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Charge ordering in extended Hubbard models: Variational cluster approach
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We present a generalization of the recently proposed variational cluster perturbation theory to extended
Hubbard models at half-filling with repulsive nearest neighbor interaction. The method takes into account
short-range correlations correctly by the exact diagonalization of clusters of finite size, whereas long-range
order beyond the size of the clusters is treated on a mean-field level. For one dimension, we show that quantum
Monte Carlo and density-matrix renormalization-group results can be reproduced with very good accuracy.
Moreover we apply the method to the two-dimensional extended Hubbard model on a square lattice. In contrast
to the one-dimensional case, a first order phase transition between spin density wave phase and charge density
wave phase is found as function of the nearest-neighbor interaction at onsite interbct@is The single-
particle spectral function is calculated for both the one-dimensional and the two-dimensional system.
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I. INTRODUCTION system sizes ofDMRG) for the one dimensional case. An-

In recent years an increasing number of theoretical an@ther nonperturbative approach is the mean-field method

experimental studies in condensed matter physics have f&nd, in the context of the Hubbard model, the dynamical
xper uaies | Phys! v ean field theoryDMFT),® in particular. While the DMFT

cused on the description and understanding of quasi-one- a . e T
quasi-two-dimensional strongly correlated electronic sysdiréctly works in the thermodynamic limit of infinite system

tems. Several fascinating properties of these materials ard2€; it must be regarded as a strong approximation since

due to the competition between different phases with Icmg_spanal correlations are neglected altogether. Cluster generali-

: S ations of the DMFT include at least short-range correlations
range order. High-temperature superconductivity in cuprate\é/ia the exact treatment of a small cluster instead of consid-

e e e e asa 10 . snge mpury onl. Bot, s eciprocal-spas-
y way. Hamical cluster approximation, DCA and a real-space

this context consist of a kinetic part which accounts for theconstruction (cellular dynamical mean field theory,

electron motion and an interaction part which is of the Sam&_pMFT8-19 have been suggested.

order of magnitude. The simplest model that can be con-  gggengially the same idea is followed with the cluster per-
structed under these assumptions is the tight binding Hubyrhation theoryCPT),1:-13which is a cluster extension of
bard model. It consists of a kinetic energy part, where thghe strong-coupling expansion for the Hubbard model: The
electrons can only hop between nearest-neighbor sites angktice is divided into small clusters which are solved exactly
the Coulomb interactiotd which acts only locally on each while the hopping between adjacent clusters is treated per-
site. Although this model was used with great success for theurbatively. The lowest order of the strong-coupling expan-
description of a wide class of materials, there are interestingion in the intercluster hopping yields the CPT. Short range
physical questions which require an extension. The inclusiomorrelations on the scale of the cluster are taken into account
of the nearest-neighbor Coulomb interaction, for example, i®xactly, for instance by the Lanczos technique at zero tem-
necessary for the study of inhomogeneous phases, such psrature, while correlations on a scale larger than the cluster
the charge-density waw&CDW). This leads to the so-called size are neglected. The CPT is a systematic approach with
extended Hubbard mod€EHM). respect to the cluster size, i.e., the method becomes exact in
But knowing the appropriate model for the description ofthe limit N.— o, whereN, is the number of sites within a
a material is only the first step on the way to understandingluster. It allows for the calculation of the single-electron
the physics. Already for the simple Hubbard model withoutGreen’s function at arbitrary values of the wave vedtor
nonlocal Coulomb interaction, an exact calculation of staticThis is a considerable improvement compared to standard
and dynamic properties is possible in very special cases onlyanczos calculations for small clusters, where only a few
and one must be content with approximate methods in gerpoints are available. The CPT has been successfully used to
eral. For the interesting case where the Coulomb interactiodescribe spectral properties of the hifgmaterialsi*—‘6and
U is of the same order of magnitude as the bandwiitlthe  has already been extended to finite temperattires.
conventional perturbative approach must fail. This is ex- Recently a new method has been proposed which exploits
pected for weak-coupling perturbation theory but also for thea general variational principle for the self-energy of a system
complementary approach with exact treatment of the interacef interacting fermions. This self-energy-functional approach
tion part and perturbative treatment of the kinetic enérdy. (SFA)'® approximates the self-energy of the original system
Numerical methods are more promising, such as quanturim the thermodynamic limit by the self-energy of an exactly
Monte Carlo (QMC),* exact diagonalization(ED), and  solvable reference system with the same interaction part. The
density-matrix renormalization grou(OMRG).> They are self-energy is varied by varying the single-particle param-
able to give essentially exact results—at least for limitedeters of the reference system. Choosing the reference system
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to be a cluster of finite size yields a nonperturbative andare general quantum numbers within a cluster, e.g., position
consistent cluster approach. It has been sH8wmat within  and spin index, ancd:;,a creates an electron with quantum
this framework the CPT as well as the C-DMFT appear aswumbera in clusterR.

special approaches depending on the number of additional The quantity of interest is the single particle Green’s func-
uncorrelated*bath”) sites taken into account: The optimum tion GR,a,R'.b(w):«CR,a;C;/,b»w- Using translational invari-

number of bath sites is actually a free parameter which cagnce at the level of the superlattice vecRy the Green’s

be determined from the general variational principle. It hasynction becomes diagonal with respect to the wave veQtor
been pOinted od? that at least for one-dimensional models afrom the reduced Brillouin zone Corresponding to the super-
large cluster without bath sites must be preferred. The use Qfttice. The resulting Green’s function in reciprocal space is a
a reference system without bath sites represents a generalizgfhtrix Go(w) with elementsGg p(w) and a,b quantum
CPT in which the single-particle parameters of the finite,,mpers within a cluster. h

cluster are optimized according to the variational principle. \jithin the CPT approximation this Green’s function
This “variational CPT"(V-CPT) has successfully been used G () can be expressed in terms of Green’s functions of the

in a recent study for Fhe investigation of 'the S}’mmetry'decoupled cluster§’ (), again matrices in the quantum
broken antiferromagnetic phase of the two-dimensional Hub- . . _RR’
bard modek? numbersa andb, and the intercluster hopplntﬁ'b by the

So far a consistent formulation of tlieariationa) cluster- expression

perturbation approach could be achieved for lattice models
with on-site interactions only. The reason for this restriction
is that within the SFA the reference system must be chos
with the same interaction as the original model. As detaile
in Ref. 18, this ensures that functionals given by the 1 . )
skeleton-diagram expansion are the same for both, the origi- Toap= - > THR URRY, (4)
nal and the reference model. In case of the EHM the inter- R,R’
action couples the different sites of the lattice. Thus there is
no reference System with the same interaction which Consistléor the details of the derivation of the CPT formulas we refer
of decoupled subsystems of finite size. The motivation of théhe interested reader to Refs. 12 and 13 and references
present paper is therefore to extend the ideas of the CPT arigerein. We want to mention that one can transform @g.
V-CPT to the investigation of the EHM including nearest- into a Dyson-type equation
neighbor Coulomb interaction. It is shown that a mean-field ©f -1 N
decoupling of the intercluster nearest-neighbor interaction Golw) =(Gg'(0) " =X (w) ™7, (5)
yields a systematic and reliable cluster approach. ) ] ) ] o

The paper is organized as follows: In Sec. Il we give awhere G5'(w) is the free Green’s function of the infinite
short description of the V-CPT method, Sec. Ill shows howlattice, andX () is the cluster self-energy. In other words
to decouple clusters in the case of the EHM. In Sec. IV andCPT consists of approximating the self-energy of the infinite

V we present results for one two dimensions, respectivelysystem by the self-energy of a cluster of finite size. Note that
The conclusions are given in Sec. VI. CPT is based on the exact evaluation of small clusters with-

out any self-consistency procedure, and thus does not allow
for the occurrence of symmetry-broken phases. This restric-
IIl. VARIATIONAL CPT tion is overcome with the V-CPT methd@&2°

Let us consider a system of interacting fermions on a 1he observation underlying V-CPT is that the Hamil-

lattice with HamiltoniarH, in general consisting of a single- t°Nian E.(1) is invariant under the transformation
particle partHy and an interaction paH. The lattice is then
divided into clusters, where it is of crucial importance for the
derivation of the method that those clusters are connected by

Go(@) =[G'(0) =Tl ™ 3

ith the Fourier-transformed intercluster hopping

HY(R) — HY(R) + O(R),

H, only. The Hamiltonian can then be written as H8>(R,R’) _ Hg)(R,R’) - :rOR), (6)
- (c) (i) '
H= ER: [Ho"(R) + Hy(R)] + p) Ho'(R,.R), D with an arbitrary intracluster single-particle operator
R,R’
whereR denotes the individual cIusterBl,f)C)(R) is the part O(R) = 2 AgpCh oCrips (7)
a,b

of the single-particle term that acts only inside a single clus-
ter, H1(R) is the interaction part inside the cluster, and the

. R which can for instance be a fictitious symmetry-breaking
intercluster hopping is given by

field, thus allowing for broken symmetry already on a finite
HORR) =S TRR ¢ ¢, (- 2 system |nste(_ad of only in thg thermodynamlc I|.m|.t.
o ) g ab “Ra*R"b 2 The question of what choice fa&=A, , will optimize the
, results can be answered by the S®AZ Within this ap-
where the hopping matriX (T,bR is nonzero only for hopping proach, the optimal value d is determined from the sta-
processes across the cluster boundaries. The indie@slb  tionary point of the function

235107-2



CHARGE ORDERING IN EXTENDED HUBBARD.. PHYSICAL REVIEW B 70, 235107(2004)

QA)=Q'(A) TE tr -1 single-particle type, which can be achieved by a mean-field
=0'(A) + rin — : . : .
-0 Gg»(lwn) -3 (Ao decoupling of the interaction term E@L1). Hence we get
0) = e N
- LT? trin[-G'(A,iw,y)], (8) Hymr(R.R") = V% [Nri{NR/j) + (NRi)NR/;]
where()’(A) is the grand potential of the decoupled cluster, -V (Ngi){(NRj). (12)

which serves as reference system. The frequency sum runs fi)
over discrete Matsubara frequencies, L is the number of Due to the translational invariance with respect to the super-
clusters orQ points, respectivelyT gives the temperature, lattice vectorR, the mean-field paramete(sg;) and(ng:;)
and bold symbols denote matrices in the cluster indicasd  are independent dR andR’ and will be denoted by; and
b. Note that the fraction in the first line in E(B) is the CPT \;, respectively. With these abbreviations we get
Green'’s function, Eq(5). The single-particle parametess _
can include all single-particle parameters of the original > H{}?MF(R,R’):VE E[nRi)\j+nR,j)\i—)\i)\j]
Hamiltonian or only part of it, as well as additional terms, R,R’ R,R’ [1.i]
e.g., a fictitious staggered field. The actual choice and num-
ber of parameters depends on the problem under consider- VX 2 [MRikj + gjki — hikj]
ation. For more details of the derivation of the method see R W)
2 HYwe(R). (13
R

Ref. 20.
A necessary condition for the applicability of the method
is that the clusters are coupled by single-particle operator.? .
. 0 . he double sum oveR and R’ reduces to a single sum,
only.. At_thls point it is easy to see that a straightforward because for fixed values &, i, andj only one tern? of the
application of the method to the EHM where the clusters a'%Sum overR’ contributes dué 'Eo the fact that two-site inter-

also coupled by Coulomb interactions is not possible. How-_ .. )
. . actions couple at most two different clusters. One must be
ever, we will show in Sec. Ill how one can decouple the

lattice into clusters appropriate for the application of CPTI(iare.fljltIn ordir to av0|ddFioubI§ COletllngt of t?? borEgQ.
even in the case of the EHM. or instance, for a one-dimensional cluster of lengthEq.

(13) reduces to

Ill. DECOUPLING THE CLUSTERS V2 [Nrahy + Nrahg = MaAgd, (14)
R
We start from the Hamiltonian of the extended Hubbard )
model because the only decoupled bond connects sites INaoid
different clusters.
H=D, Ti,jCiTngU"' u> ni; | + VY nin; - wxn, (9) By this mean-field decoupling, two parametafsare in-
ij,o [ (i) [ troduced for each decoupled bond, eX,and \y in one

dimension, and in general all these paramelgerare inde-
pendent of each other. But as we will see below, the number
of mean-field parameters can be strongly reduced in spe-

wherei, | indicate the position in the lattice, and for conve-
nience we use a constant valig;=V for all nearest-
neighbor bonds. According to E¢l) we decouple the lattice

into clusters yieldin cial cases.
y 9 The decoupled interaction E@l3) is of single-particle
H=S [ch)(R) + H{?(R) + H{f)(R)] ty%e and can be included |n thg intracluster .hopping .term
R Hy (R), leading to a modified intracluster single-particle
. , term
+ 2 [HP(RR) +HY(R,R], (10
RR’ HP(R,N) = HY(R) + HYue(R, ), (15

where the first row includes only terms of a single clusteryhere we explicitly denoted the dependence on the param-

and the second row couples different clusters. By comparingters \,. After mean-field decoupling we finally get the
the second row with the corresponding term in Eb.one  Hamiltonian,

can see that the term causing problems in the case of the
EHM is the interaction term Hue(\) = > [HER ) + HOR) + HO(R)]
R

HY(R,R") =V Nringij, (11) A
fi] + 2 HY(R,R), (16)

which is of two-particle type. The symb#ij] indicates that RR'

the sum runs only over bonds connecting nearest neighbofer which the method described in Sec. Il is applicable.

in different clusters. For nearest-neighbor interactions this From the decoupling of the clusters we have additional
means that the indices ifij] must belong to the cluster parameters\; which are external parameters to the Hamil-
boundaries of two adjacent clusters. For the application ofonian Eq.(16) and must be determined in a proper way. For
the method derived in Sec. Il the coupling term must be ofthis purpose we propose two different procedures.
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(i) One can get the parameters from a self-consistent cal- Va
culation on an isolated cluster. That means that one starts
with a certain guess for thg;, which are the expectation CDW firstorder
values of the electron densities on sitehen the ground- l ',/'U=2V

state wave function of an isolated cluster is calculated, giv-
ing new values for tha,;. In this step open boundary condi-
tions (OBC) are used in order to be consistent with the OBC
necessary for the calculation of the cluster Green'’s function
in Egs.(3) and(8). These new values; serve as parameters

in the Hamiltonian for the next determination of the ground ,+//~— continuous
state, and the whole procedure is iterated until convergence X0

of the\; is achieved. This procedure may work quite well for SDW
the EHM in the case of a first order phase transition between BOW

a disordered and an ordered phase, becddse to an

avoided level crossingthe transition point, i.e., the critical
Coulomb interactionV/,, is almost independent of the cluster u
size?! For second order phase transitions we expect that this
method will not give satisfactory results, because here w
face a discrepancy between the parameters calculated on t
isolated cluster and the parameters that would give the opt
mal result in the thermodynamic limit.

(i) The shortcoming in the case of second order phas
transitions can be overcome in the following way: As Wehis model has been studied intensivéiy?8the ground-state
show in the Appendix, the self-consistent calculation ofppage diagram is still under some discussion. We use this
mean-field parameters is equivalent to the minimization of, 4| as a testing ground for our method, because many

t_hg ftrﬁe er)r?_rg)_Fét_Soi?]cCeatnh% re(;%tri]%m?;;MNa h(e)ktj'fn att snLesults are available for comparison. The chemical potential
=5, IS minimization € a same tme as u=U/2+2V due to particle-hole symmetry at half-filling.
optimization of the single-particle parameteksin the SFA In one dimension at half-filling, the phase diagram of the
formalism, and we can use E(B) for the determination of EHM includes spin density wauSDW) and charge density

the parameters,;, too. Note that all quantities in Eq8) . N
which depend on the singleparticle parametkrare depen- Wave (CDW) phases. By weak-coupling renormalization-

dent on the mean-field parametersas well. To keep the 9rouP (RG) techniques(*g-ology”)***° the phase boundary
calculations simple we consider only half-filled systems,beétween SDW and CDW phase was determined)te2V,
where it is sufficient to use only two different values for the Which actually coincides with strong-coupling calculations
\i, namelyA,=1-6 and Ag=1-4 on sublatticesA and B, for largeU andV using second order perturbation theéty!
respectively. Under this assumption we have only one mearf=0r intermediate coupling the boundary was found to be
field parametep, and the grand potential 8=Q(A, 8). The  shifted from theU=2V line, enhancing the SDW phase, by
general procedure is now, that for each valuesdahe sta- QMC calculationd'~?*32and strong-coupling calculations up
tionary point with respect ta must be found as required by to fourth order’® Moreover the nature of the transition is
the SFA formalism, yielding a functioR=Q(4). By finding  different in the two coupling regions, with a second order
the minimum of this function one can determine the optimaltransition at weak coupling and a first order transition at
value for 8. strong coupling. The multicritical point, where this change
Conceptually, the latter methogi) of determining the takes place, was investigated intensively in the past. Cannon
mean-field parameters is Superior to the procec{w@e_ and Fradk|ﬁ4 Obta|ned Um%15 by f|e|d'theoret|cal teCh'
scribed first as it uses information on the Green’s function irflidues, whereas recent QMC stude¥ gaveU,=4.7-5.5.
the thermodynamic limit for the calculation & However, ~The latter value is in good agreement with results based on
one must keep in mind that for each choicesthe Green's ~ bosonization and R&:?%3° Other estimates for the multi-
function G'(w) of the isolated cluster must be calculated Cfitical point areUp~3.7 (DMRG?') and Uy,=3.5-5 from
many times to evaluate Eq8) which is much more time finite-size extrapolations of Lanczos resufts,

consuming than the self-consistency procedure on the iso- ONly recently Nakamuré&=® has proposed an additional
lated cluster. phase between the SDW and CDW phases, the so-called

bond order wave phag8OW). The existence of this phase
IV. ONE DIMENSION has afterwards been confirmed by several stutliés26-28:38
A schematic phase diagram including Nakamuras BOW is
depicted in Fig. 1. There is good agreement on the existence
H=-t> (¢ 1o+ H.C)+UX My, of the BOW phase, but its extension in teV plane has not
io [ yet been clarified in detail.

»
>

FIG. 1. Schematic phase diagram of the one-dimensional EHM,
ollowing Ref. 22. Similar phase diagrams have been reported in
&fs. 21, 24-26, 28, and 38, but with different extensions of the

Bow phase in théJ-V plane. The thick line marks the first order

ghase transition, and the dashed line mavks2V.

The Hamiltonian of the one-dimensional EHM is given by

+V, NNy — w2, N (17 A. First order phase transition
i i

For a first test of our method we studied the one-
Throughout the paper we seas the unit of energy. Although dimensional EHM atU=8, which is well above the multi-
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FIG. 2. Grand potentia{) as a function of the mean-field pa- v

rameterd at U=8 calculated on a cluster wit.=8 sites as refer- o

ence system. Upper pan&l=4.1. Lower panely=4.2. Solid lines, FIG. 3. (23round state enerdp, kinetic energyE,, and order
with optimization of a staggered field. Dashed lines, without opti-Parametemgp,, of the one-dimensional EHM dti=8 after finite
mization of a staggered field. size scaling. Lines are guides to the eye only.

critical point. The phase transition is then of first order with-grand potential and the ground state enegy=(+uN,

out any BOW phase between SDW and CDW phases. A#ith N the number of electrons in the system, we calculated
reference systerd’ according to Sec. II, we used decoupled the order parameter

clusters of different lengths consisting Nf=8, 10, and 12 1

sites, respectively. For the determinatioq of the mean-field Mepw = => (n; —(n))eR, (19)
parameters we used the methodi) described in Sec. Il Ne™;

whered is calculated from the minimum of the energy of the B ) ] o
system. For the SFA optimization of the single-particle pa_whereQ—w, N, is the nur_nber of cluster sites, and the kinetic
rameters, we were guided by a recent study of the Hubbar8N€r9YExin- Both properties can be extracted from the spec-
model® which showed that it is not necessary to use thdral function21320Within our approach it is necessary to use
hopping in the cluster or a staggered magnetic field as varigl® Lehmann representation for the cluster Green's function
tional parameter. Since here we study charge-ordering efvith small bl_Jt finite Lorentzian bro_adenlng Whereas the_
fects, we used as variational parameter a staggered fie@fand potential Eq8) shows only minor dependence on this

coupled to the charge densities given by E&).with broadening, the_ depenQence of the order parameter and the
kinetic energy is considerably larger and one must do an
Ay = £8, €N, (18) extrapolation too=0.13 Although the formalism applies to

the thermodynamic limit, results show a finite size depen-
whereQ= is the wave vector of staggered ordering and dence due to the finite size of the clusters serving as refer-
is the staggered-field strength. The grand potential obtainednce system. We found that the order parameter exhibits the
in this way is shown in Fig. 2 at two values of the intersite strongest finite-size effects, which were of the order
Coulomb interaction. For comparison, calculations withoutmZp,,  —1o/ Mapwn 1,~1.02 at all values ofV. Linear
optimization of the staggered field are shown as dashed lingfjte-size scaling &choo is easily done and the results are
in Fig. 2. As one can see, the optimization gives only minorshown in Fig. 3. Our results should be compared to Fig. 10
changes to()(o). The optimal staggered-field strengths in of Ref. 21 which shows excellent quantitative agreement
these calculations varied betweeg,=0.0 at 6=0.0 and  with a deviation of less than 2% for the calculated quantities

eopt=0.05 at6=1.0 at both values o¢. at all values of V. From our calculations we gev,
From the shape df2(5) one can directly infer the order of =4.1445), again in agreement with the previous stude?.
the transition. If three minima occur @=0 andé= * écpw, In order to provide a complete picture of the method we

it is of first order, whereas it is of second orderifs) has  also performed calculations with mean-field parameters ob-
only two minima até= + dcpw and a maximum ab=0. As  tained by a self-consistent procedure on an isolated cluster,
one can easily see in Fig. 2, we have clear evidence for a firglee methodi) in Sec. Ill. For instance foN.=12 andV
order phase transition &t=8 with an SDW minimum a6  =4.1 one finds self-consistent solutions f6=0 and for
=0.0 and two degenerate CDW minima @t +dcpw- At V. §5.=0.832, which differs only slightly from the value ex-
=4.1 the SDW phase is realizef(0) <Q(Scpw), whereas tracted from the grand potentiafcpy=0.822. For this rea-
at V=4.2 we have)(0) >Q(dcpyw) and the CDW phase is son the calculation of the ground-state energy, kinetic energy,
the stable one. Thus we can state that the critical véjfer ~ and order parameter usinfyc instead ofdqpyy gives practi-
the phase transition is located betweén4.1 andvV=4.2. cally the same results as in Fig. 3. In the present case it is
For a more accurate determination of the phase boundaryerefore sufficient to calculate the mean-field parameter
V., we have calculated the grand potential at several valuefsom an isolated cluster which is much faster than finding the
of V and cluster sizedl.=8, 10, and 12. In addition to the minimum of the grand potential.

235107-5



AICHHORN et al. PHYSICAL REVIEW B 70, 235107(2004)

(-t
(-t

A "
-4 e | L — |
4 C : — -4 5 FIG. 4. Density plot of the
r — 1 spectral functionA(k,w) of the

8- B J 3k i one-dimensional EHM atU=38,
. : . calculated on a cluster of siZé,
I — =12 with Lorentzian broadening
8k . A 0=0.1. Darker regions represent

I - 10 d larger spectral weight. Coulomb
- = ‘_’; ~— interactionV as indicated in the
4r \\f 5 plots. White lines are fits to a

Hartree-Fock SDW/CDW disper-
sion (see text

(-t
(-pt

1 L 1 L 1 L 1 ' L | L | L 1 ' 1

00 02 04 06 08 10 00 02 04 06 08 10
k/in k/in

Whereas the properties we have shown so far are wethe hopping matrix elememy; and the gap\;; are denoted in
known for the one-dimensional EHM, we additionally calcu- Table | where we included the values\at0 for complete-
lated for the first time the spectral function for arbitrary waveness. One finds that the gag; is almost constant fronv
vectork. In Fig. 4 results are shown &t=8 and selected =0 toV=2 and, as mentioned above, considerably decreases
values ofV with a reference system consisting Nf=12  near the the phase transitiQd=4). The hopping matrix el-
cluster sites, and the mean-field parameiealculated self- ementt;, shows the opposite behavior and increases when
consistently by method), see Sec. Ill. We want to mention approaching the transition point from below. This is due to
that the “striped” structure, particularly visible in the regionsthe fact that in the vicinity o¥/,, doubly occupied and singly
marked by “C” in Fig. 4, occurs because the decoupling intooccupied sites becomes close in energy, which enhances the
clusters breaks the translational invariance of the system. movement of the electrons. The actual value of the matrix

The spectral function a=2.0 is very similar to the spec- elementt, is very large compared to the original valtie
tral function of the Hubbard modéV=0)1213with splitting =1 in the Hamiltonian. A fit to the spinon band would give a
of the low-energy band into a spinon and an holon bandsmaller value closer to=1, but whereas fitting to the holon
which are marked in Fig. 4 by “A” and “B,” respectively. band is consistent over the whole range of momentum vec-
This similarity could have already been expected based otors k, the spinon band is only present far< 7/2 for w
the full Hartree-Fock solution—decoupling of all interaction — <0 (andk > 7r/2 for - x>0, respectively.
terms in the Hamiltonian—where one has no dependence on The spectral function in the CDW phase shows a qualita-
V at all in the SDW phase. But this simple picture holds onlytively different behavior. Av=4.5 we found a gap consid-
away from the transition poin¥; as can be seen in Fig. 4 in erably larger than in the SDW phase, and this gap increases
the plot atV=4.0. At this point, in the vicinity of the phase very fast with increasingy/, as can be seen in the plot \dt
transitionV;=4.14, the gap is considerably smaller than at=6. Moreover, no evidence for spin-charge separation can be
V=2.0, a clear deviation from the Hartree-Fock prediction.seen in the spectral functions. By comparing the fitted value
This indicates that charge fluctuations become very imporag with the Hartree-Fock solutioA,, one can see that the
tant in this regime, which are completely neglected by theagreement a¥=4.5 is better than a¥=4, and that it be-
Hartree-Fock approximation, but are taken into account ortomes still better with increasing. For this reason we con-
the length scale of the cluster in our approach. But althouglelude that charge fluctuations which are neglected in the
we found this deviation, one can still see residuals of theHartree-Fock approximation play a minor role in the CDW
splitting of the low-energy band, a signature for spin-chargephase.
separation. For this reason we infer that spin-charge separa- The values fott;, andAg; given above are determined by
tion is present up to the transition point. The white lines incalculations with aN.=12 cluster as reference system. An
Fig. 4 correspond to fits of the holon branch to a Hartreeanalysis of the finite-size dependence of these properties
Fock dispersionE(k)=+A%+¢(k)2 The fitted values for shows that finite-size effects are almost negligible in the
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FIG. 5. Grand potentiaf) as function of the mean-field param- ’ ’ Ty

eter 6 at U=3 calculated on a cluster wit.=8 sites as reference

system. Upper pane/=1.6. Lower panely=1.7. Solid lines, with FIG. 6. Ground state enerdgp, kinetic energyE,,, and order

optimization of a staggered field. Dashed lines, without optimiza-parametemg,, of the one-dimensional EHM =3 for cluster

tion of a staggered field. The arrow marks the CDW minimum atsizesN.=8 (dotted, N.=10 (dashegi andN;=12 (solid line).

V=1.7.

we would still find the SDW minimum a$=0, but with

SDW phase well below/,. However, in the vicinity of the optimization the minimum shows up for a finite value &f
transition point, these effects increase considerably, espé-+0-31 characteristic for the CDW phase.

cially for Ag,. For instance, a¥=4.0 we found,=2.49 and For the determination of the.crltllcal valug, we calcu-

Ay =1.60 for theN,=8 cluster. This means that the values !atéd the ground state energy, kinetic energyE,,, and the
given in Table | underestimate the hopping and overestimat@rder parametemcp,y at several values of, which are con-
the gap in the vicinity oM,. In the CDW phase, the finite- INUOUS across the transition, sho_wn_ in Fig. 6. The cluster
size effects become smaller again, but are still larger than i§'Z€S are too small for a systematic finite-size scaling. From

the SDW phasée.g., t;=1.77 andAq,=7.38 for V=6 and the kinetic energy and the order parameter calculated on a
N.=8). cluster of sizeN.=12, we extract a critical value of/.

=1.6635), which is in good agreement with the critical
N value V,~1.65 obtained by QM& and diagonalization
B. Second order phase transition method£42536 and  with V.=1.641) from DMRG

So far all calculations were done =8, where the sys- calculations’ The slight difference is likely due to remain-
tem shows a first order phase transition. In the following, weing finite-size effects. Moreover we made use of a single
study the EHM atU=3, where the model exhibits a second variational parameter only, namely the staggered field Eq.
order transition into the charge ordered CDW ph&géIn  (18), and it can be expected that including more single-
this paper we do not consider the BOW, since it has beeparticle parameters in the SFA optimization procedure would
argued that the SDW-BOW transition is of Kosterlitz- give even more accurate results.

Thouless typé&® For an analysis of this type of transition the ~ We would like to point out that in the present case of a
available cluster sizes are far too small and do not allow second order phase transition, the most accurate way of cal-
clear distinction between SDW and BOW phase. culating the mean-field parametéris to find the minimum

We calculate the grand potenti@l ) in the same way as in the grand potential including SFA optimization of single-
in Sec. IV A in order to determiné. The result of a calcu- particle parameters. Calculations on a cluster of dlze12
lation on a cluster consisting ®i,=8 sites is shown in Fig. showed that without optimization the critical value would be
5. One can easily see a striking difference between the grand.=1.6885). Compared td/.=1.6635) this is further away
potential atU=8, Fig. 2, and atJ=3. In the latter case there from the values obtained by other methods as given above.
is only a single minimum. It is located a=0 for V<V.. Calculations withs obtained self-consistently on an isolated
With increasingV the curve forQ)(5) becomes flatter in the cluster are insufficient. In this case one would &t
region around=0 and finally two degenerate CDW minima =1.73%5) for the N;=12 cluster. This means that for a sec-
occur até= + Scpy for V>V,... Note that hereS changes con- ond order phase transitiofishould be determined by mini-
tinuously when crossing,, whereas it shows a discontinuity mizing the grand potential, whereas for first order transitions
in the case of a first order phase transition. the self-consistent determination was sufficient.

We find that now it is indeed important to use a staggered The spectral functiorA(k,w) at V=1.0, 2.0, and 3.0,
field, Eq. (18), as a variational SFA parameter. In Fig. 5, which has not been calculated previously, is depicted in Fig.
results are shown with such an optimizati@olid lineg and 7. We found that the spectral function\&1.0 shows only
without (dashed lines Whereas a¥V/=1.6 both calculations minor differences to the spectral function of the Hubbard
show only the SDW minimum aé=0, they differ atv=1.7  model(V=0). The white lines in Fig. 7 are fits to a Hartree-
where the system should already be in the charge-orderdgock SDW/CDW dispersion. The parametggsandAy; can
phas€&l242527\\jithout optimization of the staggered field, be read off from Table. . In the SDW phase &0 and
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o T T TABLE |. Fitted values for the hopping matrix elemert, gap

Agi, and gapAye of the full Hartree-Fock approximation &t=8.

4 4 Fitted values from results for thd,=12 cluster.
= 25 » / it At Apr
T o - 7 V=0.0 1.93 2.24 3.75
=~ _2{/ | V=2.0 2.11 2.20 3.75

= V=4.0 2.62 1.29 3.75
“1 7 V=45 1.86 3.35 4.80
6- i V=6.0 1.86 7.29 7.88
| | 1 |
¥ T T T T ) ) .
6 v=2 systems, especially in the context of high-temperature super-

conductivity. But different from the one-dimensional case,
where many sophisticated methods have been used to inves-

2F / tigate the extended Hubbard model as described in Sec. IV,
only few studies have been done for the two-dimensional

=
= ook EHM. One reason for this is that many modern methods such
é e as DMRG or fermionic loop-update QMC are difficult to
'2/ i apply to more than one spatial dimension. However, within
4 _ our present approach, the extension to two dimensions is
straightforward.
6 7 The two-dimensional EHM is defined by the Hamiltonian

e g e H=-t> (¢ ¢ ,+H.c)+UX nym +VX ninj— w0,

6 - (ijho [ €ij) i

4l ""“‘\\/—j (20)
- 2r 7 where(ij) connects nearest neighbors and the chemical po-
= o 4 tential is u=U/2+4V at half-filling. Early QMC studie®
é showed that this model has a SDW-CDW transition similar

to the one-dimensional case with transition poifjt=U/4.
But due to numerical difficulties it was impossible to deter-
mine the exact position and the order of the phase transition.
For repulsive interactions, calculations within the Hartree-
00 0z 04 06 08 1o Fock approximatiof?-*2 showed two stable phases for the
K/n Hamiltonian Eg.(20) at half-filling, the SDW and CDW
phase, separated by a phase boundakatJ/4. The same
FIG. 7. Density plot of the spectral functigkik , ) of the one-  Value for the critical interaction was obtained by the
dimensional EHM atU=3 calculated on a cluster of sia¢,=12  fluctuation-exchange approximatigRLEX).**

with Lorentzian broadening=0.1. Darker regions represent larger  For the application of the method presented in Sec. Il, the
spectral weight. From top to bottord=1.0,2.0,3.0. White lines are two-dimensional square lattice must be decoupled into clus-

fits to a Hartree-Fock SDW/CDW dispersigsee text ters of finite size. Three possible tilings with different num-
bers of cluster sitebl; are shown in Fig. 8. Some care must
be taken concerning the staggered ordering. Whereas for

V=1.0, the gap\;; is constant. Similar to the casé=8 the  clusters withN.=8 andN.=10 shown in Fig. 8, the stag-
agreement betweeh;, and A is better in the CDW phase gered ordering indicated by open and full circles is commen-
than in the SDW phase. The hopping paramggeincreases surate over the cluster boundaries, a straightforward decou-
when approaching the phase transition from below, similar to

Table I, but the fitted values fdg; are considerably smaller TABLE Il. Same as Table I, but fo =3.
than in the casdJ=8. For the finite-size effects of these
properties the same behavior was found aslfer8. it Ay Apr
V=0 1.38 0.29 0.93
V. TWO DIMENSIONS V=1 1.59 0.29 0.93
V=2 1.40 1.13 2.12
The two-dimensional Hubbard model is one of the most ;-3 1.59 371 4.28

intensely discussed models for strongly correlated electron
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FIG. 9. Grand potential calculated on a cluster of 9ize8 at
U=8, V=2.1(upper panglandU=3, V=0.76 (lower pane).

The fact that the system shows first order transitions at
both U=8.0 andU=3.0 simplifies the subsequent calcula-
tions. As discussed in the preceding section, one gets good
results in the case of a first order transition by using a mean-

FIG. 8. Possible tilings of the two-dimensional square latticefield parameteis determined self-consistently on an isolated
into clusters that allow for staggered orderitg=8 (bottom righy,  cluster, as described in meth@glin Sec. lll. This procedure
N,=10 (bottom lefy, supercluster wittN,=48 (top). is much faster than the calculation of the grand potential for

many values ofs, which makes it possible to use tin
pling into clusters of sizé;=12 is not possible. As one can =48 supercluster shown in Fig. 8. We want to mention at this
easily see, a supercluster with=48 consisting of foulN:  point that the calculation of the grand potential for the two-
=12 cluster must be' constructed in order to t,ake into accourfimensional system is much more time consuming than for
the staggered ordering correctly. The _Gre_ens function of '_[h ne dimension because of the larger numbeiQopoints
supercluster can be calculated by switching off the hoppingeqired in Eq(8). For one dimensioh ~ 40 is sufficient for
processes that connect the smglg_: 12 .clus.ters, |n.0th.er convergence, whereds~500 is necessary for two dimen-
words on bonds across the dotted lines in Fig. 8. This gives gjqns Nevertheless it is of crucial importance to use a cluster
block-diagonal Hamiltonian which can be treated by the,q |arge as possible, because the ratio of bonds treated ex-
Lanczos algorithm. The switched off hopping processes arg.\y 1o mean-field decoupled bonds increases with increas-
then incorporated again perturbatively, that means by II’IC|Ud|-ng cluster size, especially pronounced for the two-
ing the corresponding hopping terms in the mafff i dimensional square lattice. After having determined the
EQ. (4. Note that here the vectoi® and R’ denote the mean-field parametet for the CDW phase self-consistently,
superclusters and not the singig=12 clusters. Of course we also performed an SFA optimization of a staggered field,
there are many other possible tilings like the 3 cluster  Eq. (18).
used in Refs. 12, 13, and 44, but also in that case a super- A few more words must be said about calculations in the
cluster ofN.=24 must be used. SDW phase(6=0). Recent studié8 of the pure Hubbard

We start the analysis of the two-dimensional EHM with model revealed that it is important to take into account the
the determination of the order of the phase transition. Fofong-range magnetic order for the accurate description of sa-
this purpose we use ths.=8 cluster shown in Fig. 8 and Jient features of the system. This can be achieved by using a
calculate the grand potentif(é) in the vicinity of the tran-  staggered magnetic field as variational parameter, given by
sition point atU=8.0 andU=3.0 as described in methdil)
in Sec. Ill. Here we did not use a staggered field as varia-
tional parameter, because it does not change the qualitative
shape ofQ)(8) (see Figs. 2 and)5and is therefore not nec- with z,=+1 for spin projectiono=71,], andh the strength
essary for the determination of the order of the transitionof the field. Additionally it was argued that due to the con-
The result of this calculations is shown in Fig. 9. At both nection of the hopping parametérand the magnetic ex-
valus of U we found three minima, located #=0 and§  change constari, results could be further improved by let-
=+ Scpw. This indicates a first order phase transition, differ-ting the hopping in the clusters be of strength and
ent from the one-dimensional EHM, where dt=3.0 the optimizing the staggered magnetic field amd simulta-
transition is of second order. We checked that this differenneously. Therefore we use
behavior is not likely to be a finite size effect due to the
small linear dimension of the two-dimensioé§)=8 cluster
by calculating()(5) for the one-dimensional model witK, . _
=4 which still shows clear evidence of a second-order phaswhere the symbob ., is equal to one for nearest-neighbor
transition atU=3. bonds inside the cluster and zero otherwise. The field

O e® 0 e|0Oe Ole|O

Aa,b: h5aybzgeiQRa, (21)

Aa,b: héaybzo.eiQRa— Té(ab}’v (22)
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FIG. 10. Ground state enerdsp, kinetic energyE,;,, and order
parametem%DW of the 2D EHM atU=8.0(left) andU=3.0(right).

Calculations were done onld.=48 supercluster. 4r
< i

strengthh and 7=t’ -t are the variational parameters in the 3 o

optimization procedure. =

To sum up, the following steps are performed in the 4
analysis using th&l.=48 superclustel(i) First we determine I
the mean-field parametef.py in the CDW phase self-
consistently on an isolated cluster aid use a staggered . .
field Eq.(18) for an SFA optimization proceduréii) In the B S S
SDW phase 6=0) the staggered magnetic field E&1) and Kk
the intracluster hoppint are optimized simultaneouslgiv)

After determination of the SFA variational parameters we FIG. 11. Density plot of the spectral functio(k,®) of the
calculate the quantities we are interested in. two-dimensional EHM atJ=8 calculated on &.=48 supercluster

The results for the ground state energy, kinetic energy‘,’Vith broadeningo=0.1. Darker regions represent larger spectral
and order parameter are shown in Fig. 10. At bbth8.0 weight. Top,V=1.0. Bottom,V=3.0. White lines are fits to Hartree-
and U=3.0, the behavior of a first order transition can peFock dispersions. For the meaning of the black line¥at.0 see
seen, where the change in the slop&gfs much stronger at &t
U=8.0 than atU=3.0. This change dt/=8.0 is even more
pronounced than for the one-dimensional modeUat8.0. at U=3: In the SDW phase the variational parametgrs
From Fig. 10 we can extract the critical valMgof the phase ~1.61 andh~=~0.15 are almost independent ¥t In the
transition by fittingE, to a straight line in the vicinity of the CDW phase we get=-0.03 atV=0.76 ande=-0.18 atV
transition point, and for thé&l.=48 supercluster we finsf,  =0.84.
=2.0231) atU=8.0, andV,=0.7703) at U=3.0. These val- Whereas the application of the magnetic staggered field
ues of V, are much closer to the Hartree-Fock resujt  €xhibits the symmetrh— -h, this is not the case for the
=U/4 than for one dimension. Within our approach we can-staggered field Eq(18), because the symmetry is already
not clarify whether this is an intrinsic feature of the two- broken by the mean-field decoupling. We found no stationary
dimensional model or it is an artifact of the approximationpoint of Q) for finite h in the CDW phases.
due to the larger number of mean-field decoupled bonds. ~ The spectral function aty=8 in the SDW phasgV

The SFA variational parameters in the SDW phase near1.0) and in the CDW phasév=3.0) is shown in Fig. 11.
the phase transition point are found to be almost independeite found that the spectral function ¥t=1.0 is very similar
of the interactionV. At U=8, the optimization resulted in to the spectral function of the Hubbard mod¥k=0).2° One
t’ = 1.1 for the intracluster hopping aiid= 0.14 for the stag- can see that the spectrum mainly consists of four features,
gered magnetic field. The optimization of just one singletwo high-energy Hubbard bands and two low-energy quasi-
parameter leads t¢' ~ 1.03;-, and h= 0.12,,_;, and the particle bands, separated by a gap in the spectrum. The dis-
value of Q) also differs significantly from the value obtained persion of these low-energy excitations in the SDW phase
by the simultaneous optimization tfandh. This means that differs significantly from the Hartree-Fock shape shown as
due to the strong connection between the magnetic orderinghite lines in the upper panel of Fig. 11, which does not
and the hopping matrix element it is important to optintize account for the splitting into coherent low-energy bands and
andh simultaneously in order to get the best approximationhigh-energy Hubbard bands. The fit parameters wgre
for the physics in the thermodynamic limit. In the charge=1.34 and Ag;=2.51. The width of the coherent bands
ordered phase the dependence of the variational parametén(X)—w(I')| = 1.25 is rather set by the magnetic exchadge
Eqg. (18), on the interactiorV is larger withe=0.08 atV  consistent with QMC calculations ar=0.454® The black
=2.01 anck=0.22 atvV=2.1. A similar behavior can be found lines are fits toEk:i[—A+J/2(coskx+cosky)2] which ac-
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tral function shows metallic behavior with no gap around the
Fermi energy. This difference may be due to temperature
effects or due to poor resolution of the maximum-entropy
inversion of QMC correlation functions.

At both U=8 andU =3, one can easily see that agreement
of the Hartree-Fock dispersions with the low-energy excita-
tions of A(k, w) is better in the CDW phase than in the SDW
phase. In addition the gak calculated within the Hartree-
Fock approximation is much closer to the fitted gagp in
the CDW phasde.g., Aye=7.76, A;; =7.69 atU=8, V=3)
than in the SDW phasee.g.,Aye=3.57,A;=2.51 atU=8,
V=0). Therefore we conclude that in the CDW phase charge
fluctuations play only a minor role compared to the SDW
phase, similar to the one-dimensional system.

VI. CONCLUSIONS

The inclusion of nonlocal Coulomb interactions in quan-
tum cluster approaches is of general interest in current con-
densed matter theory. In this paper we have presented a gen-
eralization of the variational cluster perturbation theory to
extended Hubbard models at half-filling. The method is
based on the self-energy-functional approasikA) which
uses dynamical information of an exactly solvable system
(reference systerdl’) in order to approximate the physics in
the thermodynamic limit. For the application of this method,
a mean-field decoupling of the intercluster part of the
nearest-neighbor Coulomb interaction is performed first. Af-
ter this step, one is left with a Hamiltonian which couples the
different clusters via the hopping only and which can be
treated by the known(variationa) CPT procedure. The

counts better for the dispersion of the low-energy bands thamean-field decoupling yields effective onsite potentials on

the Hartree-Fock dispersidA.The fit parameters werdg  the cluster boundaries as external parameters of the Hamil-
=2.69 andJ;;=-0.63, which is in good agreement with the tonian. These parameters are determined either self-
second-order perturbation theory result=-4t?/(U-V)  consistently on an isolated clust@ufficient for the study of
=-0.57. In the CDW phase the white lines correspond tdirst order phase transitionsr by determination of the mini-
Hartree-Fock dispersions with fit parametérg=7.69 and mum of the SFA grand potential.
ts =1.16, and different from the SDW phase they agree well In order to test the accuracy of our approach we applied
with the excitations ofA(k,w). Note that here the finite-size the method to the extended Hubbard model in one dimen-
dependence of the fitted parameters is hard to investigatgjon, because results from other methods like QMC and
since the clusters differ not only in the number of sites, buDMRG are available for comparison. At=8 the results for
also in their shape, different from one dimension. Hence wehe critical interactionV,, the ground-state energy, kinetic
could not extract a conclusive finite-size behavior from ourenergy, and charge order parameter showed excellent quan-
results. titative agreement with previous QMC studies. Bt 3 our
Figure 12 displays the spectral functionlt3 at inter-  method predicted a second-order phase transition with tran-
actions V=0.5 and V=1.0, respectively. The white lines sition pointV,=1.6655) again in good agreement with pre-
again correspond to Hartree-Fock dispersions with fit paramvious studies.
eterst;; =1.06, A;; =0.64 atV=0.5, andt;=1.07, A;;=1.82 In addition we calculated the spectral function for several
atV=1.0, respectively. As in the ca&k=8 the dispersion of values of the interactio®, which has not been done previ-
the coherent low-energy bands in the SDW phase differgpusly. At bothU=8 andU=3, we found evidence for spin-
from the Hartree-Fock prediction, but in this case the deviacharge separation in the SDW phase, but not in the CDW
tion is much smaller. We did not find an accurate functionalphase. By fitting the bands by Hartree-Fock dispersions we
form in order to fit the low-energy excitations, but neverthe-found that the hopping parameter is strongly renormalized.
less we can extract the value dfrom the bandwidth of the The agreement between the fitted value of the gap and the
coherent bands vyieldingd=-(1/2)|w(X)-w(I')|=-1.57.  value within the Hartree-Fock approximation was much bet-
This value is again in good agreement with the perturbationer in the CDW phase than in the SDW phase giving rise to
theory result)=-4t?/(U-V)=-1.6. the conclusion that charge fluctuations play a minor role in
We would like to mention that our results @t=3 in the  the CDW phase.
SDW phase are qualitatively different from QMC results at Whereas the application of sophisticated methods like
U=3,V=0, and inverse temperatugs= 3t,*” where the spec- DMRG or fermionic loop-update QMC to more than one
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dimension is difficult, this extension is straightforward the free energy. For simplicity let us assume that we have
within the present approach. We were thus able to perfornonly two different mean-field parametexks=1-6 and Ag

the first nonperturbative study of the two-dimensional ex-=1+S§, see also Sec. Ill. We can write the mean-field decou-
tended Hubbard model on a square lattice at half-filling anghled Hamiltonian Eq(16) as

zero temperature beyond Hartree-Fock. We found first order

transitions at bottJ=8 andU=3 with transition pointsv, Hue(0) =HO + > HL(R, 8), (A1)
=2.0231) andV.=0.77a3) for an N,=48 supercluster, re- R

spectively. The spectral function in the SDW phase show§nare H includes all terms independent of the mean-
coherent low-energy quasiparticle excitations with bands;g|q par'\e/lx;"neters. According to the third line in EQ.3)
width set by the magnetic exchange constirand an inco- HO (R, ) is given by

herent background, consistent with previous QMC studies MF* ™’

for the Hubbard model afr=0. The Hartree-Fock prediction HS)F(R,@‘) =V [NRikg + NRjAa = Aahg]

differs significantly from the low-energy feature and does not [ij]

describe the splitting into coherent quasiparticle bands and

incoherent background. In the CDW phase the Hartree-Fock = VE [NRi(1+8) +Ng;j(1-6) - (1~ &)1,
dispersions account much better for the excitations, and no L]

additional low-energy features caused by a magnetic origin (A2)

could be found. Similar to one dimension the agreement b&;nere e assumed without loss of generality that the bonds
tween the Hartree-Fock approximation and the low-energy;i| connect sites on sublatticeA with sitesj on sublattice
excitations obtained by the present method is much better B The free energy of the system is given by

the CDW phase, confirming that charge fluctuations are less

important in the charge-ordered phase than in the SDW 1
phase. F——EInZ
In this paper we applied our method to half-filled systems
only, but one can study ordering phenomena at other fillings, —_ 1 In tr e BHVEd

too, as long as the possible order patterns are commensurate
with the shape of clusters used as reference system. With 1
some effort it is also possible to study phases with long =—=Intr eXP[—BHf\ﬁ))F—BE H<M1>F(R,5)] (A3)
wavelength charge density waves by coupling several clus- B R
ters to a supercluster and applying appropriate continuit)ﬁ. . —_— : .

o S L aking the derivative with respect ®yields
conditions between the individual clusters within the super- 9 P y
cluster. In addition the application to systems with lattice aF
geometry different from the two-dimensional square lattice, 98 =V % [Ngi = ng; +26] ). (A4)
e.g., ladder materials, is an interesting subject for further !
studies. Work in this direction is in progress. All clusters are equivalent, therefore we suppress the index

R in the following. Setting this derivative to zero we get the
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