PHYSICAL REVIEW B 70, 224522(2004)

Ab initio calculations of H, in type-Il superconductors: Basic formalism and model calculations
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Detailed Fermi-surface structures are essential to describe the upper critica fiahl type-Il supercon-
ductors, as first noticed by and Hohenberg and WerthgRigys. Rev.153 493(1967] and shown explicitly
by Butler for high-purity cubic NiobiunfPhys. Rev. Lett.44, 1516(1980]. We derive arH., equation for
classic type-Il superconductors that is applicable to systems with anisotropic Fermi surfaces and/or energy gaps
under arbitrary field directions. It can be solved efficiently by using Fermi surfacesdbomitio electronic-
structure calculations. Thus, it is expected to enhance our quantitative understandihg @ased on the
formalism, we calculatél., curves for Fermi surfaces of a three-dimensional tight-binding model with cubic
symmetry, an isotropic gap, and no impurity scatterings. It is found that, as the Fermi surface approaches to the
Brillouin zone boundary, the reduced critical fifdd (T/T.), which is normalized by the initial slope &t, is
enhanced significantly over the curve for the spherical Fermi surface with a marked upward curvature. Thus,
the Fermi-surface anisotropy can be a main source of the upward curvatdge mearT..
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[. INTRODUCTION Rieck, Scharnberg, and SchopBhlwhere the strong-

The upper critical fielH, is one of the most fundamen- coupling effects(v) have alsp been consjdered. Our st'udy
tal quantities in type-Il superconductors. After the pioneeringt@n be regarded as a direct extension of the Rieck-
work by AbrikosoV based on the Ginzburg-LandaGL) Scharnberg equatidh to incorporate (i)~(iv), simulta-
equationg theoretical efforts have been made for its quanti-neously. To this end, we adopt a slightly different gptbb-
tative description at all temperaturgd! However, we still  ably) more convenient procedure of using creation and
have a limited success when compared with those for th@nnihilation operators. We will proceed with clarifying the
electronic structures in the normal st&t@he purpose of the connections with the Rieck-Scharnberg equation as explicitly
present paper is to provide a theoretical framework that enas possible.
ables usab initio calculations of H, as accurate as  The remarkable success of the simplified Bardeen-
electronic-structure calculations in the normal state. Cooper-Schrieffer(BCS) theory*** tells us that detailed

Necessary ingredients to be included éjenonlocal ef-  €electronic structures are rather irrelevant to the properties of
fects effective at low temperature@i) impurity scattering, classic superconductors &=0. However, this is not the
(i) Fermi-surface anisotropyjv) strong-coupling effects, case for the properties of type-Il superconductors in finite
(v) gap anisotropyi) mixing of higher Landau levels in the magnetic fields, especially in the clean limit, as first recog-
spatial dependence of the pair potentiaij) Landau-level nhized by Hohenberg and WerthaniéFheir effort to include
quantization in the quasiparticle enefgy235-38and (viii)  the Fermi-surface anisotropy in th.,, equation was moti-
fluctuations beyond the mean-field theé?ye here derive Vated by the fact that the Helfand-Werthamer théarging
anH,, equation, which is numerically tractable, including all the spherical Fermi surface shows neither qualitative nor
the effects exceptvii) and (viii ). gquantitative agreements with experiments on clean type-Ii

An H,, equation considering the effecty and (i) was  superconductors, such as 8 and V*® Indeed, angular
obtained by Helfand and Werthanfett was extended by Vvariation inHg, by 10% was observed at low temperatures in
Hohenberg and Werthanfeto take the Fermi-surface aniso- high-quality Ni#®503> and \F05! with cubic symmetry?
tropy (iii ) into account. Equations with the strong-coupling Also, the reduced critical field
effects(iv) were derived by Eilenberger and Ambegadkar
using Matsubara frequencies and by Werthamer and h* () = Hea(t) (t=TIT,) (1)
McMillan®? on the real energy axis, which are equivalent to — dHg(t)/dt]i=; o
one another. Schossmann and Schachfidater incorpo-
rated Pauli paramagnetism into the strong-coupling equatiorf@lculated by Helfand and Werthanfenash* (0)=0.727 in
Although an equation includingi)<iv) was presented by the clean limit, whereas a later experiment on high-purity Nb
Langmann3 it is still rather complicated for carrying out an shows(h* (0))=1.06 for the average overfield directiotts.
actual numerical computation. On the other hand, Rieck an#iohenberg and Werthanfezarried out a perturbation expan-
Scharnberd presented an efficiertl, equation where the sion for cubic materials with respect to the nonlocal correc-
effects(i)—(iii) and(vi) were taken into account, and alsg  tion where the Fermi-surface anisotropy enters. They could
in the special case of the clean limit. See also the work byhereby provide a qualitative understanding of thg aniso-
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TABLE |. Equation numbers for the relevant analytic expressions to calcHigteThe upper critical fieldH., corresponds to the point
where the smallest eigenvalue of the Hermitian mattix (A ) takes zero.

() ¢ke) B @y To le Um o Xy B B Aw Kww 70 Ho(T=To B B R w,

4 (5 (7 hcl2e (A5) (15 (18) (19) (200 (13) (30) (36) (39) (41 22 (23) (A%a) (24) (A%

tropy and the enhancement @f* (t)) observed in Nb. They efforts have been focused only on the special case of cubic
also derived an expression fén* (0)) applicable to aniso- Mmaterials>1519.20.222%0r example, a detailed theory is still
tropic Fermi surfaces. It was later used by Matthige  absent for the large positiveipward curvature observed in
estimate (h* (0))=0.989 for Nb based on his detailed He(T=<T) of layered superconductors;®except a qualita-
electronic-structure calculation. The strong dependence dive description by Takanakdand Dalrymple and Probéf.
h* (t) in the clean limit on detailed Fermi-surface structuresBased on these observations, we here derivl @requation
can also be seen clearly in the numerical results from dhat is numerically tractable for arbitrary crystal structures
model calculation by Rieck and Scharnb&t@nd from the ~and field directions by using Fermi surfaces fra initio
differencen* (0)=0.727 and 0.591 between spherical and cy-€/€ctronic-structure calculations. This kind of calculations
lindrical Fermi surfaces, respectiveéfy. has been performed only for Nb by Butler so %’é_??Makmg
On the other hand, it was shown by Werthamer andfuch calculations p_oselble for other r_natenals is expected to
McMillan 2 that the strong-coupling effects charige(t) by enhar_me our quantitative understandingHn s_ubstantlally.
only =2% for the spherical Fermi surface and cannot be the This paper is _orgamzed as fgllows. Secthn Il considers
main reason for the enhancementhdf(0) in Nb. the Weak—co_upllng m0d6| W'th. gap  anisotropy _and
The most complete calculation, including the effeGls s-wave impurity scattering. We derive &, equation valid

: at all temperatures as well as an analytic expression for
(iv), was performed on pure Nb by Butf?3He solved the . . .
strong-coupling equation by Eilenberger and Ambegadkar, ch(':'Sch) up to”seco?d Oad,e“T” é-lr_/-:-cf The main an;;lyﬂc
taking full account of the Fermi-surface structure and the/ €SUIS omSec. dare;]él{ste In fable T1or an e?sy reterence.
phonon spectra from his electronic-structure calculations. ngcuon extends thél, equation so as to inclugewave

could thereby obtain an excellent agreement with experilmpurity scattering, spin-orbit impurity scattering, and strong

ments by Williamsoff with (h* (0))=0.96 and by Kerchner electron-phonon interactions. Section IV presents numerical
et al5® However, a later experiment b'y Sauerzepl S on examples for model Fermi surfaces of a three-dimensional

a high-purity Nb shows a larger valde* (0))=1.06, thereby tight-binding model with cubic symmetry. Section V summa-

suggesting that there may be some factors missing in But-®® the paper. We use =1 throughout,

ler’s calculation.

Theoretical considerations on the effeqty and (vi) Il. WEAK-COUPLING H, EQUATION
started much later. It was TakanakaTeichler’® and Pohl _ _ _
and Teichlet® who included gap anisotropg) in the He, A. Fermi-surface harmonics and gap anisotropy

equation. They considered the nonlocal effect perturbatively We first Specify the gap anisotropy in our consideration
adopting a separable pair potential. Takanaka stutiged with respect to the Fermi-surface harmonics. The Fermi-
anisotropy observed in uniaxial crystals, whereas Teichlesyrface harmonics were introduced by Afitas convenient
applied his theory to thél, anisotropy in cubic Nb. This polynomials in solving the Boltzmann and Eliashberg equa-
approach by Teichler was extended by Prohammer anflons. They were later used by Langmahto derive anH,,
Schachingéf to anisotropic polycrystals and used by Weberequation applicable to anisotropic Fermi surfaces and aniso-
et al> to analyze anisotropy effects in Nb. tropic pairing interactions. However, the polynomials con-
The mixing of higher Landau levelwi) was considered structed by Allen based on the Gram-Schmidt orthonormal-
by Takanaka and Nagashifian extending the Hohenberg- ization are not very convenient for treating the gap
Werthamer theory for cubic materi@® higher orders in the  anisotropy. We here adopt an alternative construction starting
nonlocal cqrrection. It was a_lso taken into account byfrom the pairing interactioW(kg, k{) on the Fermi surface
Takanalzé}g in the above-mentioned work, Youngner and\yherek denotes the Fermi wave vector. Evidentgk g, k /)
Klemm?* in thelr_pert.urbanon expansion with respect to theis HermitianV* (Ke, kP =V(k., k), and invariant under ev-
nonlocal corrections; Scharnberg and KlefArm studying ery symmetry operatioR of the groupG for the relevant

Hea for p-wave superconductors, Rieck and Scharntei crystal asRV(kg, k) R1=V(kg,kp). We hence consider the
superconductors with nearly cylindrical model Fermi Sur'following eigenvalue problem:
faces, and Prohammer and Carb®tfer d-wave supercon- '

ductors. See also a recent work by MirariguMachida® )  Tihur £ <)

and Kogan on MgB Although it plays an important role in deFp(kF)V(kF'kF)¢yJ kp =V ke). (2

the presence of gap anisotroffy?®this mixing was not con-

sidered by TeichléP and Pohl and Teichlef. HeredS: denotes an infinitesimal area on the Fermi surface

Now, one may be convinced that calculations includingandp(kg) =[(27)3N(0)|vg/]™* with v the Fermi velocity and
(ih—(vi) are still absent. Especially, many of the theoreticalN(0) the density of states per one spin and per unit volume at
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the Fermi energy in the normal state. The supersdript-

notes an irreducible representation®f | distinguishes dif-
ferent eigenvalues belonging I§ and y specifies an eigen-

PHYSICAL REVIEW B 70, 224522(2004

scattering based on the quasiclassical Eilenberger
equation$*-%6 The Eilenberger equations are derived from
the Gor’kov equations by assuming a constant density of

vector in(I",j). This eigenvalue problem was also consideredstates near the Fermi energy in the normal state and integrat-
by Pokrovskif® without specifying the symmetry. The basis ing out an irrelevant energy variadi&=®¢ Thus, phenomena
functions thereby obtained naturally have all the propertieslosely connected with either the energy dependence of the

of Fermi-surface harmonics introduced by AlRhEspe-
cially, they satisfy the orthonormality and completeness

(S5 ) = 801816, (3a)
- e (kg —kp)
T (ko) T (k! :#, 3b
%dy (ke (kp) == (3b)
where(- --) denotes the Fermi-surface average
(A= f dSp(kp)A(Kg). (4)

Using Egs.(2) and (3), we obtain an alternative expression

for the dimensionless pairing interactiom\(kg,kp)
=-N(O)V(kg,kp) as
ke kp) = 2N (ke B (kp). (5)

Ljy

Thus, it is always possible to express a general pairing inter-
action as a sum of separable interactions. Notice that the
above procedure is applicable also to multiband supercorfhe field H

density of state® or the discreteness in the quasiparticle
energy level®3235-383re beyond the scope of the present
consideration. We also do not consider Josephson vortices
appearing in very anisotropic layered supercondu&ors.
Within the limitations, however, the Eilenberger equations
provide one of the most convenient starting points for deriv-
ing anH, equation, as seen below. This approach was also
adopted by Rieck and Scharnb&gnd Riecket al3!

We take the external magnetic fidildalong thez-axis. In
the presence of Pauli paramagnetism, the average flux den-
sity B in the bulk is connected withd as H=B-4my,B,
wherey, is the normal-state spin susceptibility. The fact that
Xn IS multiplied by B rather thanH corresponds to the fact
that the spins respond to the true magnetic field in the bulk.
It, hence, follows thaB is enhanced over as

B=H/(1 - 4my,). (7)

The vector potential in the bulk di=H., can be written
accordingly as

A(r)=(0,Bx,0). (8)

is supposed to be along the direction

ductors. Indeed, we only have to extend the integration ovefsin 6 cose, sin 8 sin ¢, cosé) in the crystallographic coordi-

ke to all the Fermi surfaces.

nates(X,Y,Z). The two coordinate systems are connected by

The Fermi-surface harmonics can be constructed alSghe rotation matrix

from the coupling function\(kg ki, en—gp)—u* (Kg,Kp)
in the strong-coupling Eliashberg thedif? where
e,=(2n+1)#T is the Matsubara energy.

energy w=2laT and set V(kg ki) =-[NKg kg, o))

Indeed, we
only have to specify an appropriate bosonic Matsubara

cosfcose cosfsing —sind
—-sineg COS¢ 0 , (9
sinfcose sindsing coséH

R =

—u* (ke,kD)1/N(0) in Egs.(2) and(3). We thereby obtain an asRH=(0,0,H)T, where T denotes transpose. We assume

alternative expression for the coupling function as
NKg ke en—ep) —u* (Kg,Kp)

= FE Ny =) = " D]V (kp) ) (kD). (6)
1Y

We expect that this construction does not depend on the

choice of w, substantially. It is worth noting thadb initio

calculations of the coupling function are now possible for
phonon-mediated superconductors, as performed recently for
MgB,.5% Henceab initio constructions of the Fermi-surface

harmonics by Eq(2) can be carried out in principle.

From now on we consider the cases wh@jehe system
has inversion symmetry an) a singlex") is relevant that

that the vortex lattice is uniform alorg

With the gap anisotropy specified bj(kg) and in the
presence of Pauli paramagnetism, the Eilenberger equations
reads

h 1 h
<8n‘ iugB+ E_<g> + EhVF . 0>f = (¢A + Z_<f>)g,
(103

Teo

A(r)In T

=aT > {M - <¢(kp)f(sn,kp,r)>} :

n=-x» |8n|

(10b

belongs to an even-parity one-dimensional representétion Here ug is the Bohr magnetons is the relaxation time by
Indeed, these conditions are met for most superconductor§onmagnetic impurity scattering in the second-Born approxi-

Hereafter we will drop all the indices as(yrj)(kp)—>¢(kp),
for example, and choos¢(kg) as a real function.

B. Eilenberger equations

mation, A(r) is the pair potential, and is defined by

2

d=V-i—A, 11
'<I>o (11

Now, let us derive aH., equation for the second-order with ®y=hc/2e the flux quantum. We will consider posi-

transition in the weak-coupling model witiwave impurity

tively charged patrticles following the convention; the case of
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electrons can be obtained directly By——A, i.e., reversing 24T )3 o

the magnetic-field direction. The quasiclassical Green’s func- Xij = AwTe) —e> ~3{(¢2 URUE) + (X Pveive)

tions f and g are connected bg=(1-ff"Y2sgn(e,) with 7L a0 27en

fT(en, ke, 1) =% (=&, kg, 1),% and To, denotes the transition (PN Poeve) . (DU vEve)

temperature in the clean limit=cc. o + (275.)? , (20
n n

To obtain B.,, we formally expand the quasiclassical
Green’s functions up to the first order ik as f=f® and
g=sgn(e,). Substituting the expressions into E¢$0a and

with { the Riemann zeta function. Note thai is dimension-
less, approaching té; as7— o for the spherical Fermi sur-

(10b), we obtain the linearized self-consistency equations aface. It is a direct generalization of thefunction introduced

h
[:o:; ¥ Sgrég”) e - a] 0= ga+ (D), (129

A|n—°°_—ﬂ2 <¢f<1 —A)

e lenl

(12b)
with

. - h
iugBsgnie,), &,= e+ 2—7 (13)

~ o~
En=¢&n~

C. Operators and basis functions

It is useful to transform the gradient operator in EXDa)
as

Ve 0= (vr,a-vmahh2l,. (14)

Herel. denotes 142 times the magnetic length as

lo = V®y/27B = \hc/2eB. (15)

The operators anda' are defined by

a | c, ic 0,
{T}:—‘;{ " ZH] (16)

where the constants, andc, are constrained by
C1Cy+CiC =2, (17)
so that[a,a']=1. Finally, v, is defined by

Upy = G+ IC 0y (18)

The constantsc,,c,) can be fixed conveniently by requiring
that the gradient term in the Ginzburg-Landau equation b
expressed in terms @f'a without usingaa anda'a’, i.e., the

pair potential neafl, be described in terms of the lowest
Landau level only. As shown in Appendix I, this condition

yields

XZ 1/4
o= (—2) (199
XxoXyy ~ Xxy

2
_ Xyy H -1 _Xy_
XxxXyy ~ Xxy v Xxnyy Xxy
(19b)

where x;; = x;;(T,) is defined by

by Gor’koV?° to anisotropic systems.

The operators in Eq(16) extend(a_,a,) introduced by
Helfand and Wertham@r for anisotropic crystals. For
uniaxial crystals, they reduce to the operators used by
Takanaka?®

Using Eq.(16), we can also make up a set of basis func-
tions to describe vortex-lattice structureg®as

> Nyl2
n

— > p{lqy(y“—qx)}
Crap\ V= -Nil2+1

na na
X exp[i |21X<y+ |§qx‘ _Zlyﬂ
C

2 2
C1Cy [ X120, — nNa;
A2 2 Ty TOx
wexnl - 12( 4 1x)
2 Cqle

l//Nq(r) =

oL (x—lﬁqy—nalx>
N .
V2NN cile

Here N=0,1,2;-- denotes the Landau leve, is an arbi-
trary chosen magnetic Bloch vector characterizing the bro-
ken translational symmetry of the vortex lattice and specify-
ing the core locations, and is the volume of the system.
The quantitiesa;, and a, are the components of the basic
vectorsa; anda2 in thexy plane, respectively, with, ||y and
aa,= 27T|C, /\f2 denotes the number of the flux quantum in
the system, andl\(x) = e"( d/dx)Ne‘X is the Hermite poly-
nomial. The basis functions are both orthonormal and com-
plete, satlsfylngﬁu,//Nq—\NwN 1q anda’ ng= VN+1 Liniag-

The function(21) is a direct generalization of the Eilen-
berger functio®® ¢y (r|ro) with c;=c,=1 to anisotropic
Fermi surfaces and energy gaps. gerO in the clean limit,

Eq. (21 reduces to the function obtained by Rieck and
Scharnberdf’* and Rieclet al,*! However, they derived it
ithout recource to the creation and annihilation operators of
g. (16). These operators have simplified the derivation of
the basis functions and will also make the whole calculations
below much easier and transparent.

(21

D. Analytic expression ofH, near T,

Using EQ.(16), it is also possible to obtain an analytic
expression foB.,=Hg,/(1-4my,) nearT.. Let us express it
as

B, = By(1-t) + By(1 -1)?, (22)

with t=T/T,.. The coefficient8; andB, determine the ini-
tial slope and the curvature, respectively.
It is shown in Appendix | thaB, is obtained as
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2477 R(I)O
72(3) (xxokyy = Xap) VA BRY AT )?’

where { is the Riemann zeta functiory; is given by Eq.
(20), andR is defined by

p1= (9)?
27

By (23)

= 2aT E -

n=0 €n

R=1- (24
The factorfi(vZ)Y?/ T, in the denominator of Eq23) is es-
sentially the BCS coherence lendthAlso, R is dimension-
less and approaches unity fer-c. Equation(23) is a direct
generalization of the result by Rieck and Scharniefgr

¢(kp)=1 to the cases with gap anisotropy and for arbitrary

strength of the impurity scattering.

Itis convenient to expregsgvg;) in Eq.(20) with respect
to the crystallographic coordinaté€X,Y,Z) to see the aniso-

tropy in B; manifestly. Using Eq(9), v anduvg, are rewrit-
ten as

Upx = Upx COSO COS¢ + vpy COSH SIN @ — vz SIN G

Upy = ~ Upx SiN @ + vpy COS@
(25

so that
(VB0 = (vE)COS @+ (vR)SIN? ¢)coS 0+ (vE)sir? 0
(vE,) = (RS @ + (vE)cos ¢

(VR = ((By) — (vE)cosh cosp sin g

(26)

The quantities(¢vr,wr,) and (¢?vewr) can be expressed

similarly in the crystallographic coordinates onggkg) is
given explicitly. In particular, whemb(kg) belongs to thelq

representation, the expressions for the two averages are &Rsctor f( 1)_(]:(1) f(l

sentially the same as E@26). From Egs.(23), (20), and

(26), we realize immediately that the initial slope is isotropic
when¢(kg) belongs toA,4 and the crystal has cubic symme-

try.

PHYSICAL REVIEW B 70, 224522(2004

over r. Equations(12g and (12b) are thereby transformed
into

h
2 M = ¢+ 5 (f), (289
N/
T l)
Ayln =2 =- TZ (pfP) - (28b)
T e | n|
where the matrixM is tridiagonal as
My =Zpdun + N+ 18* Sypog - \"N,E5N,N'+1:
(29
with
Y hUF+Sgr(8n) (30)
2\2,

We first focus on Eq(28g and introduce the matrix by

K = (M Dy, (31)
which necessarily has the same symmetry\dg?
’CNN'(SnaE) = ’CN'N(Sn:_E* )
=Ky (= em=B*) = K- enB). (32)
Using KC, Eq. (289 is solved formally as
EDY ’CNN'<¢AN' + —<f >> : (33

N’

Taking the Fermi-surface average to obt{aﬁﬁ) and substi-
tuting it back into Eq(33) we arrive at an expression for the
-)T as

e ol 252 o
Ko+ —IC I-— ] (K |A

27 (34)

The expression foB, is more complicated as given ex- With Z the unit matrix in the Landau-level indices and
plicitly by Eq. (A9a). It includes Fermi-surface averages of A=(Ag,A1,Az,++)".

Uhy UEURy, €tC., and enables us to estimate the initial curva-

ture ofHCz given the Fermi-surface structure.

E. H., equation

We now derive arH_, equation that can be solved effi-

We next substitute Eq:34) into Eq. (28b). We thereby
obtain the condition that Eq28b) has a nontrivial solution
for A as

ciently at all temperatures. To this end, we transform Eqswhere the matrix4 is defined by

(128 and(12b) into algebraic equations by expandiagand
f@ in the basis functions of of Eq21) ag'-70

A() =V Agdig(r), (273
N=0
fD(enke ) = W f(enkptng(M). (27D

N=0

Let us substitute Eqs(14) and (27) into Egs. (128 and

detA =0, (35)
- o
A=TIn—+aT > [— —(K¢%
Teo n=-c |8n|
( Nt
- —</C¢> I-——] (K|, (36)

with Z the unit matrix in the Landau-level indices. The upper
critical field B, corresponds to the highest field where Eq.
(35) is satisfied, withB and H connected by Eq(7). Put

another wayB,, is determined by requiring that the smallest

(12b), multiply them by zp,*\‘q(r), and perform integrations eigenvalue of4 be zero. Notice thatl is Hermitian, as can
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be shown by using Eq.32), so that it can be diagonalized thatH., nearT. is described in terms of the lowest Landau

easily.
Equation(36) tells us that central to determinirig}, lies
the calculation offCyy defined by Egs(29) and (31). An

level for arbitrary crystal structures.
Equations(35) and (36) with Egs. (13), (15), (18)—<20),
(30), and(39) are one of the main results of the pajgsee

efficient algorithm for it was already developed in Sec. IIF ofalso Table ). They enable us efficient calculationsldf, at
Ref. 41, which is summarized as follows. Let us defineall temperatures based on the Fermi surfaces fabninitio

Ry(N=0,1,2;--) andRy(N=1,2,--+) by
Ry-1= (L +NxX°Ry) 7, (373
Rus=(L+NXRy™L,  Ry=1, (37b)
respectively, with
x=|p|/E.. (38)
ThenCyw for N=N' can be obtained by
N-N’
1 _
Kan = = mi(x) ﬂN'(X)(§> , (39
SI"I SI"I
with
N
m=NTIR, (403
k=0
1 (N=0)
= 40b
N H (N= 1) ( )
Np=t R¢

The expression ok for N<N’ follows immediately by
Eq. (32).

As shown in Appendix Il, Eqs(408 and (40b) can be
written alternatively as

2 " SNH(s) ds
VaNlJg 1+ 2>(ZS2

L sNexp< s——sz)
\N'

N(X) =

= NN N erfd(2), (413
vl )
= = | Hnl =
77N( ) ’N'(\’Zi) N V’ZX
1 d\M
= — ,_e—v%(—) N (41b)
y VN! dy y=1/x

respectively, whereg=1/2x and N erfc(z) denotes the re-
peated integral of the error functidh.The latter function
n(X) is an(N/2)th-order[(N—-1/2)th-ordeil polynomial of

x? for N=even(odd).

Thus, the key quantityCyy is given here in a compact

separable form with respect tddandN’. This is a plausible

feature for performing numerical calculations, which may be
considered as one of the main advantages of the present for-

malism over that of Langmanii.Our Ky in Eq.(39) is more
convenient than Eq26) of Hohenberg and Werthanfein

electronic-structure calculations. They form a direct exten-
sion of the Rieck-Scharnberg equafidrio the cases with
gap anisotropy and arbitrary strength of the impurity scatter-
ing. Indeed, Eq(41b) is written alternatively as

Pn(27), (42)

1
V(2N) 12NN
with z=1/y2x, where Py is the polynomial defined below
Eg. (6) of Rieck and Scharnber. Substituting this result
and the last expression of E@l1g into Eq.(39), it can be
checked directly thag,[Copron fOr N’ <N is equal toM gy
in Eq. (6) of Rieck and Scharnberf.Using this fact, one can
show that the matrix4 in Eq. (36) reduces to the corre-
sponding matrix in Eq(5) of Rieck and Scharnberg eith@y
for the isotropic gap with arbitrary impurity scattering(@r
in the clean limit with an arbitrary gap structure. Here we
have adopted in Eq. (38) as a variable instead afbecause
X remains finite at finite temperatures.

From Eq.(39) and the symmetry— - for vpe— —vg, we
realize that(lCon av+1), (Kanan+16), and Koy onr+19%) all
vanish in the present case where the system has inversion
symmetry and¢(kg) belongs to an even-parity representa-
tion. It, hence, follows that we only have to consider
N=even Landau levels in the calculation of E®6). To
obtain a matrix element of E¢36), we have to perform a
Fermi-surface integral for eachand perform the summation
overn, which is well within the capacity of modern comput-
ers, however. Actual calculations of the smallest eigenvalue
may be performed by taking onN=<N_ Landau levels into
account, and the convergence can be checked by increasing
Neut We can putN.,,=0 nearT. due to Eqg.(19), and must
increase\,; as the temperature is lowered. However, excel-
lent convergence is expected at all temperatures by choosing
Neue= 20.

on(X) =

IIl. EXTENSIONS OF THE H, EQUATION
We extend theH, equation of Sec. Il in several direc-
tions.

A. p-wave impurity scattering

We first takep-wave impurity scattering into account. In
this case, Eq(109) is replaced by

f 3~ o~ 1
(sn— 168+ 5 (@) + 5 ke (ki) + v a)f
<¢A+ —<f>+ S k,: (k )’ ) (43)

where <kFg>’—<kFg(sn,k;,r)>’ for example, and
ke=ke/(K®Y2. Notice thatkr is not a unit vector in general.
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Linearizing Eq.(43) with respect toA, we obtain O
9 Fa A i resp Q) = 8 5o (k). (46b)
27ep
~, , S9riey) = Ay, S m iy - -
en+ > five- @ |fY = pA + > (f) + > ke -(kef™), ThenT,, (c1,cy), andB, in Eq. (22) are given by the same
4 1 equations, i.e., Eq$A5), (19), and(23), respectively.
(44) Using Egs(14) and(27), we next transform Eq44) into
an algebraic equation. The resulting equation can solved in
with 3/ defined by Eq(13). the same way as E@33) to yield
First of all, we derive expressions fdr, at H=0, the 3 3~ -
coefficients(c;,c,) in Eq.(16), andBg, nearT, up to the first ¥ = /C(¢A + 2—7_<f(1)) + 2_7-1kF ' (kéf(l)y) , (47

order in 1-t, based on Eq44) and following the procedure o _ _ _
in Sec. A. It turns out that we only need a change of thewhereC is given by Eq.(39). It is convenient to introduce
definition of x;; from Eq. (20) into the quantities

= G=xyn. 49
_ 24(7TT(;)3 1 <¢> 2 po_ 27'1 pJ N 27'1 F ]_ 1y1 '
Xi = 273002 > 5|\ veve ¢+—2 7
{B3){vE) no &y en Then from Eg.g47), we obtain self-consistent equations for
. } (pof™) and(p;fV) as
+ POP): |, 45 . *
27'17an/h( Py 49 (pof®) (P HYA
here the matrice® and Q are defined b (BIY) |_) (PrlcdIA (49
where the matrice® and Q are define . = . ,
Y (pyf ™) (PyCHA
P ( (¢) )& ” (pf) (P LHA
U ¢ 27le |l AUF /o (469 where the matrix/V is defined by
|
T-{poC) = (pob) = (PopyC) = (PP |7
| T(PRK) T —(pd’) = (PpyK) = (PP 50

—(BPok) = () T=(pyPP) = (pyp.C)
—(Ppok) =) = (ppyK) T —(|pJ?K)

The complex conjugations * in Eq$49) and (50) are not
necessary here but for a later convenience. Not the symmetry

Win(€nB)=Wii(=€n, B) in the matrix elements oV, as A=TIn T +aT D
seen from EQq(32). Using Eq.(49) in Eq. (47), we obtain an 0 = | [0l
explicit expression fof'? as

A
— — (K¢ ~ [Pk )Pk P)

\ (PokC )
pokcy (PP
(P D) XL OV - (52)
U = KA + [pokppyp LIV | - A. (51 (P, K b)
(pKe) (P
(P, Kb

As before,H., is determined by requiring that the smallest
eigenvalue of Eq(52) be zero. ThisA is Hermitian, as can

Finally, let us substitute Eq51) into Eq.(28h). We thereby be shown by using Eq.32) and W,*m(sn,B)EWm,(—sn,,B).
find that Eq.(36) is replaced by Thus, Eq.(52) can be diagonalized easily.
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It is straightforward to extend E@52) to a more general It follows from the procedure in Sec. Il A that, at
impurity scattering with theke-dependent relaxation time H=0 satisfies
m(kg,kg). To this end, we apply the procedure of E(®—(5)

to 1/7(kg,k{) to expand it as * 2 T
o (r r 'nEZZWTCE {i‘<ii>-<p~—¢>gl<i—¢>}
E 7 J)(kF)ﬂ( J)*(kF) 53 T, n=ol €n €n en €n
ﬁkF, O 7 ’ (60)

where 1#1) and nr”(kF) denote an eigenvalue and its \yhere the matrixQ is defined by(r,s=0,xx, -+, 2%
eigenfunction, respectwely We then realize that

|_h - 9rPs
p(yrl = ZT(FJ)?yy])(kF) (54 Qrs_5r5_< 3 > (62)

substitutes foip, andp; in Eq. (52). Also, x;; in Eg. (20) should be modified into
B. Spin-orbit impurity scattering 24(7TTC) UF|UFJ p'o d’
It was noticed by Werthamegt al” and Mak? that, for Xii = 7§(3)<UF>% 73 B Qd
high-field superconducting alloys with short mean-free paths,
Pauli paramagnetism has to be incorporated simultaneously x| ¢p+pTQl qé (62)
with spin-orbit impurity scattering. They presented a theory en

valid for r<<7g, where 74, is spin-orbit scattering time. It
was later generalized by Rieekt al3* for an arbitrary value Finally, R in Eq. (24) is replaced by
of 75, This effect can also be taken into account easily in the

formulation. - 5
In the presence of spin-orbit impurity scattering, EtDa) R=1-27T.>, {<¢[)~_2<q>> < P <qu ¢> <ﬁ_¢>
&n €n

is replaced by n=0 €n
. N TSP | PTo\ 4/ a¢
<8n ~iugB+ Q)+ 2T:Z<|kF X kelg)" + Shve: o”)f - 8”<E_n>Q 1<E_ﬁ>
2 A R R T T
= <¢>A+ —(f)+ CS"<||<F X k;|2f>'>g, (55) -&n p~—¢ ot % ot i—d’ } (63
27 275 €n en en

with cso=1/(({|keXkg?)"). To simplify the notations and \ith the above modificationdy, (c;,c,), andB, in Eq. (22)
make the argument transparent, it is useful to introduce thgre given by Eqs(A5), (19), and(23), respectively.

quantities We now transform Eq(58) into an algebraic equation by
7 e using Egs.(14) and (27). The resulting equation can be
Po= 1\ /2—, p;j = 5 S°(|<25 kFlkF]) (563  solved in the same way as E@3). We thereby obtain
T Tso
(% [ices U =KeA + X pK(gf?), (64)
— —_— C 1 T r
o= 2 g; = ?::kFiij(z -6j), (56b

where is given by Eq.(39) with ¢/ replaced by Eq(59).

and the vectors From Eq. (64), we obtain self-consistent equations for

P = (Po,Px Pyys Pz Pry: Py P (578 (Gf™) and(q;f®) as
0 = (Glos G Oyys Gz Oy lyzs Gz - (57b) (qof ) U
Then Eq.(55) linearized with respect ta is written in terms <quf(1) ) (GalCH)A
of Eq. (57) as <qyyf(1)> (o CHA
@y | = A

~, . Sgren) ) (@A) | =W (@ LHA |, (65)
! hve- 3|tV = pA +p -(qf P

(8n+ 5 VF #A+p-(qf”), (58 (Oeyf ) (O HA

(1)
where?/, is defined by <quf(l)> (ayLHA
— - (A A

&n=en—iugBsgriey), &, =leq/+p-(a). (59 Ll kA

Note p-(q)=(p) Q. where the matrix/V is defined by
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T=(0oPok)  —(GoPul) = (QoPyyk) -+ |7 be shown by using Eq(32 and [W'(en, )lm=Wpy
Qo) T=(QuuPidC)  — (OO -+ (-&n,B), which can be diagonalized easily.
- <qyypOIC> - <nypxx’C> I- <nypyylc> T

W= —(dPok)  — (APl =GPy - | . C. Strong electron-phonon interactions
—(GPoKC) = (UyPodl)  — (GeyPyyk) - We finally consider the effects of strong electron-phonon
: K ¢ K ¢ K interactions within the framework of the Eliashberg
(GyzPo OyPodC) OyPyC) - theory®162 We adopt the notations used by Allen and.

(O PoC)  —(UpPdC) (AP - Mitrovi 52 except the replacemedih — A.

) -(66) The Eilenberger equations were extended by Teiéhter

include the strong-coupling effects. They can also be derived
Using Eq.(65) in Eq. (64), we obtain an explicit expression directly from the equations given by Allen and B. Mitré%

for O as by carrying out the & integration®® as
f 1 fi
fq"’fc‘z (Zan i1gB+ () + e a)f : (A¢>+ 2—<f>)g,
qXX T T
0 = KpA + [Pk pedCpyy K - -+ W
d’ [pO Pxx py ] <qnyC¢> (693)
E Neo
<polc¢> A(‘S‘nir):'”'-r E D\(Sn_sn’)_:u’* ]<¢(kF)f(8n’1kF'r)>.
(Pl )
= KA + [Qok GOy - - IWT A,
0 XX yy/ (pyle¢> (69b)
: Neo
ar
(67) Z(enkp) =1+— X (AKpKfen—en)g(en kL),
_ _ N n'=-ng
with W' defined by[W'(ep,, 8)]m= W (—€n, 8). The latter (690

expression originates from the self-consistency equations for
<p0f(1)> and<pijf(1)> similar to Eq.(65). Finally, let us substi- wheren, corresponds to the Matsubara frequency about five

tute Eq.(67) into Eq. (28b). We thereby find that Eq36)is  times as large as the Debye frequeficyVe have retained
replaced by full kg dependence of in Eq.(690¢) because the contribution

from other pairing channels, which may be negligible for the
pair potential, can be substantial for the renormalization fac-

* tor Z.
7z
A=TlIn T +aT > — —(K¢?) We linearize Eqs(69) with respect toA and repeat the
Teo e | l&nl procedure in Sec. A up to the zeroth order intl# then

follows that T, at H=0 is determined by the condition that
the smallest eigenvalue of the following matrix be zero:

(o)
(ol ) 49 =5 oo -t | (£
- K WIC Ky W nn’ e~ T[N eq =) = * ]| { =
[P/ DX PrdC PPy K P) - -+ ] (G By
i i 2 En’
* 2T<“énr> <z(n‘?>|sn,|>]’ (70
T ‘)z X © i i
=I|nT—+7TTE m_m(ﬁ) whereZ'” is given by
c0 n=-o n Neo
Z%enk) =1+ 3 (Mkeklyen- e0)’ S0,
(P ) " n'=-neo
| (P (71
~ Haokdiank dnayledr= VI o ey | [ and, is defined together wit;, by

~ ho o, - .
68) SnEZ(O)|8n|+E_= en=en—iugBsgne,). (72

As before,H, is determined by requiring that the smallest We next fix(c,,¢,) in Eq. (16) conveniently. For the weak-
eigenvalue of Eq(68) be zero. This4 is Hermitian, as can coupling model, we have fixed it by using E@\6) nearT,
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so that the coefficient cda vanishes, i.e., there is no mixing
of higher Landau levels in thel,, equation neafl.. How-
ever, the coefficient ofaa in the corresponding strong-
coupling equation becomes frequency dependent. It, hence,
follows that even neail, there is no choice fofcy,c,),
which prevents mixing of higher Landau levels from thg
equation. We here adopt the weak-coupling expression in Eq.
(19).

We now consider théd., equation and repeat the same
calculations as those in Sec. Il B. We thereby find that Eq.
(36) is replaced by

-AnN,n’N' = 5nn’5NN’ - 71'Tl:)\(sn - 8n’) -—u* ]|:<K,¢2>

i wEH\
+ 2—<’C'¢> I-—— ) K'¢| , (73
T 27 NN’

whereX’ =K (e, ,8) which also hakg dependence through FIG. 1. Fermi surfaces of the tight-binding model in the simple
Z97=70(g,., . kg). As before Hg, is determined by requiring  cubic lattice. The Fermi energies a@® sg=-3, (b) -2, (c) -1, and
that the smallest eigenvalue of EJ3) be zero. (d) 0.
We may alternatively use, instead of E@3), the matrix
eral values ofeg, we used the linear tetrahedron method,
' =N=u*)ls 5, 2 which is applicable to any structure of the Fermi surface.
A = A= 47 Iy e = WT{UCM In this method, the irreducible Brillouin zone is divided
A AUC)\ 7t into a collection of small tetrahedra. From each tetrahedron
+—<lc¢)(z——) (ICd))} , (74  that intersects the Fermi surface, a segment of the Fermi
27 27 NN surface is obtained as a polygon by a linear interpolation
of the energy band. Numerical integrations over the Fermi
surface were then performed as a sum over those polygons.
Another description of the Fermi surface is possible for
eg<-2, where we can adopt the polar coordinate
k=(ksin#cos¢,ksinfsin ¢,k cosd), and the Fermi sur-
IV. MODEL CALCULATIONS face kF_=kF(0,qb) is obtained by _solving_the equatien = _
numerically for each(#, ¢). An integration over the Fermi
We now present results of a model ca_lculation based oByrface is then performed by using the varialless). We
the formalism developed above. We restrict ourselves to thgerformed both types of calculations to check the numerical
weak-coupling model of Sec. Il with an isotropic gap, no convergence of the tetrahedron method. Excellent agree-
impurities, and no Pauli paramagnetism. As for the energyments were achieved generally by using 3375 tetrahedrons.
band structure, we adopt a tight-binding model in the simplean exception is the regios-~ -2, where a larger number of
cubic lattice whose dispersion is given by tetrahedrons was necessary due to the singularity arkynd
—_ The infinite matrix Ay in Eq. (36) was approximated by
o=~ 2t{codka) + coskyd) + codha}. (75 a finite matrix of N,N'<N,, and the convergence was
Here a denotes lattice spacing of the cubic unit cell andchecked by increasinty.,. The choiceN,,=0 is sufficient
t is the nearest-neighbor transfer integral. We tset=1  for T<T,, and it was found numerically tha{.,=8 yields
in the following. The corresponding Fermi surfaces areenough convergence for all field directions at the lowest tem-
plotted in Fig. 1 for various values of the Fermi energy peratures. It was also found that higher Landau levels of
er. For eg=-6, i.e., near the bottom of the band, the N=1 contribute toH., by only 4% even afT/T.=0.05.
Fermi surface is almost spherical with slight distortion Thus, the lowest-Landau-level approximation to the pair po-
due to the cubic symmetry. Asg increases, the cubic tential is excellent for this cubic lattice. This is not generally
distortion is gradually enhanced. Then af=-2, the the case, however, and the contribution of higher Landau
Fermi surface touches the Brillouin-zone boundary atlevels can be considerable for low-symmetry crystals, as will
ky=(0,0,+m),(0, +,7,0),(x7,0,0. Above this critical be reported elsewhereé.
Fermi energy, the topology of the Fermi surface changes, as Before presenting any detailed results, it is worth noting
shown in Fig. 1c). It is interesting to see how such a topo- that the GL equations? where the anisotropy enters only
logical change of the Fermi surface affeéts,. through the effective-mass tensor, cannot explain possible
We computedH,, based on Eq(35) in the clean limit anisotropy ofH., in cubic symmetry, as already pointed out
without Pauli paramagnetism. The Fermi-surface average iby Hohenberg and WerthameThis GL theory is valid near
Eq. (36) was performed by two different methods. For gen-T. so that the upper critical field fof < T, should be isotro-

where(\ - u* )™t denotes inverse matrix of— u*. It is Her-
mitian for ugB— 0, and also acquire the property by com-
bining n>0 andn< 0 elements.
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FIG. 3. The reduced upper critical fieltﬂ;(t) at t=0.05 as a
0-00_0 02 04 06 08 1.0 function of the Fermi energyg. The field dirgctions ard=[111],
T, [110], and[100Q] from top to bottom, respectively.

_ FIG. 2. Curves of the reduced critical fiefe(t for the cubic  gescripe the difference in* (t) for t=<1 among field direc-
tight-binding model withzg=-2.02 (dotted lines, &r=-3 (solid " t5ng The ypward curvature is more and more pronounced as
lines), ander— ~6 (i.e., the spherical Fermi surface; dash-dotted e ermj surface approaches the Brillouin zone boundary, as
line). The field directions ard=[111], [110], and[100] from top to can be seen clearly in Fig. 2 fer=-2.02. The correspond-
bottom in each case. ing ratio B,/B; for the [110] and[111] directions are about
pic in the present model. The anisotropy léf, in cubic  three times larger than those fep=-3. Thus, the present
symmetry emerges gradually at lower temperatures, as seé&alculation clearly _mdlcates that the Fermi surface aniso-
below. tropy can be a main source of the upward curvaturél in

We calculated the reduced critical fiehd (t) defined by —N€arTc . .
Eq. (1) for the magnetic field directiong=[100], [110], and In Fig. 3, we plothy(t) att=0.05 as a function oég. As
[111]; we denote them abj(t). Figure 2 presenth(t) for ~ €F—~6, the angle dependence kfit) vanishes and it con-
er=-3 and —2.02 as a function 6£T/T,. Foreg=-3,h* (1)  Verges to the value for the spherical Fermi surfacesAts
is almost isotropic fort=0.8 and cannot be distinguished Increased from =6, cubic distortion is gradually introduced to
from the curve for the spherical Fermi surface. At lowerh® Fermi surface as shown in Fig. 1, anglt) gradually
temperatures, the anisotropy appears gradually. Whereé@vek’psf ﬁf"smroll?};l fi)s Ia cor;]seqfuemr:]e. FO: Sﬁgl‘é-& _
hi10g(t) is reduced from the value for the spherical FermiCurves offoq(t) fall below that for the spherical Fermi

surface hy;;5(t) andhyy,q(t) are enhanced due to the cubic surface, whereab;(t) and h[m](t) are enhanced over it.
distortion of the Fermi surface. At=0.05, hE111](t) and As er approaches to —(t) is enhanced significantly irre-

hEllO](t) are larger thamElOO](t) by 19% and 15%, respec- specu_ve of the flelq dlrecpon. Indeet,(t) for every f_|eld
. _ direction shows a singularity at=-2 where the Fermi sur-
tively. In another caser=-2.02 where the Fermi surface

| hes the Brilloui bounda K face touches the Brillouin zone & with vanishing Fermi
nearly touches the Brillouin zone boundalmy(t) are remark- \o|ocity v at these points. As a result, the contribution

aPIy enhanced for all field directions. Especialiy (1) and  around these points becomes important in the integration
hr11g(t) at low temperatures exhibit values about 60—-70%(Ky,,) over the Fermi surface at low temperatures. This is
larger than tho§e for the sgherical Fermi surface. the origin of the enhancement hf,(t) aroundeg=-2. For
At er=-3, hy119(t) andhyy,q(t) nearT, show small up-  e->-2, the difference between, ;4 andhy,y; is larger than
ward curvature, Wherealsfmo](t) remains almost identical that for eg=<-2.5. This may be attributed to the topological
with the curve for the spherical Fermi surface. This differ- difference of the Fermi surface. A{=0, the tight-binding
ence may be quantified by the ratiy/B; defined in Eq. band is ha*lf filed and the Fermi-surface nesting occurs.
(22). It was numerically evaluated by using the Fermi veloc-However, hy(t) does not show any singularity around this
ity on the Fermi surface and shown in Table Il. The valuesenergy.
for the directiong110] and[111] are larger than 0.13 for the Finally, we present results on the higher Landau-level
spherical Fermi surface. Thus, calcula®gd B, values well  contributions to the pair potential(r), which is expanded as
Eqg. (273. In general, when the system hadold symmetry
TABLE II. The ratio B,/B, for the field direction4100], [110,  around the field direction, mixing of higher Landau levels
and[111] in the casesr=-3 and -2.02. The quantitids; andB,  \ith multiples ofn develops as the temperature is lowefed.
gftﬁgf?;hdewcsqge?ﬁiTQL?rf\;i:;eS should be compared with 0.13 Fig_u_re 4 shows the ratid,\,_/éo as a function ofT/T, for
ep=—3 (solid lineg and eg=-2.02 (dotted line$ with (a)
HI[100] (N=4,8 from bottom to top lineg (b) HI[110]

°F [109 (110 (114 (N=2,46 from bottom to top lines and (c) HI[11]]
-3 0.08 0.27 0.33 (N=6). One can clearly observe a general tendency that the
—2.02 0.44 0.78 0.90 mixing is more pronounced as the symmetry arotthdbe-

comes lower as well asg approaches closer to —2. Espe-
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0.10 @ H/[00] impurity scattering, and strong electron-phonon interactions.
0.05 Finally, we have presented numerical examples in Sec. IV
£ 0.00 performed for model Fermi surfaces from the three-
> dimensional tight-binding model. The results clearly demon-
£ -0.05 o : . . .
strate crucial importance of including detailed Fermi-surface
-0.10 structures in the calculation #f.,. It has been found that, as
-0.15 R R — the Fermi surface approaches the Brillouin zone boundary,
0.05 |- (b) H/[110] - the reduced critical fieldh* (t) in Eq. (1) is much enhanced
o 0.00 over the value for the isotropic model with a significant up-
N R = | ward curvature neafr,.
4 T — . It is very interesting to see to what degree the upper
00 7 critical field of classic type-Il superconductors can be de-
04501 |y 4 scribed quantitatively by calculations using realistic Fermi
01 Fo R surfaces. The result by Butfé3 on high-purity Niobium
0.10 |- - provides promise to this issue. We have performed detailed
Y] . evaluations oH, for various materials based on Eg5) by
£ oo b | using Fermi surfaces from density-functional electronic-
0.05 Ly structure calculations as an input. The results are reported
700 02 04_06 08 10 elsewhere?
[
FIG. 4. The ratioAy/Aq of the expansion coefficients in Eq. ACKNOWLEDGMENT
(273 as a function of temperature witla) HII[100], (b) HII[110],
and(c) HII[111]. The solid and dotted lines correspondeio=-3 This research is supported by a Grant-in-Aid for Scientific
andeg=-2.02, respectively, witte) N=4,8from bottom to topb) ~ Research from the Ministry of Education, Culture, Sports,
N=2,4,6from bottom to top, andc) N=6. Science, and Technology of Japan.

cially when HI[110] and eg=-2.02, theN=2 contribution

reaches up to nearly 15% of the lowest Landau-level contri- ~ APPENDIX A: DETERMINATION OF  (cy,cz) AND

bution asT— 0. The results suggest that the lowest-Landau- ANALYTIC EXPRESSION OF H; NEAR T,

level approximation for the pair potentlais not quantita- ] )

tively reliable at low temperatures for the field along low- We here fix the constantgc;,c;) in Egs. (16-(18)
symmetry directions, for complicated Fermi surfaces withconveniently so thatHc, near T, can be described in
divergences in the components\gf perpendicular tad, or ~ terms of the lowest Landau level only. We also derive

for low-symmetry crystals. analytic expressions foB; and B, in Eq. (22) so that one
can calculate them once the relevant Fermi-surface structure
V. SUMMARY is given.

. - L . In the regionT=<T, wherel.— in Eg. (14), we can
Wg ha\]fe derlyed an eff|C|erHC2_ equation ugjc_orporgtlng perform a perturbation expansion with respect to the gradient

foring Simultaneoucly. Basic results of Gec. Il a6 SummaCPSraloNed: The equation for thoth-order solutont,”

rized in Table I. ThiH., equation is a direct extension of the (»=0,1,-) is obtained from Eq(129 as

Rieck-Scharnberg equati$hand reduces to the latter either

(i) for the isotropic gap with arbitrary impurity scattering or @ A ﬁ<f(yl)> sgr(e;) W

(ii) in the clean limit with an arbitrary gap structure, as f, :5v05_,+§‘7mr3fv—1a (A1)

shown around Eq42). The operators introduced in E({.6) n n

have been helpful to make the derivation simpler than that by

Rieck and Scharnbetgy and Riecket al.3! The present with f(_ll):o. Noting ¢(—kg) = ¢d(kg), we solve Eq(Al) self-

method will be more suitable for extending the consideratiorconsistently for<f5)1)>, put the resulting expression back into

to multicomponent order-parameter systems or to fields begq. (A1) to express™” explicitly, and finally take the Fermi-

low He,. ) ) . surface averagéq&f(yl ). This procedure yields
We have also obtained a couple of analytic expressions

nearT, (i) for He, up to the second order in T+ T, and(ii) ,
for the pair potential up to the first order in IT#T.. The 1 1)
latter result is given by EqA8) with Egs.(A9b) and (A4). <¢f51)> :§<<¢2> * 27e,|’ )A’ (A2a)
They are useful to estimate the initial curvatureHy), as " "
well as the mixing of higher Landau levels in the pair poten-

The H,, equation of Sec. Il has also been extended in (pfPy=— <¢+ ,> (hve- )% )A, (A2b)
Sec. lll to include p-wave impurity scattering, spin-orbit 4, 27jey|
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h 2
1&1,5{<<¢+ 21_|<Z§>|,) (AVE - a)4>

h 7 ) e 2]
+2718n|,<(¢+27|8n|,)(ﬁv,: d) > A,
(A2c)

with [s,|' = e i ugBsgr(e,), and(afy)=(f;’)=0.

(pfP) =

Let us substitute EqA2) into Eq.(12b), replace the gra-

dient operator by the right-hand side of E(l4), put

B=B,, in I, of Eqg. (15), and expande,|’ with respect to
ueBe/ |eq|. We thereby obtain the self-consistency equation

nearT,. as

B *
Wo oA + ZE[w, el + W) aa- w faal +a'a)]A
1

Be |\ "
+ (B_cz) [w, a'a’a’a’ +w, aaaa
1

-w, [(aa'a'a’ + a'aa'a’ + a’a'aa’ + a'a’a’a)
-w, [(a'aaa+ aa'aa+aad'a+aaad)
+W, (aa'aa’ + a'aad + aa'a’a+ a'aa'a)

+w, p(aaad'a’ + a’a'aa) + wp]A = 0. (A3)

Here B, is given in Eq.(22), which is incorporated into the

denominator for convenience. The functiows,=w, ,(T)
andwp=wp(T) are dimensionless and defined by

WoolT) = In 2 - (1-(¢y)27 T3, (i —é),

n=0 \€n &p
(Ada)
_ BTG L ( ﬁ<¢>>2_2
WZ,Z(T)_ ZCDO EOE§< ¢+278n Urt />
(Adb)
_ BTG L ( e )2_ )
WZO(T)_ 20, n§0~ﬁ< ¢+278n |UF+| ,
(A4c)
B2 *m T 1
WadT) = 18(1:-; 205[<<¢
0 n=0¢%n
KOs )y ([ KD
+21’8n> UF+>+ZTsn< o+ 27e, VR ’
(A4d)

B4 T 1 h( by \2
Wy o(T) = = E~_5[<(¢+ <¢>)5§+|72F+>

2
805 oen 27e,

e () )2 SR
¥ 27'sn<<¢+ 2’7’8n>vF+><<¢+ 27'sn> UF+|2>]’

(Ade)
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Bh4m3T & 1 () \2_
Wy 0a(T) = — ET&;{<<¢+ <¢>> |UF+|4>

2
8Py =& 27ey

s ( +
27e, ¢

(A4f)
B4 T 1 ()2
Wy op(T) = 18<1>(2) E)E_ﬁ[<<¢+ > n) |UF+|4>
[ B ]
27e, <<¢+ 27'8n>vF+> ’ (A49)
* 2 1- 2
wp(T) = - (MBBl)ZZWTz {% + %@} :
n=0 n €n
(Adh)

We next substitute Eq(22) into Eq. (A3) and expand
w,, in Eq. (A3) up to the (4_,/2)th order in 1+. We
also put wp(T)=wp(T,). This procedure vyields three
equations corresponding to order 1, tl-and (1-t)2. The
equation of order 1 is given by, o(T)A=0. It determined;

atH=0 by
T g2
In T, =(1 <¢>){¢/ 2+47TTTC 4 > | (AS5)
with ¢(x) the digamma function.
The equation of order 1t4n Eq. (A3) is obtained as
[= Towg o To) =W o(To)(2a%a+ 1) +w, o(To)a'a’
+W, (To)aalA(r) = 0. (A6)

To solve it, we use the arbitrariness (ig;,c,) and impose
W, »(T.)=0. Noting Eqgs.(Adb) and (18), this condition is
transformed into a dimensionless form as

XG5+ 2i X182 = XyyCh = 0, (A7)

wherey;; = xi;(To) is defined by Eq(20). Equation(A7) can
be solved easily in terms of,. Substituting the resulting
expression into Eq.17) and choosing; real, we obtain Eq.
(29).

Now thatw, o(T.)=0 in Eq. (A6), the highest field for
a nontrivial solution corresponds to the lowest Landau level
where w, o(Te)==TWg ((To). Introducing R=-Twj ((To),
which is given explicity as Eq.(24), and using Egs.
(Ada), (Adc), (18), and(19), we obtain the expression f&x;
as Eq.(23).

We finally consider the equation of ordét-t)? in Eq.
(A3) and expand the pair potential as

A(r) = Ag{thog(r) + (1 = t)[rothg(r) + rathug(r) 1}, (A8)

where y(r) is defined by Eq.(21), and (Aq,r,,rs) are
the expansion coefficients wittr,,r,) describing relative
mixing of higher Landau levels in the pair potential.
Let us substitute EqA8) into Eq. (A3), multiply the equa-
tion of order(1-t)? by ¢Lq(r), and perform integration over
r. The resulting equations fa¥=0,2,4yield
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—

1 1 /2 *
ETg\NE)Z,E)*' ToWa 0+ Wy 0+ 2Wy g + Wp M= = \Yel’zxzf ) e<ds
BZ = Bl’ 1 + —2 1/\‘2)(
R 1 + 2X
(A9a)
-2
e
T W, ,+ 6W 6 J exF( ST _Sz> J 1+ 2028
_ cV2.2 4,2 _ VoW, 4
r2 - [ ’ r4 - ’ (Agb)
2V2R 4R

_f 1 2><2520I (BD
respectively. The functions in EqéA9a) and (A9b) are de- o Vi

fined by Eqs(A4) and(24) and should be evaluated®t In  Thus, Eq.(41a holds for N=0. The last expression in Eq.
the clean limitr— o, these functions acquire simple expres-(B1) is the same integral which appears in E26) of Ho-

sions as henberg and Wertham&iWe next rewrite Eq.(37a with
respect togy in EQ. (409 as
R=TWR=1, Tw,,=-2, Tw;,=0, (A10a) (= 70+ DI (N=1)

= Y = . (B2
™ {(— o1+ YN = 17_)Y\NXE (N=2) (B2)

314(5) (¢?lve* ok Using Egs.(B1) and (B2), it is easy to see that Eq41a

4= [7¢RF (vrdd® (A10b) holds forN=1. Proceeding to the general case, we assume
that Eq.(419 is valid for N<M-1. We also remember the
following properties of the Hermite polynomials:
2
wp= - LB (A100 HA(S) — 25Hy1(9 + 2N~ DHy(9=0,  (B3a)
A(7Ty)
with ©=0,2,4 andw, =W, =W, . Equation(A9) with f Hy(9)e=ds=0 (k=N-1). (B3Db)
Eq. (A10), includes the result by Hohenberg and Werthd&mer 0
for cubic materials and also the one by Takad&k®r  Then 7v is obtained explicitly by using EqB2) as
uniaxial materials in the relevant order, both except the Pauli
termwp. Thus, we have extended the results by Hohenberg 1 — - + M -1 ]
and Werthamérand Takanak& to arbitrary crystal struc- ™= M2 M-17 N M-2
tures and impurity-scattering time, including also Pauli para-
magnetism. 7 28~ sHy_4(9) + (M - 1)HM—2(S)]9_SZd
Equation (A9) reveals a close connection of both the o VaMIXY(1 + 23s?) S
curvature inH,(T=<T,) and the mixing of higher Landau
levels inA(r) with the Fermi-surface structure. For example, B © - s’\"‘zHM(s)e‘52
we realize from Eq(A9b) with Egs. (A10), (18), and(26) B fo Vrmxz(1+2xzsz)ds
that the mixing ofN=2 Landau level is absent for cubic
materials wherec,;=c,=1. This is not the case for * s'\"‘ZHM(s)e‘Sz 1
low-symmetry crystals, however. Equatiai\9) enables = f ] 2 - 52 |ds
. L 0 \aMIX 1+ 2%

us to estimate the curvature and the mixing based on
Fermi-surface structures from detailed electronic-structure 2 * s""HM(s)e‘SZ
calculations. =T fo 1+ 222 ds. (B4)

Thus, we have established the first expression in(Etjg).

APPENDIX B: PROOF OF EQ. (41)

The proof for the second expression proceeds in the same

The first expression in Eq41a) can be proved by induc- Way by using partial integrations fof, and 7y in Eq. (B2).
tion as follows. First of all,;,=R, is transformed from Eq. Equation Eq.(41b) can be proved similarly by induction,
(37a as’® starting fromR,;=1 and using Eq(37b).
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