PHYSICAL REVIEW B 70, 233205(2004)

Interface and confined optical phonons in wurtzite nanocrystals
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We derive within the dielectric-continuum model an integral equation that defines interface and confined
polar optical-phonon modes in nanocrystals with a wurtzite crystal structure. It is demonstrated theoretically
that, while the frequency of confined polar optical phonons in zinc-blende nanocrystals is equal to that of the
bulk crystal phonons, the confined polar optical phonons in wurtzite nanocrystals have a discrete spectrum of
frequencies different from those of the bulk crystal. The calculated frequencies of confined polar optical
phonons in wurtzite ZnO nanocrystals are found to be in an excellent agreement with the experimental resonant
Raman-scattering spectra of spherical ZnO quantum dots.
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Optical lattice vibrationgphonon$ manifest themselves tropic quantum dots. The calculated discrete frequencies of
in Raman, absorption, and photoluminescence spectra @olar optical phonons in ZnO nanocrystals are in excellent
bulk crystals and nanocrystalline materials. In this senseagreement with experimental resonant Raman-scattering
optical-phonon frequency is a distinct signature for a givenspectra of strain-free spherical ZnO quantum dots.
crystalline material. However, the phonon spectra of nanoc- et us consider an arbitrarily shaped nanocrystal with a
rystals can be very different from those of bulk crystals andynjaxial anisotropy of the crystal lattice. The exterior me-
depend on the nanocrystal shape and size. The latter explaigg,m is also assumed to be uniaxially anisotropic with the
an importance of developing theoreti¢areferably, analyti-  g3me direction of the symmetry axig axis) as that for the

cal) tools for calculation of phonon modes in nanocrystals Ofnanocrystal. Within the framework of the dielectric-

different shapes and cry_stal structu_res..About four decadec?bntinuum approximation and Loudon’s models for uniaxial
ago, Englman and Ruppifiound that in zinc-blende nanoc-

rystals there exist confined phonon modes with the frequengryStaIS’ the dielectric tensors in the nanocryéal1) and

cies equal to those of bulk transverse optiCeD) and lon- exterior mediumk=2) can be written as

gitudinal optical(LO) phonons. It was also established that e®(w) 0 0

the interface phonon modes in such nanocrystals have fre- L

quencies intermediate between those of LO and TO modes. M¥w= 0 P o | (1)
Later, Knipp and Reineckaleveloped an approach to calcu- 0 0 8(Zk>(w)

late the interface optical-phonon modes in the isotropic

quantum dots of arbitrary shapes. A successful theoretical ) 0 2
explanation of experimental Raman, absorption, and photo- e®(w) = s (oo)w — (0 0)
luminescence spectra has been obtained for a variety of op- L 0= (00)?
tically isotropic nanocrystals with different shape$. ’

Very recently, wide-band-gap wurtzite nanocrystals, such W= (0¥ )2
as ZnO and GaN quantum dots, have attracted attention as eM(w) = £W(00) ———2L 2)
.. . . . . z z 2 _ (k) 2!
promising candidates for optoelectronic, electronic, and bio- w” = (w770

m4ed|cal applications. The_ hgxagonal wurtzd@ace_ group  \here & () and e,(») are optical dielectric constants,
Cs,) nanocrystals have uniaxial crystal structure with the op-

tical axis, which coincides with the-axis of the crystal. Due 40 and a,, o are LO-phonon frequencies, aad ro and
to this uniaxial anisotropy, the confined optical- and ©zTO are TO-phonon frequencies of the corresponding bulk

interface-phonon modes in wurtzite quantum dots can bgwa;erlals.t_Tfr_\e F:EOHI\C/IJH pOtI?,m'M(r)t.Of the polar optical
substantially different from those in zinc-blendisotropio modes salishies the Maxwell's equation
quantum dpt_s. Ina view of this dlffe_rence ar_ld exp_ected ap- - VEM(@) VV(r)=0 (k=1,2) (3)
plications, it is very important and timely to investigate op-
tical phonons in optically anisotropic wurtzite nanocrystals.with the boundary conditions
A recent theoretical studyof optical phonons in a two-
dimensional system—wurtzite GaN/AIN quantum well— Vi(A) =V,(A), Di(A)=Dy(A), 4
has shqwn that th_e Intrinsic anisotropy of wurtzite materlalwhereA e Sis the radius vector of the interfac&between
results in the qualitative difference of the phonon spectrum -
: . . he media 1 and 2 and

from that for optically isotropic quantum wells.

In this paper, we develop an analytical approach to calcu- Dy(A) = naz®(w) (VVi(1))]2a (5)
late polar optical-phonon modes in wurtzite quantum dots of
arbitrary shapes. Using the developed approach, we find thie the projection of the displacement vec@ron the outer
polar optical-phonon modes in spheroidal optically aniso-normaln, at the pointA of the interface.
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To solve Eq.(3) with boundary conditiong4), let us first  duces to the one obtained by Knipp and Reinédke inter-
find the Green’s functios,(r,r’; w) for each medium as a face optical phonons. It is seen from Eg8) and (10) that
solution of the equation kernelsG (A ,A’;w) and nNpF(A,A’; w) of Eq. (11) are
. singular whemPA=A’, but this singularity is integrable for an
— (k) ’. — e : !
V(E (@) VG(r,r'iw) =8 —r'). (6)  interfaceS that does not contain sharp edges or cusps where
It can be easily shown th&@(r ,r’; w) has a simple analyti- the normal vecton, is not defined. Nanocrystals with real-
cal form, istic parameters do not have such edges or cusps. Thus, one
can conclude that the spectrum of eigenfrequencies of Eq.
1 - 11) is di te) This conclusion corrects the suggestion in
roN = (K N2 4 (o o\21-1/2 (11) is discre g9
Gy(r.r"; ) 4774,31'0(&,)[g (@)(p=p)"+z=2)T7, Ref. 10 of the existence of continuous allowed phonon fre-
guency windows in anisotropic nanocrystals.

@) The numerical solution of Eq.11) for a wurtzite nano-
wherep is the radius vector in they plane and crystal of an arbitrary shape can be found using standard
®f . _ (K ® techniques. However, an analytical solution would be much
9"(w) =&, (w)e(w). (8 more convenient for practical applications. Therefore, let us

Now, integrating the difference of E¢6) multiplied byV,(r) ~ consider a uniaxial ellipsoid with the symmetry axisand
and Eq.(3) multiplied by G,(r ,r’; ) over the nanocrystal's t_he ratio of seml—axesf—_c/a. The shape of most of the prac-
volume ), for k=1 and over the exterior medium’s volume tically important wurtzite nanocrystals can be modeled as

Q, for k=2, then applying the Green’s theorem to both inte-€llipsoidal. For example, colloidal nanocrystals have nearly
grals, we obtain spherical(y=1) shape, and nanorods and epitaxial quantum

dots can be modeled as proldtg>1) and oblate(y<1)

, N — (k-1 . ellipsoids, respectively. Introducing coordinates with
Vir)mp(r’) = (= 1) fS[Dk(A)Gk(A’r ) =z/ v, the interfaceS becomes a sphere of radias which
can be described with spherical anglesnd ¢. It can be

= Vi(A)NAF (A" w)JdA, (9 shown that the solution of Eq11) in these coordinates is

wherez,(r’) is equal to 1/2 when’' e Sand to 1 in all other

poinis of the volumd and V0.0)=Yin(0.0); D(0.6)=BY\0(0.6), (1)
g (g )= p)+ (2= 2 T2
ar

;
Fi(r,r' o) =-

(10) where Y, (0, ¢) are spherical harmonics. Substituting Eq.
(12) into Eg.(11), we obtain, after the integration,
Takingr’=A’ in Eq. (9) and using boundary conditiorig),

we arrive at the following homogeneous system of two inte-

gral equations: =g ( dln—le(g)>
C')/B =& ((1)) g dg &1 _g(l)(w)lyz]—uz
f D(A)G1(A,A" ) +V(A)| = NaFy(AA" ) dIn QM9
s =2 (w) (g f‘ 5) » (13
3 £=[1 - gD ()2 12

1 i —
- SA-A )HdA—O,

where P" and Q" are associated Legendre functions of the
f {D(A)GZ(A,A';w) +V(A)[— NaFo(A,A"; w) first and second kind, respectively. Roots of Et) define
s the spectrum of polar optical phonons in spheroidal nano-
1 } crystals.
+=8(A —A’)] dA =0. (11 Recently measured Raman spectra of spherical wurtzite
2 ZnO nanocrystals in dihave revealed confined polar optical
Frequencieso that allow for a nonzero solution of EgL1)  Phonons that have frequencies different from those of bulk
define the spectrum of polar optical phonons in the nanocrys-O and TO phonons and lying in the intervéls, o, 10)
tal, while the corresponding paif®(A),V(A)} define the and (w,to,®, 10)- No quantitative explanation of the ob-
projection of the displacement vector on the outer normaperved frequencies of the confined phonons has been given
and the phonon potential at the interfé@eThe latter, in its SO far. In the following, we will calculate the polar optical-
turn, defines the phonon potential in the whole space, accordthonon modes in spherical ZnO quantum dogs-1) and
ing to Eq.(9). compare them to the reported Raman spetfar an opti-
Thus, we have derived an equation that defines both incally inactive exterior medium, such as air, plastic, glass,
terface and confined polar optical-phonon modes in quanturfitc., the dielectric tensor reduces to a const&itw) = &p. In
dots with a wurtzite crystal structure. It can be shown that foithis caseg®(w)=1 and we can explicitly write Eq13) in
zinc-blende quantum dots, whete (w)=¢,(w), Eq.(11) re-  the following algebraic form:
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FIG. 1. Spectrum of several polar optical-phonon modes in
spherical wurtzite ZnO nanocrystals as a function of the optical FIG. 2. (Color onling Cross sections of the phonon potentials of
dielectric constant of the exterior medium. Note that the scale okeveral polar optical-phonon modes in spherical wurtzite ZnO
frequencies is different for confined LO, interface, and confined TOnanocrystals(ep=1). Black circles indicate the boundary of the
phonons. Large black dots show the experimental points from Refianocrystal. The axis is directed vertically. In the color version,
8. blue and red colors denote positive and negative values of the pho-
non potential, respectively.
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[(|—§)/2J I =|m|\(2n-D!(2 - 2n- ! s(f)(w) Figure 1 shows the calculated spectrum of polar optical
= n (21 - D! o m| phonons withl=1, 2, 3, 4 andn=0 in a spherical wurtzite

ZnO quantum dot as a function of the optical dielectric con-
s(zl)(w) " stant of the exterior mediurap. All optical parameters of
(I=|m[-2n) +1+1 cD(w) 1) =0 wurtzite ZnO are taken from Ref. 11. The spectrum in Fig. 1
+ is divided into three regions: confined TO phondus 1o
(14) <w<w, 10), interface phonondw, ro<w<w, o), and
Solutions of Eq(14) for each pair of integer quantum num- confined LO phononsw, o <w<w, o). The above divi-
bers1=1,2,3,... andm(-l=m=I) give the spectrum of sion into confined and interface phonons is based on the sign
both interface and confined polar optical phonons for theof the functiong(w) [see Eq(8)]. We call the phonons with
spherical quantum dot. Note that there are no phonons witeigenfrequency interface phonons ifj(w) >0 and confined
=0, and all phonon frequencies with+ 0 are twice degen- phonons ifg(w)<0. It is seen from Fig. 1 that the frequen-
erate with respect to the sign of. It should be pointed out cies of interface optical phonons decrease substantially when
that in the case of the isotropic spherical nanocrystaky changes from the vacuum’s valdep=1) to the ZnO
[e,(w)=e(w)], EQ. (14) reduces to the equatiof(w)/ep  nanocrystal’s valuésp=3.7). At the same time the frequen-
=-1-1/ (Ref. ) for interface optical phonons. Analyzing cies of confined optical phonons decrease only slightly with
Eqg. (14), one can find that, unlike spherical zinc-blendeegp.
nanocrystals, the spectrum of interface and confined optical Raman spectra of two samples of spherical wurtzite ZnO
phonons in wurtzite nanocrystals dependsnanMoreover,  quantum dots were recorded at room temperature in Ref. 8.
for each pair(l,m) there is one interface optical phonon and The two samples contained the powder of ZnO nanocrystals
| -|m| confined optical phonons fan# 0 (I-1 for m=0). with diameters 8.5 nm and 4.0 nm, correspondingly. Since

1
N e (w)
D
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the excitation wavelength 363.8 nfr-3.41 e\) was very modes withl=4 are shown. Two interfac@w=534.0 cm?*
close to the exciton ground-state energy for the 8.5 nm quarénd w=542.1 cm?) and four confined phonon modes can be
tum dots!? the spectrum of the first sample is the resonantseen in Fig. 2. Among the confined phonon modes there is
Raman spectrum. Both spectra exhibited two peaks in thene TO mode(w=393.7 cm?) and three LO modes. It is
region of polar optical phonons: 393 chand 588 crit for  seen from Fig. 2, that the confined LO-phonon mode with
the first sample and 393 ¢hand 584 crit® for the second =2, m=0 (w=587.8 cm?) and the confined TO mode with
sample. The spectrum of polar optical phonons in sphericdl=4, m=0 (0=393.7 cm?) are the confined phonon modes
nanocrystals does not depend on the size of theith the highest symmetry. Therefore, they should give the
nanocrystak® however, a phonon line in the nonresonant Ra-main contribution to the resonant Raman spectrum. Indeed,
man spectrum can be shifted due to the contribution from théhey almost coincide with the experimentally recorded fre-
excited exciton states. Therefore, if our calculations are corguencies 588 cit and 393 critt.
rect, we should expect that frequencies 393%tnand In conclusion, we derived an integral equation that defines
588 cnm* of the resonant Raman spectrum correspond tdnterface and confined polar optical-phonon modes in opti-
some of the discrete eigenfrequencies found from (#4).  cally anisotropic wurtzite nanocrystals. It is has been shown
Indeed, we can see it in Fig. 1 that the above two frequencieghat while the frequency of confined polar optical phonons in
are the one of confined TO phonon with4, m=0 and the  zinc-blende nanocrystals is equal to that of the bulk crystal
one of confined LO phonon with=2, m=0 (we takesp=1  phonons, the confined polar optical phonons in wurtzite
because the experimental spectra were recorded)in air  nanocrystals have a discrete spectrum of frequencies differ-
Finally, we have to explain why only the two above pho-ent from those of the bulk crystal. Based on our analytical
non modes are active in the resonant Raman spectrum. TR@|ution for spheroidal nanocrystals, we were able to explain
dominant component of the wave function of the excitongyantitatively the positions of the polar optical-phonon lines
ground state in spherical ZnO quantum dots is symmetrigpseryed in the resonant Raman spectra of spherical wurtzite
with respect to the rotations along thexis or the reflection  zn0 quantum dots. The proposed model allows one to accu-
in the xy plane’? Therefore, the selection rules for the rately predict the frequencies of both interface and confined
optical-phonon modes observed in the resonant Raman sp&snonons in optically anisotropic nanocrystals.
tra of ZnO nanocrystals arsm=0 and|=2,4,6,... . The
phonon modes with higher symmetry are more likely to be This work was financially supported in part by NSF-
observed in the Raman spectra. In Fig. 2, the phonon potemNATO 2003 (V.A.F.), by the ONR(A.A.B.), and by the
tials of all two phonon modes with=2 and all four phonon DMEA/DARPA CNID program A01809-23103-44.
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