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We derive within the dielectric-continuum model an integral equation that defines interface and confined
polar optical-phonon modes in nanocrystals with a wurtzite crystal structure. It is demonstrated theoretically
that, while the frequency of confined polar optical phonons in zinc-blende nanocrystals is equal to that of the
bulk crystal phonons, the confined polar optical phonons in wurtzite nanocrystals have a discrete spectrum of
frequencies different from those of the bulk crystal. The calculated frequencies of confined polar optical
phonons in wurtzite ZnO nanocrystals are found to be in an excellent agreement with the experimental resonant
Raman-scattering spectra of spherical ZnO quantum dots.
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Optical lattice vibrations(phonons) manifest themselves
in Raman, absorption, and photoluminescence spectra of
bulk crystals and nanocrystalline materials. In this sense,
optical-phonon frequency is a distinct signature for a given
crystalline material. However, the phonon spectra of nanoc-
rystals can be very different from those of bulk crystals and
depend on the nanocrystal shape and size. The latter explains
an importance of developing theoretical(preferably, analyti-
cal) tools for calculation of phonon modes in nanocrystals of
different shapes and crystal structures. About four decades
ago, Englman and Ruppin1 found that in zinc-blende nanoc-
rystals there exist confined phonon modes with the frequen-
cies equal to those of bulk transverse optical(TO) and lon-
gitudinal optical(LO) phonons. It was also established that
the interface phonon modes in such nanocrystals have fre-
quencies intermediate between those of LO and TO modes.
Later, Knipp and Reinecke2 developed an approach to calcu-
late the interface optical-phonon modes in the isotropic
quantum dots of arbitrary shapes. A successful theoretical
explanation of experimental Raman, absorption, and photo-
luminescence spectra has been obtained for a variety of op-
tically isotropic nanocrystals with different shapes.3–6

Very recently, wide-band-gap wurtzite nanocrystals, such
as ZnO and GaN quantum dots, have attracted attention as
promising candidates for optoelectronic, electronic, and bio-
medical applications. The hexagonal wurtzite(space group
C6n

4 ) nanocrystals have uniaxial crystal structure with the op-
tical axis, which coincides with thec-axis of the crystal. Due
to this uniaxial anisotropy, the confined optical- and
interface-phonon modes in wurtzite quantum dots can be
substantially different from those in zinc-blende(isotropic)
quantum dots. In a view of this difference and expected ap-
plications, it is very important and timely to investigate op-
tical phonons in optically anisotropic wurtzite nanocrystals.
A recent theoretical study7 of optical phonons in a two-
dimensional system—wurtzite GaN/AlN quantum well—
has shown that the intrinsic anisotropy of wurtzite material
results in the qualitative difference of the phonon spectrum
from that for optically isotropic quantum wells.

In this paper, we develop an analytical approach to calcu-
late polar optical-phonon modes in wurtzite quantum dots of
arbitrary shapes. Using the developed approach, we find the
polar optical-phonon modes in spheroidal optically aniso-

tropic quantum dots. The calculated discrete frequencies of
polar optical phonons in ZnO nanocrystals are in excellent
agreement with experimental resonant Raman-scattering
spectra of strain-free spherical ZnO quantum dots.8

Let us consider an arbitrarily shaped nanocrystal with a
uniaxial anisotropy of the crystal lattice. The exterior me-
dium is also assumed to be uniaxially anisotropic with the
same direction of the symmetry axis(z axis) as that for the
nanocrystal. Within the framework of the dielectric-
continuum approximation and Loudon’s models for uniaxial
crystals, the dielectric tensors in the nanocrystalsk=1d and
exterior mediumsk=2d can be written as
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where «'s`d and «zs`d are optical dielectric constants,
v',LO andvz,LO are LO-phonon frequencies, andv',TO and
vz,TO are TO-phonon frequencies of the corresponding bulk
materials. The phonon potentialVsr d of the polar optical
modes satisfies the Maxwell’s equation

− ¹ „«̂skdsvd ¹ Vksr d… = 0 sk = 1,2d s3d

with the boundary conditions

V1sAd = V2sAd, D1sAd = D2sAd, s4d

whereA PS is the radius vector of the interfaceS between
the media 1 and 2 and

DksAd = nA«̂skdsvdu„¹Vksr d…ur=A s5d

is the projection of the displacement vectorD on the outer
normalnA at the pointA of the interface.
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To solve Eq.(3) with boundary conditions(4), let us first
find the Green’s functionGksr ,r 8 ;vd for each medium as a
solution of the equation

− ¹ „«̂skdsvd ¹ Gksr ,r 8;vd… = dsr − r 8d. s6d

It can be easily shown thatGksr ,r 8 ;vd has a simple analyti-
cal form,

Gksr ,r 8;vd =
1

4p«'
skdsvd

fgskdsvdsr − r8d2 + sz− z8d2g−1/2,

s7d

wherer is the radius vector in thexy plane and

gskdsvd = «z
skdsvd/«'

skdsvd. s8d

Now, integrating the difference of Eq.(6) multiplied byVksr d
and Eq.(3) multiplied by Gksr ,r 8 ;vd over the nanocrystal’s
volumeV1 for k=1 and over the exterior medium’s volume
V2 for k=2, then applying the Green’s theorem to both inte-
grals, we obtain

Vksr 8dhksr 8d = s− 1dk−1E
S

fDksAdGksA,r 8;vd

− VksAdnAFksA,r 8;vdgdA , s9d

wherehksr 8d is equal to 1/2 whenr 8PSand to 1 in all other
points of the volumeVk and

Fksr ,r 8;vd = −
r − r 8

4p
gskdsvdfgskdsvdsr − r8d2 + sz− z8d2g−3/2.

s10d

Taking r 8=A8 in Eq. (9) and using boundary conditions(4),
we arrive at the following homogeneous system of two inte-
gral equations:

E
S
HDsAdG1sA,A8;vd + VsAdF− nAF1sA,A8;vd

−
1

2
dsA − A8dGJdA = 0,

E
S
HDsAdG2sA,A8;vd + VsAdF− nAF2sA,A8;vd

+
1

2
dsA − A8dGJdA = 0. s11d

Frequenciesv that allow for a nonzero solution of Eq.(11)
define the spectrum of polar optical phonons in the nanocrys-
tal, while the corresponding pairshDsAd ,VsAdj define the
projection of the displacement vector on the outer normal
and the phonon potential at the interfaceS. The latter, in its
turn, defines the phonon potential in the whole space, accord-
ing to Eq.(9).

Thus, we have derived an equation that defines both in-
terface and confined polar optical-phonon modes in quantum
dots with a wurtzite crystal structure. It can be shown that for
zinc-blende quantum dots, where«'svd=«zsvd, Eq. (11) re-

duces to the one obtained by Knipp and Reinecke2 for inter-
face optical phonons. It is seen from Eqs.(7) and (10) that
kernelsGksA ,A8 ;vd and −nAFksA ,A8 ;vd of Eq. (11) are
singular whenA =A8, but this singularity is integrable for an
interfaceS that does not contain sharp edges or cusps where
the normal vectornA is not defined. Nanocrystals with real-
istic parameters do not have such edges or cusps. Thus, one
can conclude that the spectrum of eigenfrequencies of Eq.
(11) is discrete.9 This conclusion corrects the suggestion in
Ref. 10 of the existence of continuous allowed phonon fre-
quency windows in anisotropic nanocrystals.

The numerical solution of Eq.(11) for a wurtzite nano-
crystal of an arbitrary shape can be found using standard
techniques. However, an analytical solution would be much
more convenient for practical applications. Therefore, let us
consider a uniaxial ellipsoid with the symmetry axisz and
the ratio of semi-axesg=c/a. The shape of most of the prac-
tically important wurtzite nanocrystals can be modeled as
ellipsoidal. For example, colloidal nanocrystals have nearly
sphericalsg=1d shape, and nanorods and epitaxial quantum
dots can be modeled as prolatesg.1d and oblatesg,1d
ellipsoids, respectively. Introducing coordinates withz8
=z/g, the interfaceS becomes a sphere of radiusa, which
can be described with spherical anglesu and f. It can be
shown that the solution of Eq.(11) in these coordinates is

Vsu,fd = Yl,msu,fd; Dsu,fd = BYl,msu,fd, s12d

where Yl,msu ,fd are spherical harmonics. Substituting Eq.
(12) into Eq. (11), we obtain, after the integration,

cgB = «z
s1dsvdUSj

d ln Pl
msjd

dj
DU

j=f1 − gs1dsvd/g2g−1/2

= «z
s2dsvdUSj

d ln Ql
msjd

dj
DU

j=f1 − gs2dsvd/g2g−1/2
, s13d

wherePl
m and Ql

m are associated Legendre functions of the
first and second kind, respectively. Roots of Eq.(13) define
the spectrum of polar optical phonons in spheroidal nano-
crystals.

Recently measured Raman spectra of spherical wurtzite
ZnO nanocrystals in air8 have revealed confined polar optical
phonons that have frequencies different from those of bulk
LO and TO phonons and lying in the intervalssvz,LO,v',LOd
and svz,TO,v',TOd. No quantitative explanation of the ob-
served frequencies of the confined phonons has been given
so far. In the following, we will calculate the polar optical-
phonon modes in spherical ZnO quantum dotssg=1d and
compare them to the reported Raman spectra.8 For an opti-
cally inactive exterior medium, such as air, plastic, glass,
etc., the dielectric tensor reduces to a constant«̂s2dsvd=«D. In
this case,gs2dsvd=1 and we can explicitly write Eq.(13) in
the following algebraic form:
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Solutions of Eq.(14) for each pair of integer quantum num-
bers l =1,2,3, . . . andms−l ømø ld give the spectrum of
both interface and confined polar optical phonons for the
spherical quantum dot. Note that there are no phonons with
l =0, and all phonon frequencies withmÞ0 are twice degen-
erate with respect to the sign ofm. It should be pointed out
that in the case of the isotropic spherical nanocrystal
f«'svd=«zsvdg, Eq. (14) reduces to the equation«svd /«D

=−1−1/l (Ref. 1) for interface optical phonons. Analyzing
Eq. (14), one can find that, unlike spherical zinc-blende
nanocrystals, the spectrum of interface and confined optical
phonons in wurtzite nanocrystals depends onm. Moreover,
for each pairsl ,md there is one interface optical phonon and
l − umu confined optical phonons formÞ0 (l −1 for m=0).

Figure 1 shows the calculated spectrum of polar optical
phonons withl =1, 2, 3, 4 andm=0 in a spherical wurtzite
ZnO quantum dot as a function of the optical dielectric con-
stant of the exterior medium«D. All optical parameters of
wurtzite ZnO are taken from Ref. 11. The spectrum in Fig. 1
is divided into three regions: confined TO phononssvz,TO

,v,v',TOd, interface phononssv',TO,v,vz,LOd, and
confined LO phononssvz,LO,v,v',LOd. The above divi-
sion into confined and interface phonons is based on the sign
of the functiongsvd [see Eq.(8)]. We call the phonons with
eigenfrequencyv interface phonons ifgsvd.0 and confined
phonons ifgsvd,0. It is seen from Fig. 1 that the frequen-
cies of interface optical phonons decrease substantially when
«D changes from the vacuum’s values«D=1d to the ZnO
nanocrystal’s values«D=3.7d. At the same time the frequen-
cies of confined optical phonons decrease only slightly with
«D.

Raman spectra of two samples of spherical wurtzite ZnO
quantum dots were recorded at room temperature in Ref. 8.
The two samples contained the powder of ZnO nanocrystals
with diameters 8.5 nm and 4.0 nm, correspondingly. Since

FIG. 1. Spectrum of several polar optical-phonon modes in
spherical wurtzite ZnO nanocrystals as a function of the optical
dielectric constant of the exterior medium. Note that the scale of
frequencies is different for confined LO, interface, and confined TO
phonons. Large black dots show the experimental points from Ref.
8.

FIG. 2. (Color online) Cross sections of the phonon potentials of
several polar optical-phonon modes in spherical wurtzite ZnO
nanocrystalss«D=1d. Black circles indicate the boundary of the
nanocrystal. Thez axis is directed vertically. In the color version,
blue and red colors denote positive and negative values of the pho-
non potential, respectively.
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the excitation wavelength 363.8 nms,3.41 eVd was very
close to the exciton ground-state energy for the 8.5 nm quan-
tum dots,12 the spectrum of the first sample is the resonant
Raman spectrum. Both spectra exhibited two peaks in the
region of polar optical phonons: 393 cm−1 and 588 cm−1 for
the first sample and 393 cm−1 and 584 cm−1 for the second
sample. The spectrum of polar optical phonons in spherical
nanocrystals does not depend on the size of the
nanocrystal;13 however, a phonon line in the nonresonant Ra-
man spectrum can be shifted due to the contribution from the
excited exciton states. Therefore, if our calculations are cor-
rect, we should expect that frequencies 393 cm−1 and
588 cm−1 of the resonant Raman spectrum correspond to
some of the discrete eigenfrequencies found from Eq.(14).
Indeed, we can see it in Fig. 1 that the above two frequencies
are the one of confined TO phonon withl =4, m=0 and the
one of confined LO phonon withl =2, m=0 (we take«D=1
because the experimental spectra were recorded in air).

Finally, we have to explain why only the two above pho-
non modes are active in the resonant Raman spectrum. The
dominant component of the wave function of the exciton
ground state in spherical ZnO quantum dots is symmetric
with respect to the rotations along thez axis or the reflection
in the xy plane.12 Therefore, the selection rules for the
optical-phonon modes observed in the resonant Raman spec-
tra of ZnO nanocrystals arem=0 and l =2,4,6, . . . . The
phonon modes with higher symmetry are more likely to be
observed in the Raman spectra. In Fig. 2, the phonon poten-
tials of all two phonon modes withl =2 and all four phonon

modes withl =4 are shown. Two interface(v=534.0 cm−1

andv=542.1 cm−1) and four confined phonon modes can be
seen in Fig. 2. Among the confined phonon modes there is
one TO modesv=393.7 cm−1d and three LO modes. It is
seen from Fig. 2, that the confined LO-phonon mode with
l =2, m=0 sv=587.8 cm−1d and the confined TO mode with
l =4, m=0 sv=393.7 cm−1d are the confined phonon modes
with the highest symmetry. Therefore, they should give the
main contribution to the resonant Raman spectrum. Indeed,
they almost coincide with the experimentally recorded fre-
quencies 588 cm−1 and 393 cm−1.

In conclusion, we derived an integral equation that defines
interface and confined polar optical-phonon modes in opti-
cally anisotropic wurtzite nanocrystals. It is has been shown
that while the frequency of confined polar optical phonons in
zinc-blende nanocrystals is equal to that of the bulk crystal
phonons, the confined polar optical phonons in wurtzite
nanocrystals have a discrete spectrum of frequencies differ-
ent from those of the bulk crystal. Based on our analytical
solution for spheroidal nanocrystals, we were able to explain
quantitatively the positions of the polar optical-phonon lines
observed in the resonant Raman spectra of spherical wurtzite
ZnO quantum dots. The proposed model allows one to accu-
rately predict the frequencies of both interface and confined
phonons in optically anisotropic nanocrystals.

This work was financially supported in part by NSF-
NATO 2003 (V.A.F.), by the ONR (A.A.B.), and by the
DMEA/DARPA CNID program A01809-23103-44.

*Electronic address: vladimir@ee.ucr.edu
†Electronic address: alexb@ee.ucr.edu
1R. Englman and R. Ruppin, Phys. Rev. Lett.16, 898 (1966); R.

Englman and R. Ruppin, J. Phys. C1, 614 (1968).
2P. A. Knipp and T. L. Reinecke, Phys. Rev. B46, 10 310(1992).
3J. T. Devreese, V. M. Fomin, V. N. Gladilin, E. P. Pokatilov, and

S. N. Klimin, Nanotechnology13, 163 (2002).
4V. M. Fomin, V. N. Gladilin, J. T. Devreese, E. P. Pokatilov, S. N.

Balaban, and S. N. Klimin, Phys. Rev. B57, 2415(1998).
5E. P. Pokatilov, S. N. Klimin, V. M. Fomin, J. T. Devreese, and F.

W. Wise, Phys. Rev. B65, 075316(2002).
6V. A. Fonoberov, E. P. Pokatilov, V. M. Fomin, and J. T.

Devreese, Phys. Rev. Lett.92, 127402(2004).
7S. M. Komirenko, K. W. Kim, M. A. Stroscio, and M. Dutta,

Phys. Rev. B59, 5013(1999).
8M. Rajalakshmi, A. K. Arora, B. S. Bendre, and S. Mahamuni, J.

Appl. Phys. 87, 2445(2000).
9P. M. Morse and H. Feshbach,Methods of Theoretical Physics

(McGraw-Hill, New York, 1953).
10D. A. Romanov, V. V. Mitin, and M. A. Stroscio, Phys. Rev. B

66, 115321(2002).
11C. A. Arguello, D. L. Rousseau, and S. P. S. Porto, Phys. Rev.

181, 1351(1969).
12V. A. Fonoberov and A. A. Balandin, Phys. Rev. B70, 195410

(2004).
13V. A. Fonoberov and A. A. Balandin, Phys. Status Solidi C1,

2650 (2004).

BRIEF REPORTS PHYSICAL REVIEW B70, 233205(2004)

233205-4


