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Metallic K3C60 shows pronounced structure and a sharp Fermi edge in integrated photoemission spectra
(PES), while the insulating K4C60 and K6C60 phases display only a broad structureless peak. We find that both
types of spectra can be explained by the coupling to the optic vibrations of the K+/C60

n− ionic lattice. This is
suppressed in K3C60 due to metallic screening but is strong in the insulating phases. We use the noncrossing
approximation to calculate the density of states(DOS) of electrons in K3C60 coupled to the intramolecularHg

modes in good agreement with the experiment. For K4C60 and K6C60 strong coupling to the low-energy optic
K+/C60

n− modes controls the DOS and yields broad peaks in the PES. A moment expansion is used to calculate
the position and width of these peaks, which agree well with the experiment.
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Alkali-metal-doped C60 has been investigated extensively
by photoemission spectroscopy(PES) in bulk systems(Refs.
1–3 and references therein). Recently, Yanget al. measured
the electronic band dispersion of K3C60 in a monolayer sys-
tem on Ag(111) by angle-resolved PES(ARPES).4 By com-
paring angle-integrated spectra(AIPES) from several experi-
ments a generic feature emerges, which is the striking
difference between the spectra of metallic K3C60 and the
insulating K4C60 and K6C60 (the former is a Jahn-Teller dis-
torted insulator, the latter a band insulator): K3C60 shows a
metallic spectra with a sharp Fermi edge and distinct struc-
tures whereas the insulating phases display a broad Gaussian
peak. In the present work we address this difference. The key
ingredient is the large change in coupling strength of the
low-energy sv<10 meVd optic vibrations of the K+ ions.
These modes cause a net shift of the C60 molecular levels
and their interaction is efficiently screened in metallic K3C60
where it is reduced by a factor 10−4−10−2.5,6 However, in the
insulating phases, where metallic screening is absent, they
couple strongly(g<70 meV, see below) due to the direct
Coulomb interaction of the ionic charge with the photoemis-
sion hole. The resulting physics is best illustrated by the toy
model H=va†a+gc†csa†+ad where a single electron is
coupled to a harmonic oscillator. The corresponding photo-
emission spectrum is a Poisson distributionPsed
=onnne−n /n! dse+fn−ngvd, wheren=sg/vd2 is the average
number of excited phonons emitted during the photoemission
process. In the insulating phasesn is very largesn<50d and
as a result the spectrum becomes incoherent resulting in a
Gaussian-like shape. In the following we treat the metallic
and insulating phases separately. First, using the noncrossing
approximation(NCA), it is shown that the spectrum of me-
tallic K3C60 is dominated by the coupling to the intramolecu-
lar C60 modes. Second, we use moment expansion to calcu-
late position and width of the Gaussian-like spectra of K4C60
and K6C60.

The only modes that couple stronglysl<1d in K3C60 are
the intramolecularHg modes, which cause a splitting of the
threefold degenerate lowest unoccupied molecular orbitals
(LUMO’s) of C60 (see Ref. 7 for more details). We treat these
modes by NCA(Ref. 8) and neglect the on-site Coulomb

interaction(U<1 eV in bulk). This is justified in a mono-
layer adsorbed on Ag(111) whereU is reduced by the prox-
imity of the metal.9 Here we restrict our attention to such
systems. A similar calculation was performed by Liechten-
stein et al., who showed that the width of the plasmon in
K3C60 can be explained by electron-phonon coupling.10 The
Hamiltonian that describes the conduction band of K3C60
coupled to theHg modes is(setting"=1)

HHgvib = o
jdnm

tnmsddcj+dm
† cjn + o

jnk

vnajnk
† ajnk

+ o
jnm

nk

gncjm
† cjnfCnm

k ajnk
† + Cmn

k ajnkg. s1d

The first term is the tight-binding band in standard notation
formed by the threefold-degeneratest1ud LUMO’s of C60.
The sum is over the orbitalsn andm, the lattice sitesj , and
the nearest neighborsd. As the spin orientation is preserved
in the Hamiltonian, explicit sums over spins are dropped
throughout. The second term is the energyvn of the eight
fivefold-degenerateHg vibrational multiplets.7 The indicesn
and k denote the multiplet and the mode, respectively. The
last term describes the electron-phonon coupling. The pho-
non energiesvn and the coupling parametersgn are disper-
sionless. The parametersgn are related to the partial coupling
constantln by gn

2= 3
2vnln /Ns0d, whereNs0d is the density of

states per spin and molecule.11 Values for vn and ln were
taken from Ref. 12. The structure of the coupling is given by
the coefficientsCnm

k =Î3
5s−1dmk2,ku1,−m;1 ,nl wherek¯l is

the Clebsch-Gordan coefficient.13 The normalization is such
that oknmsCnm

k d2=3. In the NCA, the electron self-energy is
determined self-consistently by the lowest order self-energy
diagram with the interacting Green’s function. In the present
problem the Green’s functionGnmsv ,kd and self-energy
Snmsv ,kd are 333 matrices. The free phonon propagator
Dnk

0 sv ,qd=Dn
0svd depends only on frequency and the multi-

plet. As a consequence, only the local part of the Green’s
function Gnm

loc=s1/NdokGnmsv ,kd enters, which renders the
self-energySnmsv ,kd=Snmsvd local as well. This is a con-
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sequence of including only noncrossing diagrams. The evalu-
ation of the basic diagram can be simplified further when the
symmetry of the lattice is used. The momentum-independent
Green’s functionGnm

loc and self-energySnm
loc have to be invari-

ant under all symmetry transformations that belong to the
point-group of the lattice. In particular, in a cubic environ-
ment (such as a fcc lattice)

Gnm
locsvd = Ĝlocsvddnm, Snmsvd = Ŝsvddnm, s2d

whereĜlocsvd and Ŝsvd are scalars. On the surface or in a
monolayer the symmetry is lower than cubic and the Green’s
function has additional off-diagonal parts. However, the cor-
responding corrections were found to be small(1% or less)
and therefore it is an excellent approximation to use the
Green’s function and self-energy as given in Eq.(2). This
yields the scalar equation

ŜsEd = io
n

gn
2E dv

2p
D0

nsvdĜlocsE − vd. s3d

Thus, the problem is simplified to a single band interacting
with a discrete set of phonon modes. Relation(3), which is
an equation for the self-energy, is solved iteratively using the
advanced Green’s function. In Eq.(3), the band structure
only enters via the density of states(DOS) and we chose a
generic square DOS with a widthW=0.5 eV. Using other
bare DOS’s revealed that the interacting DOS depends only
weakly on the form of the bare DOS. The result for half-
filling sm=0d, which corresponds to K3C60, is shown in Fig.
1. The interacting DOS shows an overall structure, such as a
dip at 0.2 eV and a second hump at 0.4 eV, which agrees
well with the AIPES of the monolayer system.4

The insulating compounds K4C60 and K6C60 differ impor-
tantly from K3C60. As discussed in the introduction, in the

absence of metallic screening, the coupling to the K+ modes
is strong and the ground state of a hole created by photo-
emission will be polaronic. This type of physics is not cap-
tured by NCA. On the other hand, the ground states of the
insulating phases are rather simple: K6C60 is a trivial band
insulator, whereas in K4C60 there are four localized electrons
on each C60 that form a singlet due to Jahn-Teller
distortions.13,19 If the ground stateuC0l is known, the mo-
mentsmk=edeekPsed of the spectrumPsed (normalized to 1)
can be exactly calculated by evaluating the expectation val-
ues

s4d

The sum is over all sitesj and orbitalsn, andN is the total
number of the electrons.H is the full Hamiltonian and in-
cludes all vibrational modes as well as Coulomb interactions.
Although relation(4) is exact, the reconstruction of a distri-
bution from a finite number of known moments is an ill-
defined problem if the overall shape of the distribution is
unknown. However, as was argued above, the strong cou-
pling to the low-energy optic modes yields a very incoherent
and therefore Gaussian-like spectrum. Hence, for this physi-
cal reason the distribution should be well approximated by a
Gaussian that is determined by the first and second moment
as given by Eq.(4). The procedure that follows is, first, to
determine all contributions toH and, second, calculate the
moments by Eq.(4).

The additional phonon contributions toH are modes that
cause a net shift of the molecular orbitals and therefore are
no longer screened in the insulating phases.5,6 These modes
are the intramolecularAg modes and the vibrations of the
ionic lattice. In principle, lattice vibrations also couple via a
change in hopping, but the corresponding coupling is much
smaller.7 In the case of the two intramolecularAg modes, the
frequenciesvn and coupling parametersgn are dispersion-
less. As for the Hg modes, the latter is given bygn

2

= 3
2vnln /Ns0d (see above) and values were taken from Ref.

12. The coupling to the ionic lattice has been studied much
less extensively, mainly because it is negligible in the super-
conducting K3C60. Here we consider the coupling due to the
Coulomb interaction between the ionic charges. The mass
ratio MC60

/MK =18.4 is large, which allows us to separate the
lattice vibrations into optic dispersionless K modes and
acoustic modes. The frequencies of these modes were mea-
sured by electron energy loss spectroscopy,14 where it was
observed that K+ ions close to the surface have substantially
lower frequencies. As photoemission is surface sensitive, we
use the valuesvK =8.9 meV andvK =10.9 meV for K4C60
and K6C60, respectively. In what follows, only the averaged
coupling constantḡK

2 =Ns
−1oqaugqau2 enters(the sum is over

all optic K modesa), which is given by(with " exception-
ally included)

ḡK
2 =

e2"

2MKvK
o

rPhK+j

Er
2. s5d

The sum runs over all K+ ions r andEr is the electric field at
the positionsr and caused by an additional hole on the C60

FIG. 1. Solution of the NCA at half fillingsm=0d which corre-
sponds to K3C60. Upper panel:Occupied part of the interacting
DOS. Lower panel:Advanced self-energy.Inset: Occupied DOS
(solid line) convoluted with a Gaussianss=10 meVd and compared
to the experimental spectrum of the monolayer(dashed line)
(Ref. 4).
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molecule at the origin. The sum in Eq.(5) depends on the
lattice. K6C60 has a bcc lattice with a cubic lattice constant
a=11.39 Å where each C60 molecule is surrounded by 24 K+

ions located ats0,0.5,0.25da.15,16 Considering the bare cou-
pling of the closest by K+ ions yieldsgK =120 meV. Taking
into account the polarizability of the C60

6− ions by multipole
expansion17 reduces the electric fields entering Eq.(5) by
40% and yields a coupling constantgK =72 meV. In K4C60
distances between C60

4− and K+ are almost the same as in
K6C60, however, every C60

4− ion is surrounded by 16 K+ ions
instead of 24. This reducesgK in K4C60 by a factorÎ2/3
with respect to K6C60. Also taking into account the differ-
ence invK we find gK =65 meV for K4C60. Coupling to the
acoustic modes is more involved because bothvqa andgqa

are q dependent. We used a simple spring model param-
etrized by a phonon frequency of 5 meV at the Brillouin
zone boundary.18 This yields an averaged coupling constant
ḡa=10 meV. In addition we find an average frequencyv̄a
=Ns

−1oqavqaugqa / ḡau2=3.8 meV. Finally, the Coulomb inter-
actions should also be included inH. However, they vanish
in the case of K6C60 where a single hole is created in a full
band. In K4C60 there is a contribution from the on-site
Hund’s-rule coupling term(see Ref. 20 for a detailed de-
scription).

In the following we will discuss the results for K6C60 in
more detail than those of K4C60 because the ground state
of the latter involves Jahn-Teller distorted molecules and a
detailed discussion would go beyond the scope of this Brief
Report. As mentioned above, the ground state of K6C60 is
a full band and trivially given byuC0l=p jncjn

† uvacl. Note
that uC0l does not have any phonon excitations. Coulomb
terms can be neglected for K6C60 and the Hamiltonian
H=Hkin+Hp+Hep consists of the kinetic energy, the pho-
non energies, and the electron-phonon coupling terms. As

before, we assume a quadratic bare DOSr0 with a width
W=0.5 eV and centered around zero. Using relation(4) to
evaluate the moments of the photoemission spectrum one
finds thatm1=0. The second moment ism2=m2sr0d+oxgx

2

where m2sr0d=W/ s2Î3d is the second moment of the
normalized square DOSr0. The sum is over all phonon
modesx. Similarly, the third moment ism3=−oxwxgx

2. Using
the parameters as listed in Table I one findss=Îm2
=0.229 eV andm3/s3=−0.319. Usually, the photoemission
spectrum is plotted with respect to the chemical potential
which, per definition, ism=E0sNd−E0sN−1d=−E0sN−1d
and therefore corresponds to the polaron ground state energy.
In the small polaron limit, where the hole is localized on a
single molecule, the chemical potential is given by the relax-
ation energy of the phonon degrees of freedom that couple to
the hole:

m = − E0sC60
1−d +

ḡK
2

vK
+

ḡa
2

v̄a

= 0.599 eV, s6d

E0sC60
1−d is the Jahn-Teller ground state energy of an elec-

tron in the LUMO of an isolated C60 molecule interacting
with the intramolecular modes. By particle-hole symmetry,
this is the same asE0sC60

5−d and was calculated numerically
in Ref. 19. The last two terms are the energy gain due to the
ionic lattice distortions. It must be noted that the total con-
tribution of the K modes to the chemical potential is propor-
tional to wK

−2, becausegK
2 itself is proportional towK

−1 [rela-

TABLE I. Frequencies and coupling constants for the vibra-
tional modes in KnC60 (all energies are in meV). Parameters for the
intramolecularHg and Ag modes were taken from Ref. 12. The
coupling constant for the lattice vibrations were calculated in this
work. In K3C60 the coupling to theAg modes and the vibrations of
the ionic lattice is efficiently suppressed by metallic screening.

Mode vn ln /Ns0d gn

Hgs8d 195 23 82

Hgs7d 177 17 67

Hgs6d 155 5 34

Hgs5d 136 12 50

Hgs4d 96 18 51

Hgs3d 88 13 41

Hgs2d 54 40 57

Hgs1d 34 19 31

Ags2d 182 11 55

Ags1d 61 0 0

K mode 8.9,a 10.9b - 65,a 72b

Acoustic 3.8 - 10

aApplies for K4C60.
bApplies for K6C60.

FIG. 2. Gaussian fit(solid curves) to the photoemission spec-
trum using the first and second moments as calculated in Eq.(4)
and plotted with respect to the chemical potential. The dashed
curves are the experimental data(Ref. 2 for K6C60, Ref. 3 for
K4C60).
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tion (5)]. Hence,m depends sensitively onvK. Note that this
estimate is a lower bound for the chemical potential, because
in the insulating K6C60 it may lay everywhere in the band
gap rather than on the top of the filled band. In Fig. 2 a
Gaussian of widths and shifted bym is plotted. The result
compares well with the experimental curve from bulk mea-
surements although the width is somewhat too small.2 Other
fitting functions that accounted correctly for the nonzero
third moment were tested as well. However, this yielded only
slightly different curves than the Gaussian shown here.

The case of K4C60 is more complicated, due to Jahn-
Teller distorted molecules where the threefold degenerate
LUMO is split into a singlet and a doublet. In K4C60 the
doublet is lower in energy and occupied by four electrons.
Hence, they form a full band in the solid, which results
in the insulating state. The problem of the Jahn-Teller
distortion in C60, which cannot be solved analytically, has
been extensively studied by various approaches.13,19 In addi-
tion, we developed a variational wave function for C60

4−,
which yields a ground state energy in agreement with exact
diagonalization results.19 In order to calculate the expectation
values in Eq.(4) we use this variational ground state(details

of the calculation will be published elsewhere). We find a
first momentm1=−0.174 eV, which is due to the energy gain
of the Jahn-Teller distortion. The chemical potential is again
given by Eq.(6), except that −E0sC60

1−d has to be replaced
by E0sC60

4−d−E0sC60
3−d, which yields m=0.422 eV.19 Fi-

nally, the second moment iss=Îm2=0.244 eV, which is
somewhat smaller than that in K6C60. In Fig. 2 the corre-
sponding Gaussian is plotted and compared to the experi-
mental data from bulk measurements.3 Again, good agree-
ment is found.

In conclusion, we showed that the different photoemission
spectra in metallic and insulating KnC60 are due to a large
change in the coupling strength to the low-energy, optic K+

modes. Theoretical calculations for both cases yield good
results.

We are grateful to E. Koch and O. Gunnarsson for useful
discussions and, especially, to Z.-X. Shen for drawing our
attention to this problem as well as to W. L. Yang for pro-
viding the experimental data. We also acknowledge support
from the Swiss Nationalfonds.

*Electronic address: swehrli@phys.ethz.ch
1C. T. Chen, L. H. Tjeng, P. Rudolf, G. Meigs, J. E. Rowe, J. Chen,

J. P. McCauley, A. B. Smith, A. R. McGhie, W. J. Romanow,
and E. W. Plummer, Nature(London) 352, 603 (1991).

2P. J. Benning, F. Stepniak, D. M. Poirier, J. L. Martins, J. H.
Weaver, L. P. F. Chibante, and R. E. Smalley, Phys. Rev. B47,
13 843(1993).

3R. Hesper, L. H. Tjeng, A. Heeres, and G. A. Sawatzky, Phys.
Rev. B 62, 16 046(2000).

4W. L. Yang, V. Brouet, X. J. Zhou, H. J. Choi, S. G. Louie, M. L.
Cohen, S. A. Kellar, P. V. Bogdanov, A. Lanzara, A. Goldoni, F.
Parmigiani, Z. Hussain, and Z. X. Shen, Science300, 303
(2003); W. L. Yang and Z.-X. Shen(private communication).

5O. Gunnarsson and G. Zwicknagl, Phys. Rev. Lett.69, 957
(1992); O. Gunnarsson, D. Rainer, and G. Zwicknagl, Int. J.
Mod. Phys. B6, 3993(1992).

6E. Koch, O. Gunnarsson, and R. M. Martin, Phys. Rev. Lett.83,
620 (1999).

7O. Gunnarsson, Rev. Mod. Phys.69, 575 (1997).
8S. Engelsberg and J. R. Schrieffer, Phys. Rev.131, 993 (1963).
9R. Hesper, L. H. Tjeng, and G. A. Sawatzky, Europhys. Lett.40,

177 (1997).
10A. I. Liechtenstein, O. Gunnarsson, M. Knupfer, J. Fink, and J. F.

Armbruster, J. Phys. C8, 4001(1996).
11M. Lannoo, G. A. Baraff, M. Schlüter, and D. Tomanek, Phys.

Rev. B 44, 12 106(1991).
12O. Gunnarssonet al., Phys. Rev. Lett.74, 1875(1995).
13A. Auerbach, N. Manini, and E. Tosatti, Phys. Rev. B49, 12 998

(1994); N. Manini, E. Tosatti, and A. Auerbach,ibid. 49, 13 008
(1994).

14C. Silien, P. A. Thiry, and Y. Caudano, Phys. Rev. B67, 075412
(2003).

15A. Cheng and M. L. Klein, J. Phys. Chem.95, 9622(1991).
16S. C. Erwin and M. R. Pederson, Phys. Rev. Lett.67, 1610

(1991).
17S. Wehrli, E. Koch, and M. Sigrist, Phys. Rev. B68, 115412

(2003).
18L. Pintschovius, Rep. Prog. Phys.59, 473 (1996).
19O. Gunnarsson, Phys. Rev. B51, 3493(1995).
20M. Capone, M. Fabrizio, P. Giannozzi, and E. Tosatti, Phys. Rev.

B 62, 7619(2000).

BRIEF REPORTS PHYSICAL REVIEW B70, 233412(2004)

233412-4


