbation theory(projection method), the canonical transformation, and the resolvent
methods, are compared. We use the Hubbard model as an example to show how, to fourth order in hoppingt,
all methods lead to the same effective theory, namely thet-J model with ring exchange and various correlated
hoppings. We emphasize subtle technical difficulties that make such a derivation less trivial to carry out for
orders higher than second. We also show that in higher orders, different approaches can lead to seemingly
different forms for the low-energy Hamiltonian. All of these forms are equivalent since they are connected by
an additional unitary transformation whose generator is given explicitly. The importance of transforming the
operators is emphasized and the equivalence of their transformed structure within the different approaches is
also demonstrated.
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I. INTRODUCTION

There is a significant recent interest in higher-order cor-
rections to effective low-energy theories for a broad range of
strongly-correlated electronic problems.1–4 For example, the
effective low-energy Hamiltonians of the Hubbard-like mod-
els contain the so-called ring-exchange terms.5,6 These terms
can alter the basic properties of excitations,3 or shift the bal-
ance towards a new ground state.4 In addition, an accurate
description of the experimentally observed7 spectral weight
transfer over the Mott scale also necessitates high order cor-
rections in the hopping energy.8,9 Although several methods
exist to derive higher-order low-energy theories, the unicity
of the low-energy effective theory may not be obvious. In
fact, technical subtleties appear, even in a straightforward
application of Brillouin-Wigner perturbation theory, that may
lead to ambiguous results10 beyond second order in the hop-
ping. Further, unlike traditional applications of degenerate
perturbation theory in which the eigenstates of the projected
Hamiltonian also diagonalize the perturbation, such is not the
case here.11 The unique difficulty that arises with Hubbard-
like models is that part of the kinetic energy perturbation
leaves the number of doubly occupied sites unchanged and
hence must still be iteratively diagonalized in the low-energy
subspace.

Low-energy effective theories play a crucial role in essen-
tially all fields of physics. When there are large energy scales
that are well separated from the low-energy sector, low-
energy effective theories offer the enormous advantage of
being formulated in an exponentially smaller Hilbert space.
The price for this simplification is that both the Hamiltonian
and the operators take a form that is more complicated than
that of the original theory. In general, this form involves
n-body interactions and operators that have a finite extent in
space, even if the original theory was local. For example,
making use of the large energy of virtual electron-positron

pairs, Foldy and Wouthuysen derived non-relativistic quan-
tum mechanics from the Dirac equation.12 The local gauge
coupling to the electromagnetic potential in Dirac theory
yielded three interactions, Zeeman, spin-orbit, and Darwin
terms, that are all nonlocal since they involve derivatives of
the electromagnetic potentials. This was done with the help
of a canonical transformation12 but the Brillouin-Wigner type
methods lead to the same result.13 In the case of the Hubbard
model, when the interactionU is large compared with hop-
ping t, the second-order effective Hamiltonian in the singly-
occupied subspace is thet-J model (including correlated
hopping) where the spin-spin interaction is nonlocal in con-
trast to the original local Hubbard interaction. In higher or-
der, n-body interactions, such as ring-exchange terms, also
appear.6 The appearance ofn-body interactions and of non-
local terms in effective low-energy theories is familiar in the
Wilsonian renormalization group context.14

There are several ways to obtain an effective low-energy
Hamiltonian,15 two of which are widely used in condensed
matter physics. The first one is the canonical transformation
(CT) method, mentioned above,12 which is based on original
ideas of Van Vleck.16 The derivation of thet-J model with
ring exchange5,6 from the Hubbard model and the derivation
of the Kondo model using the Schrieffer-Wolff
transformation17 from the Anderson model, are well-known
examples where the CT method was applied. A modification
of that method, the continuous CT18,19 and its predecessor,20

has also found recent applications in the derivation of flow
equations. Another equally popular method is the projection
method, or degenerate Brillouin-Wigner(BW) perturbation
theory. The projection method, based on ideas of Kato,21

offers an alternative route to the derivation of, for example,
the t-J model with correlated hopping.22,23 It has been also
used recently in the derivation of an effective Hamiltonian
for the pyrochlores.1 The resolvent method, based on a pro-
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cedure known as Lowdin downfolding,24 is yet another
method that is available.

It is well known that the BW and the CT methods give
equivalent results at low(second) order, as exemplified by
the t-J model with correlated hopping. Although the equiva-
lence of these approaches in higher order might be not obvi-
ous, one intuitively expects that they are. This has been sup-
ported by Klein15 who has given a formal proof of the
equivalence between various forms of degenerate perturba-
tion theory. Generally, in the presence of a well defined small
parameter, the perturbative expansion in powers of such a
parameter should not depend on the method employed. In
other words, an effective low-energy theory can be presented
as annth order power series in the inverse of some large
energy scale(t /U in the Hubbard model), and all methods
are expected to yield equivalent forms of the theory up to
that same ordern.

In this paper we show in some detail how CT, resolvent
and BW methods can be applied to the Hubbard model to
obtain equivalent effective low-energy Hamiltonians up to
fourth order, that isOst4/U3d. By equivalence, we mean that
all three methods yield Hamiltonians that are related via a
unitary transformation. Although, in order to be specific, we
work with the Hubbard model, it will be clear that the pro-
cedure can be trivially extended to other models, including
models that involve expansion of pure spin models about the
Ising limit.3 Several new issues appear in deriving higher-
order low-energy effective theories. First, one may find
amusing that the low-energy Hamiltonians obtained from
three different CT methods, one of Refs. 5 and 6, one of Ref.
25, and the one introduced in this work, appear to bediffer-
ent in each case. However, we show that they are all con-
nected by an additional unitary transformation that leaves the
block-diagonal form invariant.25 That is, this unitary trans-
formation converts these different Hamiltonians one into the
other. Second, in the case of the BW method one should be
careful in dealing with(i) the orthonormalization of the pro-
jected eigenstates, since the latter are not necessarily or-
thogonal even if the initial basis is, and(ii ) the energy de-
pendence of the expansion, since the energy should be
evaluated iteratively using results from previous steps, in the
spirit of Rayleigh-Schrödinger nondegenerate perturbation
theory. The final low-energy theory again appears to be dif-
ferent from that obtained from the CT approach of Ref. 6,
but a unitary transformation within the low-energy subspace
shows their equivalence. Third, in the so-called resolvent
method, which is similar to the BW approach but works
more directly with the Hamiltonian matrix rather than with
the eigenstates, one needs to perform the orthonormalization
of the eigenstates in an iterative procedure. For the deriva-
tion of the t-J model with correlated hopping within this
method see, e.g., Ref. 26. The fourth-order low-energy
theory obtained with this method is also unitarily equivalent
to the results of the BW and CT approaches.

Finally, as in Ref. 8, we emphasize that in order to com-
pute correlation functions or spectral weight within the low-
energy theory it is important to transform the operators cor-
responding to observables. The omission of such a
transformation(see, for example, the recent work using the
BW method for the pyrochlores1,27) has to be explicitly ad-

dressed. We also demonstrate the equivalence of the trans-
formed structure of the operators within the different meth-
ods.

Our paper is organized as follows. Section II introduces
the model and notations. Section III escribes CT methods
and introduces the unitary transformation that allows us to
demonstrate the equivalence of the various low-energy effec-
tive theories. Section IV is devoted to the BW method, Sec.
V escribes the resolvent method and finally Sec. VI presents
a generalized transformation from which all perturbative re-
sults can be derived. In Sec. VII we give a brief discussion of
relevant experiments. We conclude with Sec. VIII. The Ap-
pendix contains miscellaneous results.

II. MODEL

We consider the Hubbard model, conveniently written in
the form9

H = T0 + T1 + T−1 + V, s1d

where theOstd kinetic energy operator in second quantized
form has been divided into three terms by using projection
operators. The first operator,T0, includes the projection op-
erators that ensure that the number of doubly-occupied sites
does not change because of hopping. It is precisely this term
that complicates the application of traditional degenerate per-
turbation theory to the Hubbard model. The projection op-
erators included in the kinetic energy operatorsT1 and T−1
make sure that these operators increase or decrease the num-
ber of doubly-occupied sites by 1, respectively. All of these
terms are proportional to the hopping matrix elementt. Note
that generally speaking, there can be hopping matrix ele-
ments to arbitrary neighbors but we take all these terms to be
of the same order in the expansion parametert. The Hubbard
on-site repulsion, written asV, is proportional toU.

These notations implicitly use the classification of the Hil-
bert space in subspaces with different numbers of doubly-
occupied sites. Namely, every eigenfunction of the Hubbard
Hamiltonian (1) can be split in the series of orthogonal
pieces

ucl = o
m=0

`

ucml = uc0l + uc1l + uc2l + ¯ , s2d

where the subscript enumerates the states withm
=0,1,2, . . .doubly-occupied sites. Evidently, the operatorV
is diagonal in this basis and has the eigenvaluemU in a state
containingm doubly-occupied sites. For the rest of the paper
we setU=1, and considert itself as a small parameter. When
a clarification is needed we will restore the actualt /U de-
pendence of the expression.

At t=0, the solution of the eigenstate equation is simply a
set of highly degenerate states separated by energyU. It is
assumed thatU is much larger than the bandwidth(of order
t) so that, witht finite, states cluster around the valuesmU
and are separated from each other by a Mott gap where no
states occur. In other words, we assume that switching ont
does not lead to a crossing of levels between the lowest
energy manifold,mU with m=0, and all other manifolds
with m.0.
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Evidently, many Hamiltonians can be cast in the form of
Eq. (1). It suffices to have a large term in the Hamiltonian
that can be easily diagonalized and leads to states that are
separated by some large energy scaleU. Other terms in the
Hamiltonian that couple these original states and are propor-
tional to some small parameter can be denoted byTDm where
Dm indicates that the operator couples states separated by
DmU. Although we consider onlyDm=−1,0, +1, itwill be
obvious how to generalize our proof to more general values
of Dm.

III. CANONICAL TRANSFORMATIONS

The CT method is probably the most commonly used
method to find low-energy effective theories. We briefly re-
call the known results for the problem at hand and then move
to another version of the CT approach that gives a result that
is unitarily related to the first one.

A. Method 1

To derive the higher-order effective Hamiltonian for the
Hubbard model, the CT method was applied in Refs. 5 and 6.
There thet5- andt6-order Hamiltonians were obtained for the
half-filled case andt4-order Hamiltonian was found for an
arbitrary doping. We will simply repeat the basic idea and the
results obtained in Ref. 6. The effective Hamiltonian was
obtained from the Campbell-Baker-Hausdorff expression

Hef f
CT1 = e−SHeS= H + fH,Sg +

1

2!
ffH,Sg,Sg + ¯ , s3d

where the generator of the transformationS is truncated as

S= S1 + S2 + S3 + ¯ ,

whereSn~ tn. The role of eachSn in this series is to eliminate
the correspondingtn-order off-diagonal terms in the Hamil-
tonian in Eq. (3), which change the number of doubly-
occupied sites. By assumption however,S does not contain
terms that preserve the number of doubly-occupied sites. The
remaining freedom to perform a unitary transformation
within the singly-occupied subspace will be discussed later
in this section.

Given the explicit form of the Hubbard Hamiltonian, Eq.
(1), one readily finds that

S1 = T−1 − T1. s4d

Using S=S1 and keeping terms up toOst2d in Eq. (3) the t
-J model with correlated hopping is obtained. To derive the
higher-order Hamiltonians we have to truncateS at higher
order and determine the operator expression ofSn’s required
to eliminate the off-diagonal terms of thetn order. These
off-diagonal terms are generated by the commutators ofH
with Sn8’s in the previous orders. Generally, one needsn-1
terms inS to obtain the theory valid to the ordertn. We list
here the generatorS2 for completeness

S2 = T0T−1 − T1T0 − T−1T0 + T0T1, s5d

and simply reproduce the result of the procedure described
above carried out in Ref. 6 to thet4-order,

Hef f
s4d,CT1 = V + T0 − T−1T1 + T−1T0T1 −

1

2
sT−1T1T0 + T0T−1T1d

+ sT−1T1d2 −
1

2
T−1

2 T1
2 − T−1T0

2T1 + T−1T0T1T0

+ T0T−1T0T1 −
1

2
sT−1T1T0

2 + T0
2T−1T1d. s6d

The value ofV is taken to be zero since we are in the singly-
occupied subspace. In deriving this expression the identity
T−1uc0l=0, whereuc0l is any of the singly-occupied states, is
used.

We would like to add an interesting technical detail to the
discussion of this method. Thet3-term in the generator,S3,
although necessary to eliminate thet3-order off-diagonal
terms in Eq.(3), does not contribute toHef f

s4d,CT1 explicitly.
That is, the 4th-order effective Hamiltonian of Eq.(6) can be
obtained usingS=S1+S2 only, simply neglecting the remain-
ing off-diagonal terms. Similarly, the diagonal terms in the
3rd-order HamiltonianHef f

s3d are all generated byS1 alone.
This is because the original Hubbard Hamiltonian does not
contain any “bare” off-diagonal terms of order higher thant.
All such higher-order off-diagonal terms are the result of
commutations ofT-terms. This shows some additional inter-
nal structure of the model. Since we will need the generator
S3 for the discussion of the transformed operators but it was
not written out explicitly in Ref. 6, we present it in the Ap-
pendix, Eq.(A1).

The expression for theHef f
s4d,CT1 in Eq. (6) seems to have

all possible combinations ofT0, T−1, andT1, except for one
“missing term:” T0T−1T1T0. Although there is no general
principle which would require presence of such a term in the
effective Hamiltonian, its absence makes one curious about
its whereabouts. The fate of this term will be clarified in Sec.
III C.

B. Method 2

In the same spirit, a different way to formulate an effec-
tive theory using the CT approach is to apply consecutive
unitary transformations

Hef f
CT2 = . . .e−S̃3e−S̃2e−S̃1HeS̃1eS̃2eS̃3 . . . .

We call this the “consecutive CTs” approach. The idea for

eachS̃n is to eliminate the off-diagonal terms of thenth order
remaining from the previous,n−1 order CT. In each of the
transformations the expansion formula Eq.(3) is applied and

all terms up to a desired order int are kept. Thus, afterŨ1

=eS̃1 is applied to the original Hamiltonian the off-diagonal
terms of orderOstd are eliminated and show up only inOst2d.
The next transformation moves the off-diagonal terms to

Ost3d, and so on. Generally, the generatorsS̃n in this ap-
proach are different from the ones in the previous approach,

that isS̃nÞSn. However, one can check that for the Hubbard

model generatorsS̃1=S1 and S̃2=S2, Eqs. (4) and (5). Note

that S̃3 is indeed different fromS3.
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We would like to remark that the derivation of the higher-
order effective Hamiltonian within this “consecutive CTs”
approach is more straightforward than the approach of Ref.

6. Also, the absence of theS̃3 contribution toHef f
s4d is much

less enigmatic here. Namely, sinceS̃3 is the off-diagonal or-
der t3 operator, its only commutator which can giveOst4d
contribution to the Hamiltonian is with the off-diagonal op-

erator of the ordert. However, aftereS̃1 is applied the only
operator of ordert remaining in the transformed Hamiltonian
is thediagonaloperatorT0. This removes the need to know

the explicit form ofS̃3, although it is formally still necessary
to eliminate the off-diagonalt3-order terms inHef f

s4d.
Surprisingly, the final 4th order result of the “consecutive

CTs” approach isdifferent from Hef f
s4d,CT1 Eq. (6):

Heff
s4d,CT2 = Heff

s4d,CT1 +
1

2
sT0

2T−1T1 + T−1T1T0
2d − T0T−1T1T0.

s7d

The difference concerns the above-mentioned “missing
term” T0T−1T1T0 and the termsT0

2T−1T1 andT−1T1T0
2. In fact,

in this version of the effective theory the original “missing
term” is found, but the two analogous terms are missing.
This “mystery” is unveiled below.

C. Additional unitary transformation

Let us first make the following observation. One can con-
sider the following unitary transformation:

Hef f8 = e−S0Hef f
CT1eS0, s8d

with the generator

S0 = gsT0T−1T1 − T−1T1T0d, s9d

whereg is a real number and plays the role of an “angle of
rotation.” Note that such a generator:(i) is explicitly anti-
Hermitian, (ii ) is diagonal(does not change the number of
doubly-occupied sites), (iii ) is Ost3d, and (iv) is real. The
operatorS0 is the lowest order operator satisfying(i)–(iv)
which one can construct usingT0 andT±1. It is also the only
operator of such kind in theOst3d order. Therefore, the only
contribution from such a transformation toHef f8 will be from
the fT0,S0g commutator and it will generate additional terms
of t4-order of the form

dHef f = gsT0
2T−1T1 + T−1T1T0

2 − 2T0T−1T1T0d. s10d

As we will see, the multiplicity of Hamiltonians that arise
once the high energy scale is eliminated all differ by the
terms appearing indHef f. Choosing the “angle of rotation”
g=1/2 andapplying the transformationS0 to the Hef f

s4d,CT1,
Eq. (6), one readily obtainsHef f

s4d,CT2, Eq. (7). As a result
T−1T1T0

2+H.c. are replaced by the “missing term”T0T−1T1T0.
Clearly, different choices of the “angle of rotation” will give
different fractions of those terms in the result. In fact, a re-
cent study, Ref. 25, used a continuous CT approach to the
Hubbard model and obtained an effective Hamiltonian which
would be equivalent to the choiceg=1/4 in Eq.(9).

Thus the 4th-order effective Hamiltonian for the Hubbard
model can take an infinite number of unitary equivalent
forms, all connected by the transformation in Eqs.(8) and
(9). All these models possess the same energy spectrum and
correlation functions and thus are equivalent. From this point
of view, the reader should not be surprised when, in the next
section, we find that the BW method gives a result that is
different from Eq.(6).

Although the unitary equivalence of the models is a rather
natural property, it is certainly unfamiliar in lower-order ef-
fective theories. Furthermore, such a unitary equivalence
should be common to all higher-order theories. As the order
of the perturbation theory is increased the number of block-
diagonal, anti-Hermitian operators one can construct will
also grow, providing one with a broader variety of unitarily
equivalent forms of the effective Hamiltonian and corre-
sponding operators.

D. Operators

It is important to note that in a low-energy effective
theory all operators should be transformed along with the
Hamiltonian. Then the expectation values of the observables
can be calculated in the singly-occupied manifold. The trans-
formation is different depending on which canonical trans-
formation method is used. Using the first CT above, the stan-
dard expression for the transformation is

Õ = e−SOeS= O + fO,Sg +
1

2!
ffH,Og,Og + ¯ .

Again, we consider as an example the operatorO1, which
increases the number of doubly-occupied sites by one. Using
S=S1+S2 from Eqs. (4) and (5) and utilizing the property
T−1uc0l=0 we obtain, to the ordert2

Õ1 = − T−1O1 + sT−1T0 − T0T−1dO1,

which coincides with the expression we will obtain with the
BW method, Eq.(34). To obtain the next-order expression
for the transformed operator one needs to know an explicit
expression for the generatorS3 [see Appendix, Eq.(A1)].
Using it, some algebra reveals that, to ordert3

Õ1 = − T−1O1 + sT−1T0 − T0T−1dO1 +
3

2
T−1T1T−1O1

−
1

2
T−1

2 T1O1 − T0
2T−1O1 − T−1T0

2O1 + 2T0T−1T0O1

+
1

2
T−1O1T−1T1 −

1

2
T−1

2 O1T1, s11d

which should be compared with the result of the BW method
given in the Appendix, Eq.(A2).

IV. BRILLOUIN-WIGNER METHOD

We proceed to show, up to orderOst4d f=Ost4/U3dg for
the Hamiltonian, that degenerate BW perturbation theory can
be organized in the spirit of the Rayleigh-Schrödinger(RS)
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perturbation theory to lead to the same low-energy effective
theory for Hamiltonian and operators as the consecutive CT
method. We will take a detailed approach that shows all the
subtleties.

Let us consider one eigenstateucl of the full Hamiltonian
(1) with the eigenvalueE. It obeys the Schrödinger equation

sE − T0 − V − T1 − T−1ducl = 0. s12d

Although we have not explicitly written quantum numbers
for E and ucl, we have to remember that we have a matrix
equation with many eigenvalues and corresponding eigen-
states. We look for the effective theory that describes the
states that evolve from the lowest energy sector,m=0, taking
into account virtual excitations intom.0 states perturba-
tively. One can also write effective theories that are valid for
any of the subspaces28 with m.0.

A. BW expression for zc‹

We would like to rewrite the eigenstateucl in a way that
will allow us to take into account higher-energy sectors with
mù1 through an iterative procedure. LetQ be a projection
operator that removes all components ofucl that are in the
m=0 (singly-occupied) subspace. We havefQ,E−T0−Vg
=0 sinceT0+V does not change double-occupancy. One can
find then an iterative expression forQucl directly from the
Schrödinger equation Eq.(12)

Qucl =
1

E − T0 − V
QsT1 + T−1ducl. s13d

Inversion of the operatorE−T0−V does not cause any prob-
lem when there is a Mott gap since the denominator has only
nonvanishing eigenvalues. Indeed,E−T0 is at most of order
of the bandwidth(proportional tot) while the operatorQ
ensures that the smallest value thatV takes isU. The com-
plete eigenvectorucl has components in them=0 subspace
uc0l;s1−Qducl that we need to determine. We assume that
uc0l is a member of an orthonormal subspacekc08 uc0l
=dc08,c0

. The subscript 0 to a ket means that it has compo-
nents only in them=0 subspace. This procedure leads to the
standard BW expression forucl29

ucl = uc0l +
1

E − T0 − V
QsT1 + T−1ducl, s14d

which can be solved perturbatively by iteration. Using
T−1uc0l=0 and the fact that we cannot come back to them
=0 subspace in any of the intermediate stepssQT−1T1uc0l
=0d we find, iterating Eq.(14) three times,

ucl = F1 +
1

E − T0 − V
T1 + S 1

E − T0 − V
T1D2

+ S 1

E − T0 − V
T1D3

+
1

E − T0 − V
T−1S 1

E − T0 − V
T1D2G

3uc0l + ¯ . s15d

We took into account the projection operatorsQ so that the
above equation contains only the terms for whichQ equals

unity. The above equation Eq.(15) generates the usual
Brillouin-Wigner perturbation theory. One recognizes that
the second term and the last term in Eq.(15) are components
of the eigenvector in the subspace withm=1 doubly-
occupied siteuc1l, while the third and the fourth terms are
components with m=2 suc2ld and m=3 suc3ld doubly-
occupied sites, respectively. This form(without uc3l) suffices
for our derivation of the effective theory to orderOst4d. With
this effective Hamiltonian, one will be able to find the com-
ponent of the eigenstate in the singly occupied subspaceuc0l.
Given uc0l, all the components of the eigenvectorucl in the
m=1 andm=2 subspaces are already completely determined
by Eq. (15).

The subsequent treatment of Eq.(15) to generate a low-
energy theory is the following. The denominatorssE−T0

−Vd−1 are not singular because they correspond to the energy
in the bands withm.0. UsingV@E−T0, one has to expand
the energy denominators in Eq.(15) to the required order in
t. Let us list here the results of such an expansion of Eq.(15)
order by ordersU=1d. We find

ucs0dl = uc0
s0dl, s16d

ucs1dl = s1 − T1duc0
s1dl, s17d

ucs2dl = „1 − T1 − sE − T0dT1…uc0
s2dl, s18d

ucs3dl = S1 − T1 + T0T1 − T1E −
1

2
T−1T1

2 − T1E
2 − T0

2T1

+ 2T0T1E +
1

2
T1

2 −
1

2
T1T0T1 +

3

4
T1

2E −
1

4
T0T1

2Duc0
s3dl,

s19d

where the superscript describes the order of approximation,
that is uc0

s3dl is the component of the third-order eigenstate
ucs3dl in the singly-occupied,m=0 subspace:uc0

s3dl=s1
−Qducs3dl. Note that, as usual, the ordertn−1 in the expansion
of the eigenvectorucl correspond to the ordertn in the matrix
elements of the Hamiltonian and of the corresponding
energy.30 That is, one computes the first-orderEs1d using
zeroth-order eigenstatesucs0dl, the second-order theoryHs2d

is formulated with the first-order basisucs1dl, etc. Thus, for
the fourth-order effective Hamiltonian we will needucs3dl.
Another detail concerns the explicit dependence ofucs2dl and
ucs3dl in Eqs.(18) and (19) on the energyE. This issue will
be resolved later by evaluatingE in iterative manner.

One can see that in all orders the full eigenstateucl is
built from them=0 statesuc0l by including the off-diagonal
transitions to the upper-band. The zeroth-order approxima-
tion ucs0dl Eq. (16) corresponds to taking only the first term
in Eq. (15) and neglecting all the upper-band excitations. For
the first-order approximationucs1dl, we needed to include the
second term in Eq.(15). Using thatE−T0 will be of the order
of t we have simply neglectedE−T0 in the denominator
which yielded the first-order state, Eq.(17). The second-
order stateucs2dl is obtained from the first three terms in the
BW series Eq.(15). In the third term we can neglectE−T0
again, but the second term needs to be expanded inE−T0.
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This leads to the second-order state given in Eq.(18). A term
of the formT1

2/2, which does not contribute to the effective
Hamiltonian to that order, was dropped although it can ap-
pear in certain observables. To obtain the effective Hamil-
tonian valid to ordert4 one has to generate the third-order
wave functionucs3dl from Eq.(15). This is obtained from the
contributions of all terms in Eq.(15), although the fourth
term ~T1

3 can be neglected since it only contributes to the
effective theory to ordert6. The expansion of the denomina-
tors provides us with theE-, andE2-dependent terms in the
resulting expression forucs3dl, Eq. (19). Let us emphasize
here that in theE-dependent terms of the second- and third-
order eigenfunctions, one should expandE as well, and keep
only the terms to the required order. Thus, forucs2dl we will
only need the expression forE that is valid up to ordert,
while for ucs3dl order t2 is required.

We also point out that Eqs.(16)–(19) relate the “full”
eigenstateucl to the the state in the “projected,”m=0 sub-
space. Since our goal is to have a low-energy theory which
operates with the projecteduc0l states only, one should take
into account the fact that although the eigenstates are ortho-
normalkc8 ucl=dc8,c this is not true for them=0 component
alone, that iskc08 uc0lÞdc08,c0

. This is evident from Eq.(2).
Therefore, if one wishes to obtain an effective theory that
takes the usual Hermitian form, one needs to orthonormalize
the projected basis to the required order int. This difficulty
will appear in higher order, but let us first reproduce the
well-known second-order results.

B. Derivation of the t-J model

We begin with the zeroth-order approximationucs0dl given
in Eq. (16). Since the eigenfunction involves only them=0
subspace, the diagonal part of the Hamiltonian(1) solely
contributes to the eigenvalue equation

kc8s0duHucs0dl = kc08
s0duT0uc0

s0dl = Edc08,c0
. s20d

Therefore,Hef f
s1d ;T0 is our effective Hamiltonian to ordert.

We rewrite Eq.(20), for future reference, as

T0uc0
s0dl = Euc0

s0dl. s21d

To next order, we need the first-order stateucs1dl from Eq.
(17). One can see that the statesuc0

s1dl in Eq. (17) are still
orthonormal to ordert, that is kc8s1d ucs1dl=kc08

s1d uc0
s1dl

+Ost2d=dc8,c. With these states one obtains

kc8s1duHucs1dl = kc08
s1duT0 − T−1T1uc0

s1dl = Ekc08
s1duc0

s1dl + Ost3d

= Edc08,c0
, s22d

where we used thatE=Ostd and that with the required accu-
racy we can neglectOst3d term in the right-hand side and use
orthonormality to replacekc08

s1d uc0
s1dl by dc08,c0

. It is clear that
the content of the brackets in Eq.(22) plays the role of an
effective second-order Hamiltonian

Hef f
s2d ; T0 − T−1T1. s23d

Writing this result in terms of second-quantized operators
and recalling thatJ=4t2/U in the second term, one recovers

the t-J Hamiltonian with correlated hopping. Again, for fu-
ture reference, we write

sT0 − T−1T1duc0
s1dl = Euc0

s1dl. s24d

Contrary to the nondegenerate perturbation theory, the
states in them=0 subspace change as we improve the ap-
proximation. There is a link between the states at various
order as will be discussed in more detail in Sec. IV F below.

C. Transformation of operators in the t-J model

Let us pause momentarily to develop transformation rules
for the operators that should be used at this level of approxi-
mation. Consider, as an example, an operatorO−1 that de-
creases the number of doubly-occupied states by one. Na-
ively, one would expect that it has zero expectation in the
case of thet-J model that is defined in the singly-occupied
subspace. The correct way to proceed is to notice that the
matrix elements ofO−1 in the basis of first-order eigenstates
Eq. (17) are given by

kc8s1duO−1ucs1dl = kc08
s1du − O−1T1uc0

s1dl. s25d

Since the above expression is valid for any eigenstate, to first
order the effective operator

O−1
s1d = − O−1T1 s26d

should be used to compute any matrix element of the original
operator solely in terms of projected eigenstatesuc0l. Both
the Hamiltonian Eq.(23) and the operator Eq.(26) coincide
with the CT result.

D. Third order

There are new technical issues that appear in orders
higher than second. The first problem is that since
kc8s2d ucs2dl=kc08

s2du1+T−1T1uc0
s2dl+Ost3d, the second-order

eigenvectors in the singly occupied subspaceuc0
s2dl in Eq.

(18) do not form an orthonormal set to ordert2. This issue is
easily resolved. To obtain an eigenvalue problem in standard
form we define the orthonormal basisuw0

s2dl by

uc0
s2dl = s1 + T−1T1d−1/2uw0

s2dl, s27d

where the square root needs to be expanded to ordert2 to
give

ucs2dl = S1 − T1 − sE − T0dT1 −
1

2
T−1T1Duw0

s2dl. s28d

This second-order eigenvectorucs2dl should be used to obtain
the third-order effective Hamiltonian. This is where one en-
counters the second difficulty. It concernsE-dependent terms
that have to be treated carefully.

Supposeucs2dl in Eq. (28) is an eigenstate with energyE.
Since the order of theE-dependent term should match the
t2-order of the eigenstateucs2dl, E should be expanded int.
Clearly, we can replaceE appearing in Eq.(28) by its first-
order term in powers oft. To this end we write

Euw0
s2dl = Hef f

s3duw0
s2dl. s29d

Since we can anticipateHef f
s3d to have the form
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Hef f
s3d = T0 − T−1T1 + Ost3d, s30d

we can useEuw0
s2dl=T0uw0

s2dl+Ost2d. This is an iterative pro-
cedure and it can always be justified by the consistency of
the result with the initial expectation outlined in Eq.(30).
The replacementEuw0

s2dl=T0uw0
s2dl is valid for any of the

eigenvectorsuw0
s2dl of the effective Hamiltonian. After mak-

ing this change in Eq.(28), the second-order eigenstate reads

ucs2dl = S1 − T1 − T1T0 + T0T1 −
1

2
T−1T1Duw0

s2dl. s31d

This procedure allows us to find a Hamiltonian matrix. We
will show in Sec. IV F that there is a relation between eigen-
vectors and eigenvalues at different orders. With the above
stateucs2dl, the eigenvalue problem takes the form

kc8s2duHucs2dl = kw08
s2duT0 − T−1T1 −

1

2
T−1T1T0 + T−1T0T1

−
1

2
T0T−1T1uw0

s2dl = Edw08,w0
, s32d

which is clearly consistent with our expectation for the ei-
genvalueE expressed in Eq.(30). As in the lower orders, the
effective low-energy Hamiltonian can be directly read off
this equation. Thus, up to orderOst3d, the effective Hamil-
tonian is given by

Hef f
s3d = T0 − T−1T1 −

1

2
T−1T1T0 + T−1T0T1 −

1

2
T0T−1T1,

s33d

which agrees with the CT approach to this order(see Sec.
III ).

The last equation, when taken out of context, may suggest
that it contains terms that are not allowed within BW pertur-
bation theory. Indeed, the general expression with projected
wave function Eq.(14) shows that one cannot come back to
the singly occupied state in any intermediate state. The series
should contain only “proper” terms. So, terms likeT−1T1T0
in the above expression leave the impression that they should
be forbidden sinceT0 does not change the double occupancy.
However, our derivation clearly shows that these terms come
from expandingE using lower order results. Hence they are
in fact perfectly acceptable.

The matrix elements of any operator to second order
should be computed with the stateucs2dl from Eq. (31). For
the operatorO1, which increases the number of doubly-
occupied sites by one, we obtain

kc8s2duO1ucs2dl = kw08
s2du − T−1O1 + sT−1T0 − T0T−1dO1uw0

s2dl,

s34d

that also coincides with the CT result for the transformed
operator, as discussed in Sec. III.

E. Fourth order

To obtain the effective Hamiltonian valid to the ordert4

one needs again(i) to orthonormalize the statesuc0
s3dl, Eq.

(19) and (ii ) to transform theE-dependent terms to equiva-
lent operator expressions found in the previous steps. The
procedure outlined for the second-orderucs2dl should be fol-
lowed here. From the normalization condition ofucs3dl in Eq.
(19), one finds thatuc0

s3dl should be orthonormalized with the
help of

uc0
s3dl = s1 + T−1T1 − 2T−1T0T1 + 2T−1T1Ed−1/2uw0

s3dl.

s35d

The subsequent expansion of the square root to ordert3 is
needed. The resulting expression for the eigenstateucs3dl will
contain a term −T1E. One has to to replaceEuw0

s3dl with
sT0−T−1T1duw0

s3dl, which givesE to second order int when
uw0

s3dl is an eigenstate. This leads to the second- and third-
order terms.27 In all otherE-dependent terms in Eqs.(19) and
(35) we can useEuw0

s3dl=T0uw0
s3dl as before since this already

produces the terms of ordert3. Straightforward algebra fi-
nally leads to

ucs3dl = S1 − T1 + T0T1 − T1T0 +
1

2
T1

2 −
1

2
T−1T1 −

1

2
T−1T1

2

− T1T0
2 − T0

2T1 + 2T0T1T0 −
1

2
T1T0T1 +

3

4
T1

2T0

−
1

4
T0T1

2 + T−1T0T1 − T−1T1T0 +
3

2
T1T−1T1Duw0

s3dl,

s36d

where uw0
s3dl is the orthonormal set of them=0, singly-

occupied eigenstates. With the help of this form ofucs3dl the
third-order expressions for the matrix element of an operator
kO1l can be obtained[see Appendix, Eq.(A2)].

Rather cumbersome, but still straightforward calculations
for the eigenvalue problem withucs3dl yield the fourth-order
effective Hamiltonian

Hef f
s4d = Hef f

s4d,CT2 s37d

that is identical to the one obtained by the consecutive CT
method, Eqs.(7). This effective Hamiltonian, within a uni-
tary transformation in the singly occupied subspace, is thet
-J model with ring exchange and various correlated
hoppings.6

F. Connection between eigenstates at different orders

There is a connection between eigenvectors in them=0
subspace at different orders int. For definiteness, let us con-
sider the eigenvalue problem defined byHef f

s3d in Eq. (33). If
uw0

s2dl is an eigenstate ofHef f
s3d, then the corresponding energy

to ordert3 is given by

„T0 − T−1T1 + Ost3d…uw0
s2dl = Euw0

s2dl. s38d

We wish to rewrite this equation as

sT0 − T−1T1duw0
s2dl = „E − Ost3d…uw0

s2dl. s39d

Note that the left-hand side of this expression containsT0

−T−1T1=Hef f
s2d, the effective Hamiltonian at the previous or-
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der. The eigenvalue problem forHef f
s2d gives eigenstates at the

previous order,uw0
s1dl [;uc0

s1dl in Eq. (17)]. Taking the Her-
mitian product of Eq.(39) with an eigenstatekw08

s1du we have,
by applyingT0−T−1T1 on the bra,

kw08
s1dusT0 − T−1T1duw0

s2dl = E8kw08
s1duw0

s2dl

= „E − Ost3d…kw08
s1duw0

s2dl. s40d

From this, one concludes that to ordert2,

sE − E8dkw08
s1duw0

s2dl = 0. s41d

Hence, to that order, eitherkw08
s1d uw0

s2dl=0 or E8=E or both.
The generalization of this result means that an eigenvector in
the low-energy subspace can have a nonzero overlap to order
tn with an eigenvector of the ordertn−1 theory if and only if
the energies agree to ordertn−1. Note, by the way, that the
diagonalization ofHef f

snd will in general give us energies that
contain all powers oft. Nevertheless,E will be valid only to
order tn since the higher orders can be modified when the
matrix elements ofHef f are calculated to higher order. A
degeneracy that exists at a given order int can be lifted at the
next order. Energy levels of different symmetry can cross
when evaluated at different orders int so that the ground
state of, for example, thet-J model with correlated hopping
can be different from that of the model that includes ring
exchange.

V. RESOLVENT METHOD

Another approach to deriving the low-energy effective
theory is the resolvent method. It is based on an iterative
execution of a procedure known as Lowdin downfolding.24 It
bears a lot of similarity with BW perturbation theory but
works more directly with the Hamiltonian matrix rather than
with the eigenstates. Of all the approaches considered in this
paper the resolvent method requires the least amount of al-
gebra.

We start by defining the projection operatorsPm, m
=0,1,2 andP.. OperatorPm projects on a subspace withm
doubly occupied sites. OperatorP. projects on a subspace
with more than two doubly-occupied sites

P. = 1 − o
m=0

2

Pm. s42d

For our purposes it is convenient to rewrite Eq.(2) as

ucl = uc0l + uc1l + uc2l + uc.l,

Piuc jl = di j uc jl, s43d

where i, j =0,1,2, and “..” The eigenvector equation can
then be written in the following block form

1
T0 T−1

T1 1 + T0 T−1

T1 2 + T0 T−1

T1 H.

21
uc0l
uc1l
uc2l
uc.l

2 = E1
uc0l
uc1l
uc2l
uc.l

2 ,

s44d

whereH.=P.HP.. Similarly to Eq. (15) in the BW for-
malism one needs to keep only terms up touc2l to derive the
effective theory to ordert4. Thus, Eq.(44) should suffice for
our goals. It is convenient to rewrite this equation by com-
ponents

Euc0l = T0uc0l + T−1uc1l, s45d

Euc1l = s1 + T0duc1l + T1uc0l + T−1uc2l, s46d

Euc2l = s2 + T0duc2l + T1uc1l + T−1uc.l, s47d

Euc.l = H.uc.l + T1uc2l. s48d

Now we eliminate all components ofucl one by one, starting
with uc.l until only uc0l is left. From Eq.(48) we obtain

uc.l = sE − H.d−1T1uc2l = Ostduc2l,

where we take into account the fact that the operator in
brackets is nonsingular and isOs1d. This expression foruc.l
is substituted in Eq.(47) for uc2l to give

uc2l = „E − 2 −T0 − Ostd…−1T1uc1l = S−
1

2
T1 + Ost2dDuc1l,

s49d

where we expanded the denominator and kept terms of order
t since the higher order terms do not contribute to the theory
of the requiredt4 order. This latter equation is used to elimi-
nateuc2l from Eq. (46). Thus we have

uc1l = S− T1 − sE − T0dT1 −
1

2
T−1T1

2 − sE − T0d2T1 + Ost4dD
3uc0l, s50d

where again the expansion of a denominator has been per-
formed to the required order. Finally, we obtain an equation
for uc0l

Euc0l = ST0 − T−1T1 − T−1ET1 + T−1T0T1 −
1

2
T−1

2 T1
2 − T−1E

2T1

− T−1T0
2T1 + 2ET−1T0T1 + Ost5dDuc0l. s51d

This is not the “true” eigenvalue equation since it contains
E-dependent terms in the right-hand side, similar to the BW
case. We rewrite it then by transferringE-dependent terms to
the left as
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Es1 + T−1T1 + ET−1T1 − 2T−1T0T1duc0l

= ST0 − T−1T1 + T−1T0T1 −
1

2
T−1

2 T1
2 − T−1T0

2T1Duc0l,

s52d

where we omittedt5-order terms. Below we will assume that
operator expression accuracy is up toOst4d.

The derived equation foruc0l still does not have the form
of the Schrödinger equationEucl=Hucl. To transform Eq.
(52) into a Schrödinger equation an orthogonalization proce-
dure similar to the one we used in BW calculations must be
performed. We introduceux0l such as

uc0l = aux0l ; s1 + T−1T1 + ET−1T1 − 2T−1T0T1d−1/2ux0l.

Substituting in Eq.(52), left multiplying by a and then ex-
panding the square root keeping third order terms, the left-
hand side isEux0l and the right-hand side still has some
E-dependent terms. Transferring them to the left we find that
ux0l satisfies

ES1 +
1

2
sT−1T1T0 + T0T−1T1dDux0l

= ST0 − T−1T1 −
1

2
T−1T1T0 −

1

2
T0T−1T1 + T−1T0T1

+ T−1T0T1T0 + T0T−1T0T1 + sT−1T1d2

−
1

2
T−1

2 T1
2 − T−1T0

2T1Dux0l. s53d

The left-hand side of this equation still does not have the
desired form. An extra orthogonality transformation analo-
gous to that performed witha above is required

ux0l = S1 +
1

2
T−1T1T0 +

1

2
T0T−1T1D−1/2

uw0l,

with the subsequent square root expansion. The resulting ei-
genvalue equation foruw0l by the resolvent method finally
takes the Schrödinger equation formEuw0l=Hef f

s4dRuw0l with
the effective Hamiltonian given, to fourth order, by

Hef f
s4dR = Hef f

s4dCT1 +
1

4
sT−1T1T0

2 + T0
2T−1T1d −

1

2
T0T−1T1T0.

s54d

This effective Hamiltonian does not coincide with the other
forms ofHef f

s4d we have obtained so far, namely Eqs.(6), (7),
and(37). It is however unitarily related to all others through
the transformation Eqs.(8) and(10). For example, the “angle
of rotation” g=1/4 transforms Eq.(54) back toHef f

s4d,CT1 in
Eq. (6).

We note that transformation of operators can also be de-
vised within the resolvent approach in a manner similar to
the BW calculations, Sec. IV, using the above relations be-
tweenuw0l and the states withm.0 doubly-occupied sites.

VI. BIG PICTURE: GENERAL TRANSFORMATION

Thus far, we have shown that while different methods of
performing perturbation theory preserve the original energy
spectrum of the Hubbard model, the effective Hamiltonians,
Eqs.(6), and Eq.(54) differ from each other and from Eqs.
(7) and(37) that agree with each other. The terms in question
all arise at fourth order and are all reducible11 with respect to
the zero-double occupancy sector. That is, they contain hop-
ping processes that do not originate from excitation to the
doubly occupied subspace,T0T−1T1T0, nor terminate once an
electron is returned to the singly occupied subspace, for ex-
ample,T−1T1T−1T1. All such processes can be viewed as aris-
ing from a transformation25 of the eigenstates in the low-
energy sector. To lay plain how the effective Hamiltonian is
unavoidably affected by this transformation, we now formu-
late a general method which makes it possible to derive all of
the Hamiltonians presented thus far within a single compu-
tation scheme. Our starting point is BW integral equation,
Eq. (14), whose solution we write symbolically as

ucl = Gst,Educ0l. s55d

The exact expression for the energy-dependent operator
Gst ,Ed is obtained by iterating Eq.(14). Applying P=1−Q
(see Sec. IV) to the left-hand side of the Schrödinger equa-
tion, Eq. (12), we obtain

sE − T0duc0l − PT−1Qucl = 0, s56d

which can be recast as a nonlinear eigenvalue problem

Euc0l = „T0 + PT−1Gst,Ed…uc0l, s57d

using Eq.(55). Taylor expansion ofGst ,Ed results in a poly-
nomial in the energy eigenvalue. Through fourth order we
find that

Euc0l = ST0 − T−1T1 + T−1T0T1 − T−1T0
2T1 −

1

2
T−1

2 T1
2

+ s− ET−1T1 − E2T−1T1 + 2ET−1T0T1dDuc0l.

s58d

To eliminate the energy-dependence on the right-hand side of
this equation, we substitute Eq.(57) for each occurrence of
Euc0l until all the energy dependence has disappeared. The
result of this procedure is an eigenvalue problem

Euc0l = ST0 − T−1T1 + T−1T0T1 − T−1T0
2T1 −

1

2
T−1

2 T1
2

− T−1T1sT0 − T−1T1d + T−1T1T0
2 + 2T−1T0T1T0Duc0l

= H̃uc0l, s59d

with a non-Hermitian operatorH̃. All the terms in the second
parenthesis arise explicitly from eliminating the energy de-
pendence in Eq.(58) and as a consequence are products of
the proper BW terms in the first parenthesis. It is in this
sense that such terms are reducible with respect to the zero
double occupancy sector. The lack of Hermiticity surfaces
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because projection does not respect the mutual orthogonality
of the eigenstates in any of the degenerate subspaces.

Hermiticity can be restored by a suitable global transfor-
mation of the eigenstates within each degeneracy subspace.
To proceed, we consider the operator

Z = 1 +aT−1T1 + bT−1T1T0 + cT0T−1T1 + dT−1T0T1,

which is explicitly not unitary. As such, it can be used to
construct an effective Hamiltonian

Hef f = Z−1H̃Z s60d

by placing appropriate conditions on the coefficients,a, b, c,
andd so thatHeff is Hermitian. Through fourth order, Her-
miticity is restored by demanding that

a = −
1

2
,

b = g −
1

2
, s61d

c = − g −
1

2
,

d = 1.

The resultant effective Hamiltonian,

Hef f
s4d = T0 − T−1T1 + T−1T0T1 −

1

2
sT−1T1T0 + T0T−1T1d

− T−1T0
2T1 −

1

2
T−1

2 T1
2 + T−1T0T1T0 + T0T−1T0T1

+ sT−1T1d2 −
1

2
sT−1T1T0

2 + T0
2T1T−1d

+ gs2T0T−1T1T0 − T−1T1T0
2 − T0

2T−1T1d s62d

contains three reducible terms whose magnitude is set by an
arbitrary constantg. These terms are given precisely by the
“additional” canonical transformation in Eq.(10). Because
all the terms controlled by the magnitude ofg are reducible,
they provide no more than a transformation of the eigenstates
within the degeneracy subspace with zero double occupancy.
The multiplicity of Hamiltonians we have derived here all
arise from different choices forg. For example, within the
canonical transformation method of Ref. 6, we haveg=0.
Effective Hamiltonians within a sector with a fixed number
of doubly occupied sites can only be determined up to an
arbitrary rotation of the eigenstates within the degeneracy
space. To understand what happens in the case of BW per-
turbation theory, we recall that, although one starts from a set
of wave functions that are orthogonal in the full Hilbert
space, the projection into a degeneracy subspace is a process
that does not respect the orthogonality. To get a Hermitian
Hamiltonian we have to perform a general transformation on
the degeneracy subspace in such a way that the orthogonality
of the projected components is restored. This is what the
general nonunitary transformation defined by Eq.(60) is do-

ing. Canonical transformations, on the other hand, are by
definition unitary and hence no additional orthogonalization
transformations are necessary.8,9

VII. SOME COMMENTS ON EXPERIMENT

Several experimental groups7 have pointed out that high-
temperature superconductors show spectral weight rear-
rangements over the Mott scale.31 Rearrangement of spectral
weight over large energy scales is expected in strongly cor-
related systems simply because many of the eigenstates are
localized or almost localized. Using the Lehman representa-
tion, one can easily see that the momentum eigenstates
probed by photoemission or optical spectroscopy, for ex-
ample, have nonvanishing projection on essentially all the
true eigenstates of the interacting problem. When the Mott
gap is closed, this means that spectral weight changes will
occur over all the energy scales when doping or temperature
is changed. When the Mott gap is opened, this will continue
to be the case but, nevertheless, the spectral rearrangements
over the lower Hubbard band will be describable to a high
degree of accuracy using only the effective low-energy
theory,as long as one uses the operators that are appropri-
ate for the low-energy sector. These operators take into ac-
count rearrangements in the upper Hubbard band through
virtual states. For example, upon doping by an amountx,
exact calculations on the Hubbard model show that the spec-
tral weight transfered from the upper to the lower Hubbard
band exceeds 2x, while 2x was argued to be the prediction of
the t-J model by some early work.32 Even at the level of the
t-J model, however, there is a correction8,9 to the low-energy
spectral weight(LESW) from the transitions across the Hub-
bard gap that arise from transforming the electron operators.
Through orderst /Ud2, the LESW agrees well with the exact
diagonalization on small systems.

VIII. CONCLUSION

We have studied several methods for performing degen-
erate perturbation theory. We have shown that, to fourth or-
der, they lead to low-energy effective theories that appear
different but, in fact, are all related through a unitary trans-
formation in the low-energy subspace, Eqs.(8) and(10). The
necessity of a unitary transformation in the low-energy sub-
space to prove the equivalence of the theories does not nor-
mally occur in lower-order theories and thus is a rather un-
familiar property. The most systematic approaches are the
two canonical transformation methods, the easiest algebra-
ically are the general transformation(Sec. VI) and the resol-
vent method, while the Brillouin-Wigner method, modified
in the manner of Rayleigh-Schrödinger, becomes rather cum-
bersome in higher orders. Nevertheless, the latter method
gives some insight into the other approaches. In particular, it
allows to understand the appearance of terms in intermediate
states that appear, at first glance, to be in the low-energy
subspace(“improper terms”). Also, it shows that in the low-
energy subspace, eigenvectors at ordertn have nonzero pro-
jection on eigenvectors at ordertn−1 only if the expansions of
the corresponding energies agree to ordertn−1. The need to
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orthogonalize and to keep track of the order of the energy
expansion makes the BW approach in practice more delicate
to carry out to high order. However, the existence of a small
parameter makes it completely equivalent to the canonical
transformation and resolvent approaches.

This work has laid plain how perturbation theory to all
orders can be formulated unambiguously. Although the ques-
tion of the accuracy of projected schemes in treating the full
Hubbard model has not been addressed in the present work,
it is generally assumed that such projected schemes should
capture all the physics of the original Hubbard model to a
given order int /U. Note, however, that this presupposes that
in the strong coupling limit all observables can be expanded
in powers oft /U. For an infinite system, this may not always
be true. Also, as is the case with any perturbation theory,
such projected schemes obviously fail to adequately describe
phase transitions. For example, at half-filling the interaction
tuned Mott transition is beyond the domain of applicability
of the projected theory. In the case of the doping-induced
Mott transition, the projected theory cannot address the ques-
tion of the chemical potential, which is of orderU. Nonethe-
less, as long as the interactionU is much larger than the
bandwidth, it is possible to write a unique(up to a unitary
transformation in the target space) low-energy effective
theory whose range of applicability is limited by the condi-
tion that physical observables have a well-defined expansion
in t /U. We reiterate that consistency of such procedures re-
quires that all operators be transformed as well. Although we
presented the results within the Hubbard model, all methods
are easily generalizable to other models.
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APPENDIX: MISCELLANEOUS ADDITIONAL RESULTS

The third-order CT generatorS3, version of Ref. 6, is
given by

S3 =
2

3
sT−1

2 T1 + T1T−1
2 − T−1T1

2 − T1
2T−1 + 2T1T−1T1

− 2T−1T1T−1d + T0
2T−1 + T−1T0

2 − T1T0
2 − T0

2T1

− 2T0T1T0 + 2T0T−1T0. sA1d

The BW third-order expressions for the matrix element of
an off-diagonal operatorkO1l increasing the number of
doubly-occupied sites by one is given by

kc8s3duO1ucs3dl

= kw08
s3du − T−1O1 + sT−1T0 − T0T−1dO1 +

3

2
T−1T1T−1O1

−
1

2
T−1

2 T1O1 − T0
2T−1O1 − T−1T0

2O1 + 2T0T−1T0O1

+
1

2
T−1O1T−1T1 −

1

2
T−1

2 O1T1uw0
s3dl. sA2d
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