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The adiabatic driving of the resonant electron dynamics in a one-dimensional resonant photonic band gap is
proposed as an optical mechanism for nonlinear ultrafast switching. Pulsed excitation inside the photonic gap
results in an ultrafast suppression and recovery of the gap. This behavior results from the adiabatic carrier
dynamics due to rapid radiative damping inside the band gap.
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The time scale of the optical response in nano-optical sys-
tems near resonance is limited by the response time of the
structured material and the duration of the excitation pulse. If
all intrinsic relaxation processes in the material are fast com-
pared to the duration of the excitation pulse, the optical pulse
adiabatically drives the material variables and determines
their temporal response.1 In this Paper, we theoretically ana-
lyze and quantitatively explain this principle for pulse shap-
ing and optical switching in a half-wavelength(i.e., spacing
l /2) periodic semiconductor structure, recently observed ex-
perimentally in Ref. 2. The analysis of the nonlinear reflec-
tion experiments2 in pump-probe geometry, is carried out on
the basis of the coupled semiconductor Maxwell-Bloch equa-
tions, recently used to explain the transmission of short
single pulses through multiple quantum well Bragg
structures.3

In multiple quantum well structures(MQW), with spacing
great enough to eliminate direct Coulomb interaction be-
tween the quantum wells(QWs), the excitonic resonances
inside the different QWs couple radiatively.4–6 If the QWs
are in Bragg periodicity, a super-radiant mode develops lead-
ing to a broad resonant photonic band gap3,7–13 which for a
large number of QWs results in the band gap of a one-
dimensional photonic crystal.14,15 Long-lived and short-lived
polariton modes in such Bragg(and anti-Bragg) structures
have been discussed.16 Also the influence of defects in MQW
photonic crystals and their optical properties have been
studied.17 Typical bandwidths are on the order of 10–20
meV, compared to 1–2 meV for the spectral width of a
switching pulse. The resonant band gap itself is similar to a

passive dielectric band gap of a Bragg reflector caused by
multiple reflection at the periodic surfaces and interference
effects(analytic solutions are known from atomic systems18).
However, in contrast to passive dielectrics, the excitonic
resonance which forms the band gap, can be directly influ-
enced by the strength of the light field because of strong
optical nonlinearities due to Coulomb many body and other
interaction effects, and Pauli blocking. Such nonlinearities
may lead to exciton saturation resulting in a breakdown of
the band gap.19

In this Paper, we show that a strong laser pulse
propagates—besides reflection—without strong reshaping if
its spectrum is completely inside the optical band gap. This
pulse suppresses the photonic band gap for the time of its
duration, thus allowing for a femtosecond switching mecha-
nism. This behavior is caused by Pauli blocking and Cou-
lomb nonlinearities of the carrier density which adiabatically
follows the light pulse. In contrast, if the pulse spectrum is
energetically above the photonic band gap, the gap does not
recover for nanoseconds.

The semiconductor Bragg-structure studied is depicted in
Fig. 1 of Ref. 3. It containsN=200 (In,Ga)As QWs with a
width L embedded in bulk GaAs. The QWs are equally
spaced with a distance ofl /2 (corresponding to the exciton
resonance). Plane waves propagating perpendicular to the
QWs are assumed and the reflected and transmitted signals
are calculated by numerically solving the semiconductor
Maxwell-Bloch equations(SMBE)19,20 using the finite-
difference-time-domain method (FDTD).21,22 The

PHYSICAL REVIEW B 70, 233302(2004)

1098-0121/2004/70(23)/233302(4)/$22.50 ©2004 The American Physical Society233302-1



parameters23 used in the calculation are chosen to reflect the
experiment.

Through the wave equation f]z
2−s1/c2d]t

2gEsz,td
=m0]t

2Pdynsz,td the electric fieldE is coupled to the optical
polarizationPdyn. Here,c is the speed of light in the back-
ground semiconductor material andm0 the permeability. The
time-dependent polarization inside the semiconductor QWs
at z=zn is expanded in a two-dimensional Bloch basis:19

Pdynsz,td=A−1on=1
N okdsz−znddcvpk

nstd+c.c. Theinterband di-
pole transition element is denoted bydcv andA is the area of
a QW. Because of the small width of the QWs(typically less
than 10 nm) in comparison to the large wavelength of the
propagating wave(more than 200 nm) the quantum-confined
envelope functions are approximated by delta functions
dsz−znd.7 The actual well width ofL=8.5 nm only enters as
an effective length in the FDTD algorithm. The equations of
motion in Hartree-Fock approximation24,27–29for the electron
coherencepk

n and the electron/hole occupationfk
e/h,n in the

nth well including the Coulomb-renormalized energies and
fields are given in Refs. 3,19. These equations contain the
dynamically Coulomb-renormalized optical field at the posi-
tion of the nth QW. This field must be computed self-
consistently from the wave equation and is therefore influ-
enced by all other QWs in the sample.

First, we investigate the propagation of spectrally narrow
[full width at half-maximum(FWHM) 1.6 meV=1.14 ps]
Gaussian pulses with increasing intensities and calculate the
reflected and transmitted signal. To classify the strength of
the pulse-induced nonlinearity, one can compare the peak
Rabi frequencyV0=E0dcv /" of the time dependent Rabi fre-
quency of the pulseV0e

−t2/t2
with the widthD of the photo-

nic band gap. For the investigated sample, the width of the
band gap is found to be 15 meV. For comparison, a pulse
with 3 meV peak Rabi frequency corresponds to a pulse area
Q=e−`

` dt V0e
−t2/t2

of 1p (resulting in full inversion of a non-
interacting two level system). Figure 1 shows the transmitted
and reflected intensities for different pulse areas. Figure 1
(left) shows the normalized electric field envelope at the
sample entrance as a function of time and is given for com-
parison with the transmitted(Fig. 1, middle) and the reflected

fields (Fig. 1, right). With increasing input pulse area, the
transmitted pulse exhibits pulse shortening and develops an
asymmetric shape. For large input areass8pd, the transmitted
pulse resembles more or less the input field. The reflected
signal is weakened with increasing pulse area and the trailing
edge is flattened.

In order to understand the observed dynamics, Fig. 2 de-
picts the electron density inside different QWs during the
pulse propagation. As can be seen, the 2p and 8p pulses
induce a temporal density dynamics which directly follows
the pulse envelope(Fig. 1). Such dynamics are expected
from a pulse with a temporal duration longer than the re-
sponse time of the photonic lattice because the polarization
and density dynamics are adiabatically driven by the pulse.25

The lattice response time is given by the inverse half-width
at half-maximum(HWHM) of the band gap(100 fs) and is
much shorter than the applied pulse duration of 1.6 ps. For
intensities greater than 5p (peak Rabi frequency larger than
the lattice bandwidth) weak Rabi oscillations occur in the
nonlinear material response and the dynamics of the density
can no longer be adiabatically driven by the pulse envelope.
During the action of the pulse, Pauli blocking of the Cou-
lomb renormalized field19 reduces the strength of the exci-
tonic resonance, thus weakening the radiative coupling be-
tween the QWs. In consequence, the photonic band gap
collapses. After the pulse, the band gap recovers.

To discuss whether this effect can be utilized for ultrafast
switching of a second pulse, we investigate the influence of
the induced carrier dynamics on the photonic band gap2 by
simulating a pump-probe setup for cross-linearly polarized
light pulses. A weak, spectrally broad(FWHM 14.4 meV
=126 fs) probe pulse experiences the nonlinear band gap
dynamics induced by a strong pump pulse at different time
delays. The investigated signalSt is chosen to be the ratio of
the energy of the reflected probe pulsesErefd to the incident
probe pulsesEprobed energy computed for different pump-
probe delayst. A suppression of the photonic band gap by
the pump induced density dynamics is shown by a drop in
the reflectivity of the weak probe pulse(enlarged transmis-
sion). In addition, different detunings of the pump pulse with
respect to the resonance are investigated: excitation below

FIG. 1. Reflected and transmitted pulse shapes for increasing
intensity. With increasing intensity the transmission increases and
envelope modulations due to Rabi oscillations occur. All pulses are
normalized to the respective input pulses maxima.

FIG. 2. Electron density in the first, 100th, and last(200th) QW
for different incident field strengths. For nonlinear excitation, the
system dynamics occur simultaneously with the pulse envelope. For
strong excitations8pd, the populations exhibit Rabi oscillations.
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s−8 meVd, inside(0 meV), and above(14 meV) the photonic
band gap(Fig. 3).

In Fig. 4 (top), the integrated reflected probe intensities
are shown as a function of the delayt between pump and
probe pulses. Pump pulses with the relatively large detuning
−8 meV below the center of the band gap do not signifi-
cantly influence the reflection of the sample. However, for
excitation inside the photonic band gap(0 meV), the reflec-
tivity drops noticeably and recovers on the time scale of the
pump pulse due to the transient bleaching of the exciton
resonance. For an excitation 14 meV above the photonic
band gap(near the semiconductor band edge), electron-hole
populations are excited due to the overlap of the pump pulse
with the interband absorption spectrum. Due to the lack of
the super-radiant coupling of the unbound interband transi-
tions, their phase coherence is lost and the process cannot be
reversed during the switch off of the optical pulse. Therefore,
the optical band gap does not recover on the time scale of the
pulse.26 The magnitude of the nonlinear band gap suppres-
sion of 15% depends on the intensity and shape of the pump
pulse. For stronger pulses(in the order of 10p) complete
suppression can be realized.

Next we show that the obtained theoretical results are in
compliance with reflection measurements on MQW samples2

(Fig. 4, bottom). The experiments were conducted on a
N=200 In0.04Ga0.96As/GaAs wedged MQW structure
(DBR28) with a pump-probe setup in reflection geometry.
The observed integrated reflection is not influenced by exci-
tation below the band gap. If excited in or above the band
gap, a significant drop in reflectivity is observed. This drop
recovers instantaneously if the sample is excited inside the
band gap whereas it stays at a low level for excitation above
the band gap. All these effects are reproduced in every spec-
tral excitation regime by our theoretical approach(Fig. 4,
top).

In conclusion, our calculations show that a spectrally nar-
row laser pulse tuned into the photonic band gap of a Bragg-

periodic MQW structure induces carrier dynamics which in-
stantaneously follow the pulse envelope. This behavior
results from the strong radiative coupling in the sample. Dur-
ing the pulse, the gap is temporally weakened due to the
Pauli blocking of the Coulomb renormalized field at the ex-
citonic resonance forming gap. The band gap recovery due to
the strong radiative decay takes place on the time scale of the
pump pulse as long as the excitation is spectrally inside the
photonic band gap. As a potential application, the observed
effect could be utilized for ultrafast optical switching with
switching times down to the response time of the lattice(100
fs).
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FIG. 4. Integrated probe pulse reflection: A pump pulses1pd
inside or above the photonic band gap suppresses the photonic band
gap. The gap recovers on the time scale of the pump pulse when
excited inside the photonic band gap. For excitation above the gap
it does not recover for nanoseconds. Top, theoretical calculations.
Bottom, measurements(Ref. 2) with a 4 mJ, FWHM 1.6 ps pulse.

FIG. 3. Spectra of pump pulses located at different energies with
respect to the excitonic resonance are used to investigate the influ-
ence of the induced carrier dynamics on a weak probe pulse.
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