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Detailed Fermi-surface structures are essential to describe the upper critical fieldHc2 in type-II supercon-
ductors, as first noticed by and Hohenberg and Werthamer[Phys. Rev.153, 493 (1967)] and shown explicitly
by Butler for high-purity cubic Niobium[Phys. Rev. Lett.44, 1516 (1980)]. We derive anHc2 equation for
classic type-II superconductors that is applicable to systems with anisotropic Fermi surfaces and/or energy gaps
under arbitrary field directions. It can be solved efficiently by using Fermi surfaces fromab initio electronic-
structure calculations. Thus, it is expected to enhance our quantitative understanding onHc2. Based on the
formalism, we calculateHc2 curves for Fermi surfaces of a three-dimensional tight-binding model with cubic
symmetry, an isotropic gap, and no impurity scatterings. It is found that, as the Fermi surface approaches to the
Brillouin zone boundary, the reduced critical fieldh* sT/Tcd, which is normalized by the initial slope atTc, is
enhanced significantly over the curve for the spherical Fermi surface with a marked upward curvature. Thus,
the Fermi-surface anisotropy can be a main source of the upward curvature inHc2 nearTc.
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I. INTRODUCTION

The upper critical fieldHc2 is one of the most fundamen-
tal quantities in type-II superconductors. After the pioneering
work by Abrikosov1 based on the Ginzburg-Landau(GL)
equations,2 theoretical efforts have been made for its quanti-
tative description at all temperatures.3–41 However, we still
have a limited success when compared with those for the
electronic structures in the normal state.42 The purpose of the
present paper is to provide a theoretical framework that en-
ables us ab initio calculations of Hc2 as accurate as
electronic-structure calculations in the normal state.

Necessary ingredients to be included are(i) nonlocal ef-
fects effective at low temperatures,(ii ) impurity scattering,
(iii ) Fermi-surface anisotropy,(iv) strong-coupling effects,
(v) gap anisotropy,(vi) mixing of higher Landau levels in the
spatial dependence of the pair potential,(vii ) Landau-level
quantization in the quasiparticle energy,13,32,35–38and (viii )
fluctuations beyond the mean-field theory.43 We here derive
anHc2 equation, which is numerically tractable, including all
the effects except(vii ) and (viii ).

An Hc2 equation considering the effects(i) and (ii ) was
obtained by Helfand and Werthamer.6 It was extended by
Hohenberg and Werthamer9 to take the Fermi-surface aniso-
tropy (iii ) into account. Equations with the strong-coupling
effects (iv) were derived by Eilenberger and Ambegaokar11

using Matsubara frequencies and by Werthamer and
McMillan12 on the real energy axis, which are equivalent to
one another. Schossmann and Schachinger27 later incorpo-
rated Pauli paramagnetism into the strong-coupling equation.
Although an equation including(i)–(iv) was presented by
Langmann,33 it is still rather complicated for carrying out an
actual numerical computation. On the other hand, Rieck and
Scharnberg30 presented an efficientHc2 equation where the
effects(i)–(iii ) and(vi) were taken into account, and also(v)
in the special case of the clean limit. See also the work by

Rieck, Scharnberg, and Schopohl31 where the strong-
coupling effects(v) have also been considered. Our study
can be regarded as a direct extension of the Rieck-
Scharnberg equation30 to incorporate (i)–(iv), simulta-
neously. To this end, we adopt a slightly different and(prob-
ably) more convenient procedure of using creation and
annihilation operators. We will proceed with clarifying the
connections with the Rieck-Scharnberg equation as explicitly
as possible.

The remarkable success of the simplified Bardeen-
Cooper-Schrieffer(BCS) theory44,45 tells us that detailed
electronic structures are rather irrelevant to the properties of
classic superconductors atH=0. However, this is not the
case for the properties of type-II superconductors in finite
magnetic fields, especially in the clean limit, as first recog-
nized by Hohenberg and Werthamer.9 Their effort to include
the Fermi-surface anisotropy in theHc2 equation was moti-
vated by the fact that the Helfand-Werthamer theory6 using
the spherical Fermi surface shows neither qualitative nor
quantitative agreements with experiments on clean type-II
superconductors, such as Nb46–48 and V.49 Indeed, angular
variation inHc2 by 10% was observed at low temperatures in
high-quality Nb46,50,51 and V50,51 with cubic symmetry.52

Also, the reduced critical field

h * std ;
Hc2std

− udHc2std/dtut=1
st ; T/Tcd, s1d

calculated by Helfand and Werthamer,6 hash* s0d=0.727 in
the clean limit, whereas a later experiment on high-purity Nb
showskh* s0dl=1.06 for the average overfield directions.51

Hohenberg and Werthamer9 carried out a perturbation expan-
sion for cubic materials with respect to the nonlocal correc-
tion where the Fermi-surface anisotropy enters. They could
thereby provide a qualitative understanding of theHc2 aniso-
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tropy and the enhancement ofkh* stdl observed in Nb. They
also derived an expression forkh* s0dl applicable to aniso-
tropic Fermi surfaces. It was later used by Mattheiss14 to
estimate kh* s0dl=0.989 for Nb based on his detailed
electronic-structure calculation. The strong dependence of
h* std in the clean limit on detailed Fermi-surface structures
can also be seen clearly in the numerical results from a
model calculation by Rieck and Scharnberg,30 and from the
differenceh* s0d=0.727 and 0.591 between spherical and cy-
lindrical Fermi surfaces, respectively.41

On the other hand, it was shown by Werthamer and
McMillan12 that the strong-coupling effects changeh* std by
only &2% for the spherical Fermi surface and cannot be the
main reason for the enhancement ofh* s0d in Nb.

The most complete calculation, including the effects(i)–
(iv), was performed on pure Nb by Butler.22,23He solved the
strong-coupling equation by Eilenberger and Ambegaokar,11

taking full account of the Fermi-surface structure and the
phonon spectra from his electronic-structure calculations. He
could thereby obtain an excellent agreement with experi-
ments by Williamson50 with kh* s0dl=0.96 and by Kerchner
et al.53 However, a later experiment by Sauerzopfet al.51 on
a high-purity Nb shows a larger valuekh* s0dl=1.06, thereby
suggesting that there may be some factors missing in But-
ler’s calculation.

Theoretical considerations on the effects(v) and (vi)
started much later. It was Takanaka,18 Teichler,19 and Pohl
and Teichler20 who included gap anisotropy(v) in the Hc2
equation. They considered the nonlocal effect perturbatively
adopting a separable pair potential. Takanaka studiedHc2
anisotropy observed in uniaxial crystals, whereas Teichler
applied his theory to theHc2 anisotropy in cubic Nb. This
approach by Teichler was extended by Prohammer and
Schachinger28 to anisotropic polycrystals and used by Weber
et al.54 to analyze anisotropy effects in Nb.

The mixing of higher Landau levels(vi) was considered
by Takanaka and Nagashima15 in extending the Hohenberg-
Werthamer theory for cubic materials9 to higher orders in the
nonlocal correction. It was also taken into account by
Takanaka18 in the above-mentioned work, Youngner and
Klemm24 in their perturbation expansion with respect to the
nonlocal corrections; Scharnberg and Klemm25 in studying
Hc2 for p-wave superconductors, Rieck and Scharnberg30 for
superconductors with nearly cylindrical model Fermi sur-
faces, and Prohammer and Carbotte29 for d-wave supercon-
ductors. See also a recent work by Miranović, Machida,39

and Kogan on MgB2. Although it plays an important role in
the presence of gap anisotropy,25,29 this mixing was not con-
sidered by Teichler19 and Pohl and Teichler.20

Now, one may be convinced that calculations including
(i)–(vi) are still absent. Especially, many of the theoretical

efforts have been focused only on the special case of cubic
materials.9,15,19,20,22,23For example, a detailed theory is still
absent for the large positive(upward) curvature observed in
Hc2sT&Tcd of layered superconductors,55,56except a qualita-
tive description by Takanaka18 and Dalrymple and Prober.57

Based on these observations, we here derive anHc2 equation
that is numerically tractable for arbitrary crystal structures
and field directions by using Fermi surfaces fromab initio
electronic-structure calculations. This kind of calculations
has been performed only for Nb by Butler so far.22,23Making
such calculations possible for other materials is expected to
enhance our quantitative understanding onHc2 substantially.

This paper is organized as follows. Section II considers
the weak-coupling model with gap anisotropy and
s-wave impurity scattering. We derive anHc2 equation valid
at all temperatures as well as an analytic expression for
Hc2sT&Tcd up to second order in 1−T/Tc. The main analytic
results of Sec. II are listed in Table I for an easy reference.
Section III extends theHc2 equation so as to includep-wave
impurity scattering, spin-orbit impurity scattering, and strong
electron-phonon interactions. Section IV presents numerical
examples for model Fermi surfaces of a three-dimensional
tight-binding model with cubic symmetry. Section V summa-
rizes the paper. We usekB=1 throughout.

II. WEAK-COUPLING Hc2 EQUATION

A. Fermi-surface harmonics and gap anisotropy

We first specify the gap anisotropy in our consideration
with respect to the Fermi-surface harmonics. The Fermi-
surface harmonics were introduced by Allen58 as convenient
polynomials in solving the Boltzmann and Eliashberg equa-
tions. They were later used by Langmann33 to derive anHc2
equation applicable to anisotropic Fermi surfaces and aniso-
tropic pairing interactions. However, the polynomials con-
structed by Allen based on the Gram-Schmidt orthonormal-
ization are not very convenient for treating the gap
anisotropy. We here adopt an alternative construction starting
from the pairing interactionVskF,kF8d on the Fermi surface,59

wherekF denotes the Fermi wave vector. EvidentlyVskF,kF8d
is HermitianV* skF,kF8d=VskF8 ,kFd, and invariant under ev-
ery symmetry operationR of the groupG for the relevant
crystal asRVskF,kF8dR−1=VskF,kF8d. We hence consider the
following eigenvalue problem:

E dSF8rskF8dVskF,kF8dfg
sG jdskF8d = VsG jdfg

sG jdskFd. s2d

HeredSF denotes an infinitesimal area on the Fermi surface
andrskFd;fs2pd3Ns0duvFug−1 with vF the Fermi velocity and
Ns0d the density of states per one spin and per unit volume at

TABLE I. Equation numbers for the relevant analytic expressions to calculateHc2. The upper critical fieldHc2 corresponds to the point
where the smallest eigenvalue of the Hermitian matrixA=sANN8d takes zero.

k¯l fskFd B F0 Tc lc v̄F+ c1,2 xi j «̃n8 b̄ ANN8 KNN8 hsxd Hc2sT&Tcd B1 B2 R wn,m

(4) (5) (7) hc/2e (A5) (15) (18) (19) (20) (13) (30) (36) (39) (41) (22) (23) (A9a) (24) (A4)
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the Fermi energy in the normal state. The superscriptG de-
notes an irreducible representation ofG, j distinguishes dif-
ferent eigenvalues belonging toG, andg specifies an eigen-
vector insG , jd. This eigenvalue problem was also considered
by Pokrovskii60 without specifying the symmetry. The basis
functions thereby obtained naturally have all the properties
of Fermi-surface harmonics introduced by Allen.58 Espe-
cially, they satisfy the orthonormality and completeness

kfg
sG jd*fg8

sG8 j8dl = dGG8d j j 8dgg8, s3ad

o
G jg

fg
sG jdskFdfg

sG jd*skF8d =
d2skF − kF8d

rskFd
, s3bd

wherek¯l denotes the Fermi-surface average

kAl ; E dSFrskFdAskFd. s4d

Using Eqs.(2) and (3), we obtain an alternative expression
for the dimensionless pairing interactionlskF,kF8d
;−Ns0dVskF,kF8d as

lskF,kF8d = o
G jg

lsG jdfg
sG jdskFdfg

sG jd*skF8d. s5d

Thus, it is always possible to express a general pairing inter-
action as a sum of separable interactions. Notice that the
above procedure is applicable also to multiband supercon-
ductors. Indeed, we only have to extend the integration over
kF to all the Fermi surfaces.

The Fermi-surface harmonics can be constructed also
from the coupling functionlskF,kF8 ,«n−«n8d−m* skF,kF8d
in the strong-coupling Eliashberg theory,61,62 where
«n;s2n+1dpT is the Matsubara energy. Indeed, we
only have to specify an appropriate bosonic Matsubara
energy vl ;2lpT and set VskF,kF8d;−flskF,kF8 ,vld
−m* skF,kF8dg /Ns0d in Eqs.(2) and(3). We thereby obtain an
alternative expression for the coupling function as

lskF,kF8,«n − «n8d − m * skF,kF8d

= o
G jg

flsG jds«n − «n8d − m* sG jdgfg
sG jdskFdfg

sG jd*skF8d. s6d

We expect that this construction does not depend on the
choice of vl substantially. It is worth noting thatab initio
calculations of the coupling function are now possible for
phonon-mediated superconductors, as performed recently for
MgB2.

63 Henceab initio constructions of the Fermi-surface
harmonics by Eq.(2) can be carried out in principle.

From now on we consider the cases where(i) the system
has inversion symmetry and(ii ) a singlelsG jd is relevant that
belongs to an even-parity one-dimensional representationG.
Indeed, these conditions are met for most superconductors.
Hereafter we will drop all the indices asfg

sG jdskFd→fskFd,
for example, and choosefskFd as a real function.

B. Eilenberger equations

Now, let us derive anHc2 equation for the second-order
transition in the weak-coupling model withs-wave impurity

scattering based on the quasiclassical Eilenberger
equations.64–66 The Eilenberger equations are derived from
the Gor’kov equations by assuming a constant density of
states near the Fermi energy in the normal state and integrat-
ing out an irrelevant energy variable.64–66 Thus, phenomena
closely connected with either the energy dependence of the
density of states26 or the discreteness in the quasiparticle
energy levels13,32,35–38are beyond the scope of the present
consideration. We also do not consider Josephson vortices
appearing in very anisotropic layered superconductors.67

Within the limitations, however, the Eilenberger equations
provide one of the most convenient starting points for deriv-
ing anHc2 equation, as seen below. This approach was also
adopted by Rieck and Scharnberg30 and Riecket al.31

We take the external magnetic fieldH along thez-axis. In
the presence of Pauli paramagnetism, the average flux den-
sity B in the bulk is connected withH as H=B−4pxnB,
wherexn is the normal-state spin susceptibility. The fact that
xn is multiplied by B rather thanH corresponds to the fact
that the spins respond to the true magnetic field in the bulk.
It, hence, follows thatB is enhanced overH as

B = H/s1 − 4pxnd. s7d

The vector potential in the bulk atH=Hc2 can be written
accordingly as

Asr d = s0,Bx,0d. s8d

The field H is supposed to be along the direction
ssinu cosw ,sinu sinw ,cosud in the crystallographic coordi-
natessX,Y,Zd. The two coordinate systems are connected by
the rotation matrix

R ; 3cosu cosw cosu sinw − sinu

− sinw cosw 0

sinu cosw sinu sinw cosu
4 , s9d

as RH =s0,0,HdT, where T denotes transpose. We assume
that the vortex lattice is uniform alongz.

With the gap anisotropy specified byfskFd and in the
presence of Pauli paramagnetism, the Eilenberger equations
reads

S«n − imBB +
"

2t
kgl +

1

2
"vF · ­D f = SfD +

"

2t
kflDg,

s10ad

Dsr dln
Tc0

T
= pT o

n=−`

` FDsr d
u«nu

− kfskFdfs«n,kF,r dlG .

s10bd

Here mB is the Bohr magneton,t is the relaxation time by
nonmagnetic impurity scattering in the second-Born approxi-
mation,Dsr d is the pair potential, and­ is defined by

­ ; = − i
2p

F0
A , s11d

with F0;hc/2e the flux quantum. We will consider posi-
tively charged particles following the convention; the case of
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electrons can be obtained directly byA →−A, i.e., reversing
the magnetic-field direction. The quasiclassical Green’s func-
tions f and g are connected byg=s1− f f†d1/2sgns«nd with
f†s«n,kF,r d= f * s−«n,kF,r d,68 andTc0 denotes the transition
temperature in the clean limitt=`.

To obtain Bc2, we formally expand the quasiclassical
Green’s functions up to the first order inD as f = f s1d and
g=sgns«nd. Substituting the expressions into Eqs.(10a) and
(10b), we obtain the linearized self-consistency equations as

F«̃n8 +
sgns«nd

2
"vF · ­G f s1d = fD +

"

2t
kf s1dl, s12ad

D ln
Tc0

T
= − pT o

n=−`

` Skff s1dl −
D

u«nuD , s12bd

with

«̃n8 ; «̃n − imBB sgns«nd, «̃n ; u«nu +
"

2t
. s13d

C. Operators and basis functions

It is useful to transform the gradient operator in Eq.(10a)
as

vF · ­ = sv̄F+
* a − v̄F+a

†d/Î2lc. s14d

Here lc denotes 1/Î2 times the magnetic length as

lc ; ÎF0/2pB = Î"c/2eB. s15d

The operatorsa anda† are defined by

F a

a†G =
lc
Î2
F c1 ic2

− c1
* ic2

* GF]x

]y
G , s16d

where the constantsc1 andc2 are constrained by

c1c2
* + c1

*c2 = 2, s17d

so thatfa,a†g=1. Finally, v̄F+ is defined by

v̄F+ ; c2vFx + ic1vFy. s18d

The constantssc1,c2d can be fixed conveniently by requiring
that the gradient term in the Ginzburg-Landau equation be
expressed in terms ofa†a without usingaa anda†a†, i.e., the
pair potential nearTc be described in terms of the lowest
Landau level only. As shown in Appendix I, this condition
yields

c1 = S xxx
2

xxxxyy − xxy
2 D1/4

s19ad

c2 = S xyy
2

xxxxyy − xxy
2 D1/4

expSi tan−1 − xxy

Îxxxxyy − xxy
2 D ,

s19bd

wherexi j ;xi jsTcd is defined by

xi j ;
24spTcd3

7zs3dkvF
2lon=0

`
1

«̃n
3Fkf2vFivFjl +

kflkfvFivFjl
2t«n

+
kflkfvFivFjl

2t«n
+

kflkflkvFivFjl
s2t«nd2 G , s20d

with z the Riemann zeta function. Note thatxi j is dimension-
less, approaching todi j ast→` for the spherical Fermi sur-
face. It is a direct generalization of thex function introduced
by Gor’kov69 to anisotropic systems.

The operators in Eq.(16) extendsa−,a+d introduced by
Helfand and Werthamer6 for anisotropic crystals. For
uniaxial crystals, they reduce to the operators used by
Takanaka.18

Using Eq.(16), we can also make up a set of basis func-
tions to describe vortex-lattice structures as70

cNqsr d =Î 2plc

c1a2
ÎpV

o
n=−Nf/2+1

Nf/2

expFiqySy +
lc
2qx

2
DG

3 expFi
na1x

lc
2 Sy + lc

2qx −
na1y

2
DG

3expF−
c1c2

2
Sx − lc

2qy − na1x

c1lc
D2G

3
1

Î2NN!
HNSx − lc

2qy − na1x

c1lc
D . s21d

Here N=0,1,2 ,̄ denotes the Landau level,q is an arbi-
trary chosen magnetic Bloch vector characterizing the bro-
ken translational symmetry of the vortex lattice and specify-
ing the core locations, andV is the volume of the system.
The quantitiesa1x and a2 are the components of the basic
vectorsa1 anda2 in thexy plane, respectively, witha2i ŷ and
a1xa2=2plc

2, Nf
2 denotes the number of the flux quantum in

the system, andHNsxd;ex2
s−d/dxdNe−x2

is the Hermite poly-
nomial. The basis functions are both orthonormal and com-
plete, satisfyingacNq=ÎNcN−1q anda†cNq=ÎN+1cN+1q.

The function(21) is a direct generalization of the Eilen-
berger function10 cNsr u r 0d with c1=c2=1 to anisotropic
Fermi surfaces and energy gaps. Forq=0 in the clean limit,
Eq. (21) reduces to the function obtained by Rieck and
Scharnberg30,71 and Riecket al.,31 However, they derived it
without recource to the creation and annihilation operators of
Eq. (16). These operators have simplified the derivation of
the basis functions and will also make the whole calculations
below much easier and transparent.

D. Analytic expression ofHc2 near Tc

Using Eq. (16), it is also possible to obtain an analytic
expression forBc2;Hc2/ s1−4pxnd nearTc. Let us express it
as

Bc2 = B1s1 − td + B2s1 − td2, s22d

with t;T/Tc. The coefficientsB1 andB2 determine the ini-
tial slope and the curvature, respectively.

It is shown in Appendix I thatB1 is obtained as
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B1 ;
24pRF0

7zs3dsxxxxyy − xxy
2 d1/2s"kvF

2l1/2/Tcd2 , s23d

where z is the Riemann zeta function,xi j is given by Eq.
(20), andR is defined by

R= 1 −"
1 − kfl2

2t
2pTco

n=0

`
1

«̃n
2 . s24d

The factor"kvF
2l1/2/Tc in the denominator of Eq.(23) is es-

sentially the BCS coherence length.44 Also, R is dimension-
less and approaches unity fort→`. Equation(23) is a direct
generalization of the result by Rieck and Scharnberg30 for
fskFd=1 to the cases with gap anisotropy and for arbitrary
strength of the impurity scattering.

It is convenient to expresskvFivFjl in Eq. (20) with respect
to the crystallographic coordinatessX,Y,Zd to see the aniso-
tropy in B1 manifestly. Using Eq.(9), vFx andvFy are rewrit-
ten as

HvFx = vFX cosu cosw + vFY cosu sinw − vFZ sinu

vFy = − vFX sinw + vFY cosw
J ,

s25d

so that

5kvFx
2 l = skvFX

2 lcos2 w + kvFY
2 lsin2 wdcos2 u + kvFZ

2 lsin2 u

kvFy
2 l = kvFX

2 lsin2 w + kvFY
2 lcos2 w

kvFxvFyl = skvFY
2 l − kvFX

2 ldcosu cosw sinw
6 .

s26d

The quantitieskfvFxvFyl and kf2vFxvFyl can be expressed
similarly in the crystallographic coordinates oncefskFd is
given explicitly. In particular, whenfskFd belongs to theA1g

representation, the expressions for the two averages are es-
sentially the same as Eq.(26). From Eqs.(23), (20), and
(26), we realize immediately that the initial slope is isotropic
whenfskFd belongs toA1g and the crystal has cubic symme-
try.

The expression forB2 is more complicated as given ex-
plicitly by Eq. (A9a). It includes Fermi-surface averages of
vFx

4 , vFx
2 vFy

2 , etc., and enables us to estimate the initial curva-
ture of Hc2 given the Fermi-surface structure.

E. Hc2 equation

We now derive anHc2 equation that can be solved effi-
ciently at all temperatures. To this end, we transform Eqs.
(12a) and(12b) into algebraic equations by expandingD and
f s1d in the basis functions of of Eq.(21) as41,70

Dsr d = ÎVo
N=0

`

DNcNqsr d, s27ad

f s1ds«n,kF,r d = ÎVo
N=0

`

fN
s1ds«n,kFdcNqsr d. s27bd

Let us substitute Eqs.(14) and (27) into Eqs. (12a) and
(12b), multiply them by cNq

* sr d, and perform integrations

over r . Equations(12a) and (12b) are thereby transformed
into

o
N8

MNN8fN8
s1d = fDN +

"

2t
kfN

s1dl, s28ad

DN ln
Tc0

T
= − pT o

n=−`

` SkffN
s1dl −

DN

u«nuD , s28bd

where the matrixM is tridiagonal as

MNN8 ; «̃n8dNN8 + ÎN + 1b̄ * dN,N8−1 − ÎNb̄dN,N8+1,

s29d

with

b̄ ;
"v̄F+sgns«nd

2Î2lc
. s30d

We first focus on Eq.(28a) and introduce the matrixK by

KNN8 ; sM−1dNN8, s31d

which necessarily has the same symmetry asM,72

KNN8s«n,b̄d = KN8Ns«n,− b̄ * d

= KNN8
* s− «n,− b̄ * d = KN8N

* s− «n,b̄d. s32d

Using K, Eq. (28a) is solved formally as

fN
s1d = o

N8

KNN8SfDN8 +
"

2t
kfN8

s1dlD . s33d

Taking the Fermi-surface average to obtainkfN
s1dl and substi-

tuting it back into Eq.(33), we arrive at an expression for the
vector f s1d;sf0

s1d , f1
s1d , f2

s1d ,¯ dT as

f s1d = FKf +
"

2t
KSI −

"kKl
2t

D−1

kKflGD, s34d

with I the unit matrix in the Landau-level indices and
D;sD0,D1,D2,¯ dT.

We next substitute Eq.(34) into Eq. (28b). We thereby
obtain the condition that Eq.(28b) has a nontrivial solution
for D as

detA = 0, s35d

where the matrixA is defined by

A = I ln
T

Tc0
+ pT o

n=−`

` F I
u«nu

− kKf2l

−
"

2t
kKflSI −

"kKl
2t

D−1

kKflG , s36d

with I the unit matrix in the Landau-level indices. The upper
critical field Bc2 corresponds to the highest field where Eq.
(35) is satisfied, withB and H connected by Eq.(7). Put
another way,Bc2 is determined by requiring that the smallest
eigenvalue ofA be zero. Notice thatA is Hermitian, as can
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be shown by using Eq.(32), so that it can be diagonalized
easily.

Equation(36) tells us that central to determiningBc2 lies
the calculation ofKNN8 defined by Eqs.(29) and (31). An
efficient algorithm for it was already developed in Sec. IIF of
Ref. 41, which is summarized as follows. Let us define

RNsN=0,1,2 ,̄ d and R̄NsN=1,2,¯ d by

RN−1 = s1 + Nx2RNd−1, s37ad

R̄N+1 = s1 + Nx2R̄Nd−1, R̄1 = 1, s37bd

respectively, with

x ; ub̄u/«̃n8. s38d

ThenKNN8 for NùN8 can be obtained by

KNN8 =
1

«̃n8
hNsxdh̄N8sxdS b̄

«̃n8
DN−N8

, s39d

with

hN ; ÎN!p
k=0

N

Rk, s40ad

h̄N ; 5 1 sN = 0d

1
ÎN!

p
k=1

N
1

R̄k

sN ù 1d 6 . s40bd

The expression ofKNN8 for N,N8 follows immediately by
Eq. (32).

As shown in Appendix II, Eqs.(40a) and (40b) can be
written alternatively as

hNsxd ;
2

ÎpN!
E

0

` sNHNssd
1 + 2x2s2e−s2

ds

=
1

ÎN!
E

0

`

sN expS− s−
x2

2
s2Dds

= 2NÎpN!zN+1ez2
iN erfcszd, s41ad

h̄Nsxd ;
1

ÎN!
S x

Î2i
DN

HNS i
Î2x

D
= U 1

yNÎN!
e−y2/2S d

dy
DN

ey2/2U
y=1/x

. s41bd

respectively, wherez;1/Î2x and iN erfcszd denotes the re-
peated integral of the error function.73 The latter function
h̄Nsxd is an sN/2dth-order[sN−1/2dth-order] polynomial of
x2 for N=even(odd).

Thus, the key quantityKNN8 is given here in a compact
separable form with respect toN andN8. This is a plausible
feature for performing numerical calculations, which may be
considered as one of the main advantages of the present for-
malism over that of Langmann.33 OurK00 in Eq. (39) is more
convenient than Eq.(26) of Hohenberg and Werthamer9 in

that Hc2 nearTc is described in terms of the lowest Landau
level for arbitrary crystal structures.

Equations(35) and (36) with Eqs. (13), (15), (18)–(20),
(30), and (39) are one of the main results of the paper(see
also Table I). They enable us efficient calculations ofHc2 at
all temperatures based on the Fermi surfaces fromab initio
electronic-structure calculations. They form a direct exten-
sion of the Rieck-Scharnberg equation30 to the cases with
gap anisotropy and arbitrary strength of the impurity scatter-
ing. Indeed, Eq.(41b) is written alternatively as

h̄2Nsxd =
1

Îs2Nd!2Nz2N
PNs2z2d, s42d

with z;1/Î2x, wherePN is the polynomial defined below
Eq. (6) of Rieck and Scharnberg.30 Substituting this result
and the last expression of Eq.(41a) into Eq. (39), it can be
checked directly that«̃nK2N82N for N8øN is equal toM2N82N

in Eq. (6) of Rieck and Scharnberg.30 Using this fact, one can
show that the matrixA in Eq. (36) reduces to the corre-
sponding matrix in Eq.(5) of Rieck and Scharnberg either(i)
for the isotropic gap with arbitrary impurity scattering or(ii )
in the clean limit with an arbitrary gap structure. Here we
have adoptedx in Eq. (38) as a variable instead ofz because
x remains finite at finite temperatures.

From Eq.(39) and the symmetryb̄→−b̄ for vF→−vF, we
realize thatkK2N,2N8+1l, kK2N,2N8+1fl, and kK2N,2N8+1f

2l all
vanish in the present case where the system has inversion
symmetry andfskFd belongs to an even-parity representa-
tion. It, hence, follows that we only have to consider
N=even Landau levels in the calculation of Eq.(36). To
obtain a matrix element of Eq.(36), we have to perform a
Fermi-surface integral for eachn and perform the summation
overn, which is well within the capacity of modern comput-
ers, however. Actual calculations of the smallest eigenvalue
may be performed by taking onlyNøNcut Landau levels into
account, and the convergence can be checked by increasing
Ncut. We can putNcut=0 nearTc due to Eq.(19), and must
increaseNcut as the temperature is lowered. However, excel-
lent convergence is expected at all temperatures by choosing
Ncut&20.

III. EXTENSIONS OF THE Hc2 EQUATION

We extend theHc2 equation of Sec. II in several direc-
tions.

A. p-wave impurity scattering

We first takep-wave impurity scattering into account. In
this case, Eq.(10a) is replaced by

S«n − imBB +
"

2t
kgl +

3"

2t1
k̂F8 · kk̂F8gl8 +

1

2
"vF · ­D f

= SfD +
"

2t
kfl +

3"

2t1
k̂F · kk̂F8 fl8Dg, s43d

where kk̂F8gl8;kk̂F8gs«n,kF8 ,r dl8, for example, and

k̂F;kF/ kkF
2l1/2. Notice thatk̂F is not a unit vector in general.
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Linearizing Eq.(43) with respect toD, we obtain

S«̃n8 +
sgns«nd

2
"vF · ­D f s1d = fD +

"

2t
kf s1dl +

3"

2t1
k̂F · kk̂F8 f s1dl8,

s44d

with «̃n8 defined by Eq.(13).
First of all, we derive expressions forTc at H=0, the

coefficientssc1,c2d in Eq. (16), andBc2 nearTc up to the first
order in 1−t, based on Eq.(44) and following the procedure
in Sec. A. It turns out that we only need a change of the
definition of xi j from Eq. (20) into

xi j ;
24spTcd3

7zs3dkvF
2lon=0

`
1

«̃n
3FKvFivFjUf +

kfl
2t«n/"

U2L
+

3

2t1«̃n/"
sP†Q−1Pdi jG , s45d

where the matricesP andQ are defined by

Pi j ;KSf +
kfl

2tu«nu/"Dk̂FivFjL , s46ad

Qi j ; di j −
3"

2t1«̃n

kk̂Fik̂Fjl. s46bd

Then Tc, sc1,c2d, andB1 in Eq. (22) are given by the same
equations, i.e., Eqs.(A5), (19), and(23), respectively.

Using Eqs.(14) and(27), we next transform Eq.(44) into
an algebraic equation. The resulting equation can solved in
the same way as Eq.(33) to yield

f s1d = KSfD +
"

2t
kf s1dl +

3"

2t1
k̂F · kk̂F8f

s1dl8D , s47d

whereK is given by Eq.(39). It is convenient to introduce
the quantities

p0 ;Î "

2t
, pj ;Î 3"

2t1
k̂Fj s j = x,y,zd. s48d

Then from Eq.(47), we obtain self-consistent equations for
kp0

* f s1dl and kpj
* f s1dl as

3
kp0

* f s1dl
kpx

* f s1dl
kpy

* f s1dl
kpz

* f s1dl
4 = W3

kp0
*KflD

kpx
*KflD

kpy
*KflD

kpz
*KflD

4 , s49d

where the matrixW is defined by

W ; 3
I − kup0u2Kl − kp0

*pxKl − kp0
*pyKl − kp0

*pzKl

− kpx
*p0Kl I − kupxu2Kl − kpx

*pyKl − kpx
*pzKl

− kpy
*p0Kl − kpy

*pxKl I − kupyu2Kl − kpy
*pzKl

− kpz
*p0Kl − kpz

*pxKl − kpz
*pyKl I − kupzu2Kl

4
−1

. s50d

The complex conjugations * in Eqs.(49) and (50) are not
necessary here but for a later convenience. Not the symmetry

Wlm
* s«n,b̄d=Wmls−«n,b̄d in the matrix elements ofW, as

seen from Eq.(32). Using Eq.(49) in Eq. (47), we obtain an
explicit expression forf s1d as

f s1d = KfD + fp0KpxKpyKpzKgW3
kp0

*Kfl

kpx
*Kfl

kpy
*Kfl

kpz
*Kfl

4D. s51d

Finally, let us substitute Eq.(51) into Eq. (28b). We thereby
find that Eq.(36) is replaced by

A = I ln
T

Tc0
+ pT o

n=−`

` 5 I
u«nu

− kKf2l − fkp0KflkpxKfl

3kpyKflkpzKflgW3
kp0

*Kfl

kpx
*Kfl

kpy
*Kfl

kpz
*Kfl

46 . s52d

As before,Hc2 is determined by requiring that the smallest
eigenvalue of Eq.(52) be zero. ThisA is Hermitian, as can
be shown by using Eq.(32) and Wlm

* s«n,b̄d;Wmls−«n,b̄d.
Thus, Eq.(52) can be diagonalized easily.
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It is straightforward to extend Eq.(52) to a more general
impurity scattering with thekF-dependent relaxation time
tskF,kF8d. To this end, we apply the procedure of Eqs.(2)–(5)
to 1/tskF,kF8d to expand it as

1

tskF,kF8d
= o

G jg

hg
sG jdskFdhg

sG jdpskFd
tsG jd , s53d

where 1/tsG jd and hg
sG jdskFd denote an eigenvalue and its

eigenfunction, respectively. We then realize that

pg
sG jd ;Î "

2tsG jdhg
sG jdskFd s54d

substitutes forp0 andpj in Eq. (52).

B. Spin-orbit impurity scattering

It was noticed by Werthameret al.7 and Maki8 that, for
high-field superconducting alloys with short mean-free paths,
Pauli paramagnetism has to be incorporated simultaneously
with spin-orbit impurity scattering. They presented a theory
valid for t!tso, where tso is spin-orbit scattering time. It
was later generalized by Riecket al.31 for an arbitrary value
of tso. This effect can also be taken into account easily in the
formulation.

In the presence of spin-orbit impurity scattering, Eq.(10a)
is replaced by

S«n − imBB +
"

2t
kgl +

"cso

2tso
kuk̂F 3 k̂F8u2gl8 +

1

2
"vF · ­D f

= SfD +
"

2t
kfl +

"cso

2tso
kuk̂F 3 k̂F8u2fl8Dg, s55d

with cso;1/kkuk̂F3 k̂F8u2l8l. To simplify the notations and
make the argument transparent, it is useful to introduce the
quantities

p0 ;Î "

2t
, pij ;Î"cso

2tso
sk̂F

2di j − k̂Fik̂Fjd, s56ad

q0 ;Î "

2t
, qij ;Î"cso

2tso
k̂Fik̂Fjs2 − di jd, s56bd

and the vectors

p ; sp0,pxx,pyy,pzz,pxy,pyz,pzxdT, s57ad

q ; sq0,qxx,qyy,qzz,qxy,qyz,qzxdT. s57bd

Then Eq.(55) linearized with respect toD is written in terms
of Eq. (57) as

S«̃n8 +
sgns«nd

2
"vF · ­D f s1d = fD + p · kqf s1dl, s58d

where«̃n8 is defined by

«̃n8 ; «̃n − imBB sgns«nd, «̃n ; u«nu + p · kql. s59d

Note p ·kql=kpl ·q.

It follows from the procedure in Sec. III A thatTc at
H=0 satisfies

ln
Tc0

Tc
= 2pTco

n=0

` F 1

«n
−Kf2

«̃n
L −KpTf

«̃n
LQ−1Kqf

«̃n
LG ,

s60d

where the matrixQ is defined bysr ,s=0,xx,¯ ,zxd

Qrs = drs −Kqrps

«̃n
L . s61d

Also, xi j in Eq. (20) should be modified into

xi j ;
24spTcd3

7zs3dkvF
2lon=0

` K vFivFj

«̃n
3 Ff +KpTf

«̃n
LQ−1qG

3Ff + pTQ−1Kqf

«̃n
LGL . s62d

Finally, R in Eq. (24) is replaced by

R= 1 − 2pTco
n=0

` FKf2p · kql
«̃n

2 L +Kp · kqlpTf

«̃n
2 LQ−1Kqf

«̃n
L

− «nKpTf

«̃n
LQ−1Kqf

«̃n
2 L

− «nKpTf

«̃n
LQ−1KqTp

«̃n
2 LQ−1Kqf

«̃n
LG . s63d

With the above modifications,Tc, sc1,c2d, andB1 in Eq. (22)
are given by Eqs.(A5), (19), and(23), respectively.

We now transform Eq.(58) into an algebraic equation by
using Eqs.(14) and (27). The resulting equation can be
solved in the same way as Eq.(33). We thereby obtain

f s1d = KfD + o
r

prKkqrf
s1dl, s64d

whereK is given by Eq.(39) with «̄n8 replaced by Eq.(59).
From Eq. (64), we obtain self-consistent equations for
kq0f

s1dl and kqij f
s1dl as

3
kq0f

s1dl
kqxxf

s1dl
kqyyf

s1dl
kqzzf

s1dl
kqxyf

s1dl
kqyzf

s1dl
kqzxf

s1dl

4 = W3
kq0KflD

kqxxKflD

kqyyKflD

kqzzKflD

kqxyKflD

kqyzKflD

kqzxKflD

4 , s65d

where the matrixW is defined by
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W ; 3
I − kq0p0Kl − kq0pxxKl − kq0pyyKl ¯

− kqxxp0Kl I − kqxxpxxKl − kqxxpyyKl ¯

− kqyyp0Kl − kqyypxxKl I − kqyypyyKl ¯

− kqzzp0Kl − kqzzpxxKl − kqzzpyyKl ¯

− kqxyp0Kl − kqxypxxKl − kqxypyyKl ¯

− kqyzp0Kl − kqyzpxxKl − kqyzpyyKl ¯

− kqzxp0Kl − kqzxpxxKl − kqzxpyyKl ¯

4
−1

.

s66d

Using Eq.(65) in Eq. (64), we obtain an explicit expression
for f s1d as

f s1d = KfD + fp0KpxxKpyyK ¯ gW3
kq0Kfl

kqxxKfl

kqyyKfl

A
4D

= KfD + fq0KqxxKqyyK ¯ gW†3
kp0Kfl

kpxxKfl

kpyyKfl

A
4D,

s67d

with W† defined byfW†s«n,b̄dglm;Wml
* s−«n,b̄d. The latter

expression originates from the self-consistency equations for
kp0f

s1dl andkpij f
s1dl similar to Eq.(65). Finally, let us substi-

tute Eq.(67) into Eq. (28b). We thereby find that Eq.(36) is
replaced by

A = I ln
T

Tc0
+ pT o

n=−`

` 5 I
u«nu

− kKf2l

− fkp0KflkpxxKflkpyyKfl ¯ gW3
kq0Kfl

kqxxKfl

kqyyKfl

¯

46
= I ln

T

Tc0
+ pT o

n=−`

` 5 I
u«nu

− kKf2l

− fkq0KflkqxxKflkqyyKfl ¯ gW†3
kp0Kfl

kpxxKfl

kpyyKfl

¯

46 .

s68d

As before,Hc2 is determined by requiring that the smallest
eigenvalue of Eq.(68) be zero. ThisA is Hermitian, as can

be shown by using Eq.(32) and fW†s«n,b̄dglm;Wml
*

s−«n,b̄d, which can be diagonalized easily.

C. Strong electron-phonon interactions

We finally consider the effects of strong electron-phonon
interactions within the framework of the Eliashberg
theory.61,62 We adopt the notations used by Allen and.
Mitrović62 except the replacementZD→D.

The Eilenberger equations were extended by Teichler74 to
include the strong-coupling effects. They can also be derived
directly from the equations given by Allen and B. Mitrović62

by carrying out the “j integration”66 as

SZ«n − imBB +
"

2t
kgl +

1

2
"vF · ­D f = SDf +

"

2t
kflDg,

s69ad

Ds«n,r d = pT o
n8=−nc0

nc0

fls«n − «n8d − m * gkfskFdfs«n8,kF,r dl,

s69bd

Zs«n,kFd = 1 +
pT

«n
o

n8=−nc0

nc0

klskF,kF8,«n − «n8dgs«n8,kF8,r dl8,

s69cd

wherenc0 corresponds to the Matsubara frequency about five
times as large as the Debye frequency.62 We have retained
full kF dependence ofl in Eq. (69c) because the contribution
from other pairing channels, which may be negligible for the
pair potential, can be substantial for the renormalization fac-
tor Z.

We linearize Eqs.(69) with respect toD and repeat the
procedure in Sec. A up to the zeroth order in 1−t. It then
follows that Tc at H=0 is determined by the condition that
the smallest eigenvalue of the following matrix be zero:

Ann8
s0d ; dnn8 − pTfls«n − «n8d − m * gFK f2

«̃n8
L

+
"

2tK f

«̃n8
L2K «̃n8

Zn8
s0du«n8u

LG , s70d

whereZs0d is given by

Zs0ds«n,kFd = 1 +
pT

«n
o

n8=−nc0

nc0

klskF,kF8,«n − «n8dl8 sgns«n8d,

s71d

and «̃n is defined together with«̃n8 by

«̃n ; Zs0du«nu +
"

2t
, «̃n8 ; «̃n − imBB sgns«nd. s72d

We next fix sc1,c2d in Eq. (16) conveniently. For the weak-
coupling model, we have fixed it by using Eq.(A6) nearTc
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so that the coefficient ofaa vanishes, i.e., there is no mixing
of higher Landau levels in theHc2 equation nearTc. How-
ever, the coefficient ofaa in the corresponding strong-
coupling equation becomes frequency dependent. It, hence,
follows that even nearTc there is no choice forsc1,c2d,
which prevents mixing of higher Landau levels from theHc2
equation. We here adopt the weak-coupling expression in Eq.
(19).

We now consider theHc2 equation and repeat the same
calculations as those in Sec. II B. We thereby find that Eq.
(36) is replaced by

AnN,n8N8 = dnn8dNN8 − pTfls«n − «n8d − m * gFkK8f2l

+
"

2t
kK8flSI −

"kK8l
2t

D−1

kK8flG
NN8

, s73d

whereK8;Ks«n8 ,b̄d which also haskF dependence through
Zs0d8=Zs0ds«n8 ,kFd. As before,Hc2 is determined by requiring
that the smallest eigenvalue of Eq.(73) be zero.

We may alternatively use, instead of Eq.(73), the matrix

AnN,n8N8
8 = sl − m * dnn8

−1 dNN8 − dnn8pTFkKf2l

+
"

2t
kKflSI −

"kKl
2t

D−1

kKflG
NN8

, s74d

wheresl−m* d−1 denotes inverse matrix ofl−m*. It is Her-
mitian for mBB→0, and also acquire the property by com-
bining n.0 andn,0 elements.

IV. MODEL CALCULATIONS

We now present results of a model calculation based on
the formalism developed above. We restrict ourselves to the
weak-coupling model of Sec. II with an isotropic gap, no
impurities, and no Pauli paramagnetism. As for the energy-
band structure, we adopt a tight-binding model in the simple
cubic lattice whose dispersion is given by

«k = − 2thcosskxad + cosskyad + cosskzadj. s75d

Here a denotes lattice spacing of the cubic unit cell and
t is the nearest-neighbor transfer integral. We sett=a=1
in the following. The corresponding Fermi surfaces are
plotted in Fig. 1 for various values of the Fermi energy
«F. For «F<−6, i.e., near the bottom of the band, the
Fermi surface is almost spherical with slight distortion
due to the cubic symmetry. As«F increases, the cubic
distortion is gradually enhanced. Then at«F=−2, the
Fermi surface touches the Brillouin-zone boundary at
kX;s0,0, ±pd ,s0, ± ,p ,0d ,s±p ,0 ,0d. Above this critical
Fermi energy, the topology of the Fermi surface changes, as
shown in Fig. 1(c). It is interesting to see how such a topo-
logical change of the Fermi surface affectsHc2.

We computedHc2 based on Eq.(35) in the clean limit
without Pauli paramagnetism. The Fermi-surface average in
Eq. (36) was performed by two different methods. For gen-

eral values of«F, we used the linear tetrahedron method,
which is applicable to any structure of the Fermi surface.
In this method, the irreducible Brillouin zone is divided
into a collection of small tetrahedra. From each tetrahedron
that intersects the Fermi surface, a segment of the Fermi
surface is obtained as a polygon by a linear interpolation
of the energy band. Numerical integrations over the Fermi
surface were then performed as a sum over those polygons.
Another description of the Fermi surface is possible for
«F,−2, where we can adopt the polar coordinate
k =sk sinu cosf ,k sinu sinf ,k cosud, and the Fermi sur-
facekF=kFsu ,fd is obtained by solving the equation«k =«F

numerically for eachsu ,fd. An integration over the Fermi
surface is then performed by using the variablessu ,fd. We
performed both types of calculations to check the numerical
convergence of the tetrahedron method. Excellent agree-
ments were achieved generally by using 3375 tetrahedrons.
An exception is the region«F<−2, where a larger number of
tetrahedrons was necessary due to the singularity aroundkX.

The infinite matrixANN8 in Eq. (36) was approximated by
a finite matrix of N,N8øNcut, and the convergence was
checked by increasingNcut. The choiceNcut=0 is sufficient
for T&Tc, and it was found numerically thatNcut=8 yields
enough convergence for all field directions at the lowest tem-
peratures. It was also found that higher Landau levels of
Nù1 contribute toHc2 by only 4% even atT/Tc=0.05.
Thus, the lowest-Landau-level approximation to the pair po-
tential is excellent for this cubic lattice. This is not generally
the case, however, and the contribution of higher Landau
levels can be considerable for low-symmetry crystals, as will
be reported elsewhere.75

Before presenting any detailed results, it is worth noting
that the GL equations,1,2 where the anisotropy enters only
through the effective-mass tensor, cannot explain possible
anisotropy ofHc2 in cubic symmetry, as already pointed out
by Hohenberg and Werthamer.9 This GL theory is valid near
Tc so that the upper critical field forT&Tc should be isotro-

FIG. 1. Fermi surfaces of the tight-binding model in the simple
cubic lattice. The Fermi energies are(a) «F=−3, (b) −2, (c) −1, and
(d) 0.
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pic in the present model. The anisotropy ofHc2 in cubic
symmetry emerges gradually at lower temperatures, as seen
below.

We calculated the reduced critical fieldh* std defined by
Eq. (1) for the magnetic field directionsd=f100g, [110], and
[111]; we denote them ashd

*std. Figure 2 presentshd
*std for

«F=−3 and −2.02 as a function oft=T/Tc. For«F=−3, h* std
is almost isotropic fort*0.8 and cannot be distinguished
from the curve for the spherical Fermi surface. At lower
temperatures, the anisotropy appears gradually. Whereas
hf100g

* std is reduced from the value for the spherical Fermi
surface,hf111g

* std and hf110g
* std are enhanced due to the cubic

distortion of the Fermi surface. Att=0.05, hf111g
* std and

hf110g
* std are larger thanhf100g

* std by 19% and 15%, respec-
tively. In another case«F=−2.02 where the Fermi surface
nearly touches the Brillouin zone boundary,hd

*std are remark-
ably enhanced for all field directions. Especially,hf111g

* std and
hf110g

* std at low temperatures exhibit values about 60–70%
larger than those for the spherical Fermi surface.

At «F=−3, hf111g
* std and hf110g

* std nearTc show small up-
ward curvature, whereashf100g

* std remains almost identical
with the curve for the spherical Fermi surface. This differ-
ence may be quantified by the ratioB2/B1 defined in Eq.
(22). It was numerically evaluated by using the Fermi veloc-
ity on the Fermi surface and shown in Table II. The values
for the directions[110] and[111] are larger than 0.13 for the
spherical Fermi surface. Thus, calculatedB2/B1 values well

describe the difference inh* std for t&1 among field direc-
tions. The upward curvature is more and more pronounced as
the Fermi surface approaches the Brillouin zone boundary, as
can be seen clearly in Fig. 2 for«F=−2.02. The correspond-
ing ratio B2/B1 for the [110] and [111] directions are about
three times larger than those for«F=−3. Thus, the present
calculation clearly indicates that the Fermi surface aniso-
tropy can be a main source of the upward curvature inHc2
nearTc.

In Fig. 3, we plothd
*std at t=0.05 as a function of«F. As

«F→−6, the angle dependence ofhd
*std vanishes and it con-

verges to the value for the spherical Fermi surface. As«F is
increased from −6, cubic distortion is gradually introduced to
the Fermi surface as shown in Fig. 1, andhd

*std gradually
develops anisotropy as a consequence. For −6,«F&−2.5,
curves of hf100g

* std fall below that for the spherical Fermi
surface, whereashf110g

* std and hf111g
* std are enhanced over it.

As «F approaches to −2,hd
*std is enhanced significantly irre-

spective of the field direction. Indeed,hd
*std for every field

direction shows a singularity at«F=−2 where the Fermi sur-
face touches the Brillouin zone atkX with vanishing Fermi
velocity vF at these points. As a result, the contribution
around these points becomes important in the integration
kKNN8l over the Fermi surface at low temperatures. This is
the origin of the enhancement ofhd

*std around«F=−2. For
«F.−2, the difference betweenhf110g

* andhf111g
* is larger than

that for «F&−2.5. This may be attributed to the topological
difference of the Fermi surface. At«F=0, the tight-binding
band is half filled and the Fermi-surface nesting occurs.
However, hd

*std does not show any singularity around this
energy.

Finally, we present results on the higher Landau-level
contributions to the pair potentialDsr d, which is expanded as
Eq. (27a). In general, when the system hasn-fold symmetry
around the field direction, mixing of higher Landau levels
with multiples ofn develops as the temperature is lowered.70

Figure 4 shows the ratioDN/D0 as a function ofT/Tc for
«F=−3 (solid lines) and «F=−2.02 (dotted lines) with (a)
H i f100g (N=4,8 from bottom to top lines), (b) H i f110g
(N=2,46 from bottom to top lines), and (c) H i f111g
sN=6d. One can clearly observe a general tendency that the
mixing is more pronounced as the symmetry aroundH be-
comes lower as well as«F approaches closer to −2. Espe-

TABLE II. The ratio B2/B1 for the field directions[100], [110],
and [111] in the cases«F=−3 and −2.02. The quantitiesB1 andB2

are defined in Eq.(22). The values should be compared with 0.13
for the spherical Fermi surface.

«F [100] [110] [111]

−3 0.08 0.27 0.33

−2.02 0.44 0.78 0.90

FIG. 2. Curves of the reduced critical fieldhd
*std for the cubic

tight-binding model with«F=−2.02 (dotted lines), «F=−3 (solid
lines), and «F→−6 (i.e., the spherical Fermi surface; dash-dotted
line). The field directions ared=f111g, [110], and[100] from top to
bottom in each case.

FIG. 3. The reduced upper critical fieldhd
*std at t=0.05 as a

function of the Fermi energy«F. The field directions ared=f111g,
[110], and[100] from top to bottom, respectively.
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cially when H i f110g and «F=−2.02, theN=2 contribution
reaches up to nearly 15% of the lowest Landau-level contri-
bution asT→0. The results suggest that the lowest-Landau-
level approximation for the pair potential9 is not quantita-
tively reliable at low temperatures for the field along low-
symmetry directions, for complicated Fermi surfaces with
divergences in the components ofvF perpendicular toH, or
for low-symmetry crystals.

V. SUMMARY

We have derived an efficientHc2 equation incorporating
Fermi-surface anisotropy, gap anisotropy, and impurity scat-
tering simultaneously. Basic results of Sec. II are summa-
rized in Table I. ThisHc2 equation is a direct extension of the
Rieck-Scharnberg equation30 and reduces to the latter either
(i) for the isotropic gap with arbitrary impurity scattering or
(ii ) in the clean limit with an arbitrary gap structure, as
shown around Eq.(42). The operators introduced in Eq.(16)
have been helpful to make the derivation simpler than that by
Rieck and Scharnberg30 and Rieck et al..31 The present
method will be more suitable for extending the consideration
to multicomponent order-parameter systems or to fields be-
low Hc2.

We have also obtained a couple of analytic expressions
nearTc (i) for Hc2 up to the second order in 1−T/Tc and(ii )
for the pair potential up to the first order in 1−T/Tc. The
latter result is given by Eq.(A8) with Eqs.(A9b) and (A4).
They are useful to estimate the initial curvature ofHc2 as
well as the mixing of higher Landau levels in the pair poten-
tial.

The Hc2 equation of Sec. II has also been extended in
Sec. III to includep-wave impurity scattering, spin-orbit

impurity scattering, and strong electron-phonon interactions.
Finally, we have presented numerical examples in Sec. IV

performed for model Fermi surfaces from the three-
dimensional tight-binding model. The results clearly demon-
strate crucial importance of including detailed Fermi-surface
structures in the calculation ofHc2. It has been found that, as
the Fermi surface approaches the Brillouin zone boundary,
the reduced critical fieldh* std in Eq. (1) is much enhanced
over the value for the isotropic model with a significant up-
ward curvature nearTc.

It is very interesting to see to what degree the upper
critical field of classic type-II superconductors can be de-
scribed quantitatively by calculations using realistic Fermi
surfaces. The result by Butler22,23 on high-purity Niobium
provides promise to this issue. We have performed detailed
evaluations ofHc2 for various materials based on Eq.(35) by
using Fermi surfaces from density-functional electronic-
structure calculations as an input. The results are reported
elsewhere.75
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APPENDIX A: DETERMINATION OF „c1,c2… AND
ANALYTIC EXPRESSION OF Hc2 NEAR Tc

We here fix the constantssc1,c2d in Eqs. (16)–(18)
conveniently so thatHc2 near Tc can be described in
terms of the lowest Landau level only. We also derive
analytic expressions forB1 and B2 in Eq. (22) so that one
can calculate them once the relevant Fermi-surface structure
is given.

In the regionT&Tc where lc→` in Eq. (14), we can
perform a perturbation expansion with respect to the gradient
operatorvF·­. The equation for thenth-order solutionfn

s1d

sn=0,1,¯ d is obtained from Eq.(12a) as

fn
s1d = dn0

fD

«̃n8
+

"kfn
s1dl

2t«̃n8
−

sgns«nd
2«̃n8

"vF · ­fn−1
s1d , sA1d

with f−1
s1d=0. Notingfs−kFd=fskFd, we solve Eq.(A1) self-

consistently forkfn
s1dl, put the resulting expression back into

Eq. (A1) to expressfn
s1d explicitly, and finally take the Fermi-

surface averagekffn
s1dl. This procedure yields

kff0
s1dl =

1

«̃n8
Skf2l +

"kfl2

2tu«nu8
DD, sA2ad

kff2
s1dl =

1

4«̃n8
3KSf +

"kfl
2tu«nu8

D2

s"vF · ­d2LD, sA2bd

FIG. 4. The ratioDN/D0 of the expansion coefficients in Eq.
(27a) as a function of temperature with(a) H i f100g, (b) H i f110g,
and (c) H i f111g. The solid and dotted lines correspond to«F=−3
and«F=−2.02, respectively, with(a) N=4,8 from bottom to top(b)
N=2,4,6from bottom to top, and(c) N=6.
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kff4
s1dl =

1

16«̃n8
5FKSf +

"kfl
2tu«nu8

D2

s"vF · ­d4L
+

"

2tu«nu8KSf +
"kfl

2tu«nu8
Ds"vF · ]d2L2GD,

sA2cd

with u«nu8;u«nu− imBBsgns«nd, andkff1
s1dl=kff3

s1dl=0.
Let us substitute Eq.(A2) into Eq. (12b), replace the gra-

dient operator by the right-hand side of Eq.(14), put
B=Bc2 in lc of Eq. (15), and expandu«nu8 with respect to
mBBc2/ u«nu. We thereby obtain the self-consistency equation
nearTc as

w0,0D +
Bc2

B1
fw2,2a

†a† + w2,2
* aa− w2,0saa† + a†adgD

+ SBc2

B1
D2

fw4,4a
†a†a†a† + w4,4

* aaaa

− w4,2saa†a†a† + a†aa†a† + a†a†aa† + a†a†a†ad

− w4,2
* sa†aaa+ aa†aa+ aaa†a + aaaa†d

+ w4,0asaa†aa† + a†aaa† + aa†a†a + a†aa†ad

+ w4,0bsaaa†a† + a†a†aad + wPgD = 0. sA3d

HereB1 is given in Eq.(22), which is incorporated into the
denominator for convenience. The functionswn,m=wn,msTd
andwP=wPsTd are dimensionless and defined by

w0,0sTd ; ln
Tc0

T
− s1 − kfl2d2pTo

n=0

` S 1

«n
−

1

«̃n
D ,

sA4ad

w2,2sTd ;
B1"2p2T

2F0
o
n=0

`
1

«̃n
3KSf +

"kfl
2t«n

D2

v̄F+
2 L ,

sA4bd

w2,0sTd ;
B1"2p2T

2F0
o
n=0

`
1

«̃n
3KSf +

"kfl
2t«n

D2

uv̄F+u2L ,

sA4cd

w4,4sTd ;
B1

2"4p3T

8F0
2 o

n=0

`
1

«̃n
5FKSf

+
"kfl
2t«n

D2

v̄F+
4 L +

"

2t«n
KSf +

"kfl
2t«n

Dv̄F+
2 L2G ,

sA4dd

w4,2sTd ;
B1

2"4p3T

8F0
2 o

n=0

`
1

«̃n
5FKSf +

"kfl
2t«n

D2

v̄F+
2 uv̄F+

2 uL
+

"

2t«n
KSf +

"kfl
2t«n

Dv̄F+
2 LKSf +

"kfl
2t«n

Duv̄F+u2LG ,

sA4ed

w4,0asTd ;
B1

2"4p3T

8F0
2 o

n=0

`
1

«̃n
5FKSf +

"kfl
2t«n

D2

uv̄F+u4L
+

"

2t«n
KSf +

"kfl
2t«n

Duv̄F+u2L2G , sA4fd

w4,0bsTd ;
B1

2"4p3T

8F0
2 o

n=0

`
1

«̃n
5FKSf +

"kfl
2t«n

D2

uv̄F+u4L
+

"

2t«n
UKSf +

"kfl
2t«n

Dv̄F+
2 LU2G , sA4gd

wPsTd ; − smBB1d22pTo
n=0

` F kfl2

«n
3 +

1 − kfl2

«̃n
3 G .

sA4hd

We next substitute Eq.(22) into Eq. (A3) and expand
wn,m in Eq. (A3) up to the s4−1/2dth order in 1−t. We
also put wPsTd=wPsTcd. This procedure yields three
equations corresponding to order 1, 1−t, and s1−td2. The
equation of order 1 is given byw0,0sTcdD=0. It determinesTc

at H=0 by

ln
Tc0

Tc
= s1 − kfl2dFcS1

2
+

"

4ptTc
D − cS1

2
DG , sA5d

with csxd the digamma function.
The equation of order 1−t in Eq. (A3) is obtained as

f− Tcw0,08 sTcd − w2,0sTcds2a†a + 1d + w2,2sTcda†a†

+ w2,2
* sTcdaagDsr d = 0. sA6d

To solve it, we use the arbitrariness insc1,c2d and impose
w2,2sTcd=0. Noting Eqs.(A4b) and (18), this condition is
transformed into a dimensionless form as

xxxc2
2 + 2ixxyc1c2 − xyyc1

2 = 0, sA7d

wherexi j =xi jsTcd is defined by Eq.(20). Equation(A7) can
be solved easily in terms ofc2. Substituting the resulting
expression into Eq.(17) and choosingc1 real, we obtain Eq.
(19).

Now that w2,2sTcd=0 in Eq. (A6), the highest field for
a nontrivial solution corresponds to the lowest Landau level
where w2,0sTcd=−Tcw0,08 sTcd. Introducing R;−Tcw0,08 sTcd,
which is given explicitly as Eq.(24), and using Eqs.
(A4a), (A4c), (18), and(19), we obtain the expression forB1
as Eq.(23).

We finally consider the equation of orders1−td2 in Eq.
(A3) and expand the pair potential as

Dsr d = D0hc0qsr d + s1 − tdfr2c2qsr d + r4c4qsr dgj, sA8d

where cNqsr d is defined by Eq.(21), and sD0,r2,r4d are
the expansion coefficients withsr2,r4d describing relative
mixing of higher Landau levels in the pair potential.
Let us substitute Eq.(A8) into Eq. (A3), multiply the equa-
tion of orders1−td2 by cNq

* sr d, and perform integration over
r . The resulting equations forN=0,2,4yield
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B2 =

1

2
Tc

2w0,0
s2d + Tcw2,0+ w4,0a + 2w4,0b + wP

R
B1,

sA9ad

r2 = −
Tcw2,28 + 6w4,2

2Î2R
, r4 =

Î6w4,4

4R
, sA9bd

respectively. The functions in Eqs.(A9a) and (A9b) are de-
fined by Eqs.(A4) and(24) and should be evaluated atTc. In
the clean limitt→`, these functions acquire simple expres-
sions as

R= Tc
2w0,0

s2d = 1, Tcw2,08 = − 2, Tcw2,28 = 0, sA10ad

w4,m =
31zs5d

f7zs3dg2

kf2uv̄F+u4−mv̄F+
m l

kf2uv̄F+u2l2 , sA10bd

wP = −
7zs3dsmBB1d2

4spTcd2 , sA10cd

with m=0,2,4 andw4,0;w4,0a=w4,0b. Equation(A9) with
Eq. (A10), includes the result by Hohenberg and Werthamer9

for cubic materials and also the one by Takanaka18 for
uniaxial materials in the relevant order, both except the Pauli
term wP. Thus, we have extended the results by Hohenberg
and Werthamer9 and Takanaka18 to arbitrary crystal struc-
tures and impurity-scattering time, including also Pauli para-
magnetism.

Equation (A9) reveals a close connection of both the
curvature inHc2sT&Tcd and the mixing of higher Landau
levels inDsr d with the Fermi-surface structure. For example,
we realize from Eq.(A9b) with Eqs. (A10), (18), and (26)
that the mixing ofN=2 Landau level is absent for cubic
materials where c1=c2=1. This is not the case for
low-symmetry crystals, however. Equation(A9) enables
us to estimate the curvature and the mixing based on
Fermi-surface structures from detailed electronic-structure
calculations.

APPENDIX B: PROOF OF EQ. (41)

The first expression in Eq.(41a) can be proved by induc-
tion as follows. First of all,h0=R0 is transformed from Eq.
(37a) as76

h0 =
1

1 +
x2

1 +
2x2

1 + ¯

=
Î2

x
e1/2x2E

1/Î2x

`

e−s2
ds

=E
0

`

expS− s−
x2

2
s2Dds=

2
Îp
E

0

` e−s2

1 + 2x2s2ds

=E
0

` 2se−s2

Î1 + 2x2s2
ds. sB1d

Thus, Eq.(41a) holds for N=0. The last expression in Eq.
(B1) is the same integral which appears in Eq.(26) of Ho-
henberg and Werthamer.9 We next rewrite Eq.(37a) with
respect tohN in Eq. (40a) as

hN = H s− h0 + 1d/x2 sN = 1d

s− hN−1 + ÎN − 1hN−2d/ÎNx2 sN ù 2d J . sB2d

Using Eqs.(B1) and (B2), it is easy to see that Eq.(41a)
holds for N=1. Proceeding to the general case, we assume
that Eq.(41a) is valid for NøM −1. We also remember the
following properties of the Hermite polynomials:

HNssd − 2sHN−1ssd + 2sN − 1dHN−2ssd = 0, sB3ad

E
0

`

skHNssde−s2
ds= 0 sk ø N − 1d. sB3bd

ThenhM is obtained explicitly by using Eq.(B2) as

hM =
1

ÎMx2
f− hM−1 + ÎM − 1hM−2g

=E
0

` 2sM−2f− sHM−1ssd + sM − 1dHM−2ssdge−s2

ÎpM!x2s1 + 2x2s2d
ds

=E
0

` − sM−2HMssde−s2

ÎpM!x2s1 + 2x2s2d
ds

=E
0

` sM−2HMssde−s2

ÎpM!x2 S1 −
1

1 + 2x2s2Dds

=
2

ÎpM!
E

0

` sMHMssde−s2

1 + 2x2s2 ds. sB4d

Thus, we have established the first expression in Eq.(41a).
The proof for the second expression proceeds in the same
way by using partial integrations forh0 andhN−2 in Eq. (B2).
Equation Eq.(41b) can be proved similarly by induction,

starting fromR̄1=1 and using Eq.(37b).
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