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Phase separation has been observed by several different experiments and it is believed to be closely related
with the physics of cuprates but its exact role is not yet well known. We propose that the onset of the
pseudogap phenomenon or the upper pseudogap temperatureT* has its origin in a spontaneous phase separa-
tion transition at the temperatureTps=T*. In order to perform quantitative calculations, we use a Cahn-Hilliard
(CH) differential equation originally proposed to the studies of alloys and on a spinodal decomposition mecha-
nism. Solving numerically the CH equation it is possible to follow the time evolution of a coarse-grained order
parameter which satisfies a Ginzburg-Landau free-energy functional commonly used to model superconduct-
ors. In this approach, we follow the process of charge segregation into two main equilibrium hole density
branches and the energy gap normally attributed to the upper pseudogap arises as the free-energy potential
barrier between these two equilibrium densities belowTps. This simulation provides quantitative results in
agreement with the observed stripe and granular pattern of segregation. Furthermore, with a Bogoliubov-
deGennes local superconducting critical temperature calculation for the lower pseudogap or the onset of local
superconductivity, it yields an interpretation of several nonconventional measurements on cuprates.
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I. INTRODUCTION

The existence of the pseudogap in all family of high-
temperature superconductors(HTSC) has been verified by
several different experimental techniques as discussed by
many reviews.1,2 As a consequence of many years of scien-
tific effort, there is a solid consensus of its existence at least
in the underdoped regime. On the other hand, there is cur-
rently no agreement on such basic facts as to its nature and
origin. After its discovery,2,3 it was realized that some experi-
ments detected the pseudogap temperatureT* at very high
values while others would place it just above the critical
temperatureTc. This is probably because different probes are
able to detect different properties but, the fact is that this
large discrepancy triggered a variety of different proposals.
Just to mention a few ideas and works; Emeryet al.4 called
the highT* as T1

* , the crossover temperature at which charge
inhomogeneities become well defined and the lowT* as T2

*

and associated it with a spin gap and they both merged into
Tc at the slightly overdoped region of the phase diagram. In
their review, Timusk and Statt1 also presented a similar phase
diagram but they related the lower pseudogap temperature to
T* and the upper one also to a crossover temperatureT1

* . The
lower and the higherT* were also considered as the opening
of a spin and a charge gap respectively.5 The lowerT* was
also attributed to superconducting phase fluctuations6 and
many different experiments claimed to have detected such
fluctuations.7–11 Thus the existence of the two pseudogaps in
the cuprates has been compiled by several works1,2,12 as the
result of many different data. In fact, analyzing the data from
angle-resolved photoemission(ARPES) and angle-integrated
photoemission, Inoet al.13 could distinguish not two but
three different energy scales.

Another controversial point is whether the pseudogap and
the superconducting gap have the same origin or not. Tun-
neling spectroscopy14–16 seems to show that the gap evolves

continuously from the superconducting into the normal phase
without any anomaly, suggesting that the pseudogap and su-
perconducting gaps have the same origin. The common ori-
gin was also supported by some ARPES17 and scanning tun-
neling spectroscopy(STM)18 data. Muon spin rotating
experiments19 characterizedT* as the pair formation line in
agreement with the fluctuation theories of pre-formed super-
conducting pairs.4,6,20 These STM and ARPES experiments
have also measured the pseudogap in the overdoped region
in opposition to many others1,2,19 which the pseudogap tem-
perature line appears to fall a little beyond the optimum dop-
ing value. On the other hand, intrinsic(c-axis interplane)
tunneling spectroscopy21–23led to results against a supercon-
ducting origin of the pseudogap that was also confirmed by
the same type of experiment in high magnetic field.22 This
conclusion, against the common origin of the pseudogap and
superconducting gap, is also shared by Tallon and Loram
after the analysis of data from many different experiments.2

The above resumed paragraphs intended to show that, de-
spite the enormous experimental effort after all these years,
there are still some basic open questions in this field. These
open questions motivated us to make the present work which
connects the large pseudogapT* to the onset of phase sepa-
ration. There is now considerable evidence that the tendency
toward phase separation or intrinsic hole clustering forma-
tion is an universal feature of doped cuprates.24–28 Phase
separation in hole rich and hole poor regions was theoreti-
cally predicted29 and has been observed in the form of
stripes30,31 and in the form of microscopic grains or mesos-
copic segregation by STM measurements.32,33 Although the
STM results has been questioned as a surface phenomena
which does not reflect the nature of the bulk electronic
state,34 the inhomogeneities has also been seen by neutron
diffraction30,31,35 which is essentially a bulk-type probe in
underdoped and optimally doped region of the La2−xSrxCuO4
phase diagram. Another bulk-type measurement using
nuclear quadrupole resonance(NQR) (Ref. 36) has observed
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an increase in the hole density spatial variation of
La2−xSrxCuO4 compounds(with 0.04øxø0.15) as a func-
tion of the temperature. Despite these evidences, the majority
of the theoretical approaches are based on the assumption
that the holes are homogeneously doped into CuO planes,
probably due to the argument that, in principle, macroscopic
phase separation is prevented by the large Coulomb energy
cost of concentrating doped holes into small regions. On the
other hand, the above-cited references are just a few of the
large number of works which have detected some type of
inhomogeneities in cuprates which seems to be intrinsic
since it is present even in the best single crystals.27 There are
also experimental evidences for an intrinsic phase separation
and cluster formation in many other materials like, for in-
stance, manganites which are believed to be another strong
correlated electron materials37–39 and on rutheno-cuprates
superconductors.40 In fact, it has been argued that phase
separation might be stronger in manganites37 than in
cuprates.

In this paper, we develop an approach to this issue as we
apply to the large pseudogapT* the theory of phase-ordering
dynamics, that is, the growth of domain coarsening when a
system is quenched from the homogeneous phase into an
inhomogeneous phase.41 This phenomenon is also known as
spinodal decomposition. One of the leading models devised
for the theoretical study of this phenomenon for a conserva-
tive order parameter is based on the Cahn-Hilliard
formulation.42 The Cahn-Hilliard(CH) theory was originally
proposed to model the quenching of binary alloys through
the critical temperature but it has subsequently been adopted
to model many other physical systems which go through a
similar phase separation.41–43We show how the CH equation
is derived from a typical Ginzburg-Landau(GL) free energy
for a typical (conserved) order parameter, which is easily
related with the density of holes, using an equation for the
conservation of the order parameter current. The CH equa-
tion is solved numerically by adopting a very efficient
method (compared with usual first-order Euler methods)
semi-implicit (in time) finite difference scheme proposed by
Eyre.43 The numerical details have been analyzed
elsewhere.44

The main purpose to solve the CH equation for the hole
density field and take the large pseudogap temperatureT* as
the phase separation temperatureTps is that we can make
quantitative calculations and get some insights on various
HTSC nonconventional features: As the temperature goes
down belowTps, the distribution of hole density for a given
compound evolves smoothly from an initially random varia-
tion taken as a Gaussian distribution around an average den-
sity p, since a purely uniform distribution does not segregate
into a kind of bimodal distribution. These simulations are
used to demonstrate the charge inhomogeneity and the stripe
pattern formation in a square lattice as shown below. The
pseudogap energyEg or the large pseudogap temperatureT*
arises naturally as the GL potential barrier between the two
equilibrium density phases, changes smoothly as the tem-
perature decreases, and reaches the maximum phase separa-
tion near zero temperature. IfTps vanishes at a critical aver-
age hole densitypc<0.2 as generally accepted,1,2,19 that
means that all the compounds with averagepøpc may un-

dergo a phase separation and evolves continuously into a
complete separation characterized by a bimodal distribution
with two major equilibrium densities(p+ andp−). For under-
doped samples the phase separation is more pronounced,
sinceTps is very large for these compounds. The difference
betweenp+ and p− should decrease for compounds with in-
creasing average hole densityp and the sharp peaks evolve
into rounded peaks nearpc. This provides an explanation for
the neutron diffraction data on the Cu-O bond length
distribution35 and the observation of charge and spin separa-
tion into stripe phases. On the other hand, the increase of the
inhomogeneity(variation in p) as the temperature is de-
creased for a given sample was observed by the NQR
experiments,36 in agreement with the CH theory of the spin-
odal decomposition. On the other hand, these local differ-
ences in the charge distribution generate local microscopic
(or mesoscopic) regions with different superconducting tran-
sition temperatures. The onset of local superconductivity
may be identified as the lower pseudogap temperature or the
temperature where the superconducting pairs start to appears.
This second pseudogap has also been interpreted as the mean
field temperatureTMF by Emery and Kivelson.4,6 As the tem-
perature goes down between this lowerT* and Tc more su-
perconducting regions or superconducting droplets appear,
they grow in size and quantity and they percolate atTc. The
appearance of these superconducting droplets aboveTc is in
agreement and it is the only possible explanation of various
measurements made in the normal phase of different
materials like the Nernst effect9,10 and the precursor
diamagnetism.45–48 In this scenario, superconducting phase
coherence is achieved only atTc which is the temperature
that<60% (' the percolating limit) of the sample volume is
in the superconducting phase as has been proposed by sev-
eral different works.49–52In the following sections we discuss
the phase separation mechanism, we present the results of
some simulation, and the implications to HTSC properties in
detail.

As mentioned above, the process of phase separation in
HTSC is well documented but, concerning the mechanism of
phase separation there are not many conclusive studies. One
possibility for this mechanism arises from the measurements
by nuclear magnetic resonance(NMR),26 which has deter-
mined the high mobility of the oxygen interstitial in
La2CuO4−d compounds. Therefore, it is possible that the dop-
ant atoms cluster themselves to minimize the local energy
and this would be a possible explanation for the whole pro-
cess. This is just a general idea based on the NMR results26

but the mechanism of clustering is an interesting subject that
merits more attention in the future.

To avoid confusion in the notation, we will adoptTpsspd
for the large pseudogap temperature of a compound with
average hole dopingp and T* spd for the lower pseudogap
temperature. When we refer to a given sample and not to a
family of compounds, to simplify the notation, we may just
useTps andT*.

II. CH APPROACH TO PHASE SEPARATION

The CH theory was developed to the binary allows and
one may question its application to a strongly correlated sys-
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tem as HTSC. However the clustering process in hole-doped
HTSC is very subtle. As we can draw from the stripe phases,
the antiferromagnetic insulating phase has nearly zero holes
per copper atom and the charged phase has less than 0.25
holes per copper atom, and in some cases 0.125. Thus,
double hole occupancy does not occur in either phases,
which is in agreement with a large on-site coulomb repulsion
used in almost all Hamiltonian models for HTSC as in Eq.
(4) below. Therefore, we believe that the use of the CH
theory to hole-doped HTSC is justified.

As an initial condition, let us suppose that a typical HTSC
has, aboveTps, a Gaussian distribution of local densities
around an average hole densityp as can be direct inferred
from the STM experiments.32,33Panet al.32 have measured a
spread ofDp<0.08 holes/Cu for an optimally doped com-
pound which will be adopted as an initial condition in our
calculations. This Gaussian distribution around the average
hole densityp is the starting point at temperatures above and
near the phase separation temperatureTps and each local hole
density psxWd inside the sample oscillates around the com-
pound averagep. In this way, we can define the order param-
eterusxWd;psxWd−p andusxWd=0 above and atTps, as expected.
Then the typical GL functional for the free energy density in
terms of such order parameter is

f = 1
2«2u ¹ uu2 + Vsud, s1d

where the potentialVsud=A2sTdu2/2+B2u4/4+. . ., A2sTd
=asT−Tpsd, andB is a constant. Notice that near and below
Tps and/or for small values of«, the gradient term can be
neglected and we get the two minima off at the equilibrium
values usxWd= ±A/B= ± ÎfasTps−Tdg /B. This can be easily
seen if we writeVsud=B2su2−A2/B2d2. In Fig. 1 we show the
important characteristics of such potential: As the tempera-
tures go down away fromTps, the two equilibrium order
parameter(or densities) go further apart from one another
and the energy barrier between the two equilibrium phases

Eg also increases.Eg=A4sTd /B which is proportional to
sTps−Td2.

Bray41 pointed out that one can explore the fact that the
type of order parameter used above, as the two types of
atoms of a given alloy, is conserved and the CH equation can
be written in the form of a continuity equation,]tu=−¹ ·J,
with the currentJ=M ¹ sdf /dud, whereM is the mobility or
the transport coefficient. It is probably the same for each
family of HTSC compounds because of the universal char-
acter of their phase diagram. Therefore we may write the CH
equation as following:

]u

]t
= − M¹2s«2¹2u + A2sTdu − B2u3d. s2d

This equation is solved with the so-called flux-conserving
boundary conditions,u¹u·nW uxWP]V= us¹3ud ·nW uxWP]V=0 where
nW is the outward normal vector on the boundary of the do-
mainV which we represent by]V, it is possible to show the
time conservation of the total massMt and that the total free
energy can only decrease(dissipate) or stable.43,44 Therefore
a time stepping finite difference scheme is defined to begra-
dient stableonly if the free energy is nonincreasing and gra-
dient stability is regarded as the best stability criterion for
finite difference numerical solutions of such nonlinear partial
differential equation as the CH equation.44

As it has already been pointed out,43,44both the¹4 and the
nonlinear term make the CH equation very stiff and it is
difficult to solve it numerically. The nonlinear term in prin-
ciple, forbids the use of common fast Fourier transform
methods and brings the additional problem that the usual
stability analysis like von Neumann criteria cannot be used.
These difficulties make most of the finite difference schemes
to use time steps of many order of magnitude smaller than
Dx and consequently, it is numerically expensive to reach the
time scales where the interesting dynamics occur. To solve
these difficulties Eyre proposed a semi-implicit method in
time that is unconditional gradient stable when theVsud can
be divided in two parts:Vsud=Vcsud+Vesud where Vc is
called contractive andVe is called expansive.43 Thus, we
adopt here his method takingVe as the quadratic term andVc
as the fourth-order one. Then we finally obtain the proposed
finite difference scheme for the CH equation which is linear-
ized in time (we have absorbedM into the time step),
namely,44

Uijk
n+1 + Dts«2¹4Uijk

n+1 + B2¹2sUijk
n d2Uijk

n+1d

= Uijk
n − DtA2sTd¹2Uijk

n . s3d

We have studied the stability conditions of this equation
in one, two, and three dimensions.44 In the next section we
present the results for two and three dimensions applied to
the problem of phase separation in a HTSC plane of CuO.
Although we calculate the local order parameterusxWd of a
sample with average hole densityp, we are interested and
will preferably refer to the local hole densitypsxWd=usxWd+p.

III. RESULTS OF THE SIMULATIONS

As mentioned in the Introduction, there is a consensus
from several different experiments1,2 that the pseudogap tem-

FIG. 1. The typical potential used in the density of free energy
which gives rise to phase separation as a function of the order
parameteru. Notice that the two minima atu± yield the two equi-
librium densitiesp±=u±+p and the energy barrier between themEg

depends on the temperature differenceTps−T.
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peratureT* spd initiate at average hole dopingp<0.05 at
T<800 K and falls to zero temperature at a critical doping
pc<0.2. This is best illustrated by Fig. 11 from the review
work of Tallon and Loram2 with many different data, which
we reproduce here for convenience.

Initially, that is aboveTpsspd, the system has a homoge-
neous distribution of charge with very small variations
aroundp, which is described by a very narrow Gaussian-type
distribution. When the temperature goes down throughTps
the sample with average hole densityp starts to phase sepa-
rate and the original Gaussian distribution of holes changes
continuously into a bimodal type distribution. For under-
doped samples with largeTps, the mobility M is high which
favors a rapid phase separation into two main hole densities
p− and p+, while the compounds near the critical dopingpc
may not undergo a complete phase separation. Near theTps,
the difference betweenp− andp+ is very small and increases
as the temperature goes away fromTps. However if the sys-
tem is quenched very rapidly the phase separation may not
even occur, because it depends on the mobility which is es-
sentially the phase separation time scale.41,44For pùpc there
is no phase separation and the charge distribution remains
Gaussian-like. Forpøpc, the transformation from a homo-
geneous phase to one with different densities and with sites
at different environments is seemed by many different mea-
surements: By local measurements like, for instance, the
YINMR, by transport measurements like the resistivity since
the charges must overcome the potential barrierEg between
the two equilibrium regions(see Fig. 1) and by susceptibility
due to the appearance of antiferromagnetic regions with low
hole density especially at the low average doping com-
pounds. Notice that the coefficientAsTd= ÎfasTps−Tdg
changes smoothly as the temperature goes down away from
Tps and therefore the charge distribution in a given com-
pound depends strongly on the temperatureT, on the details
of sample synthesis and annealing procedures and, due to the
mobility, on how the system is quenched throughTps. This is
probably the explanation to the different results reported in
the literature on many HTSC compounds.

Assuming that the curve proposed by Tallon and Loram2

reproduced here in Fig. 2 is theTps line, the regions below
are characterized by their temperature distance from this
temperature. The regions in the bottom like 5 to 7, as illus-
trated in Fig. 3, are regions with very strong phase separation
while at regions nearTps like 1 to 3, the phase separation is
weak. This is becauseu±= ± sA/Bd= ± ÎfasTps−Td /Bg and
these regions are characterized by their values ofsTps−Td.
Thus, in region one, the difference betweenp− andp+ is very
small and increases as the temperature goes below theTps
line. Accordingly, the energy gapEg=EgsTd is a varying
function ofT and goes to zero nearTps. At zero temperature,
compounds withpø0.1 may be strongly separated in an
insulator phasesp−<0d and in a metallic phase withp+

ù0.2. Compounds with 0.1øpø0.16 the phase separation
is partial and for 0.16øpø0.2 the original Gaussian is dis-
torted with an increase in the hole density at the low and
high tail.

We have performed calculations in all regions below the
phase separation line increasing the value of theA coefficient

simulating the the temperature differencesTps−Td. Different
initial conditions were tested to check convergence after
thousands of time steps. One of the trial starting initial con-
dition was, for instance,ust=0d=«3sinsxdsinsyd.

In Fig. 4 we show the results of the simulations on a
1003100 square grid. In these simulations we usedA/B
=0.125 and«=0.05 which represents a phase separation in
region 4 of Fig. 3 because it is a region where phase separa-
tion is neither minimal as in region 1 nor maximal as region
7. The simulation describes the time evolution of a homoge-
neous initial condition given above and represented by a very
sharp Gaussian around the averagep value shown in Fig.
5(a). Figure 4 shows very clearly the phase separation pro-
cess.

The phase separation time evolution is also well illus-
trated by displaying the histogram of how the order param-
eter evolves in time. In Fig. 5 we show the time evolution of

FIG. 2. Figure 11 from Tallon and Loram(Ref. 2) showing thep
dependence of the pseudogap energyEg or T* determined from
susceptibility, heat capacity, ARPES,89Y INMR, and resistivity as
displayed in the legends.

FIG. 3. Illustration of the phase separation regions. The thick
line representsTps or Eg from Fig. 2 approximated by a straight line.
The numbered regions are equidistant fromTps and are character-
ized by their single values ofsTps−Td which is proportional to the
equilibrium densitiesp− andp+.
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a typical simulation with the same parameters of Fig. 5:t
=1 represents the initial condition with the hole densitypsxWd
centered around an average valuep=0.125, t=5000 repre-
sents 5000 time steps in our simulations, and so on. The
shape of these histograms and their evolution from an initial
centered Gaussian to a bimodal distribution is very interest-
ing. It is very important to emphasize that the distribution
after certain time steps is independent of the initial condition.
In practice, if the mobility would be very large and if« is
very small, the system would evolve to two delta functions at
p±.

To study the effect of the gradient term in the GL free
energy of Eq.(1) we have also performed simulations with
different values of«. We have tested«=0.01, 0.03, and 0.05.
The results are shown in Fig. 6 and we can see that indeed
the order parameter distribution approaches a delta function
as« decreases.

Phase separation always occur when we start with a small
variation around an average value but the final pattern is
strongly dependent on the size of the system. In order to

study such an effect we have also done, together with the
1003100 lattice, calculation with the 2003200 and 500
3500 square grid. At Fig. 7, we show the results of mapping
the order parameter in a surface with the same values of
parameter used above. It is very interesting, in the context of
HTSC, to observe that smaller lattices display a granular
pattern and there is a clear increase in the formation of a
stripe pattern as the size of the lattice is enlarged. It is a
matter of fact that the largest HTSC single crystals are those
of the La1−xSrxCuO2 family which are more suitable for neu-
tron diffraction studies and it is exactly in this family which
the stripe phases were measured.30,31 As conjectured by A.
Moreo et al.,37 it is likely that the same conclusion may be
applied to the manganites.

Notice how the stripe structure develops in the plane in-
terior and as they end at the borders they display a granular-
type pattern similar to those found in STM.9,32,33In order to
check this we have also performed simulations in three di-
mension. The results does not differ appreciably from the
two-dimensional case. In Fig. 8, we show cuts in a three

FIG. 4. The process of phase separation with the time. On the top panel we plot the order parameter map at the timest=2000(a) which
displays an(enhanced) reminiscent pattern from the initial conditions. Att=5000(b) the phase separation process has already started and on
(c) at thet=10 000 andt=25 000(d).
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dimension 10031003100 lattice at the middle planesz
=50d and near the top surfacesz=100d.

IV. LOCAL GAP

We have shown that below theTps a phase separation
develops creating a variable density of holes at very small
mesoscopic scale. Therefore, it is important to perform a
local superconducting gap calculation, taking into account
this charge inhomogeneity, in order to understand its effect
on the the superconductivity phase and specifically, how
such a phase is built in this inhomogeneous environment.
The appropriate way to do this calculation, in a system with-
out spatial invariance, is through the Bogoliubov-deGennes
(BdG) mean-field theory.52–57 We start with the extended
Hubbard Hamiltonian

H = − o
kki j lls

tijcis
† cjs + o

is

sVi
imp − mdnis

+ Uo
i

ni↑ni↓ +
V

2 o
ki j lss8

nisnjs8, s4d

wherecis
† scisd is the usual fermionic creation(annihilation)

operators at sitexi, spin sh↑↓ j, and nis=cis
† cis. tij is the

hopping between sitei and j , U is the on-site andV is the
nearest neighbor interaction.m is the chemical potential, and
Vi

imp is a random potential which controls the strength of the
disorder and introduces the inhomogeneous Hartree shift.57

Using a mean-field decomposition approach, one can de-
fine the pairing amplitudes,55,57 Ddsxid=Vkci↓ci+d↑l and
DUsxid=Ukci↓ci↑l, which yields an effective Hamiltonian

Heff = − o
ids

ti,i+dcis
† ci+ds + o

is

sVi
imp − m̃idnis

+ o
id

fDd
*sxidci↓ci+d↑ + Ddsxidci+d↑

† ci↓
† g

+ o
i

fDUsxidci↑
† ci↓

† + DU
* sxidci↓ci↑g. s5d

In this expressiond represents the nearest neighbor vec-
tors andm̃i =m− U /2knil is the Hartree shift with the local
eletronic densityknil=osknisl. The hole density ispsxid=1
−knil. TheHeff is diagonalized by the BdG transformation

ci↑ = o
n

fgn↑unsxid − gn↓
† vn

*sxidg,

ci↓ = o
n

fgn↓unsxid + gn↑
† vn

*sxidg, s6d

wheregns andgns
† are quasiparticle operators associated with

the excitation energiessEnù0d. unsxid andvnsxid are normal-
ized amplitudes for eachxi. Therefore the BdG equations are

S K D

D* − K*
DSunsxid

vnsxid
D = EnSunsxid

vnsxid
D s7d

with

Kunsxid = − o
d

ti,i+dunsxi + dd + sVi
imp − m̃idunsxid,

Dunsxid = o
d

Ddsxidunsxi + dd + DUsxidunsxid, s8d

and similar equations forvnsxid. These equations give the
amplitudes[unsxid, vnsxid], and the eigenergiesEn. The BdG
equations are solved self-consistently together with the pair-
ing amplitude54,55

DUsxid = − Uo
n

unsxidvn
*sxidtanh

En

2kBT
, s9d

FIG. 5. The evolution of the local densities of order parameter
usxWd with the time in our simulations. We can see the tendency
toward sharps bimodal distributions at the density equilibrium val-
ues(u− andu+).

FIG. 6. The evolution of the local densities of order parameter
probability with the gradient constant«. We can see the tendency
toward sharp bimodal formation at the valuesp± as« decreases.
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Ddsxid = −
V

2o
n

funsxidvn
*sxi + dd

+ vn
*sxidunsxi + ddgtanh

En

2kBT
, s10d

and the hole density is given by

psxid = 1 − 2o
n

fuunsxidu2fn + uvnsxidu2s1 − fndg, s11d

where fn is the Fermi function. Depending on the values of
the potentialsV andU, it is possible to have pairing ampli-
tude with eithers or d wave symmetry.55–57

It has been shown53 that a superconducting gap withd
wave symmetry calculated in a square lattice, can be written
as

Ddsxid = 1
4fDx̂sxid + D−x̂sxid − Dŷsxid − D−ŷsxidg. s12d

Therefore we have used the above BdG theory to calcu-
late the local superconducting zero temperature doping de-
pendeds andd wave gap. In Fig. 9, we show a typical set of
results for thed wave as function of doping, withVimp=0
and for a cluster of 14314 sites. We have used parameters
which are appropriated to the HTSC, as we discussed in
some of our previous works.58,59 A hopping value of t
=0.35 eV, next neighbor hoppingt2=0.55t, an on-site repul-
sion U=1.3t, and a next neighbor attractionV=−1.6t.
Changing these parameters the gap curve also changes but its
qualitative form is not affected. This calculation is to be used
concomitantly with the phase separation results from previ-
ous sections, since belowTps, the system has regions or is-
lands of different doping levels. The consequences of the
BdG calculations, like those presented in Fig. 9, will be dis-
cussed in the next section in order to support the interpreta-
tion of many physical properties associated with the HTSC.

V. DISCUSSION

As discussed in the Introduction, it is very likely that
phase separation is a fundamental process in the HTSC phys-
ics and therefore it must manifest itself through many experi-
mental results. In order to explore this fact, we have devel-
oped a formalism based on the CH differential equation
which allows one to quantitatively study the HTSC phase
separation process. We take theupper pseudogapas the on-
set of phase separation because it starts in the underdoped
region usually at very high temperaturess<800 Kd where
we expect neither Cooper pair formation nor fluctuation of
these pairs and also because there are many arguments
against its identification with the superconducting gap.2 In
fact, the difficulty to associate the experimental data at such
high temperatures with superconductivity led some authors
to call it simply a crossover temperature.1,4 Thus, assuming
that the upper pseudogap temperature line as that shown in
Fig. 2 is the onset of phase separation, we have been able to
provide a simple interpretation to the occurrence of a gap
sEgd at such high temperatures, to follow the hole density
time evolution and how a small fluctuating(almost homoge-
neous) phase separates into two main local densities(p− and
p+). Now we want to discuss some more specific implica-
tions to the physics of HTSC if, in connection with the
above, we take thelower pseudogapas the local onset of
superconductivity.

The lower pseudogap has been attributed to the local
mean field(MF) superconducting temperature or to the onset
of pair formation or superconducting fluctuation.6,12,19,50

Starting in the underdoped region at temperatures usually
near the room temperature, it has been identified with the
onset of local superconductivity or with the appearance of
small superconducting regions.51 This interpretation is sup-
ported by many different experiments, the most direct being
the Nernst effect9,10 and muon spin rotation.19 Following the
theoretical predictions6 and the Nernst effect results,9,10 we
assume that the lower pseudogap vanishes at the strong over-
doped region. Thus, in order to match the lower pseudogap,

FIG. 7. The mapping of the order parameter in the process of phase separation in lattices with different sizes. We display here the order
parameter in the 2003200 (a) and for 5003500 (b) lattice. The parameter are the same and therefore it is to be compared with the results
displayed in Fig. 4(d) above for the 1003100 lattice.
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we have calculated the zero temperature superconducting
gap DfpsxWdg with a d-wave symmetry as described in the
previous section and displayed in Fig. 9. It is important to
use small clusters like 838, 12312 and 14314 in order to
assure that we are indeed calculating the local properties but
which are larger than the coherence length.

It is interesting that the results of the local BdG zero
temperature gap functionDsxWd have the same qualitative
form of the lower pseudogap,1,6,34 and it yields large values
at low doping with its maximum nearpsxWd<0.05 and de-
creases continuously down to zero at the overdoped region.
If the Dspd gap measured in a compound with average hole
densityp is assumed to be the corresponding average value
of all DfpsxWdg, we arrive that theDfpsxWdg3psxWd is very simi-
lar to theDspd3p curve. Indeed the heat capacity measure-
ments(see Fig. 8 of Tallon and Loram2) and the ARPES(see
Fig. 4 of Harriset al.17) yield Dspd3p curves with the same

qualitative form of theDfpsxWdg3psxWd shown in Fig. 9.
Thus, the lower pseudogap temperature, which we denote

T* spd, is the onset of superconductivity and the supercon-
ducting regions grow as the temperature is decreased below
the T* spd, but long-range order is only possible at the per-
colation limit among these regions, when phase coherence is
established atTcspd. This scenario, with these two(phase-
separation and local superconducting) pseudogaps, is appro-
priate to interpret many nonconvention HTSC features and
their main phase diagram, that is, the curvesTpsspd (the up-
per pseudogap temperature), T* spd [the (superconducting)
lower pseudogap temperature], andTcspd, as we discuss be-
low:

We start with the discussion of the many tunneling experi-
ments results:14–16,21–23One of the most well-known facts
about these experiments is that they do not yield and special
signal atTcspd and form a kind of “dip” that persists above
Tcspd and dies off atT* spd. Our main point is that these
experiments are made over a finite region and always mea-
sure the average of allDfpsxWdg in this region. As the tem-
perature is continuously raised from near zero, the regions
with weakerDfpsxWdg {and lowerTcfpsxWdg} become initially
normal and, increasing more the temperature, many regions
gradually turn from superconducting to normal state but, all
the local superconducting regions are extinguished only at
T* spd, not atTcspd. From the BdG calculations displayed in
Fig. 9, we see that the regions withp nearp+ yield gaps near
the minimum valueDsp+d and we call it the lower or weaker
branch. All theDfpsxWdg in this branch which has their local
densities pøpsxWdøp+, vanishes before the temperature
reachesTcspd while those in the strong branchDsp−d with
p−øpsxWdøp decreases also continuously as the temperature
is raised but they are more robust and totally vanish only at
T*. These features are probed by tuneling experiments
which, due to the very small mesoscopicpsxWd regions, usu-
ally measure the average of all these gaps. At low tempera-
ture, the average of many different gaps are measured and as
the temperature is raised they all decrease and, first those in
the weakerDsp+d branch and the ones in the secondDsp−d
afterward, vanish at different temperatures from zero, pass-
ing by Tcspd up to T* spd. Since all differentDfpsxWdg vary

FIG. 8. The 3D mapping process of phase separation att
=50 000 steps. In(a), we plot the order parameter at the centerz
=50 of a 10031003100 lattice. In(b), we show the order param-
eter near the top surfacesz=100d

FIG. 9. Results of the calculation for the zero temperature local
superconducting gap using ad-wave BdG superconducting theory.
Since these calculations used a small cluster, we can attribute the
average density to a local densitypsxWd.
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continuously, there is not any special or different signal at
Tcspd. The measureddI /dV “dip” signal which came mostly
from the robust gaps in theDsp−d branch remains at tempera-
tures well aboveTcspd in the underdoped region, decreases
for compounds with increasing doping levelp sincep+ and
p− approaches one another, and in the overdoped region re-
mains just for a few degrees aboveTcspd. On the other hand,
at the far overdoped region and above the critical doping
pc<0.2, there is no phase separation and the distribution of
psxWd is just a Gaussian-like distribution around the average
hole dopingp, consequently, the “dip” structure remains only
for a few degrees, proportional to the distribution width. This
is well illustrated by Fig. 3 of Suzuki and Watanabe16 or in
the figures of Renneret al.14 As mentioned, these experi-
ments usually see the average of many gaps in a given
region, but, more recent refined experiments of Krasnov
et al.22 and Yurgenset al.23 were able to distinguish between
the gaps in the two averageDsp+d andDsp−d branches. Fig-
ure 1 of Krasnovet al.22 shows clearly the weakerDsp+d (or
superconducting in their interpretation) peak fading away as
the temperature approachesTcspd while the larger average
Dsp−d (or their pseudogap) “dip” is almost unchanged. They
have also shown how applied magnetic fields up to 14 T
destroy the weakerDsp+d leaving again the strongerDsp−d
branch untouched. Thus, the pseudogap signal remains after
the pair coherence is lost because the isolated or local super-
conducting regions left aboveTc are those with very large
DfpsxWdg or TcfpsxWdgøT* spd and the temperature and fields
to destroy the superconductivity in these regions are much
larger thanTcspd and the 14 T used in the experiment.22 A
similar finding was provided by a STM experiment which
measured a remaining pseudogap signal inside cores of
Bi-2212 quantized vortices, where long-range superconduc-
tivity is clearly destroyed.60 Furthermore, we predict that the
averageDsp−d maximum peak decreases slowly as the tem-
perature tends toTps becausep+ and p− coalesce top. This
temperature decreasing was recently measured and can also
be seen in Figs. 2 and 3 of Yurgenset al.23

These results and our interpretation also agrees with the
high magnetic field experiments which have measured simul-
taneously the closing of the pseudogap fieldsHpgd andT* spd
by interlayer tunneling and resistivity.61 Their reported re-
sults are for compounds in the overdoped regime withp
ùpc<0.2, that is, for compounds with doping levels above
the phase separation critical doping andT* spd is just the
maximum localTcfpsxWdg or lower pseudogap. At these dop-
ing levels there is no phase separation and what Shibauchi
et al.61 measured asHpg is the field that closes the maximum
local critical temperature which isT* spd because it is the
largest of all localsTcfpsxWdg. As they apply a magnetic field
at low temperature, it destroys first the superconducting clus-
ters with low localTcfpsxWdg and, as the field increases, re-
gions with larger values of theTcfpsxWdg are destroyed. In-
creasing even more the external field, eventually it destroys
the long-range order or percolation among the superconduct-
ing regions at the superconducting close fieldHsc, leaving
still some isolated regions which have largerTcfpsxWdg than
the phase coherence temperatureTcspd. Increasing more the
field, one reaches the closing fieldHpg=60 T which destroys

all the superconducting regions atT* sp=0.2d. The closing
field Hpg must be very high for compounds with lower dop-
ing, probably much higher than the 60 T used by Shibauchi
et al.61 for a p=0.2 compound and that is the reason why
Krasnov et al.22 did not see any change in their optimally
doped pseudogap dip at 14 T. On the other hand, ad-wave
BCS with a Zeeman coupling yields good agreement with
the data, supporting the origin of the lowerT* as the maxi-
mum local superconductingTcfpsxWdg.20 The fact that the local
superconducting regions with largeTcfpsxWdg and low local
doping (aroundp−) are very robust to an external magnetic
field is also consistent with the Knight shift measurements
which have seen the reductions of 1/T1T and K aboveTc
from the values expected from the normal state at high tem-
peratures in the overdoped region without any field effect up
to 23.2 T in the underdoped region.62 Notice that, since the
experiment of Shibauchiet al.61 is performed withpù0.2
samples, that is above the phase separation thresholdpc,
therefore there is only one(Gaussian) dispersion of local
superconducting gapsDsxWd and there is no gapEg associated
with any phase separation.

More recently, Hoffmanet al.63,64 and McElroyet al.65,66

developed a refined STM analyses which let them to study
the doping dependence and the electronic structure of some
compounds of the Bi-2212 family.66 They find a distribution
of low temperature local superconducting gap valuesDsxWd
whose average valueDspd and its width at half maximum
increases for compounds with average hole doping varying
betweenp<0.19 andp<0.11. The measured local values of
DsxWd varies from 20 to 70 meV at regions with linear sides
of approximate 55 nm in length. The low energy gaps exhibit
periodic modulations consistent with charge modulations like
a granular charge phase separation. Their results, especially
those shown in their Figs. 3(a)–3(e), display a distribution of
mesoscopic scale regions local gaps of two types:

(1) One type derived from adI /dV curve with sharp
edges with values,65 meV which they called coherence
peaks. They interpreted this type of peak as due to supercon-
ducting pairing on the whole Fermi surface arguing that this
kind of spectrum is consistent with ad-wave superconduct-
ing gap.64

(2) Another type ofdI /dV spectra display an ill-defined
edges of a V-shape gap with larger values than +65 meV
what they called zero temperature pseudogap spectrum. Fur-
thermore, they find that thea-type spectra are dominant for
overdoped samples(p=0.19 and 0.18) in which there is prac-
tically 0% probability of occurring spectra ofb type. The
b-type spectra start to have a nonzero probability for com-
pounds withp=0.14 or below, and for underdoped com-
pounds likep=0.11 they find more than 55% ofb-type spec-
tra. It is not difficult to explain these observations in terms of
the CH phase separation scenario: Thep=0.19 and 0.18
compounds are near the phase separation threshold and their
psxWd distribution is essentially a Gaussian type,Eg is small,
and they measure a Gaussian distribution of local supercon-
ducting gap valuesDsxWd or a-type spectra. On the other limit,
for the p=0.11 compound, according to the phase separation
histogram of Fig. 5, almost half of the system has very low
dopingf0,psxWd,0.5g, thep− branch and almost half of the
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system is in the otherp+ branch f0.17,psxWd,0.22g. The
regions withpsxWd in the p+ branch exhibit a superconducting
gap distribution ofa-type spectra, while regions in thep−
branch are mainly in the insulating region which produces
b-type spectra. Thesea- andb-type spectra are mixed in the
intermediatedp=0.15 andp=0.13 compounds and it is in
this near optimal doping region that both superconducting
and theb-type gap have equally probability. Consequently,
the gap maps found by Hoffmanet al.63,64 and McElroy
et al.65,66 are a clear manifestation of the phase separation
process in Bi-2212.

There are many other experiments which we could dis-
cuss in the light of the present phase separation theory but
we believe that the above discussion is sufficient to demon-
strate that phase separation process is central to understand-
ing many nonconventional HTSC properties.

VI. CONCLUSIONS

We have studied analytically the problem of phase sepa-
ration in HTSC taking some current ideas on the possibility
to identify the upperT* with the onset of phase separation
and the lower pseudogap as the onset ofd-wave supercon-
ductivity. Our approach allows us to make quantitative cal-
culations of the phases separation process and to perform
simulations which led to granular and stripe patterns depend-
ing on the parameter and size of the lattice, which are in
agreement with current observations. Such calculations
might be also be pertinent to the physics of manganites. It is
also possible to get some insights on many general experi-
mental results such as:

(i) The charge distribution becomes more inhomogeneous

in the underdoped region of the phase diagram where the
stripes has been observed becauseTps is larger in this region.

(ii ) The spatial variation or width of the local hole con-
centrationpsxWd increases as the temperature decreases.

(iii ) The fact that some materials exhibit granular while
others exhibit stripe patterns may be related with the single
crystal or palette size of ceramic or granular samples. Our
simulations indicate that larger lattices favor stripe patterns
while smaller ones favor granular patterns.

(iv) The spinodal decomposition reveals the importance
of the sample preparation process, that is, samples with the
same doping level may have different degrees of inhomoge-
neity depending on the way they have been quenched
throughTps. This would explain different results on the same
kind of compounds which has been very frequent in the
HTSC.

(v) The two different signals detected by refined tuneling
experiments.

(vi) The density of state modulation measured by recent
STM data.

In summary, the CH phase separation approach to HTSC
in connection with local charge density dependent BdG su-
perconducting critical temperature calculation is used to ex-
plain the existence and nature of the two different
pseudogaps and it provides interpretations on many noncon-
ventional features and inhomogeneous patterns. Therefore,
our main point is that we should regard the phase separation
process as one of the key ingredients of the HTSC physics.
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