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The electronic transport through two coupled quantum dots in a parallel configuration is studied under a
magnetic flux. We model the system by means of a non interacting two-site Anderson Hamiltonian. We find
that the conductance shows Fano and Dicke effects that can be controlled by the magnetic flux.
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Resonant tunneling through two parallel quantum dots has
attracted much interest recently. For instance, Holleitneret
al.1 studied how the molecular states of semiconductor quan-
tum dots connected in parallel to the leads can be coherently
probed and manipulated in transport experiments, while
Kubala and König2 reported a level attraction in an
Aharonov-Bohm interferometer with two quantum dots in its
arms. Moreover, Kang and Cho3 and Boeseet al.4 studied the
double quantum dot in the parallel geometry in the presence
of a magnetic flux.

In Ref. 5 we reported on the transition from a series to a
parallel arrangement of two coupled quantum dots attached
to leads. The existence of two different pathways for the
electron transport produces conductance spectra composed
by a Breit-Wigner resonance and a Fano-like resonance at
the bonding and antibonding frequencies, respectively. We
found that close to the symmetrical parallel configuration the
conductance shows an ultranarrow peak that eventually dis-
appears completely in the symmetrical one, a feature we
called the ghost Fano effect. The general features of the con-
ductance spectrum taking place in the series to parallel tran-
sition of Ref. 5 are given in the parallel coupled double
quantum dot embedded in an Aharonov-Bohm flux, as dis-
cussed by Kang and Cho3 and Baiet al.6 The two conduc-
tance peaks(Breit-Wigner and Fano-like line shapes) depend
sensitively on the external magnetic field and exhibit
Aharonov-Bohm-type oscillations.

In this Brief Report we consider the electron transport
through parallel coupled double quantum dots embedded in
an Aharonov-Bohm interferometer connected asymmetri-
cally to leads. We show that with a period of a quantum of
flux sF0=h/ed the magnetic field allows interchanging the
roles of the bonding and antibonding states in the transmis-
sion spectrum. For intermediate values of the flux(namely,
semi-integer multiples of a quantum of flux) the parallel
coupled double quantum dot behaves as if it were connected
in series. We also find that whenever the flux is close to
integer multiples ofF0, the density of states shows an ultra-
narrow and a broad peak at the energies of the molecular
states, associated with Fano and Breit-Wigner line shapes in
the conductance. When the flux has exactly the above values,
the conductance experiences the suppression of the Fano line
shape, indicating a localization of the corresponding molecu-
lar state, similarly to what takes place for the symmetrical
case in the absence of magnetic field.5 We find that these

results hold even under a strong left-right asymmetry. This
phenomenon resembles the Dicke effect in optics, which
takes place in the spontaneous emission of a pair of atoms
radiating a photon with a wavelength much larger than the
separation between them.7 The luminescence spectrum is
characterized by a narrow and a broad peak, associated with
long- and short-lived states, respectively. The former state,
coupled weakly to the electromagnetic field, is calledsubra-
diant, and the latter, strongly coupled,superradiantstate.

The Dicke effect was predicted and experimentally veri-
fied long ago in atomic systems;9–11 however, only recently
predictions were made for it to occur in transport through
mesoscopic systems.8 The appearance of the Dicke effect in
resonant tunneling was predicted to appear in the conduc-
tance by Shahbazyan and Raikh in a work on a tunneling
junction with two impurities.12 Later, Shahbazyan and
Ulloa13 studied this effect in a system of localized states in a
strong magnetic field. More recently, Vorrath and Brandes14

studied the stationary current through a double quantum dot
interacting via a common phonon environment, and Wunsch
and Chudnovskiy investigated the Dicke effect in a ring
coupled to a reservoir.15

We consider two coupled single-level quantum dots, at-
tached asymmetrically to leads. The system is modeled by a
noninteracting two-impurity Hamiltonian, and the conduc-
tance and densities of states are obtained by the equation of
motion approach for the Green’s function.

From the diagonal elements of the Green’s function we
can get the spectral densitiesA±=−s1/pdIm G±±

r . Summing
over the6 states we obtain the density of states of the two
coupled quantum dots,

rs«d = o
s=−,+

As, s1d

where

A− =
1

pL
cos2sf/4dG̃fs« − tcd2 + 4GLGR sin4sf/4dg, s2d

A+ =
1

pL
sin2sf/4dG̃fs« + tcd2 + 4GLGR cos4sf/4dg, s3d

with
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L = G̃2f« − tc cossf/2dg2 + fstc + «ds« − tcd

+ GLGR sin2sf/2dg2, s4d

where GL sGRd is the left (right) level broadening,G̃=GL

+GR, andf the Aharonov-Bohm phasef=2pF /F0, with F
the magnetic flux.

The transmission in turn results16

Ts«d =
1

L
4GLGRf« cossf/2d − tcg2. s5d

The conductance is related to the transmission according to
the Landauer formula at zero temperature,2 Gs«d
=s2e2/hdTs«d. We note in Eq.(5) that whenf=0 and GL

=GR=G0 (with G0 the level broadening of a single quantum
dot) the result without magnetic field is recovered.5 Also, as
follows from Eqs.(1)–(4), the density of states is the sum of
a Lorentzian with widthG−→2G0 and ad function centered
at the antibonding energysG+→0d. In other words, in this
limit the antibonding state is decoupled from the continuum,
while the bonding state has reduced its lifetime to a half.
This is due to quantum interference in the transmission
through the two different discrete states(the two quantum-
dot levels) coupled to common leads. This result is similar to
the Dicke effect in optics that takes place in the spontaneous
emission of two closely lying atoms radiating a photon into
the same environment.7 The phenomenon is analogous to the
formation of a bonding and an antibonding state by the co-
herent coupling of the two energy levels, with the difference
that this effect is the splitting of the decay rates(level broad-
ening) into a fast (superradiant) and a slow(subradiant)
mode.8

The Dicke effect in the parallel two coupled quantum dots
occurs also for arbitrary left-right asymmetrysGLÞGRd, and
whenever the Aharonov-Bohm phase approaches an integer
multiple of 2p. In fact, whenf=2pn, with n an integer, the
density of states takes the form

rs«d =5
1

pF G̃

s« − «−d2 + G̃2
G + ds« − «+d, n even

ds« − «−d +
1

pF G̃

s« − «+d2 + G̃2
G , n odd.6 s6d

We observe that the positions of the long-lived and the short-
lived states can be interchanged depending on the parity of
the magnetic flux. Notice that whentc=0 the Dicke effect is
still valid for f=2pn, but when the system is degenerate
s«+=«−=0d the narrow and the wide peaks in the density of
states are superimposed, as in the original Dicke effect.

In order to evaluate the above expressions numerically,
we setGL=s1−DAdG0, GR=s1+DAdG0, whereDA is the asym-
metry parameter. Figure 1 shows the density of states for the
cases discussed above forDA=0.5. Figure 1(a) is for tc=G0
(solid line) and tc=0 (dashed line) at f=0.1p. Whentc=G0,
we see that the narrow peak(corresponding to the “subradi-

ant” state) develops around the antibonding state, and the
broad peak(corresponding to the “superradiant” state) devel-
ops around the bonding state. In the case withtc=0, both the
broad and narrow peaks are centered at«=0. For f=1.9p
and tc=G0 the two peaks interchange roles, as displayed in
Fig. 1(b), while whentc=0 they again are superimposed at
«=0.

Next we show how the Dicke effect is present in the con-
ductance. We define the dimensionless conductance byg
=G/ s2e2/hd. This quantity is given by

gs«d =
4GLGR

L
f« cossf/2d − tcg2. s7d

In general the conductance spectrum is composed of Breit-
Wigner and Fano line shapes, as shown previously by Kang
and Cho3 and us.5 There is a correspondence between the
narrower(wider) peak in the density of states and the Fano
(Breit-Wigner) resonance in the conductance. And the widths
of these lines are also controlled by the magnetic flux. In
fact, whenf is around 2pn, for n even(odd), the Fano line
shape is associated with the antibonding(bonding) state. In
the limit f=2pn, the Fano resonance is suppressed and only
the Breit-Wigner signal survives. The latter develops around
the bonding or the antibonding energy depending on whether
n is even or odd, respectively,

g± =
4GLGR

fs« − «±d2 + G̃2g
. s8d

These features are displayed in Fig. 2 forDA=0.5. The

FIG. 1. Density of statesr as a function of the Fermi energy for
(a) tc=G0 (solid line) and tc=0 (dashed line) at f=0.1 and(b) tc
=G0 (solid line) and tc=0 (dashed line) at f=1.9p.
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curvesg versus Fermi energy forf=0.1p (solid line) and
f=0 (dashed line) are shown in Fig. 2(a). Figure 2(b) gives
g versus Fermi energy for the magnetic fluxf=1.9p (solid
line) and f=2p (dashed line). As happens for a double
coupled quantum dot attached symmetrically to leads in the
absence of a magnetic field,5 when the magnetic flux is an
integer number flux quanta, the long-lived state is decoupled
from the continuum and is suppressed from transmission. For
a flux close to any of these points the system would be in a
regime of Dicke effect(see Fig. 2).

Let us pay some attention to the special case when the
quantum dots are disconnected from each otherstc=0d. Now,
the Fano antiresonance is localized at«=0 independent of
the magnetic flux, except forf=2pn. Equation(7) evaluated
at the center of the band gives

g = 50 sf Þ 2pn,n integerd
4GLGR

sGL + GRd2 = 1 −DA
2 sf = 2pn,n integerd.6 s9d

That is, the conductance is different from zero periodically in
the magnetic field, with a period of one quantum of flux.

On the other hand, it is interesting to note that whenf
→2psn+1/2d (n integer), cossfd→0 and hence the conduc-
tance is reduced to a convolution of two Breit-Wigner line
shapes with the same width centered in the bonding and
antibonding energies, respectively,

g =
GLGRtc

2

fs« − iGLds« − iGRd − tc
2gfs« + iGLds« + iGRd − tc

2g
.

s10d

No Fano line shape develops. The double quantum dot in the
parallel configuration behaves as a serial one for transmis-
sion. When the electron crosses the upper(lower) arm, it

accumulates a phase differencep /2 s−p /2d. The contribu-
tion to the wave function of both paths interfere destructively
and mutually cancel at the leads. Therefore, the paths that
contribute to the conductance are only those that cross the
system through both quantum dots sequentially, as in a serial
configuration. Note that whentc=0 the conductance vanishes
independently of the energy and perfect reflection is reached.
A similar result was obtained previously by Kubala and
König for a parallel double quantum-dot system connected
symmetrically to the leads.2

In summary, we studied the conductance and the density
of states at zero temperature of two coupled quantum dots
connected asymmetrically to leads in a parallel configuration
under a magnetic flux. We show that the magnetic flux can
control the different regimes of conduction through the sys-
tem. In particular, when the magnetic flux is near an integer
number of flux quanta, the system is in the Dicke regimen.
The conductance spectrum is composed of Breit-Wigner and
Fano line shapes at the bonding and antibonding energies, or
vice versa, depending on whether this number is even or odd,
with their line broadenings controlled by the magnetic flux.
The narrowing(broadening) of a line in the conductance can
be interpreted as an increase(reduction) of the lifetime of the
corresponding molecular state. From the densities of states
it can be deduced that the antibonding(bonding) state be-
comes progressively localized as the magnetic flux tends
to an integer number of flux quanta. When the magnetic flux
is exactly an integer, tunneling through the antibonding
(bonding) state is totally suppressed and the bonding(anti-
bonding) state is the only participating state in the transmis-
sion. Moreover, when the magnetic flux is a half integer of
flux quanta, the double quantum dot in the parallel configu-
ration behaves as a serial one for the conductance. The con-
trol of the decoherence processes with the magnetic field
exhibited by the present system may have applications in
quantum computing.

FIG. 3. Dimensionless conductanceg as a function of the Fermi
energy fortc=G0 andf=p.FIG. 2. Dimensionless conductanceg as a function of the Fermi

energy fortc=G0. (a) f=0.1p (solid line) and f=0 (dashed line),
and (b) f=1.9p (solid line) andf=2p (dashed line).
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