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We present a generalization of the recently proposed variational cluster perturbation theory to extended
Hubbard models at half-filling with repulsive nearest neighbor interaction. The method takes into account
short-range correlations correctly by the exact diagonalization of clusters of finite size, whereas long-range
order beyond the size of the clusters is treated on a mean-field level. For one dimension, we show that quantum
Monte Carlo and density-matrix renormalization-group results can be reproduced with very good accuracy.
Moreover we apply the method to the two-dimensional extended Hubbard model on a square lattice. In contrast
to the one-dimensional case, a first order phase transition between spin density wave phase and charge density
wave phase is found as function of the nearest-neighbor interaction at onsite interactionsUù3t. The single-
particle spectral function is calculated for both the one-dimensional and the two-dimensional system.
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I. INTRODUCTION

In recent years an increasing number of theoretical and
experimental studies in condensed matter physics have fo-
cused on the description and understanding of quasi-one- and
quasi-two-dimensional strongly correlated electronic sys-
tems. Several fascinating properties of these materials are
due to the competition between different phases with long-
range order. High-temperature superconductivity in cuprates
is one of the most famous examples which is not yet under-
stood in a satisfactory way. Realistic models that are used in
this context consist of a kinetic part which accounts for the
electron motion and an interaction part which is of the same
order of magnitude. The simplest model that can be con-
structed under these assumptions is the tight binding Hub-
bard model. It consists of a kinetic energy part, where the
electrons can only hop between nearest-neighbor sites and
the Coulomb interactionU which acts only locally on each
site. Although this model was used with great success for the
description of a wide class of materials, there are interesting
physical questions which require an extension. The inclusion
of the nearest-neighbor Coulomb interaction, for example, is
necessary for the study of inhomogeneous phases, such as
the charge-density wave(CDW). This leads to the so-called
extended Hubbard model(EHM).

But knowing the appropriate model for the description of
a material is only the first step on the way to understanding
the physics. Already for the simple Hubbard model without
nonlocal Coulomb interaction, an exact calculation of static
and dynamic properties is possible in very special cases only
and one must be content with approximate methods in gen-
eral. For the interesting case where the Coulomb interaction
U is of the same order of magnitude as the bandwidthW, the
conventional perturbative approach must fail. This is ex-
pected for weak-coupling perturbation theory but also for the
complementary approach with exact treatment of the interac-
tion part and perturbative treatment of the kinetic energy.1–3

Numerical methods are more promising, such as quantum
Monte Carlo (QMC),4 exact diagonalization(ED), and
density-matrix renormalization group(DMRG).5 They are
able to give essentially exact results—at least for limited

system sizes or(DMRG) for the one dimensional case. An-
other nonperturbative approach is the mean-field method
and, in the context of the Hubbard model, the dynamical
mean field theory(DMFT),6 in particular. While the DMFT
directly works in the thermodynamic limit of infinite system
size, it must be regarded as a strong approximation since
spatial correlations are neglected altogether. Cluster generali-
zations of the DMFT include at least short-range correlations
via the exact treatment of a small cluster instead of consid-
ering a single impurity only. Both, a reciprocal-space(dy-
namical cluster approximation, DCA7) and a real-space
construction (cellular dynamical mean field theory,
C-DMFT8–10) have been suggested.

Essentially the same idea is followed with the cluster per-
turbation theory(CPT),11–13 which is a cluster extension of
the strong-coupling expansion for the Hubbard model: The
lattice is divided into small clusters which are solved exactly
while the hopping between adjacent clusters is treated per-
turbatively. The lowest order of the strong-coupling expan-
sion in the intercluster hopping yields the CPT. Short range
correlations on the scale of the cluster are taken into account
exactly, for instance by the Lanczos technique at zero tem-
perature, while correlations on a scale larger than the cluster
size are neglected. The CPT is a systematic approach with
respect to the cluster size, i.e., the method becomes exact in
the limit Nc→`, whereNc is the number of sites within a
cluster. It allows for the calculation of the single-electron
Green’s function at arbitrary values of the wave vectork.
This is a considerable improvement compared to standard
Lanczos calculations for small clusters, where only a fewk
points are available. The CPT has been successfully used to
describe spectral properties of the high-TC materials,14–16and
has already been extended to finite temperatures.17

Recently a new method has been proposed which exploits
a general variational principle for the self-energy of a system
of interacting fermions. This self-energy-functional approach
(SFA)18 approximates the self-energy of the original system
in the thermodynamic limit by the self-energy of an exactly
solvable reference system with the same interaction part. The
self-energy is varied by varying the single-particle param-
eters of the reference system. Choosing the reference system
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to be a cluster of finite size yields a nonperturbative and
consistent cluster approach. It has been shown19 that within
this framework the CPT as well as the C-DMFT appear as
special approaches depending on the number of additional
uncorrelated(“bath”) sites taken into account: The optimum
number of bath sites is actually a free parameter which can
be determined from the general variational principle. It has
been pointed out19 that at least for one-dimensional models a
large cluster without bath sites must be preferred. The use of
a reference system without bath sites represents a generalized
CPT in which the single-particle parameters of the finite
cluster are optimized according to the variational principle.
This “variational CPT”(V-CPT) has successfully been used
in a recent study for the investigation of the symmetry-
broken antiferromagnetic phase of the two-dimensional Hub-
bard model.20

So far a consistent formulation of the(variational) cluster-
perturbation approach could be achieved for lattice models
with on-site interactions only. The reason for this restriction
is that within the SFA the reference system must be chosen
with the same interaction as the original model. As detailed
in Ref. 18, this ensures that functionals given by the
skeleton-diagram expansion are the same for both, the origi-
nal and the reference model. In case of the EHM the inter-
action couples the different sites of the lattice. Thus there is
no reference system with the same interaction which consists
of decoupled subsystems of finite size. The motivation of the
present paper is therefore to extend the ideas of the CPT and
V-CPT to the investigation of the EHM including nearest-
neighbor Coulomb interaction. It is shown that a mean-field
decoupling of the intercluster nearest-neighbor interaction
yields a systematic and reliable cluster approach.

The paper is organized as follows: In Sec. II we give a
short description of the V-CPT method, Sec. III shows how
to decouple clusters in the case of the EHM. In Sec. IV and
V we present results for one two dimensions, respectively.
The conclusions are given in Sec. VI.

II. VARIATIONAL CPT

Let us consider a system of interacting fermions on a
lattice with HamiltonianH, in general consisting of a single-
particle partH0 and an interaction partH1. The lattice is then
divided into clusters, where it is of crucial importance for the
derivation of the method that those clusters are connected by
H0 only. The Hamiltonian can then be written as

H = o
R

fH0
scdsRd + H1sRdg + o

R,R8

H0
sidsR,R8d, s1d

whereR denotes the individual clusters,H0
scdsRd is the part

of the single-particle term that acts only inside a single clus-
ter, H1sRd is the interaction part inside the cluster, and the
intercluster hopping is given by

H0
sidsR,R8d = o

a,b
T a,b

R,R8cR,a
† cR8,b, s2d

where the hopping matrixT a,b
R,R8 is nonzero only for hopping

processes across the cluster boundaries. The indicesa andb

are general quantum numbers within a cluster, e.g., position
and spin index, andcR,a

† creates an electron with quantum
numbera in clusterR.

The quantity of interest is the single particle Green’s func-
tion GR,a,R8,bsvd=kkcR,a;cR8,b

† llv. Using translational invari-
ance at the level of the superlattice vectorR, the Green’s
function becomes diagonal with respect to the wave vectorQ
from the reduced Brillouin zone corresponding to the super-
lattice. The resulting Green’s function in reciprocal space is a
matrix GQsvd with elementsGQ,a,bsvd and a,b quantum
numbers within a cluster.

Within the CPT approximation this Green’s function
GQsvd can be expressed in terms of Green’s functions of the
decoupled clustersG8svd, again matrices in the quantum

numbersa andb, and the intercluster hoppingTa,b
R,R8 by the

expression

GQsvd = fG8svd−1 − TQg−1 s3d

with the Fourier-transformed intercluster hopping

TQ,a,b =
1

L
o

R,R8

T a,b
R,R8eiQsR−R8d. s4d

For the details of the derivation of the CPT formulas we refer
the interested reader to Refs. 12 and 13 and references
therein. We want to mention that one can transform Eq.(3)
into a Dyson-type equation

GQsvd = sGQ
s0dsvd−1 − Ssvdd−1, s5d

where GQ
s0dsvd is the free Green’s function of the infinite

lattice, andSsvd is the cluster self-energy. In other words
CPT consists of approximating the self-energy of the infinite
system by the self-energy of a cluster of finite size. Note that
CPT is based on the exact evaluation of small clusters with-
out any self-consistency procedure, and thus does not allow
for the occurrence of symmetry-broken phases. This restric-
tion is overcome with the V-CPT method.19,20

The observation underlying V-CPT is that the Hamil-
tonian Eq.(1) is invariant under the transformation

H0
scdsRd → H0

scdsRd + OsRd,

H0
sidsR,R8d → H0

sidsR,R8d − dR,R8OsRd, s6d

with an arbitrary intracluster single-particle operator

OsRd = o
a,b

Da,bcR,a
† cR,b, s7d

which can for instance be a fictitious symmetry-breaking
field, thus allowing for broken symmetry already on a finite
system instead of only in the thermodynamic limit.

The question of what choice forD=Da,b will optimize the
results can be answered by the SFA.18–20 Within this ap-
proach, the optimal value ofD is determined from the sta-
tionary point of the function
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VsDd = V8sDd + T o
vn,Q

tr ln
− 1

GQ
s0dsivnd−1 − SsD,ivnd

− LTo
vn

tr lnf− G8sD,ivndg, s8d

whereV8sDd is the grand potential of the decoupled cluster,
which serves as reference system. The frequency sum runs
over discrete Matsubara frequenciesivn, L is the number of
clusters orQ points, respectively,T gives the temperature,
and bold symbols denote matrices in the cluster indicesa and
b. Note that the fraction in the first line in Eq.(8) is the CPT
Green’s function, Eq.(5). The single-particle parametersD
can include all single-particle parameters of the original
Hamiltonian or only part of it, as well as additional terms,
e.g., a fictitious staggered field. The actual choice and num-
ber of parameters depends on the problem under consider-
ation. For more details of the derivation of the method see
Ref. 20.

A necessary condition for the applicability of the method
is that the clusters are coupled by single-particle operators
only. At this point it is easy to see that a straightforward
application of the method to the EHM where the clusters are
also coupled by Coulomb interactions is not possible. How-
ever, we will show in Sec. III how one can decouple the
lattice into clusters appropriate for the application of CPT
even in the case of the EHM.

III. DECOUPLING THE CLUSTERS

We start from the Hamiltonian of the extended Hubbard
model

H = o
i j ,s

Ti,jcis
† cjs + Uo

i

ni↑ni↓ + Vo
ki j l

ninj − mo
i

ni , s9d

wherei , j indicate the position in the lattice, and for conve-
nience we use a constant valueVi,j ;V for all nearest-
neighbor bonds. According to Eq.(1) we decouple the lattice
into clusters yielding

H = o
R

fH0
scdsRd + HU

scdsRd + HV
scdsRdg

+ o
R,R8

fH0
sidsR,R8d + HV

sidsR,R8dg, s10d

where the first row includes only terms of a single cluster
and the second row couples different clusters. By comparing
the second row with the corresponding term in Eq.(1) one
can see that the term causing problems in the case of the
EHM is the interaction term

HV
sidsR,R8d = Vo

fi j g
nRinR8 j , s11d

which is of two-particle type. The symbolfi j g indicates that
the sum runs only over bonds connecting nearest neighbors
in different clusters. For nearest-neighbor interactions this
means that the indices infi j g must belong to the cluster
boundaries of two adjacent clusters. For the application of
the method derived in Sec. II the coupling term must be of

single-particle type, which can be achieved by a mean-field
decoupling of the interaction term Eq.(11). Hence we get

HV,MF
sid sR,R8d = Vo

fi j g
fnRiknR8 jl + knRilnR8 jg

− Vo
fi j g

knRilknR8 jl. s12d

Due to the translational invariance with respect to the super-
lattice vectorR, the mean-field parametersknRil and knR8 jl
are independent ofR andR8 and will be denoted byli and
l j, respectively. With these abbreviations we get

o
R,R8

HV,MF
sid sR,R8d = V o

R,R8
o
fi,jg

fnRil j + nR8 jli − lil jg

= Vo
R

o
fi j g

fnRil j + nR jli − lil jg

= o
R

HV,MF
sid sRd. s13d

The double sum overR and R8 reduces to a single sum,
because for fixed values ofR, i, and j only one term of the
sum overR8 contributes due to the fact that two-site inter-
actions couple at most two different clusters. One must be
careful in order to avoid double counting of the bondsfi j g.
For instance, for a one-dimensional cluster of lengthN, Eq.
(13) reduces to

Vo
R

fnR1lN + nRNl1 − l1lNg, s14d

because the only decoupled bond connects sites 1 andN of
different clusters.

By this mean-field decoupling, two parametersli are in-
troduced for each decoupled bond, e.g.,l1 and lN in one
dimension, and in general all these parametersli are inde-
pendent of each other. But as we will see below, the number
of mean-field parametersli can be strongly reduced in spe-
cial cases.

The decoupled interaction Eq.(13) is of single-particle
type and can be included in the intracluster hopping term
H0

scdsRd, leading to a modified intracluster single-particle
term

H̃0
scdsR,lid = H0

scdsRd + HV,MF
sid sR,lid, s15d

where we explicitly denoted the dependence on the param-
eters li. After mean-field decoupling we finally get the
Hamiltonian,

HMFslid = o
R

fH̃0
scdsR,lid + HU

scdsRd + HV
scdsRdg

+ o
R,R8

H0
sidsR,R8d, s16d

for which the method described in Sec. II is applicable.
From the decoupling of the clusters we have additional

parametersli which are external parameters to the Hamil-
tonian Eq.(16) and must be determined in a proper way. For
this purpose we propose two different procedures.
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(i) One can get the parameters from a self-consistent cal-
culation on an isolated cluster. That means that one starts
with a certain guess for theli, which are the expectation
values of the electron densities on sitesi. Then the ground-
state wave function of an isolated cluster is calculated, giv-
ing new values for theli. In this step open boundary condi-
tions (OBC) are used in order to be consistent with the OBC
necessary for the calculation of the cluster Green’s function
in Eqs.(3) and(8). These new valuesli serve as parameters
in the Hamiltonian for the next determination of the ground
state, and the whole procedure is iterated until convergence
of theli is achieved. This procedure may work quite well for
the EHM in the case of a first order phase transition between
a disordered and an ordered phase, because(due to an
avoided level crossing) the transition point, i.e., the critical
Coulomb interactionVc, is almost independent of the cluster
size.21 For second order phase transitions we expect that this
method will not give satisfactory results, because here we
face a discrepancy between the parameters calculated on the
isolated cluster and the parameters that would give the opti-
mal result in the thermodynamic limit.

(ii ) The shortcoming in the case of second order phase
transitions can be overcome in the following way: As we
show in the Appendix, the self-consistent calculation of
mean-field parameters is equivalent to the minimization of
the free energyF. Since the relationV=F−mN holds atT
=0, this minimization can be done at the same time as the
optimization of the single-particle parametersD in the SFA
formalism, and we can use Eq.(8) for the determination of
the parametersli, too. Note that all quantities in Eq.(8)
which depend on the singleparticle parametersD are depen-
dent on the mean-field parametersli as well. To keep the
calculations simple we consider only half-filled systems,
where it is sufficient to use only two different values for the
li, namelylA=1−d and lB=1−d on sublatticesA and B,
respectively. Under this assumption we have only one mean-
field parameterd, and the grand potential isV=VsD ,dd. The
general procedure is now, that for each value ofd the sta-
tionary point with respect toD must be found as required by
the SFA formalism, yielding a functionV=Vsdd. By finding
the minimum of this function one can determine the optimal
value ford.

Conceptually, the latter method(ii ) of determining the
mean-field parameters is superior to the procedure(i) de-
scribed first as it uses information on the Green’s function in
the thermodynamic limit for the calculation ofd. However,
one must keep in mind that for each choice ofd the Green’s
function G8svd of the isolated cluster must be calculated
many times to evaluate Eq.(8) which is much more time
consuming than the self-consistency procedure on the iso-
lated cluster.

IV. ONE DIMENSION

The Hamiltonian of the one-dimensional EHM is given by

H = − to
i,s

sci,s
† ci+1,s + H.c.d + Uo

i

ni↑ni↓

+ Vo
i

nini+1 − mo
i

ni . s17d

Throughout the paper we sett as the unit of energy. Although

this model has been studied intensively,21–38the ground-state
phase diagram is still under some discussion. We use this
model as a testing ground for our method, because many
results are available for comparison. The chemical potential
is m=U /2+2V due to particle-hole symmetry at half-filling.

In one dimension at half-filling, the phase diagram of the
EHM includes spin density wave(SDW) and charge density
wave (CDW) phases. By weak-coupling renormalization-
group (RG) techniques(“g-ology”)29,30 the phase boundary
between SDW and CDW phase was determined toU=2V,
which actually coincides with strong-coupling calculations
for largeU andV using second order perturbation theory.29,31

For intermediate coupling the boundary was found to be
shifted from theU=2V line, enhancing the SDW phase, by
QMC calculations21–23,32and strong-coupling calculations up
to fourth order.33 Moreover the nature of the transition is
different in the two coupling regions, with a second order
transition at weak coupling and a first order transition at
strong coupling. The multicritical point, where this change
takes place, was investigated intensively in the past. Cannon
and Fradkin34 obtainedUm<1.5 by field-theoretical tech-
niques, whereas recent QMC studies21,22 gaveUm=4.7–5.5.
The latter value is in good agreement with results based on
bosonization and RG.26,28,35 Other estimates for the multi-
critical point areUm<3.7 (DMRG27) and Um=3.5–5 from
finite-size extrapolations of Lanczos results.36

Only recently Nakamura24,25 has proposed an additional
phase between the SDW and CDW phases, the so-called
bond order wave phase(BOW). The existence of this phase
has afterwards been confirmed by several studies.21,22,26–28,38

A schematic phase diagram including Nakamuras BOW is
depicted in Fig. 1. There is good agreement on the existence
of the BOW phase, but its extension in theU-V plane has not
yet been clarified in detail.

A. First order phase transition

For a first test of our method we studied the one-
dimensional EHM atU=8, which is well above the multi-

FIG. 1. Schematic phase diagram of the one-dimensional EHM,
following Ref. 22. Similar phase diagrams have been reported in
Refs. 21, 24–26, 28, and 38, but with different extensions of the
BOW phase in theU-V plane. The thick line marks the first order
phase transition, and the dashed line marksU=2V.
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critical point. The phase transition is then of first order with-
out any BOW phase between SDW and CDW phases. As
reference systemH8 according to Sec. II, we used decoupled
clusters of different lengths consisting ofNc=8, 10, and 12
sites, respectively. For the determination of the mean-field
parameterd we used the method(ii ) described in Sec. III,
whered is calculated from the minimum of the energy of the
system. For the SFA optimization of the single-particle pa-
rameters, we were guided by a recent study of the Hubbard
model,19 which showed that it is not necessary to use the
hopping in the cluster or a staggered magnetic field as varia-
tional parameter. Since here we study charge-ordering ef-
fects, we used as variational parameter a staggered field
coupled to the charge densities given by Eq.(7) with

Da,b = «da,be
iQRa, s18d

whereQ=p is the wave vector of staggered ordering and«
is the staggered-field strength. The grand potential obtained
in this way is shown in Fig. 2 at two values of the intersite
Coulomb interaction. For comparison, calculations without
optimization of the staggered field are shown as dashed lines
in Fig. 2. As one can see, the optimization gives only minor
changes toVsdd. The optimal staggered-field strengths in
these calculations varied between«opt=0.0 at d=0.0 and
«opt<0.05 atd=1.0 at both values ofV.

From the shape ofVsdd one can directly infer the order of
the transition. If three minima occur atd=0 andd= ±dCDW,
it is of first order, whereas it is of second order ifVsdd has
only two minima atd= ±dCDW and a maximum atd=0. As
one can easily see in Fig. 2, we have clear evidence for a first
order phase transition atU=8 with an SDW minimum atd
=0.0 and two degenerate CDW minima atd= ±dCDW. At V
=4.1 the SDW phase is realized,Vs0d,VsdCDWd, whereas
at V=4.2 we haveVs0d.VsdCDWd and the CDW phase is
the stable one. Thus we can state that the critical valueVc for
the phase transition is located betweenV=4.1 andV=4.2.

For a more accurate determination of the phase boundary
Vc, we have calculated the grand potential at several values
of V and cluster sizesNc=8, 10, and 12. In addition to the

grand potential and the ground state energyE0=V+mNe
with Ne the number of electrons in the system, we calculated
the order parameter

mCDW =
1

Nc
o

j

knj − knlleiQR j , s19d

whereQ=p, Nc is the number of cluster sites, and the kinetic
energyEkin. Both properties can be extracted from the spec-
tral function.12,13,20Within our approach it is necessary to use
the Lehmann representation for the cluster Green’s function
with small but finite Lorentzian broadenings. Whereas the
grand potential Eq.(8) shows only minor dependence on this
broadening, the dependence of the order parameter and the
kinetic energy is considerably larger and one must do an
extrapolation tos=0.13 Although the formalism applies to
the thermodynamic limit, results show a finite size depen-
dence due to the finite size of the clusters serving as refer-
ence system. We found that the order parameter exhibits the
strongest finite-size effects, which were of the order
mCDW,Nc=10

2 /mCDW,Nc=12
2 <1.02 at all values ofV. Linear

finite-size scaling toNc=` is easily done and the results are
shown in Fig. 3. Our results should be compared to Fig. 10
of Ref. 21 which shows excellent quantitative agreement
with a deviation of less than 2% for the calculated quantities
at all values of V. From our calculations we getVc
=4.140s5d, again in agreement with the previous studies.21,27

In order to provide a complete picture of the method we
also performed calculations with mean-field parameters ob-
tained by a self-consistent procedure on an isolated cluster,
see method(i) in Sec. III. For instance forNc=12 andV
=4.1 one finds self-consistent solutions ford=0 and for
dSC=0.832, which differs only slightly from the value ex-
tracted from the grand potential,dCDW=0.822. For this rea-
son the calculation of the ground-state energy, kinetic energy,
and order parameter usingdSC instead ofdCDW gives practi-
cally the same results as in Fig. 3. In the present case it is
therefore sufficient to calculate the mean-field parameter
from an isolated cluster which is much faster than finding the
minimum of the grand potential.

FIG. 2. Grand potentialV as a function of the mean-field pa-
rameterd at U=8 calculated on a cluster withNc=8 sites as refer-
ence system. Upper panel,V=4.1. Lower panel,V=4.2. Solid lines,
with optimization of a staggered field. Dashed lines, without opti-
mization of a staggered field.

FIG. 3. Ground state energyE0, kinetic energyEkin, and order
parametermCDW

2 of the one-dimensional EHM atU=8 after finite
size scaling. Lines are guides to the eye only.
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Whereas the properties we have shown so far are well
known for the one-dimensional EHM, we additionally calcu-
lated for the first time the spectral function for arbitrary wave
vector k. In Fig. 4 results are shown atU=8 and selected
values ofV with a reference system consisting ofNc=12
cluster sites, and the mean-field parameterd calculated self-
consistently by method(i), see Sec. III. We want to mention
that the “striped” structure, particularly visible in the regions
marked by “C” in Fig. 4, occurs because the decoupling into
clusters breaks the translational invariance of the system.

The spectral function atV=2.0 is very similar to the spec-
tral function of the Hubbard modelsV=0d12,13 with splitting
of the low-energy band into a spinon and an holon band,
which are marked in Fig. 4 by “A” and “B,” respectively.
This similarity could have already been expected based on
the full Hartree-Fock solution—decoupling of all interaction
terms in the Hamiltonian—where one has no dependence on
V at all in the SDW phase. But this simple picture holds only
away from the transition pointVc as can be seen in Fig. 4 in
the plot atV=4.0. At this point, in the vicinity of the phase
transitionVc=4.14, the gap is considerably smaller than at
V=2.0, a clear deviation from the Hartree-Fock prediction.
This indicates that charge fluctuations become very impor-
tant in this regime, which are completely neglected by the
Hartree-Fock approximation, but are taken into account on
the length scale of the cluster in our approach. But although
we found this deviation, one can still see residuals of the
splitting of the low-energy band, a signature for spin-charge
separation. For this reason we infer that spin-charge separa-
tion is present up to the transition point. The white lines in
Fig. 4 correspond to fits of the holon branch to a Hartree-
Fock dispersionEskd= ±ÎD2+«skd2. The fitted values for

the hopping matrix elementtfit and the gapDfit are denoted in
Table I where we included the values atV=0 for complete-
ness. One finds that the gapDfit is almost constant fromV
=0 to V=2 and, as mentioned above, considerably decreases
near the the phase transitionsV=4d. The hopping matrix el-
ement tfit shows the opposite behavior and increases when
approaching the transition point from below. This is due to
the fact that in the vicinity ofVc, doubly occupied and singly
occupied sites becomes close in energy, which enhances the
movement of the electrons. The actual value of the matrix
elementtfit is very large compared to the original valuet
=1 in the Hamiltonian. A fit to the spinon band would give a
smaller value closer tot=1, but whereas fitting to the holon
band is consistent over the whole range of momentum vec-
tors k, the spinon band is only present fork ,p /2 for v
−m,0 (andk .p /2 for v−m.0, respectively).

The spectral function in the CDW phase shows a qualita-
tively different behavior. AtV=4.5 we found a gap consid-
erably larger than in the SDW phase, and this gap increases
very fast with increasingV, as can be seen in the plot atV
=6. Moreover, no evidence for spin-charge separation can be
seen in the spectral functions. By comparing the fitted value
Dfit with the Hartree-Fock solutionDHF, one can see that the
agreement atV=4.5 is better than atV=4, and that it be-
comes still better with increasingV. For this reason we con-
clude that charge fluctuations which are neglected in the
Hartree-Fock approximation play a minor role in the CDW
phase.

The values fortfit andDfit given above are determined by
calculations with aNc=12 cluster as reference system. An
analysis of the finite-size dependence of these properties
shows that finite-size effects are almost negligible in the

FIG. 4. Density plot of the
spectral functionAsk ,vd of the
one-dimensional EHM atU=8,
calculated on a cluster of sizeNc

=12 with Lorentzian broadening
s=0.1. Darker regions represent
larger spectral weight. Coulomb
interaction V as indicated in the
plots. White lines are fits to a
Hartree-Fock SDW/CDW disper-
sion (see text).
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SDW phase well belowVc. However, in the vicinity of the
transition point, these effects increase considerably, espe-
cially for Dfit . For instance, atV=4.0 we foundtfit =2.49 and
Dfit =1.60 for theNc=8 cluster. This means that the values
given in Table I underestimate the hopping and overestimate
the gap in the vicinity ofVc. In the CDW phase, the finite-
size effects become smaller again, but are still larger than in
the SDW phase(e.g., tfit =1.77 andDfit =7.38 for V=6 and
Nc=8).

B. Second order phase transition

So far all calculations were done atU=8, where the sys-
tem shows a first order phase transition. In the following, we
study the EHM atU=3, where the model exhibits a second
order transition into the charge ordered CDW phase.21,27 In
this paper we do not consider the BOW, since it has been
argued that the SDW-BOW transition is of Kosterlitz-
Thouless type.25 For an analysis of this type of transition the
available cluster sizes are far too small and do not allow a
clear distinction between SDW and BOW phase.

We calculate the grand potentialVsdd in the same way as
in Sec. IV A in order to determined. The result of a calcu-
lation on a cluster consisting ofNc=8 sites is shown in Fig.
5. One can easily see a striking difference between the grand
potential atU=8, Fig. 2, and atU=3. In the latter case there
is only a single minimum. It is located atd=0 for V,Vc.
With increasingV the curve forVsdd becomes flatter in the
region aroundd=0 and finally two degenerate CDW minima
occur atd= ±dCDW for V.Vc. Note that hered changes con-
tinuously when crossingVc, whereas it shows a discontinuity
in the case of a first order phase transition.

We find that now it is indeed important to use a staggered
field, Eq. (18), as a variational SFA parameter. In Fig. 5,
results are shown with such an optimization(solid lines) and
without (dashed lines). Whereas atV=1.6 both calculations
show only the SDW minimum atd=0, they differ atV=1.7
where the system should already be in the charge-ordered
phase.21,24,25,27Without optimization of the staggered field,

we would still find the SDW minimum atd=0, but with
optimization the minimum shows up for a finite value ofd
= ±0.31 characteristic for the CDW phase.

For the determination of the critical valueVc, we calcu-
lated the ground state energyE0, kinetic energyEkin, and the
order parametermCDW at several values ofV, which are con-
tinuous across the transition, shown in Fig. 6. The cluster
sizes are too small for a systematic finite-size scaling. From
the kinetic energy and the order parameter calculated on a
cluster of sizeNc=12, we extract a critical value ofVc
=1.665s5d, which is in good agreement with the critical
value Vc<1.65 obtained by QMC21 and diagonalization
methods,24,25,36 and with Vc=1.64s1d from DMRG
calculations.27 The slight difference is likely due to remain-
ing finite-size effects. Moreover we made use of a single
variational parameter only, namely the staggered field Eq.
(18), and it can be expected that including more single-
particle parameters in the SFA optimization procedure would
give even more accurate results.

We would like to point out that in the present case of a
second order phase transition, the most accurate way of cal-
culating the mean-field parameterd is to find the minimum
in the grand potential including SFA optimization of single-
particle parameters. Calculations on a cluster of sizeNc=12
showed that without optimization the critical value would be
Vc=1.685s5d. Compared toVc=1.665s5d this is further away
from the values obtained by other methods as given above.
Calculations withd obtained self-consistently on an isolated
cluster are insufficient. In this case one would getVc
=1.735s5d for the Nc=12 cluster. This means that for a sec-
ond order phase transitiond should be determined by mini-
mizing the grand potential, whereas for first order transitions
the self-consistent determination was sufficient.

The spectral functionAsk ,vd at V=1.0, 2.0, and 3.0,
which has not been calculated previously, is depicted in Fig.
7. We found that the spectral function atV=1.0 shows only
minor differences to the spectral function of the Hubbard
modelsV=0d. The white lines in Fig. 7 are fits to a Hartree-
Fock SDW/CDW dispersion. The parameterstfit andDfit can
be read off from Table. II. In the SDW phase atV=0 and

FIG. 5. Grand potentialV as function of the mean-field param-
eterd at U=3 calculated on a cluster withNc=8 sites as reference
system. Upper panel,V=1.6. Lower panel,V=1.7. Solid lines, with
optimization of a staggered field. Dashed lines, without optimiza-
tion of a staggered field. The arrow marks the CDW minimum at
V=1.7.

FIG. 6. Ground state energyE0, kinetic energyEkin, and order
parametermCDW

2 of the one-dimensional EHM atU=3 for cluster
sizesNc=8 (dotted), Nc=10 (dashed), andNc=12 (solid line).
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V=1.0, the gapDfit is constant. Similar to the caseU=8 the
agreement betweenDfit andDHF is better in the CDW phase
than in the SDW phase. The hopping parametertfit increases
when approaching the phase transition from below, similar to
Table I, but the fitted values fortfit are considerably smaller
than in the caseU=8. For the finite-size effects of these
properties the same behavior was found as forU=8.

V. TWO DIMENSIONS

The two-dimensional Hubbard model is one of the most
intensely discussed models for strongly correlated electron

systems, especially in the context of high-temperature super-
conductivity. But different from the one-dimensional case,
where many sophisticated methods have been used to inves-
tigate the extended Hubbard model as described in Sec. IV,
only few studies have been done for the two-dimensional
EHM. One reason for this is that many modern methods such
as DMRG or fermionic loop-update QMC are difficult to
apply to more than one spatial dimension. However, within
our present approach, the extension to two dimensions is
straightforward.

The two-dimensional EHM is defined by the Hamiltonian

H = − t o
ki j l,s

sci,s
† cj ,s + H.c.d + Uo

i

ni↑ni↓ + Vo
ki j l

ninj − mo
i

ni ,

s20d

whereki j l connects nearest neighbors and the chemical po-
tential is m=U /2+4V at half-filling. Early QMC studies39

showed that this model has a SDW-CDW transition similar
to the one-dimensional case with transition pointVc<U /4.
But due to numerical difficulties it was impossible to deter-
mine the exact position and the order of the phase transition.
For repulsive interactions, calculations within the Hartree-
Fock approximation40–42 showed two stable phases for the
Hamiltonian Eq.(20) at half-filling, the SDW and CDW
phase, separated by a phase boundary atVc=U /4. The same
value for the critical interaction was obtained by the
fluctuation-exchange approximation(FLEX).43

For the application of the method presented in Sec. II, the
two-dimensional square lattice must be decoupled into clus-
ters of finite size. Three possible tilings with different num-
bers of cluster sitesNc are shown in Fig. 8. Some care must
be taken concerning the staggered ordering. Whereas for
clusters withNc=8 andNc=10 shown in Fig. 8, the stag-
gered ordering indicated by open and full circles is commen-
surate over the cluster boundaries, a straightforward decou-

TABLE I. Fitted values for the hopping matrix elementtfit , gap
Dfit , and gapDHF of the full Hartree-Fock approximation atU=8.
Fitted values from results for theNc=12 cluster.

tfit Dfit DHF

V=0.0 1.93 2.24 3.75

V=2.0 2.11 2.20 3.75

V=4.0 2.62 1.29 3.75

V=4.5 1.86 3.35 4.80

V=6.0 1.86 7.29 7.88

TABLE II. Same as Table I, but forU=3.

tfit Dfit DHF

V=0 1.38 0.29 0.93

V=1 1.59 0.29 0.93

V=2 1.40 1.13 2.12

V=3 1.59 3.71 4.28

FIG. 7. Density plot of the spectral functionAsk ,vd of the one-
dimensional EHM atU=3 calculated on a cluster of sizeNc=12
with Lorentzian broadenings=0.1. Darker regions represent larger
spectral weight. From top to bottom,V=1.0,2.0,3.0. White lines are
fits to a Hartree-Fock SDW/CDW dispersion(see text).
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pling into clusters of sizeNc=12 is not possible. As one can
easily see, a supercluster withNc=48 consisting of fourNc
=12 cluster must be constructed in order to take into account
the staggered ordering correctly. The Green’s function of the
supercluster can be calculated by switching off the hopping
processes that connect the singleNc=12 clusters, in other
words on bonds across the dotted lines in Fig. 8. This gives a
block-diagonal Hamiltonian which can be treated by the
Lanczos algorithm. The switched off hopping processes are
then incorporated again perturbatively, that means by includ-

ing the corresponding hopping terms in the matrixTa,b
R,R8 in

Eq. (4). Note that here the vectorsR and R8 denote the
superclusters and not the singleNc=12 clusters. Of course
there are many other possible tilings like the 433 cluster
used in Refs. 12, 13, and 44, but also in that case a super-
cluster ofNc=24 must be used.

We start the analysis of the two-dimensional EHM with
the determination of the order of the phase transition. For
this purpose we use theNc=8 cluster shown in Fig. 8 and
calculate the grand potentialVsdd in the vicinity of the tran-
sition point atU=8.0 andU=3.0 as described in method(ii )
in Sec. III. Here we did not use a staggered field as varia-
tional parameter, because it does not change the qualitative
shape ofVsdd (see Figs. 2 and 5) and is therefore not nec-
essary for the determination of the order of the transition.
The result of this calculations is shown in Fig. 9. At both
valus of U we found three minima, located atd=0 andd
= ±dCDW. This indicates a first order phase transition, differ-
ent from the one-dimensional EHM, where atU=3.0 the
transition is of second order. We checked that this different
behavior is not likely to be a finite size effect due to the
small linear dimension of the two-dimensionalNc=8 cluster
by calculatingVsdd for the one-dimensional model withNc

=4 which still shows clear evidence of a second-order phase
transition atU=3.

The fact that the system shows first order transitions at
both U=8.0 andU=3.0 simplifies the subsequent calcula-
tions. As discussed in the preceding section, one gets good
results in the case of a first order transition by using a mean-
field parameterd determined self-consistently on an isolated
cluster, as described in method(i) in Sec. III. This procedure
is much faster than the calculation of the grand potential for
many values ofd, which makes it possible to use theNc
=48 supercluster shown in Fig. 8. We want to mention at this
point that the calculation of the grand potential for the two-
dimensional system is much more time consuming than for
one dimension because of the larger number ofQ points
required in Eq.(8). For one dimensionL<40 is sufficient for
convergence, whereasL<500 is necessary for two dimen-
sions. Nevertheless it is of crucial importance to use a cluster
as large as possible, because the ratio of bonds treated ex-
actly to mean-field decoupled bonds increases with increas-
ing cluster size, especially pronounced for the two-
dimensional square lattice. After having determined the
mean-field parameterd for the CDW phase self-consistently,
we also performed an SFA optimization of a staggered field,
Eq. (18).

A few more words must be said about calculations in the
SDW phasesd=0d. Recent studies20 of the pure Hubbard
model revealed that it is important to take into account the
long-range magnetic order for the accurate description of sa-
lient features of the system. This can be achieved by using a
staggered magnetic field as variational parameter, given by

Da,b = hda,bzseiQRa, s21d

with zs= ±1 for spin projections= ↑ ,↓, andh the strength
of the field. Additionally it was argued that due to the con-
nection of the hopping parametert and the magnetic ex-
change constantJ, results could be further improved by let-
ting the hopping in the clusters be of strengtht8 and
optimizing the staggered magnetic field andt8 simulta-
neously. Therefore we use

Da,b = hda,bzseiQRa − tdkabl8, s22d

where the symboldkabl8 is equal to one for nearest-neighbor
bonds inside the cluster and zero otherwise. The field

FIG. 8. Possible tilings of the two-dimensional square lattice
into clusters that allow for staggered ordering,Nc=8 (bottom right),
Nc=10 (bottom left), supercluster withNc=48 (top).

FIG. 9. Grand potential calculated on a cluster of sizeNc=8 at
U=8, V=2.1 (upper panel) andU=3, V=0.76 (lower panel).
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strengthh and t= t8− t are the variational parameters in the
optimization procedure.

To sum up, the following steps are performed in the
analysis using theNc=48 supercluster:(i) First we determine
the mean-field parameterdCDW in the CDW phase self-
consistently on an isolated cluster and(ii ) use a staggered
field Eq. (18) for an SFA optimization procedure.(iii ) In the
SDW phasesd=0d the staggered magnetic field Eq.(21) and
the intracluster hoppingt8 are optimized simultaneously.(iv)
After determination of the SFA variational parameters we
calculate the quantities we are interested in.

The results for the ground state energy, kinetic energy,
and order parameter are shown in Fig. 10. At bothU=8.0
and U=3.0, the behavior of a first order transition can be
seen, where the change in the slope ofE0 is much stronger at
U=8.0 than atU=3.0. This change atU=8.0 is even more
pronounced than for the one-dimensional model atU=8.0.
From Fig. 10 we can extract the critical valueVc of the phase
transition by fittingE0 to a straight line in the vicinity of the
transition point, and for theNc=48 supercluster we findVc
=2.023s1d at U=8.0, andVc=0.770s3d at U=3.0. These val-
ues of Vc are much closer to the Hartree-Fock resultVc
=U /4 than for one dimension. Within our approach we can-
not clarify whether this is an intrinsic feature of the two-
dimensional model or it is an artifact of the approximation
due to the larger number of mean-field decoupled bonds.

The SFA variational parameters in the SDW phase near
the phase transition point are found to be almost independent
of the interactionV. At U=8, the optimization resulted in
t8<1.1 for the intracluster hopping andh<0.14 for the stag-
gered magnetic field. The optimization of just one single
parameter leads tot8<u1.03uh=0 and h<u0.12ut8=t, and the
value ofV also differs significantly from the value obtained
by the simultaneous optimization oft8 andh. This means that
due to the strong connection between the magnetic ordering
and the hopping matrix element it is important to optimizet8
andh simultaneously in order to get the best approximation
for the physics in the thermodynamic limit. In the charge
ordered phase the dependence of the variational parameter,
Eq. (18), on the interactionV is larger with «=0.08 atV
=2.01 and«=0.22 atV=2.1. A similar behavior can be found

at U=3: In the SDW phase the variational parameterst8
<1.61 andh<0.15 are almost independent ofV. In the
CDW phase we get«=−0.03 atV=0.76 and«=−0.18 atV
=0.84.

Whereas the application of the magnetic staggered field
exhibits the symmetryh→−h, this is not the case for the
staggered field Eq.(18), because the symmetry is already
broken by the mean-field decoupling. We found no stationary
point of V for finite h in the CDW phases.

The spectral function atU=8 in the SDW phasesV
=1.0d and in the CDW phasesV=3.0d is shown in Fig. 11.
We found that the spectral function atV=1.0 is very similar
to the spectral function of the Hubbard modelsV=0d.20 One
can see that the spectrum mainly consists of four features,
two high-energy Hubbard bands and two low-energy quasi-
particle bands, separated by a gap in the spectrum. The dis-
persion of these low-energy excitations in the SDW phase
differs significantly from the Hartree-Fock shape shown as
white lines in the upper panel of Fig. 11, which does not
account for the splitting into coherent low-energy bands and
high-energy Hubbard bands. The fit parameters weretfit
=1.34 and Dfit =2.51. The width of the coherent bands
uvsXd−vsGdu<1.25 is rather set by the magnetic exchangeJ,
consistent with QMC calculations atV=0.45,46 The black
lines are fits toEk = ± f−D+J/2scoskx+coskyd2g which ac-

FIG. 10. Ground state energyE0, kinetic energyEkin, and order
parametermCDW

2 of the 2D EHM atU=8.0 (left) andU=3.0 (right).
Calculations were done on aNc=48 supercluster.

FIG. 11. Density plot of the spectral functionAsk ,vd of the
two-dimensional EHM atU=8 calculated on aNc=48 supercluster
with broadenings=0.1. Darker regions represent larger spectral
weight. Top,V=1.0. Bottom,V=3.0. White lines are fits to Hartree-
Fock dispersions. For the meaning of the black lines atV=1.0 see
text.
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counts better for the dispersion of the low-energy bands than
the Hartree-Fock dispersion.45 The fit parameters wereDfit
=2.69 andJfit =−0.63, which is in good agreement with the
second-order perturbation theory resultJ=−4t2/ sU−Vd
=−0.57. In the CDW phase the white lines correspond to
Hartree-Fock dispersions with fit parametersDfit =7.69 and
tfit =1.16, and different from the SDW phase they agree well
with the excitations ofAsk ,vd. Note that here the finite-size
dependence of the fitted parameters is hard to investigate,
since the clusters differ not only in the number of sites, but
also in their shape, different from one dimension. Hence we
could not extract a conclusive finite-size behavior from our
results.

Figure 12 displays the spectral function atU=3 at inter-
actions V=0.5 and V=1.0, respectively. The white lines
again correspond to Hartree-Fock dispersions with fit param-
eterstfit =1.06, Dfit =0.64 atV=0.5, andtfit =1.07, Dfit =1.82
at V=1.0, respectively. As in the caseU=8 the dispersion of
the coherent low-energy bands in the SDW phase differs
from the Hartree-Fock prediction, but in this case the devia-
tion is much smaller. We did not find an accurate functional
form in order to fit the low-energy excitations, but neverthe-
less we can extract the value ofJ from the bandwidth of the
coherent bands yieldingJ=−s1/2duvsXd−vsGdu<−1.57.
This value is again in good agreement with the perturbation
theory resultJ=−4t2/ sU−Vd=−1.6.

We would like to mention that our results atU=3 in the
SDW phase are qualitatively different from QMC results at
U=3, V=0, and inverse temperatureb=3t,47 where the spec-

tral function shows metallic behavior with no gap around the
Fermi energy. This difference may be due to temperature
effects or due to poor resolution of the maximum-entropy
inversion of QMC correlation functions.

At both U=8 andU=3, one can easily see that agreement
of the Hartree-Fock dispersions with the low-energy excita-
tions ofAsk ,vd is better in the CDW phase than in the SDW
phase. In addition the gapDHF calculated within the Hartree-
Fock approximation is much closer to the fitted gapDfit in
the CDW phase(e.g., DHF=7.76, Dfit =7.69 atU=8, V=3)
than in the SDW phase(e.g.,DHF=3.57,Dfit =2.51 atU=8,
V=0). Therefore we conclude that in the CDW phase charge
fluctuations play only a minor role compared to the SDW
phase, similar to the one-dimensional system.

VI. CONCLUSIONS

The inclusion of nonlocal Coulomb interactions in quan-
tum cluster approaches is of general interest in current con-
densed matter theory. In this paper we have presented a gen-
eralization of the variational cluster perturbation theory to
extended Hubbard models at half-filling. The method is
based on the self-energy-functional approach(SFA) which
uses dynamical information of an exactly solvable system
(reference systemH8) in order to approximate the physics in
the thermodynamic limit. For the application of this method,
a mean-field decoupling of the intercluster part of the
nearest-neighbor Coulomb interaction is performed first. Af-
ter this step, one is left with a Hamiltonian which couples the
different clusters via the hopping only and which can be
treated by the known(variational) CPT procedure. The
mean-field decoupling yields effective onsite potentials on
the cluster boundaries as external parameters of the Hamil-
tonian. These parameters are determined either self-
consistently on an isolated cluster(sufficient for the study of
first order phase transitions) or by determination of the mini-
mum of the SFA grand potential.

In order to test the accuracy of our approach we applied
the method to the extended Hubbard model in one dimen-
sion, because results from other methods like QMC and
DMRG are available for comparison. AtU=8 the results for
the critical interactionVc, the ground-state energy, kinetic
energy, and charge order parameter showed excellent quan-
titative agreement with previous QMC studies. AtU=3 our
method predicted a second-order phase transition with tran-
sition pointVc=1.665s5d again in good agreement with pre-
vious studies.

In addition we calculated the spectral function for several
values of the interactionV, which has not been done previ-
ously. At bothU=8 andU=3, we found evidence for spin-
charge separation in the SDW phase, but not in the CDW
phase. By fitting the bands by Hartree-Fock dispersions we
found that the hopping parameter is strongly renormalized.
The agreement between the fitted value of the gap and the
value within the Hartree-Fock approximation was much bet-
ter in the CDW phase than in the SDW phase giving rise to
the conclusion that charge fluctuations play a minor role in
the CDW phase.

Whereas the application of sophisticated methods like
DMRG or fermionic loop-update QMC to more than one

FIG. 12. Same as Fig. 11, but atU=3. Top,V=0.5. Bottom,V
=1.0.
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dimension is difficult, this extension is straightforward
within the present approach. We were thus able to perform
the first nonperturbative study of the two-dimensional ex-
tended Hubbard model on a square lattice at half-filling and
zero temperature beyond Hartree-Fock. We found first order
transitions at bothU=8 andU=3 with transition pointsVc
=2.023s1d and Vc=0.770s3d for an Nc=48 supercluster, re-
spectively. The spectral function in the SDW phase shows
coherent low-energy quasiparticle excitations with band-
width set by the magnetic exchange constantJ, and an inco-
herent background, consistent with previous QMC studies
for the Hubbard model atV=0. The Hartree-Fock prediction
differs significantly from the low-energy feature and does not
describe the splitting into coherent quasiparticle bands and
incoherent background. In the CDW phase the Hartree-Fock
dispersions account much better for the excitations, and no
additional low-energy features caused by a magnetic origin
could be found. Similar to one dimension the agreement be-
tween the Hartree-Fock approximation and the low-energy
excitations obtained by the present method is much better in
the CDW phase, confirming that charge fluctuations are less
important in the charge-ordered phase than in the SDW
phase.

In this paper we applied our method to half-filled systems
only, but one can study ordering phenomena at other fillings,
too, as long as the possible order patterns are commensurate
with the shape of clusters used as reference system. With
some effort it is also possible to study phases with long
wavelength charge density waves by coupling several clus-
ters to a supercluster and applying appropriate continuity
conditions between the individual clusters within the super-
cluster. In addition the application to systems with lattice
geometry different from the two-dimensional square lattice,
e.g., ladder materials, is an interesting subject for further
studies. Work in this direction is in progress.
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APPENDIX: MEAN-FIELD SOLUTION AND
FREE ENERGY

In this section we show that a mean-field solution ob-
tained self consistently is directly connected to a minimum in

the free energy. For simplicity let us assume that we have
only two different mean-field parameterslA=1−d and lB
=1+d, see also Sec. III. We can write the mean-field decou-
pled Hamiltonian Eq.(16) as

HMFsdd = HMF
s0d + o

R
HMF

s1d sR,dd, sA1d

where HMF
s0d includes all terms independent of the mean-

field parameters. According to the third line in Eq.(13)
HMF

s1d sR ,dd is given by

HMF
s1d sR,dd = Vo

fi j g
fnRilB + nR jlA − lAlBg

= Vo
fi j g

fnRis1 + dd + nR js1 − dd − s1 − d2dg,

sA2d

where we assumed without loss of generality that the bonds
fi j g connect sitesi on sublatticeA with sites j on sublattice
B. The free energy of the system is given by

F = −
1

b
ln Z

= −
1

b
ln tr e−bHMFsdd

= −
1

b
ln tr expF− bHMF

s0d − bo
R

HMF
s1d sR,ddG . sA3d

Taking the derivative with respect tod yields

]F

]d
= Vo

R
Ko

fi j g
fnRi − nR j + 2dgL . sA4d

All clusters are equivalent, therefore we suppress the index
R in the following. Setting this derivative to zero we get the
self-consistency condition

o
fi j g

fknil − knjl + 2dg = 0. sA5d

For one dimension, Eq.(A5) is given by

knNl − kn1l = 2d, sA6d

because in this case we have only one decoupled bondf1Ng
with site 1sNd belonging to sublatticeAsBd, respectively. To
conclude, one can state that if self-consistency, Eq.(A5), is
fulfilled, then the free energy has an extremum with respect
to the mean-field parameterd. By thermodynamic stability
arguments this extremum must always be a minimum.
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