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We have formulated the conditions in which dipolar surface plasma resonance is excited by light waves in
composites containing nanometer-sized,n-fold multicore-shell structured particles(referred henceforth as
“nano-onions”) dispersed in matrices. The nano-onions have ellipsoidal shape and an arbitrary layer numbern,
which contain shell(s) (or core) of a metal having Drude type free electrons responsible for the surface plasma
oscillation. By solving a quasistatic potential boundary problem in a nano-onion that is exposed to an external
static electric field, we derived the effective dielectric permittivity tensor, including off-diagonal elements, for
the composites, based on the Maxwell Garnett theory. The results were utilized not only to derive the resonance
conditions but also to formulate the surface charge densities on the metal surfaces, from which we determined
the symmetry of the dipolar surface plasmon polaritons excited in the metal shells. Calculations made on the
composites containing model nano-onions of spherical shape havingn-fold core-shell structure of sodium and
a dielectric revealed the following results:(1) The surface plasmon resonance occurs atn eigenfrequencies,
similar to the mechanical oscillation inn-fold coupled oscillators;(2) at these eigenfrequencies, the composite
causes resonant peaks of light extinction coefficient, and(3) the magneto-optical Kerr effect induced by a static
external magnetic field is remarkably enhanced at the resonance frequencies. The magneto-optical enhance-
ment is augmented by hypothetically reducing the dielectric loss in Na, thus increasing the quality factorQ of
the surface plasmon resonance. The validity limit in our calculations based on the effective medium approxi-
mation by the Maxwell Garnett theory is discussed, comparing with the calculations made by Sinzig and
Quinten[Appl. Phys. A 58, 157 (1994)] based on a rigorous Mie scattering theory treatment.
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I. INTRODUCTION

In this study we analyzed surface plasma resonance in
nanoparticles with multicore-shell structures, and found that
the magneto-optical effect is remarkably enhanced near the
resonance. Such multifold core-shell structured nanopar-
ticles, referred to here as “nano-onions,”1 are attracting ex-
tensive attention at present, since the multilayered structures
are expected to give particular magnetic properties and ex-
hibit unique optical and magneto-optical effects similarly ob-
served in metallic multilayers of nanometer-scale thickness.2

Surface plasma(or plasmon) resonance is an excitation of
charge density surface waves, which propagate along a me-
tallic surface or on metal films.3–5 The free electrons, follow-
ing the Drude theory, play an essential role in surface plas-
mon resonance, which is most prominently observed in noble
and alkaline metals. The surface plasmons can be excited by
light waves, making a contrast with volume plasmons that
can be excited not by light waves but by electron beams.
Therefore, the surface plasmon resonance has attracted spe-
cial interest among researchers studying optically induced
phenomena in matter. They found that the surface plasmon
resonance enhances magneto-optical effects,6–12 nonlinear
optical processes,11–13 surface Raman scatterings,14–16 and
photon-induced catalysis reactions17 to a remarkable extent.
This created much interest not only in solid-state physics but
also in sensor technology, because the physical effect en-
hancements by the surface plasmons facilitated a variety of
highly sensitive surface analysis devices, including chemical
sensors18 and biomedical sensors.19

Optical excitation of surface plasmons on planar metal
surfaces can be realized only by evanescent waves, because
surface plasmons have retarded dispersion relations with re-
spect to the excitation light waves.3–6,9–11,13However, even
using ordinary(nonevanescent) light waves, surface plas-
mons can be excited on fine metal particles,7,8,12,14,15,17,20–23

which may be embedded in matrices(thus forming
granular composites)7,12,17,20–23 or located on planar
surfaces.8,14–17,24,25The particles on the planar surfaces offer
a model for rough surfaces on which surface plasmons are
excited to enhance the surface Raman scattering.13–16Surface
plasmon resonance excited by light waves in fine metal par-
ticles have therefore been studied extensively.

Granqvist and Hunderi21 analyzed the optical absorption
by ultrafine (3–4 nm in diameter) Ag spheres in terms of
surface plasmon resonance. Applying the Maxwell Garnett
(MG) theory26 and the Bruggeman theory,27 they calculated
effective dielectric constants for composites containing the
Ag nanoparticles dispersed in matrices based on effective
medium approximation. The MG theory presupposes that the
particles are sparsely dispersed, or the filling factor of the
particles is small, while the Bruggeman theory is free from
such a premise on the filling factor, as will be described in
Sec. V, Hui and Stroud7 showed using the MG theory that
magneto-optical Faraday rotation in dilute suspension of
small particles of a Drude metal is enhanced by the surface
plasma resonance on the metal surfaces. The analyses were
extended to higher concentrations of the suspensions by ap-
plying the Bruggeman theory.23 The analyses of surface plas-
mon based on the MG theory were further extended to such
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core/shell structured nanoparticles as Ag spheres having in-
ner dielectric cores28 or outer dielectric shells,29 with which
they explained the optical absorption and the surface-
enhanced Raman scattering by the plasma resonance in the
Ag shells or the cores.

Almost a century ago, Mie30 showed with his scattering
theory that spherical metal particles exhibit resonant extinc-
tion of light, which was later interpreted by Kreibiget
al.20,31,32by the concept of electric and magnetic multipolar
excitations due to surface plasmon polaritons and eddy cur-
rents, respectively. They revealed, based on the Mie theory,
that the resonant light absorption observed for spherical
nanoparticles of Ag and Au can be interpreted by invoking
the surface plasma resonance of electric multipolar modes,
mainly from the lowest electric excitation mode called the
dipolar surface plasmon polariton mode. From the Mie scat-
tering theory, Kerkeret al.33 and Messingeret al.34 explained
the surface enhanced Raman scattering in spherical metal
particles in terms of surface plasmon resonance. Wokaun35

extended the Mie formalism for the surface plasmon reso-
nance to spheroidal metal particles, with which he investi-
gated the marked surface enhancements of Raman scattering
and the catalytic activity of the Ag nanoparticles. The Mie
theory analyses on the surface plasmon resonance were fur-
ther extended to the double layered nanoparticles having
spherical dielectric (core)/Ag (shell),36 spheroidal latex
(core)/Ag (shell),37 and spherical Au(core)/Pt (shell)38 struc-
tures.

Sinzig and Quinten39 investigated the surface plasmon
resonance inn-fold multi-core-shell structured particles with
arbitrary numbern. Calculating the Mie scattering intensi-
ties, they showed that the multicore-shell structures with al-
ternate stratification of Na and a dielectric exhibit resonant
peaks of light extinction, which they guessed to be ascribed
to the surface plasmon polaritons excited in the Na shells and
cores. They also proposed that in the core(dielectric)/
shell(metal) structuredsn=2d particles embedded in a dielec-
tric matrix, two surface plasmon eigenmodes are excited,
having symmetric and anti-symmetric charge distributions,
respectively, on the inner and outer surfaces of the metal
shell. Their calculations were, however, not derived analyti-
cally, but from analogy with the surface plasmon eigenmodes
excited in a metal planar layer. By the Mie scattering theory
they calculated the fields induced in and scattered outside the
particles, using complicated recurrent formulas; the Mie scat-
tering theory cannot give analytical expressions for the fields
or, therefore, the conditions in which surface plasmon reso-
nance occurs.

In this study we derived, based on the MG theory, ana-
lytical formulas for the fields induced in then-fold nano-
onions, and formulated the conditions in which the surface
plasmon resonance takes place in the composites containing
the nano-onions. We also formulated the charge distributions
induced on the surfaces of the metal shells, with which we
determined the symmetry of the surface plasmon polariton
eigenmodes induced in the metal shells. We revealed that the
surface plasmon resonance enhances not only light extinction
but also magneto-optical effects. In our calculations we as-
sumed that the nano-onions much smaller than the light
wavelength are dispersed sparsely in a dielectric matrix to

form a composite. The light waves propagate in such a com-
posite as if it were a continuous medium, called an “effective
medium,” having an “effective dielectric permittivity.” We
derived the effective permittivity based on the MG theory in
tensor form, including the off-diagonal terms that are respon-
sible for the magneto-optical effects.

The effective dielectric permittivity tensor was derived by
Lissberger and Saunders40 based on the MG theory in order
to explain the magneto-optical Kerr effect for cermets, or
composites in which magnetized spherical particles are em-
bedded in dielectric materials. Careyet al.41 extended the
effective dielectric tensor to spherical particles with a core/
shell structure, thus explaining the magneto-optical effects in
granular films in which surface-oxidized Co particles are dis-
persed in a dielectric matrix. Abe,42 one of the authors of this
paper, generalized the effective dielectric permittivity tensor
to composites containing magnetized, oriented ellipsoid par-
ticles embedded in matrices which may be magnetic or non-
magnetic. The effective dielectric tensor will be further ex-
tended in this study to the nano-onions having an arbitrary
number of core/shell layers.

In Sec. II, we will solve a quasistatic potential boundary
problem for the electric fields induced in the core and shells
of a magnetizedn-fold nano-onion in order to derive the
electric polarizability of the nano-onion. The result will be
used to formulate, based on the MG theory, the effective
dielectric permittivity tensor for composites containing the
magnetized nano-onions. In Sec. III, we will derive the con-
ditions upon which the surface plasmon resonance occurs in
the composites, and derive an equation that we can use to
determine the symmetry of the charge distributions of sur-
face plasmon polariton eigenmodes. In Sec. IV, we will in-
vestigate the resonant conditions for the surface plasmons in
a composite containing the spherical,n-fold nano-onions
made of Na and a dielectric. It will be shown that the
magneto-optical Kerr effect, as well as the light extinction, is
remarkably enhanced by the surface plasmon oscillation. In
Sec. V, we will discuss the applicability limits in the MG
theory and then conclude.

II. DERIVATION OF EFFECTIVE DIELECTRIC TENSOR

A. Potential boundary problem

In order to derive the effective dielectric permittivity ten-
sor based on the MG theory for the composites containing
ellipsoidal nano-onions(Fig. 1) we first solve the potential
boundary problem for the electric fields induced in the core
and shells of a magnetized nano-onion that is embedded in a
matrix. Using the quasistatic approximation, we neglect the
spatial dependence of the electric field of the light, but the
time dependence is introduced through the wavelength de-
pendent complex dielectric functions for the core and the
shells.

Consider that a uniform, isotropic medium has in it a
uniform, or quasistatic electric field

F0 = 3F0
x

F0
y

F0
z 4 . s2.1d

Let a nano-onion, ellipsoidal in shape(which is generalized
from spheroidal in our previous study42), be embedded in the
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matrix (numbered asm=0), as shown in Fig. 2. The outer-
most surface of each nano-onion has principal radii ofa, b,
and c, along which we define thex, y, and z axes, respec-
tively. The nano-onion has a co-centric,n-fold core/shell
structure whose boundaries are expressed by the following
quadratic equations:

x2

am
2 +

y2

bm
2 +

z2

cm
2 = 1 sm= 1,2, . . . ,nd. s2.2d

Here, am, bm, and cm are the principal radii of the outer
surface of themth shell or the coresm=nd, and thus

a1 = a, b1 = b, c1 = c. s2.3d

Now, we introduce ellipsoidal coordinatesj, h, and z as
follows:43

x = ± hsj + a2dsh + a2dsz + a2dj1/2/hsb2 − a2dsc2 − a2dj1/2,

s2.4ad

y = ± hsj + b2dsh + b2dsz + b2dj1/2/hsc2 − b2dsa2 − b2dj1/2,

s2.4bd

z= ± hsj + c2dsh + c2dsz + c2dj1/2/hsa2 − c2dsb2 − c2dj1/2,

s2.4cd

which are valid in the ranges, satisfy the following relations:

− c82 ø j, − b82 ø h ø − c82, − a82 ø z ø − b82.

s2.5ad

In this equation,a8, b8, andc8 represent the maximum, mid-
point, and minimum values ofa, b, andc, respectively, that
satisfy the relationship

c8 , b8 , a8. s2.5bd

Using the radial coordinatej, the outer boundary of themth
medium is expressed by

j = jm sm= 1,2,3, . . . ,nd, s2.6ad

where

j1 = 0, s2.6bd

andjm’s satisfy the following equations:

am = sjm + a2d1/2, s2.7ad

bm = sjm + b2d1/2, s2.7bd

cm = sjm + c2d1/2, s2.7cd

sm= 1,2, . . . ,nd.

It should be noted thatam:bm:cm depends onm, and, there-
fore, the boundary surfaces are not of similar shape, that is,
the further out the more spherical in shape is the shell.

Let the nano-onions and the matrix be magnetized along
an arbitrary direction, and express the dielectric permittivity
tensor«̃m for the mth medium to the first order of magneti-
zation as follows:

«̃m = 3«m «m
xy «m

xz

«m
yx «m «m

yz

«m
zx «m

zy «m
4 sm= 0,1,2, . . . ,nd, s2.8ad

«m
xy + «m

yx = «m
yz+ «m

zy= «m
zx+ «m

xz= 0. s2.8bd

Our task is to obtain the electric field

Em = 3Em
x

Em
y

Em
z 4 sm= 0,1,2, . . . ,nd, s2.9d

which is induced in themth medium. The electric flux den-
sity in themth medium

FIG. 1. A composite containing an oriented, spatially random
array of ellipsoidal nano-onions embedded in a host material in
which a uniform magnetic fieldF0 exists.

FIG. 2. Cross section inxy plane for ann-fold nano-onion.
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Dm = 3Dm
x

Dm
y

Dm
z 4 sm= 0,1,2, . . . ,nd s2.10d

is given by the product of«̃m andEm as

Dm = «̃mEm. s2.11d

The external fieldF0 is no longer equal toE0 in the matrix or
Em smù1d in the shells or core, becauseF0 induces electric
dipole moments inside the nano-onion. Now we assume that
in the shells and core, uniform electric fields

Fm = 3Fm
x

Fm
y

Fm
z 4 sm= 1,2, . . . ,nd s2.12d

exist and uniform polarizations

Pm = 3Pm
x

Pm
y

Pm
z 4 sm= 1,2, . . . ,nd s2.13d

are induced in the nano-onion with respect to the matrix. We
expressEm in terms of electric field potentialfm to the form

Em = − ¹ fm sm= 0,1,2, . . . ,nd, s2.14ad

fm = − hFm
x + Cm

x Axsjdjx − hFm
y + Cm

y Aysjdjy

− hFm
z + Cm

z Azsjdjz s2.14bd

=− o
i

Em
i ui sm= 0,1,2, . . . ,nd, s2.14cd

Em
i = Fm

i + Cm
i Aisjd si = x,y,z; m= 0,1,2, . . . ,nd.

s2.14dd

Here, we rewrotex, y, andz asui si =x,y,zd, i.e.,

ux = x, uy = y, uz = z, s2.15d

and expressed theith component of the dipole field in the
mth medium asCm

i Aisjd, with Aisjd given by43,44

Axsjd =E
j

`

ss+ a2d−3/2ss+ b2d−1/2ss+ c2d−1/2ds,

s2.16ad

Aysjd =E
j

`

ss+ b2d−3/2ss+ c2d−1/2ss+ a2d−1/2ds,

s2.16bd

Azsjd =E
j

`

ss+ c2d−3/2ss+ a2d−1/2ss+ b2d−1/2ds.

s2.16cd

Note that the dipole field is not induced in the core; namely,

Cn
x = Cn

y = Cn
z = 0, s2.17d

because the core has no inner structure.
In the ellipsoidal coordinate system,Em is expressed in

terms offm as

Em = 1Em
j

Em
h

Em
z 2 = 1− h1

−1]fm/]j

− h2
−1]fm/]h

− h3
−1]fm/]z

2 sm= 0,1,2, . . . ,nd,

s2.18d

whereh1, h2, and h3 are metrical coefficients,44 and Dm is
related toEm by

Dm = 3Dm
j

Dm
h

Dm
z 4 = 3«m

jj «m
jh «m

jz

«m
hj «m

hh «m
hz

«m
zj «m

zh «m
zz 43

Em
j

Em
h

Em
z 4 sm= 0,1,2, . . . ,nd.

s2.19d

On themth ellipsoidal surface,Em and Dm must satisfy the
following boundary conditions:43,44

sEm
hdj=jm

= sEm−1
h dj=jm

sm= 1,2, . . . ,nd, s2.20ad

sEm
z dj=jm

= sEm−1
z dj=jm

sm= 1,2, . . . ,nd, s2.20bd

sDm
j dj=jm

= sDm−1
j dj=jm

sm= 1,2, . . . ,nd. s2.20cd

As shown in the Appendix, we derive from Eq.(2.20) the
following recurrent vector formula:

«m−1Fm−1 = hÑms«̃m − «̃m−1d + «m−11̃jFm + bmÑmhs«̃m − «̃m−1d

3Ñm − s«m − «m−1d1̃jCm s2.21d

− bm«m−1Cm−1 = s«̃m − «̃m−1dFm

+ bmhs«̃m − «̃m−1dÑm − «m1̃jCm.

s2.22d

Here we rewroteCm
i si =x,y,zd in a vector form, as

Cm = 3Cm
x

Cm
y

Cm
z 4 , s2.23d

and put

1̃ = 31 0 0

0 1 0

0 0 1
4 , s2.24d

Ñm = 3Nm
x 0 0

0 Nm
y 0

0 0 Nm
z 4 sm= 1,2, . . . ,nd, s2.25d

Nm
i = Ais0dambmcm/2 si = x,y,z; m= 1,2, . . . ,nd,

s2.26d
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bm = 2abc/ambmcm sm= 1,2, . . . ,nd, s2.27d

whereNm
i is the depolarization factor along theith axis for

the mth shell (core) and bm is a constant inversely propor-
tional to the volume inside themth boundary surface.

The recurrent relations expressed by Eqs.(2.21) and
(2.22) can be rewritten to the form

FFm−1

Cm−1
G = fT̃mgFFm

Cm
G sm= 1,2, . . . ,nd, s2.28d

wherefT̃mg is a “super matrix” whose components are given
by the following matrices:

fT̃mg =FÃm B̃m

C̃m D̃m

G sm= 1,2, . . . ,nd, s2.29d

Ãm = «m−1
−1 hÑms«̃m − «̃m−1d + «m−11̃j, s2.30ad

B̃m = bm«m−1
−1 Ñmhs«̃m − «̃m−1dÑm − s«m − «m−1d1̃j,

s2.30bd

C̃m = bm
−1«m−1

−1 h− s«̃m − «̃m−1dj, s2.30cd

D̃m = «m−1
−1 h− s«̃m − «̃m−1dÑm + «m1̃j. s2.30dd

They are expressed as

Ãm = «m−1
−1 3Nm

x s«m − «m−1d + «m−1 Nm
x s«m

xy − «m−1
xy d Nm

x s«m
xz− «m−1

xz d
Nm

y s«m
yx − «m−1

yx d Nm
y s«m − «m−1d + «m−1 Nm

y s«m
yz− «m−1

yz d
Nm

z s«m
zx− «m−1

zx d Nm
z s«m

zy− «m−1
zy d Nm

z s«m − «m−1d + «m−1
4 , s2.31ad

B̃m = bm«m−1
−1 3Nm

x sNm
x − 1ds«m − «m−1d Nm

x Nm
y s«m

xy − «m−1
xy d Nm

x Nm
z s«m

xz− «m−1
xz d

Nm
y Nm

x s«m
yx − «m−1

yx d Nm
y sNm

y − 1ds«m − «m−1d Nm
y Nm

z s«m
yz− «m−1

yz d
Nm

z Nm
x s«m

xz− «m−1
xz d Nm

z Nm
y s«m

zy− «m−1
zy d Nm

z sNm
z − 1ds«m − «m−1d

4 , s2.31bd

C̃m = bm
−1«m−1

−1 3− s«m − «m−1d − s«m
xy − «m−1

xy d − s«m
xz− «m−1

xz d
− s«m

yx − «m−1
yx d − s«m − «m−1d − s«m

yz− «m−1
yz d

− s«m
zx− «m−1

zx d − s«m
zy− «m−1

zy d − s«m − «m−1d
4 , s2.31cd

D̃m = «m−1
−1 3− Nm

x s«m − «m−1d + «m − Nm
y s«m

xy − «m−1
xy d − Nm

z s«m
xz− «m−1

xz d
− Nm

x s«m
yx − «m−1

yx d − Nm
y s«m − «m−1d + «m − Nm

z s«m
yz− «m−1

yz d
− Nm

x s«m
zx− «m−1

zx d − Nm
y s«m

zy− «m−1
zy d − Nm

z s«m − «m−1d + «m
4 . s2.31dd

B. Polarizability of a nano-onion

In order to derive the polarizability for the nano-onion, let
us expressFm in terms ofF0. Substituting Eq.(2.17) into Eq.
(2.28), we obtain

FFm

Cm
G = fT̃m+1gfT̃m+2g ¯ fT̃ngFFn

0
G sm= 1,2, . . . ,n − 1d,

s2.32ad

FF0

C0
G = fT̃1gfT̃2g ¯ fT̃ngFFn

0
G , s2.32bd

where0 expresses the matrix having only zero components,
and thus we obtain

Fm = hfT̃m+1gfT̃m+2g ¯ fT̃ngj1,1Fn, s2.33ad

F0 = hfT̃1gfT̃2g ¯ fT̃ngj1,1Fn. s2.33bd

Hereh¯j1,1 designates the first row first column components
of the super matrix. Combination of Eqs.(2.33a) and(2.33b)
results in

Fm = hfT̃m+1gfT̃m+2g ¯ fT̃ngj1,1hfT̃1gfT̃2g ¯ fT̃ngj1,1
−1F0.

s2.34d

Thus the matrixS̃m, which connectsF0 to Fm by

Fm = S̃mF0 sm= 1,2, . . . ,nd, s2.35d

is expressed as
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S̃m = hfT̃m+1gfT̃m+2g ¯ fT̃ngj1,1hfT̃1gfT̃2g ¯ fT̃ngj1,1
−1 .

s2.36d

Some ofS̃m’s are given as follows:
n=1 (nonstructured):

S1 = hfT̃1gj1,1
−1 = Ã1

−1; s2.37d

n=2 (core/shell structured):

S̃1 = hfT̃2gj1,1hfT̃1gfT̃2gj1,1
−1 = Ã2sÃ1Ã2 + B̃1C̃2d−1,

s2.38ad

S̃2 = hfT̃1gfT̃2gj1,1
−1 = sÃ1Ã2 + B̃1C̃2d−1; s2.38bd

n=3 (core/inner-shell/outer-shell structured):

S̃1 = hfT̃2gfT̃3gj1,1hfT̃1gfT̃2gfT̃3gj1,1
−1

= sÃ2Ã3 + B̃2C̃3dhÃ1sÃ2Ã3 + B̃2C̃3d

+ B̃1sC̃2Ã3 + D̃2C̃3dj−1, s2.39ad

S̃2 = fT̃3g1,1hfT̃1gfT̃2gfT̃3gj1,1
−1

= Ã3hÃ1sÃ2Ã3 + B̃2C̃3d + B̃1sC̃2Ã3 + D̃2C̃3dj−1

s2.39bd

S̃3 = hfT̃1gfT̃2gfT̃3gj1,1
−1

= hÃ1sÃ2Ã3 + B̃2C̃3d + B̃1sC̃2Ã3 + D̃2C̃3dj−1.

s2.39cd

The polarizationPm [cf. Eq. (2.13)] that is induced in the
mth medium with respect to the matrix having«̃0, satisfies
the relation

«̃mFm = «̃0Fm + Pm sm= 1,2, . . . ,nd. s2.40d

Summing up all thePm’s given by Eq.(2.40), the total po-
larization induced in the nano-onion amounts to

kPl = So
m=1

n

VmPmDYVo = o
m=1

n

tms«̃m − «̃0dFm.

s2.41d

Here we introducedtm as the fraction of the volumeVm of
the mth shell (core) to the volumeVo of the nano-onion,
expressed as

tm = Vm/V0 = sambmcm − am+1bm+1cm+1d/abc

sm= 1,2, . . . ,n − 1d, s2.42ad

tn = Vn/V0 = anbncn/abc sm= nd. s2.42bd

The polarizabilityã, for the nano-onion defined by

kPl = ãF0, s2.43d

is expressed from Eqs.(2.41) and (2.35) as

ã = o
m=1

n

htms«̃m − «̃0dS̃mj. s2.44d

For a spherical, core/shell structured particlesn=2d, we con-
firmed that the polarizability given by Eq.(2.44) reduces to
that reported in literature.41

C. Effective dielectric permittivity tensor

Now, we derive the effective dielectric permittivity tensor
for the composite containing the ellipsoidal nano-onions dis-
persed in a host medium at a volume fractionf. The nano-
onions are, as already shown in Fig. 1, the same in shape and
orientation(principal axes parallel tox, y, andz directions)
but not necessarily in size. The exciting light fieldkEl is not
equal toF0 but is given by averaging the uniform, quasistatic
fields Fm’s over the matrix and the core and shells of the
nano-onions as

kEl = s1 − fdF0 + f o
m=1

n

tmFm. s2.45d

Substituting Eq.(2.35) into Eq. (2.45), we obtain

kEl =Hs1 − fd1̃ + f o
m=1

n

tmS̃mJF0. s2.46d

The total electric flux densitykDl for the whole composite
relative to the matrix with the permittivity tensor«̃0 is ex-
pressed as

kDl = «̃0kEl + fkPl. s2.47d

Therefore, the effective permittivity tensork«̃l for the com-
posite defined by

kDl = k«̃lkEl s2.48d

is finally obtained by substituting Eqs.(2.43), (2.44), and
(2.46) into Eq. (2.47) to the form

k«̃l = «̃0 + fHo
m=1

n

tms«̃m − «̃0dS̃mJHs1 − fd1̃ + f o
m=1

n

tmS̃mJ−1

.

s2.49d

We can simplify Eq.(2.49) to

k«̃l = «̃0 + fHo
m=1

n

tms«̃m − «̃0dkS̃mlJ , s2.50d

by defining

kS̃ml = S̃mHs1 − fd1̃ + f o
m=1

n

tmS̃mJ−1

. s2.51d

Combining Eq.(2.35) and Eq.(2.46), we observe thatkS̃ml
connectsFm to the light fieldkEl by

Fm = kS̃mlkEl. s2.52d

We can further rewrite Eq.(2.50) to a brief form as
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k«̃l = o
m=0

n

«̃mDm, s2.53d

whereDm’s sm=1–nd are the “virtual” volume fractions for
shells and core that are defined as

Dm = ftmkS̃ml sm= 1,2, . . . ,nd, s2.54ad

andD0 is the “virtual” volume fraction for the matrix given
by

D0 = 1 − o
m=1

n

Dm. s2.54bd

Now let us extendk«̃l to the composites containingN
types of nano-onions that differ in shape and/or dielectric
constants. Describing the filling factor of thej th type s j
=1,2, . . . ,Nd of nano-onion ensemble asf j, the polarizability
is extended from Eq.(2.44) to the following:

ã = o
j=1

N H f j o
m=1

nj

tm
j s«̃m

j − «̃0dS̃m
j J . s2.55d

Here tm
j andS̃m

j are the volume fraction and field connecting
tensor, respectively, for themth shell (or core) belonging to
the j th type nano-onions that havenj-fold core/shell struc-
ture. Equation(2.49) is then extended to

k«̃l = «̃0 +Fo
j=1

N H f j o
m=1

nj

tm
j s«̃m

j − «̃0dS̃m
j JG

3FS1 − o
j=1

N

f jD1̃ + o
j=1

N

f jHo
m=1

nj

tm
j s«̃m

j − «̃0dS̃m
j JG−1

.

s2.56d

Equation(2.56) is simplified to the form

k«̃l = «̃0 + o
j=1

N H f j o
m=1

nj

tm
j s«̃m

j − «̃0dkS̃m
j lJ , s2.57d

as we set

kS̃m
j l = S̃m

j FS1 − o
j=1

N

f jD1̃ + o
j=1

N

f jHo
m=1

nj

tm
j s«̃m

j − «̃0dS̃m
j JG−1

.

s2.58d

III. RESONANCE CONDITIONS AND SURFACE
PLASMON EIGENMODES

In this section, we derive the conditions in which dipolar
surface plasmon resonance occurs in the composites contain-
ing then-fold nano-onions, and investigate the symmetry of
the plasmon eigenmodes from the polarity of the charges
induced on the metal surfaces. The metal in the nano-onions
is assumed to have dielectric function«svd (v: light angular
frequency) of Drude type due to free electron gas as
follows:31

«svd = «8svd + i«9svd = 1 −
vp

2

v2 + g2 + i
gvp

2

vsv2 + g2d
.

s3.1d

Herevp is the volume plasmon angular frequency andg the
relaxation constant that is responsible for the dielectric loss
or the imaginary dielectric function,«9svd, of the metal. The
real dielectric function«8svd becomes zero atv8=Îvp

2−g2,
where in bulk metal samples volume charge density waves
are resonantly excited. In the rangev,v8, «8svd becomes
negative in sign, which facilitates the excitation of the sur-
face charge density waves or the surface plasmon resonance.

Let us consider an unstructuredsn=1d metal particle el-
lipsoidal in shape. When a quasistatic electric fieldF0

x is
applied to the particle along thex direction by the deriving
light wave, a uniform electric fieldF1

x is induced parallel to
the light field inside the particle. The field is obtained by
substituting Eqs.(2.31a) and (2.37) into Eq. (2.35) as

F1
x =

F0
x

1/sS̃1dxx

=
1

sÃ1dxx

F0
x, s3.2ad

sÃ1dxx =
N1

x«1 + s1 − N1
xd«0

«0
. s3.2bd

Therefore, when

Ref1/sS̃1dxxg = 0, s3.3ad

or

RefsÃ1dxxg = 0, s3.3bd

and, thus

Ref«1g = −
1 − N1

x

N1
x s3.4d

holds, the induced fieldF1
x takes the resonant maximum

value given by35

F1
x = − i

1

Imf1/sS̃1dxxg
F0

x = − i
1

ImfsÃ1dxxg
F0

x. s3.5d

Because this field is 90° out of phase with the driving optical
field sF0

xd, the particles absorb maximum light power at the
resonance frequency, similar to a resonantly driven cavity.46

The quality factorQ of the resonance is inversely propor-

tional to Imf1/sS̃1dxxg.35 If the metal has no dielectric loss

sg=0d, or Imf«1g=0 and thus Imf1/sS̃1dxxg=0, F1
x andQ be-

come infinitely large. Therefore, even if the external field
sF0

xd is absent, the inner fieldsF1
xd oscillating at the resonance

frequency can exist, which induces inside the particle the
polarization and excites the charge density waves on the par-
ticle surface. This is the surface plasma resonance in an el-
lipsoidal metal particle.

For the composite containing then-fold nano-onions, the
condition in which surface plasmon resonance occurs in the
mth shell (or core) is given by extending Eq.(3.3a) to
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Ref1/kS̃mlxxg = 0 sm= 1,2, . . . ,nd. s3.6d

HerekS̃ml connects the light fieldkEl to the internal fieldFm

as in Eq. (2.52). When resonated, themth shell absorbs
maximum light power, which is analogous to the dissipative
m-fold coupled oscillators with dampers.45 By substituting
Eq. (2.36) into Eq. (3.6), we can rewrite the resonance con-
dition as follows:

RefhfT̃1gfT̃2g ¯ fT̃ngj1,1hfT̃m+1gfT̃m+2g ¯ fT̃ngj1,1
−1 gxx = 0.

s3.7d

If the nano-onions and the surrounding medium are nonmag-
netic (i.e., «m

xy=«m
yz=«m

zx=0; m=0,1, . . . ,n) having no dielec-
tric losses(i.e., Imf«̃mg=0; m=0,1, . . . ,n), all the compo-

nents of the super matricesT̃m given in Eq.(2.31) become
diagonal tensors with real number components. Equation
(3.7) then reduces to the form

fhfT̃1gfT̃2g ¯ fT̃ngj1,1gxxfhfT̃m+1gfT̃m+2g ¯ fT̃ngj1,1
−1 gxx = 0,

s3.8d

because both hfT̃1gfT̃2g¯ fT̃ngj1,1 and hfT̃m+1g
3fT̃m+2g¯ fT̃ngj1,1

−1 are also diagonal tensors. From Eq.(3.8)
we have n resonance angular frequencies,v1,v2, . . . ,vn,
which are the solutions for thenth order equation ofv:

fhfT̃1gfT̃2g ¯ fT̃ngj1,1gxx = 0. s3.9d

We also haven-m anti-resonance frequencies, where zero
field is induced in themth shell or core,46 obtained by solv-
ing the (n minusm)-th order equation ofv

fhfT̃m+1gfT̃m+2g ¯ fT̃ngj1,1gxx = 0. s3.10d

When Eq. (3.10) holds, 1/kS̃mlxx s~fhfT̃m+1g
3fT̃m+2g¯ fT̃ngj1,1

−1 gxxd diverges to infinities, and thus Eq.
(2.52) yields Fm=0.

The charge densitysm induced on themth boundary sur-
face by the light fieldkExl is formulated from Eqs.(2.40) and
(2.52) as follows:

sm
x = Pm

x − Pm−1
x = hs«m − «0dkS̃mlxx − s«m−1 − «0dkS̃m−1lxxj

3kExl sm= 1,2,3, . . . ,nd. s3.11d

If no dielectric loss exists in the shells(or core), and thus no
phase retardance exists between the outer and inner surfaces
of a metal shell, we can determine bysm

x /sm−1
x whether the

surface plasmon polariton eigenmodes excited in themth
shell are symmetric or anti-symmeteric.

IV. SURFACE PLASMONS IN COMPOSITE CONTAINING
Na/DIELECTRIC NANO-ONIONS

A. Resonant light extinction and symmetry of plasmon
eigenmodes

First, we consider nonmagnetic nano-onions of spherical
shape for simplicity, having

Nm
x = Nm

y = Nm
z = 1/3, s4.1ad

am = bm = cm sm= 1,2,3, . . . ,nd. s4.1bd

Starting from a Na spheresn=1d, an inner core of a dielectric
and that of Na are added by turns, as shown in Fig. 3. Here
we assume

a1 − a2 = a2 − a3 = ¯ = an−1 − an = an, s4.2d

or the core radius is equal to each shell thickness. We also
assume that Na has"vp=5.95 eV and"g=0.31 eV as re-
ported in literature,3 and the dielectric has«=10 independent
of photon energy, similar as assumed by Sinzig and
Quinten.39 Such a fictitious, high permittivity was chosen for
better recognition of the effect of adding the dielectric to the
metal. The nano-onions are dispersed in a matrix with«0
=1 (as in vacuum, similar as Sinzig and Quinten39) at a vol-
ume fraction of f =0.01. We assumed such a small filling
factor to conform to MG theory and to reduce the imaginary

(or loss) term of kS̃mlxx, thus facilitating the resonance even
at low photon energy range, where"g approaches"v.

For the composites containing the nano-onions with
stacking numbern=1–7, wecalculated the light extinction
coefficient

k = Imfsk«̃lxxd1/2g s4.3d

as a function of"v in the range 0.4–6 eV. Figure 4 shows
semi-logarithmic plots ofk, in which the spectra are shifted
along the ordinate by arbitrary factors for better presentation.
The n-fold nano-onions exhibitn resonant absorption peaks
at "v="v1,"v2, . . . ,"vn, except n=7, where the lowest
resonant energy"v7 runs off the lower limit of the calcula-

FIG. 3. Spherical nano-onions of alternate Na(shaded area) and
dielectric shells and core.

FIG. 4. Extinction coefficient spectra(shifted along the ordinate
by arbitrary factors) calculated for composites containing spherical,
n-fold Na/dielectric nano-onions at a volume fraction off =0.01.
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tion range. The peak-position frequencies are very close to
the surface plasmon resonance frequencies, where

Ref1/kS̃mlxxg=0 holds, as shown in Figs. 5–7 forn=1, 2, and
4, respectively. This is similar as in the forced harmonic
motion of the dissipative, coupled oscillators.45

In Figs. 5–7 we compare the spectra of Ref1/kS̃mlxxg with
those calculated assuming"g=0 in order to investigate the
effect of the dielectric loss. For the simple Na spheressn
=1d the resonance occurs at"v1=3.4 eV (Fig. 5), which
does not change appreciably by introducing the dielectric
loss. Figure 6 shows that as the dielectric core is inserted at
the center of the Na sphere, thus makingn=2, the resonance
energy"v1 shifts to higher values, and another resonance
appears at a lower energy"v2. When "g=0 [Fig. 6sad8],
Ref1/kS̃1lxxg diverges to infinities at an anti-resonance en-
ergy"va between"v1 and"v2. When"gÞ0 [Fig. 6(a)], the

diverging curve off1/kS̃1lxxg is deformed to a continuous
curve crossing the horizontal axis at"va.

Figures 5–7 indicate that when"g=0, eachn-fold nano-
onion hasn eigenfrequenciessv1,v2, . . . ,vnd, and eachmth
shell (or core) hasn-m anti-resonance frequencies(va, vb,
va8, etc.), as is expected from Eqs.(3.9) and(3.10). Introduc-
ing the dielectric loss smears out some of the resonance and
the anti-resonance[e.g.,"v4 and"vc in Figs. 7(a) and 7sad8,
respectively].

Assuming"g=0, we calculated from Eq.(3.11) surface
charge densities induced on themth surface, with which we
determined their polarity and thus the symmetry of the sur-
face plasmon eigenmodes induced in the Na shells, as given
in Table I. Letters S and A in the table indicate symmetric
and anti-symmetric eigenmodes(cf. Fig. 8),25,39 respectively.
For example, whenn=4 (i.e., fourfold nano-onions) at "v1,
charge densities1, 1, 2, and1 in sign are induced on the
surfaces of numbersm=1, 2, 3, and 4, respectively. Thus, the
Na shell has symmetric and anti-symmetric surface plasmon
modes on its outer(m=1 and 2) and inner(m=3 and 4)
shells, respectively. One will notice that in all nano-onions
with n=2–5, theoutermost(m=1 and 2) Na shell has only
symmetric eigenmodes at"v1, while it has only anti-
symmetric eigenmodes at other resonance energies,"v2,
"v3, "v4, and"v5.

B. Magneto-optical enhancement

Applying an external magnetic field ofB=1 T along thez
axis, we calculate the magneto-optical Kerr effect for the
composite containing the spherical nano-onions. The off-
diagonal dielectric function«m

xy=«m
xy8+ i«m

xy9 for Na is ex-
pressed in terms of the cyclotron angular frequencyvc, as
well asvp andg for the free electrons as follows:46

«m
xy = − «m

yx = ivc

vp
2

vsv + igd2 − vvc
2 , s4.4ad

vc = eB/m* . s4.4bd

Here, e and m* are charge and effective mass of the elec-
trons, respectively. The polar Kerr rotation angleuK and el-
lipticity angle xK for the composite containing the nano-
onions were calculated from the complex equation

FIG. 5. Ref1/kS̃1lxxg calculated as a function of photon energy
for a composite which contains spherical, nonstructured nanopar-
ticles of Na having"g as reported in the literature(shown by solid
line) and"g=0 (dotted line).

FIG. 6. Ref1/kS̃1lxxg and Ref1/kS̃2lxxg calculated for a com-
posite which contains spherical, twofoldsn=2d core (dielectric)/
shell (Na) structured nano-onions, using"g as reported in the lit-
erature[(a) and (b)] and"g=0 [sad8 and sbd8].

FIG. 7. Ref1/kS̃mlxxg sm=1–4d calculated for a composite
which contains spherical, fourfoldsn=4d nano-onions, using"g as
reported in the literature[(a)–(d)] and"g=0 [sad8–sdd8].
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uK + ixK =
ik«̃lxy

Îk«̃lxxsk«̃lxx − 1d
. s4.5d

As an example, the case forn=2 is shown in Fig. 9. The
diagonal and off-diagonal elements of the complex effective
dielectric tensor,k«̃lxx s=k«̃8lxx+ ik«̃9lxxd and k«̃lxy s=k«̃8lxy

+ ik«̃9lxyd, exhibit resonant dispersion relations in close vicin-
ity of the surface plasmon resonance frequencies as shown in
Fig. 9. However, the Kerr rotationuK and ellipticity xK ex-
hibit a resonant dispersion relation at frequencies slightly
different from the surface plasmon resonance frequencies.
This is because at these frequenciesk«̃lxx−1, which appears
in the denominator on the right side of Eq.(4.5), approaches
zero.

Figure 10 showsuK andxK for n=3. Because Na fills the
composite by factorfst1+ t3d, we defined Kerr effect en-
hancement factors by

MsuKd =
uk

Pscompd
fst1 + t3duKsNad

, s4.6ad

MsxKd =
xK

Pscompd
fst1 + t3dxKsNad

. s4.6bd

Here,uK
Pscompd [or xK

Pscompd] expresses the resonant peak
height of the Kerr rotation(ellipticity) for the composite and

TABLE I. Polarity of surface charge densities induced on themth surfaces and symmetry(S: symmetric, A: anti-symmetric) of surface
plasmon eigenmodes generated in the Na shells in spherical,n-fold Na/dielectric nano-onions, calculated at respective resonance energies.
Parentheses indicate that the resonance is smeared as"g is changed from 0 to 0.31 eV, the literature value.

Resonance
energy

Surface
number

m

n=5 n=4 n=3 n=2 n=1

Polarity Symmetric Polarity Symmetric Polarity Symmetric Polarity Symmetric Polarity

"v1 1 h++ j S h++ j S h++ j S h++ j S h++ j2

3 h−− j S h−+ j A
−

4

5 s+d
"v2 1 h +

s−d j A h +

s−d j A h+− j A h+− j A
2

3 h++ j S h++ j S
+

4

5 s−d
"v3 1 h+− j A h+− j A hs+d

− j A
2

3 h+− j A hs+d

− j A
−

4

5 s+d
"v4 1 hs+d

s−d j A hs−d

s+d j A
2

3 hs+d

s−d j A hs−d

s+d j A
4

5 −

"v5 1 hs+d

− j A
2

3 hs−d

s+d j A
4

5 s+d

FIG. 8. Surface charges induced in themth shell by(a) symmet-
ric and (b) antisymmetric surface plasmon eigenmodes.
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uKsNad fxKsNadg expresses the rotation(ellipticity) calcu-
lated for Na bulk sample at resonance frequencies. As shown
in Table II, we obtained forn=3, MsuKd and MsxKd
<6–90, which increased about one order of magnitude, to
<80–1700, when"g was hypothetically reduced by a factor
5, from 0.31 to 0.06 eV. Thus, the magneto-optical en-

hancement factor is augmented as theQ factor of the reso-
nance becomes high.

C. Effect of the shape of nano-onions

Next, we changed the shape of the nano-onions to sphe-
roidal prolatesNx=Ny=0.35d and oblatesNx=Ny=0.28d to
determine how the depolarization factor affects the magneto-
optical response. For the composites containing the spheroi-
dal, twofoldsn=2d nano-onions we calculatedk«̃lxy and Kerr
effect. The results are shown in Figs. 11 and 12. Comparing
Fig. 11 (prolate) with Fig. 9 (spherical), one notices that
increasing the depolarization factorNx along the light field
direction augments the resonant peak heights ofk«̃lxy, uK,
andxK at "v1 slightly, but does not change appreciably the
peak heights atv2. On the other hand, Fig. 12(oblate) shows
that decreasingNx deforms the resonant curves and decreases
their peak heights of the Kerr effect at both"v1 and"v2.

FIG. 9. Spectra for effective dielectric permittivity tensor ele-
ments and Kerr effect calculated for a composite containing spheri-
cal, twofold Na/dielectric nano-onions.

FIG. 10. Kerr effect spectra calculated for a composite contain-
ing spherical, threefold Na/dielectric nano-onions.

TABLE II. Enhancement factors for Kerr rotation and ellipticity
for a composite containing spherical, threefoldsn=3d nano-onions
calculated at the respective resonance energies for two values of"g.

MsuKd MsxKd

"g=0.31 eVa "g=0.06 eVb "g=0.31 eVa "g=0.06 eVb

"v1 7.7 82 10 82

"v2 56 1166 88 1698

"v3 6.1 159 6.4 85

aReported in the literature.
bReduced by a factor 5 from the literature value.

FIG. 11. Off-diagonal element for effective dielectric permittiv-
ity tensor and Kerr effect calculated for a composite containing
prolate, twofold Na/dielectric nano-onions.
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V. DISCUSSION AND CONCLUSION

By applying the MG theory, which is based on the quasi-
static approximation, we formulated the effective dielectric
permeability tensors for the composites containing ellipsoi-
dal, n-fold nano-onions as given by Eq.(2.49), or in more
simplified forms of Eqs.(2.50) and (2.53). When there are
two or more different types of nano-onions dispersed in the
matrix, the formula is extended as given by Eq.(2.57). Be-
cause the polarizations induced in the nano-onions are
treated as point dipole moments in our quasistatic approxi-
mation, the size of the nano-onions does not appear in the
effective dielectric tensor explicitly, but enters as the filling
factors f and tm.

Using the effective dielectric tensor, we analytically for-
mulated the resonance conditions for the dipolar surface
plasmons as Eq.(3.6). We also derived Eq.(3.11), a formula
giving the surface charge density induced on the shell sur-
faces, with which we can determine the symmetry of the
surface plasmon polariton eigenmodes excited in the metal
shells.

On the composites containing model nano-onions spheri-
cal in shape havingn-fold Na/dielectric alternate stratifica-
tion, our findings are summarized as follows.

(1) If the dielectric loss of Na is neglected, there aren
surface plasmon eigenmodes, in each of which an infinitely
large electric field is induced in every shell or core. In addi-
tion in themth shell or core, anti-resonance(where zero field
is induced) occurs atn-m frequencies. The occurrence of the
resonance and anti-resonance is similar as found in then-fold
coupled oscillators.45

(2) As the dielectric loss is introduced, the light extinc-
tion coefficient exhibits resonant peaks at the surface plasma
frequencies, although some of the resonance and anti-

resonance(which occurred in case of no dielectric loss) are
smeared out.

(3) The magneto-optical Kerr effect, as well as the off-
diagonal dielectric permittivity tensor elements, is promi-
nently enhanced by the surface plasmon resonance, espe-
cially when the dielectric loss is weak and the resonance has
a high quality factorQ. For the Na/dielectric double layered
nano-onions, we found that changing the particles shape to
prolate spheroidal(and thus increasing the depolarization
factor) increases the resonant peak heights ofk«̃lxy, uK, and
xK at v1 only slightly.

We47 have given a preliminary report on the effective per-
mittivity tensor [Eq. (2.49)], with only a brief outline of its
derivation, and have calculated the magneto-optical Kerr ef-
fect in composites containing nano-onions of Fe/Au
multicore-shell structures; they did not show definite features
of plasma resonance in Au shells. We48 later found that in-
serting a dielectric layer between the Fe core and Au shell,
and thus increasing theQ factor of the resonance, enhances
Kerr effect. This is similar as increasingQ by decreasing"g
in Na enhances Kerr effect in the composite containing Na/
dielectric nano-onions.

The composite containing threefold Na/dielectric nano-
onions have large Kerr effect enhancement factors[MsuKd
and MsxKd<6–90], which are, however, augmented by a
factor 1/fst1+ t2d s=1/135d; actualuK andxK are reduced by
factors of 0.05–0.7 from those for bulk Na. The figures of
merit for the Kerr effect, defined byR1/2uK and R1/2xK (R:
reflectivity), are reduced more, by factors of 0.01–0.14, be-
cause the composite has a much lower reflectivitysR
<0.04d than Na bulksR<0.9d. This, as well as the combus-
tible nature of Na, makes the composites containing the Na/
dielectric nano-onions unfeasible for practical applications,
although they provide a good model to study optical surface
plasmon resonance.

In our calculation, the filling factor of the nano-onions
was fixed to f =0.01, small enough to conform to the MG
theory that was derived assuming sparse dispersion of the
particles. Let us reexamine the low filling factor limit in the
calculations based on the MG theory. The MG theory26 was
derived originally utilizing the Rayleigh scattering theory, a
kind of quasistatic approximation, which assumes that homo-
geneous fields are induced within and outside the particles by
the light field. In other words, the MG theory presupposes
that the particles are much smaller than the light wavelength
and the particles are sparsely filling the matrix. However, the
MG theory has been applied beyond the low filling factor
limit, and is justified by experimental results. Kreibiget al.49

revealed that the plasmon resonance absorption spectra for
the composites containing Ag spherical nanoparticles
(8–75 nm in diameter) are fitted by the MG theory rather
well even for high filling factor, up tof =0.4, as long as the
particles were not coagulated. When the composites had par-
tial coagulation, additional peaks appeared, which was ex-
plained in term the surface plasma resonance in various types
of clusters of the Ag nanoparticles. Therefore, the MG theory
is shown to be applicable even for high volume fraction of
the particles when no coagulation aggregates exist.

One can explain this as follows. The MG theory is con-
sidered as a generalization of the Clausius-Mossotti theory50

FIG. 12. Off-diagonal element for dielectric permittivity tensor
and Kerr effect calculated for a composite containing oblate, two-
fold Na/dielectric nano-onions.
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that gives the dielectric constant for crystals, i.e., the en-
sembles of spherical atoms in vacuum to the ensembles of
the small particles in the matrix. In the MG theory, the local
field acting on the particles is approximated by the Lorentz
local field, similar as in Clausius-Mossotti theory.31,42,51The
Clausius-Mossotti theory is applicable to cubic crystals or
completely disordered amorphous crystals, in which vacuum
is embedded with atoms at a fairly large filling factor, even
up to ,0.74, the maximum value obtained for bcc or hex-
agonal close packing of spherical atoms. Therefore, the MG
theory will be applicable even up to large value off, when
the matrix surrounding the particles are composed of grains
much smaller than the particles(i.e., the host material can be
considered as continuous, similar as vacuum in the Clausius-
Mossotti theory) and the particles are uniformly dispersed
without being coagulated. If the grains of the surrounding
matrix are not sufficiently smaller than the particles, we must
use the Bruggeman theory27 to symmetrize the roles of in-
clusion(particles) and the host(matrix) when the filling fac-
tor is not small.51 If the particles are coagulated, the effects
by clustering of the particles must be taken into account.
Therefore, the MG theory will be applicable even whenf is
large for an ideal composite in which the nano-onions are
dispersed without coagulation in a matrix composed of very
small grains.

Now let us discuss the limit inherent in the calculation by
the MG theory, comparing with that by the rigorous Mie
scattering theory. For Ag spheres with radiusa, the limit
allowing 10% difference between the calculations by the MG
theory and the Mie theory is estimated asaø ,0.03l (l:
light wavelength).33,35,37This is about the size perimeter usu-
ally taken to delimit the small particle Rayleigh approxima-
tion (based on which the MG theory is derived) from the
accurate Mie theory, which amount toa=6.9 and 105 nm at
our measurement boundaries"v=6 and 0.4 eV, respectively.

As we already described, Sinzig and Quinten39 revealed
using the Mie scattering calculation that the spherical nano-
onions(having diameter 2a=2–12 nm), which have similar
Na/dielectric stratified structuresnø7d dispersed in vacuum
as ours, exhibit similar plasmon resonant absorption peaks.
The background of the extinction spectras"v=0.5–6 eVd
rises prominently at higher photon energies, while our ex-
tinction spectra(Fig. 4) do not show such a particular in-
crease. This is because the light scattering intensity, calcu-
lated by the Mie theory(which involves space dependence
of, as well as multipole scattering by, the polarization and
field induced in particles), increases asa/l increases at
higher photon energies.33 However, it should be noted that
by the Mie theory the light extinction is calculated from the
scattering cross section by a single particle, without consid-
ering any mutual interactions between the particles. The Mie
calculation is hence limited to the very sparse dispersion of
the nano-onions. On the other hand, our calculation is appli-
cable to more concentrated dispersion of the particles, be-
cause the MG theory incorporates the interparticle interac-
tion through the local Lorentz field acting on the particles.

It should be also noted that the dielectric function re-
ported for bulk metal samples may not be directly applicable
to small particles. If the dimensiond (core radius and shell
thickness) for core/shell structured particles becomes compa-

rable to the mean free path, of the free electrons, the relax-
ation constantg for the metal core or shell(s) is modified
from the bulk valueg` to21,22,29

g = g`s1 + ,/dd. s5.1d

Here, the term, /d expresses the effects of free electron col-
lision at the surface. For Na, is reported to be 34 nm.31

Furthermore, for small particles we must consider the quan-
tum size effect and defects, which will also change the di-
electric function of the particles.

In conclusion, we have clarified the physical picture of the
surface plasma resonance occurring in then-fold stratified
Na/dielectric nano-onions, and revealed that magneto-optical
effect, as well as light extinction, is prominently enhanced by
the surface plasmon resonance in the Na shells and cores.
Our calculation, based on the MG theory, should prove use-
ful for the composites containing nano-onions even at a high
volume fraction as far as the particles much smaller than the
light wavelength are dispersed without coagulation and the
dielectric functions of the cores and shells of the nano-onions
are known.
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APPENDIX: DERIVATION OF EQS. (2.21) AND
(2.22)

Substituting Eq.(2.14) into Eq.(2.18), we obtain the elec-
tric field on themth boundary surface as follows:

sEm
j djm

= o
i

h1
−1SEm

i ]ui

]j
+

]Em
i

]j
uiD

jm

= o
i

sĒm
i djm

snjidjm
,

sA1ad

sEm
hdjm

= o
i
Sh2

−1Em
i ]ui

]h
D

jm

= o
i

sEm
i djm

snhidjm
, sA1bd

sEm
z djm

= o
i
Sh3

−1Em
i ]ui

]z
D

jm

= o
i

sEm
i djm

snzidjm
. sA1cd

Here s¯djm
indicatesj=jm, and we defined

Ēm
i = Fm

i + bmsNm
i − 1dCm

i si = x,y,zd, sA2d

with bm, Ñm, 1̃ given by Eqs.(2.24)–(2.27). We also intro-
duced unitary vectors along thej, h, and z coordinates as
follows:44
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nj = snjx,njy,njzd = S 1

h1

]x

]j
,

1

h1

]y

]j
,

1

h1

]z

]j
D , sA3ad

nh = snhx,nhy,nhzd = S 1

h2

]x

]h
,

1

h2

]y

]h
,

1

h2

]z

]h
D , sA3bd

nz = snzx,nzy,nzzd = S 1

h3

]x

]z
,

1

h3

]y

]z
,

1

h3

]z

]z
D . sA3cd

They satisfy the orthonormal relations

nj ·nj = 1, sA4ad

nj ·nh = 0, sA4bd

nj 3 nh = nz, sA4cd

nj 3 nz = − nh, sA4dd

nz 3 nh = − nj. sA4ed

In deriving Eq.(A1), we used, in addition to Eq.(A4), the
relations

S ]Ax

]j
D

jm

=
− 1

am
3 bmcm

, S ]Ay

]j
D

jm

=
− 1

ambm
3 cm

,

S ]Az

]j
D

jm

=
− 1

ambmcm
3 , sA5ad

sxdjm
= 2amS ]x

]j
D, sydjm

= 2bmS ]y

]j
D, szdjm

= 2cmS ]z

]j
D ,

sA5bd

which are derived from Eqs.(2.4), (2.16), and(2.24)–(2.27).
Substituting Eq.(A1b) into the boundary condition of Eq.

(2.20a), we obtain

o
i

sEm
i djm

snhidjm
= o

i

sEm−1
i djm

snhidjm
. sA6d

SincesEm
i djm

andsEm−1
i djm

are constants butsnhidjm
is a func-

tion of h andz, we must havesEm
i djm

=sEm−1
i djm

si =x,y,zd, or
in vector form,

sEm
i djm

= sEm−1
i djm

sm= 1,2, . . . ,nd, sA7d

in order for Eq.(A6) to hold for arbitrary values ofh andz.
Substituting Eq.(A1c) into Eq. (2.20b) as well as gives Eq.
(A7).

The left side of the remaining boundary condition[Eq.
(2.20c)] is expanded as

sDm
j djm

= s«m
jjEm

j + «m
jhEm

h + «m
jzEm

z djm
. sA8d

Here, we obtains«m
jjdjm

by the unitary transformation as
follows:

s«m
jjdjm

= o
i,j

«m
ij snjinj jdjm

= «mo
i

snjidjm
snjidjm

+ o
iÞ j

s«m
ij + «m

ji dsnjinj jdjm
= «m, sA9d

by using Eqs.(2.8b) and (A4a). In a similar way we obtain
s«m

jhdjm
as

s«m
jhdjm

= o
i,j

«m
ij snjidjm

snh jdjm

= «mo
i,j

snjidjm
snhidjm

+ o
iÞ j

«m
ij snjinh j − nj jnhidjm

= − o
iÞ j

«m
ij snzksi,jddjm

, sA10d

in which we used Eq.(A4b) and introduced the suffixk si , jd
as

ksi,zd = 5x si, jd = sy,zd
y si, jd = sz,xd
z si, jd = sx,yd

6 . sA11d

Similarly, we obtain

s«m
jzdjm

= o
iÞ j

«m
ij snhksi,jddjm

. sA12d

Substituting Eqs.(A1a), (A9), (A10), and (A12) into Eq.
(A8), we get

sDm
j djm

= «mo
i

sĒm
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snjidjm
+ o

iÞ j

sEm
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,

sA13d

which is further transformed to

− sDm
j djm

= h«msĒm
x djm

+ «m
xysEm

y djm
+ «m

xzsEm
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jsnjxdjm

+ h«m
yxsEm
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y djm
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yzsEm
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jsnjydjm

+ h«m
zxsEm

x djm
+ «m

zysEm
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jsnjzdjm
.

sA14d

Replacing the suffixm with m−1 in Eq. (A14) gives

− sDm−1
j djm

= h«m−1sĒm−1
x djm

+ «m−1
xy sEm−1

y djm
+ «m−1

xz sEm−1
z djm

j

3snjxdjm
+ h«m−1
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x djm
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z djm
jsnjzdjm

. sA15d
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Substituting Eqs.(A14) and (A15) into Eq. (2.20c), we ob-
tain the following vector formulas:

«m−1sĒm−1djm
+ s«̃m−1 − «m−11̃dsEm−1djm

= «msĒmdjm
+ s«̃m − «m1̃dsEmdjm

sm= 1,2, . . . ,nd. sA16d

By substituting Eqs.(2.14d) and (A2) into Eqs. (A7) and
(A16), we get

Fm−1 + bmÑmCm−1 = Fm + bmÑmCm, sA17d

«̃m−1Fm−1 + bms«̃m−1Ñm − «m−11̃dCm−1

= «̃mFm + bms«̃mÑm − «m1̃dCm. sA18d

Eliminating Cm−1 or Fm−1 from Eqs.(A17) and (A18) gives
Eq. (2.21) or Eq. (2.22), respectively.
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