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The general properties of anisotropic superconductors with mesoscopic phase separation are analyzed. The
main conclusions are as follows: Mesoscopic phase separation can be thermodynamically stable only in the
presence of repulsive Coulomb interactions. Phase separation enables the appearance of superconductivity in a
heterophase sample even if it were impossible in pure-phase matter. Phase separation is crucial for the occur-
rence of superconductivity in bad conductors. The critical temperature for a mixture of pairing symmetries is
higher than the critical temperature related to any pure gap-wave symmetry of this mixture. In bad conductors,
the critical temperature as a function of the superconductivity fraction has a bell shape. Phase separation makes
the single-particle energy dispersion softer. For planar structures phase separation suppressesuper-
conductivity and enhanceswave superconductivity. These features are in agreement with experiments for
cuprates.
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I. INTRODUCTION ticeable external influence, thus beisgjf-organize® ' The

action of external forces can, of course, provoke the appear-

temperature superconductors, such as cuprates, possess e (.Jf such MESOSCopIC quctuauéHémakmg them more
intensive. However, in general, the noticeable external per-

principal properties distinguishing them from the conven- . X
: . turbations are not compulsory, and heterophase fluctuations
tional low-temperature superconductors. These propertie o ;

n really arise in a self-organized way. In some cases, these

: : : . S C
are_mesoscopic phase separation and anisotropic palm}@ctuations can be triggered by infinitesimally small stochas-

Symmetry. PR A tic noise that always exists in all realistic systems, which are
Phase separation in superconductors implies that not the : . S
. : . never completely isolated from their surrounding but are not
whole volume of a sample is actually superconducting but i o 5
fore than quasi-isolatexd:

separated into regions of superconducting and norma The possibility of mesoscopic phase separation in super-
phases. The latter may even be insulating. There exist numer- P Y picp b P

7 iah-
ous experiments confirming the occurrence of the pha58OndUCtorS was advancéd’ yet before high-temperature

A, . uperconductors were discoveréd heoretical models con-
separation in high-temperature superconductors, as is surﬁ— . ) ,
marized in Refs. 1-4. irm that this phenomenon can be thermodynamically profit-

i i 23
The phase separation is termed mesoscopic since the rglgle, rending ‘h‘? 'heterophase mate”al more stdbfe:
Another specific feature of high-temperature cuprate su-

gions of coexisting phases form a kind of fog of clusters or erconductors is the anisotrooy of the aap. A number of ex-
droplets, whose typical sizes, corresponding to the coherend® Py gap.

lengthl.,, are in between the mean interparticle distaace periments point at the predomlnaré{lﬂ},é?wave symmetry of
and the length of the sample so that the superconducting order paraméter, though in some

cases one claims that the isotrogiwvave symmetry can be
a<lgn<L. dominant:®~**The majority of experiments evidence the ex-
istence of the mixed+d pairing in cuprate$>3°-38Several
These regions are intermixed, being randomly distributed intheoretical models, blendirggwave andd-wave features, de-
space. In general, the phase droplets are not static but can beribe thes+d superconducting gap state and provide a rea-
dynamic, randomly fluctuating in time. In any case, whethersonable explanation for various experimefits$? Thus, the
they are static or not, their main features are the mesoscopaccurrence of anisotropy in the gap of high-temperature cu-
size and chaotic space location. Because of the random spprate superconductors seems to be well established.
tial distribution of the mesoscopic phase nuclei, they can be In the present paper, we suggest a model of superconduct-
called heterophase fluctuations. ors, which combines two main featurasesoscopic phase
The mesoscopic phase separation is, actually, a very geseparationand anisotropic pairing symmetryWe study in-
eral phenomenon inherent to condensed métterhis phe-  terplay between these characteristics. We do not narrow
nomenon happens in many systems, being responsible fordown the consideration by fitting parameters to a particular
variety of unusual effects. For instance, it plays the key rolematerial, but we rather concentrate on the general properties
in colossal magnetoresistant mateffal8 and relaxor of the model. The basic goal of the paper is to formulate the
ferroelectrics:>'2 Heterophase fluctuations, spatial or spa-principal qualitative conclusions characterizing such a super-
tiotemporal, can exist in physical systems, without any no-conductor with both phase separation and an anisotropic gap.

It is generally accepted that the majority of high-
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The treatment of the suggested model of superconductgrhases can be distinguished by thaider parameterssuch
is based on the theory of heterophase matériadssessing as the gapd,(k) in momentum space, so that
the properties typical of the matter with mesoscopic phase
separation. There are some important points that are worth Ay(k) #0, Aykk)=0. (1)
emphasizing in order to better understand the following cony

sideration. o : . :
First of all, one should keep in mind that the basic Spatiaggﬁ{celgg |c§rs]a V\;]h;/r; abr: e ndeféneii r;ﬁ;e(;ed?ocredar(tj)i?;rl;y

structure of matter is defined by ions forming a crystalline 4 ) -
lattice. Charge carriers, such as electrons and holes, exigPerators: The order indexfor a bounded operatak is
inside the given crystalline structure of a particular solid. -

Therefore the properties of all spatial characteristics—e.g. w(A) — InflA] _

interaction potentials—are prescribed by a concrete crystal- In|TrA|

line structure of ions forming the lattice.

Superconductivity or normal conductivity are the featuresConsidering, in the place oA, p-particle density matrices
of the charge carriers, reflecting the level of correlations bei,pv of the phases=1,2, wehave the following’®>*For the
tween the latter. A solid with the same crystalline StrUCthesuperconducting phase’ the order indices of Odd_density ma-
as is well known, can be superconducting or not dependingices are
on the values of the thermodynamic parameters. The occur-
rence of superconductivity of carriers does not substantially . p-
change the crystalline structure of ions. Thus, superconduct- @(Pp1) = 2_p (p=135,..)
ing and normal phases of carriers may coexist inside the
same crystalline lattice. and those of even density matrices are

The coexistence of different phases, typical of mesoscopic
phase separation, means that the spatial regions of the P :} =

. . . . w(ppl) (p 21416! )

sample are occupied by different phases; these regions, gen- 2
erally, have diverse shapes and random spatial locations. o
Then, in order to describe the properties of the sample asI‘%:t for the normal phase, the order indices of all reduced
whole, one has to average over phase configurations. THENSIty matrices are zero:
procedure of such a heterophase averaging is rather non- w()=0 (p=1,2.3,..)
trivial, being analogous to the renormalization-group tech- P2 P=5as ...
nigue, when one averages out one type of fluctuations with Coexisting phases occupy different spatial regions of the
temporal or spatial scales that are distinct from another typeample. These regions are composed of mesoscopic subre-
of fluctuations. In our case, the heterophase fluctuations amgions that are randomly intermixed in space, forming com-
mesoscopic, which distinguishes them from microscopiglicated configurations. For each given configuration, we can
quantum fluctuations. All mathematical details of the het-define a locally equilibrium Gibbs ensemble. Then, since the
erophase averaging over configurations have been thospatial phase distribution is random, it is necessary to aver-
oughly expounded in the review in Ref. 5. In order that theage over these phase configurations. This procedure makes
reader could catch the main points of this procedure, thesthe basis of the theory of statistical systems with mesoscopic
are sketched in the Appendix. phase separatichAfter averaging over random phase con-

After averaging over phase configurations, one obtains éigurations, we comésee the Appendixto the renormalized
renormalized Hamiltonian representing the phase replicaslamiltonian
that would occupy the whole sample with a certain probabil- _
ity. In this way one comes to the picture where all character- H=H;®H, (2
istics do not involve anymore random spatial distributions ]
but correspond to the averaged quantities resulting from thefl€fined on the fiber space
averaging over these random phase configurations. In the Y=, 0N 3)
following sections, we deal with such averaged characteris- 1 2

tics appearingafter the heterophase averaging, whose esygjng the tensor product of the weighted Hilbert spaces. The
sence is surveyed in the Appendix. phase-replica Hamiltoniartd, can be written in the form

nother way of distinguishing phases is by the associated

H,=w,HE"+ w2H", (4)
Il. HETEROPHASE SUPERCONDUCTOR R

. . whereH""is an operator of kinetic energyl™ is an operator
A superconductor with phase separation is a sample con ereH, " is an operator of kinetic energil, " is an operato

sisting of intermixed regions of different thermodynamic des_cnt_)mg pair interactions, and, are phase probabilities
phases. Assume there are two phases, superconducting a%a&psfymg the conditions

normal, enumerated by the index=1,2. Let »=1 corre- W Hw,=1, O<w,<1. (5)
spond to the superconducting phase, white2 to the nor-

mal phase. Quantum states of the phases pertain to the r€he phase probabilities are defined as the minimizers of the
lated space®t,, which are the weighted Hilbert spaceshe  thermodynamic potential
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O=-TIn TI’Ye_’BH (BT=1). (6) Ill. STRUCTURE OF THE HAMILTONIAN

Employing the field representation, we deal with the field
operatorsiy,(r), in which s=1,| denotes spin and is a
spatial vector. Fermi commutation relations are assumed.
wi=w, w,=1-w, (7) The kinetic part has the standard form

Here and in what followsT is temperature ankk=1. Setting
the notation

the minimization condition reads Hin= S f UL (OIR (1) = i (1), (16)
k) #Q s
—=0, —5>0. (8) N .
W ow whereK,(r) is a kinetic transport operator anpda chemical
otential. The interaction pat", in general, consists of
Irect interactions and of effective interactions due to a kind
o of boson exchange. This, for instance, can be the phonon
The average of an operatéris given as exchange if one considers the usual picture based on the
g Frolich Hamiltoniare®-58In principle, one may consider the
€ _ 9) exchange by other types of bosons—say, excitons—but for
Trye A1 concreteness, we shall keep in mind the conventional phonon
o o _ ~ picture. For simplicity and at the same time for generality,
with p being the statistical operator. Then the first equationye take for the interaction Hamiltonian the expression
from condition(8) takes the form

This condition shows when mesoscopic phase separation
profitable, as compared to a pure system.

(Ay=TrpA, p=

1 -
< §g> HI'= 220 | 00090, VAT (1) s, (r)drdr
— /=0, (10 ss
w (17)
and the second equation yields the inequality, beingctre N o
dition of heterophase stability vyhere t_he vertex operatdY, models all effective interac-
tions, direct as well as those caused by boson exchange. The
{< (92;|> <<aﬁ >2>} vertex operator is supposed to be symmetric:
— /=-B\|— > 0. (11) R .
w’ w V,(rr') =V (r',r). (18
To illustrate the meaning of EqEL0) and(11), let us take the In agreement with conditiof), the anomalous averages

Hamiltonian(2) with the terms(4) and suppose that the ki- for the superconducting phase are not trivial,
netic partH" and the interaction pat™ do not depend on )
w,. Let us define the mean kinetic enertfy and the mean (s (N hea(r')) # 0, (19

interaction potentiail, by the notation at least for some spins, while such averages for the normal

K, = (HY @, = 2(HM). (12)  Pbhase are identically zero:
Then Eq.(10) gives the probability of the superconducting (eo(r) (1)) = 0. (20)
phase: For crystalline matter with a periodic structure, the field
_ operator can be expanded over Bloch functions, which, for
d,+ Ky, - K; i . .
=—4—=<_ = (13)  the single-zone case, is written
b+ D,
. r)=_2, co(K)egyr), 21
From here, since §w=1, we get (1) % s (K)@i(r) (21)
-O, <K K, < D,. (14)  with k being a wave vector. Let us introduce the matrix

elements over the Bloch functiong(r), resulting in the
transport matrix

~\2 R
@1.‘_ (1)2 > £<<@> >, tv(kip) = (¢k!KV¢p) (22)

W and the vertex
from where it follows that the necessary condition for the A

The stability condition(11) yields

stability of a phase-separated sample is Vo (K,K",p",p) = (exgwr, Voppr op) - (23
D, +D,> 0. (15) The latter, due to Eq.18), has the symmetry property

In that case, phase separation becomes thermodynamically Vi(kk',p",p) =V, (k" k,p,p’). (24)

profitable, for which, as is seen from Ed.5), the existence Invoking expansior{21), the kinetic part(16) transforms

of repulsive interactions is compulsory. to
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H"= 3 D [tk.p) - pglelKesp) (25 E,(k) = VA(K) + wik) 39
s kp contains the gap
and the interaction terr(l7) becomes

_ AK) =w, 2> J,(K,p)o,(p), (36)
H" = E > 2V, (k' p' p)ek, kel (k)eg,(p')cs,(p). P
sd kk' pp’ where the effective interaction
(26) 3,(k,p) ==V, (k,~K,~ p,p). 37

To make the problem treatable, let us resort to theT
Hartree-Fock-Bogolubov approximation, according to which

the four-operator products are expressed as H,=w,> > E,(k)al (k)ag,(k) +w,C,, (39)
C1€2C3C4 = C1Cx(C3Cy) +(C1C2)C3C4 — (C1C2){CCa) + C1C4(CoCa) > X
+(C1C4)C5C3 — {€1C4){CoC3) — C1C5(CoCs)

= (C1C3)CxC4 +{C1C3)(CoCa), (27) C,=2 | w,(k)—E, (k) +A, K)o, k) - 1W M, (K)n, k) |.
wherec; represents any of the operatatg(k) andc (k) and K
the Fermi commutation relations are assumed. Also we shalfor the average&@9) and(30), one gets

consider the restricted spaces of quantum states, for which
the Bardeen-Cooper-Schrieffer restriction is valid: n(k)=1- ,(K) ta thEv(k)

Ed) o o
Csv(k)cs’ (k Ss’ 5kk’csy(k)C5v(k)

hen the Hamiltonian4) reduces to

with the nonoperator term

A, (k) w,E,(K)
el (K)ch, (k') = 808 ech(Kcl, (k). (28) 7O 20 B o 39

This means that the restricted spaces consist of the wavehese expressions have sense for both the superconducting
functions for which spin and momentum are conserved.  and normal phases; however, for the normal phase, according

The normal average to condition(31), one has
n,(k) = 2 (cl,(K)c, (k) (29 oa(K) =Az(k) =0, (40)
° from which
is the momentum distribution of particles. Introducing the
anomalous average H(K) = 2
ex w(K)}+1
0,(K) = (c-a(~ K)ca(K), 30 P2

Note that the phase probabilitigs, enter all equations in
a rather nontrivial way, which will essentially influence the
o1(k) £0, oy(k)=0. (3 properties of superconductors with mesoscopic phase sepa-
ration.

conditions(19) and(20) can be rewritten as

With the approximationg27) and (28), the Hamiltonian
(4) can be diagonalized by means of the Bogolubov canoni- IV. PHASE SEPARATION

cal transformation . -
In what follows, we shall use the notati@i), writing w

cs,(K) = u,(K)ag,(k) + v (k)a'g, k), (32)  =wj, and, similarly, we shall omit, for the sake of simplicity,
the indexrv=1 at all related quantities. For instance, we shall
write A(k), o(k), E(k), and so on instead af;(k), oy(k),

|uV(k)2:%[ (k)] |vy(k)|2:%[1_“’v(")]_ and E, (k).

in which

E, (k) E (k) The gap equatioi36) can be presented as
ingle- ion i Alp) - WEP)
Here, the single-particle dispersion is A(K) = E IKk.p) E(p) 2TP _ (41)
w, (k) =t,(k,k) +w,M (k) — u, (33
with the mass operator Look_ing for a posm_ve solutlon_foA(k), we see that t_h_is is
possible when the right-hand side of E41) is also positive,
M) =3 [Vy(k 0.0.K) - %V,,(k D,k p)]ny(p), which requires that the effective interaction
P Jk,p) >0 (42)
(34)

be positive in the region of momenta making the main con-
and the excitation spectrum tribution in the summation of Eq41).
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Another necessary condition is the conditidb) for the
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to direct Coulomb interactiorf®,because of whicli; has the

profitability of phase separation. For the mean interactiorstructure

potential, defined in Eq.12), we find
®,= 2 M, (K)n, (k) - 2 3,(k,p)o (K)o, (p).  (43)
k kp
Then the stability conditioni15) yields

> Ek M, (k)n, (k) > zkE Jk,p)a(k)o(p). (44
v P

From here, we get the necessary condition

> 2 M (k)n,(k) >0,
k

14

(45)

which tells us that some sufficiently strong repulsive interac-
tions are to be present in the system. Such natural interac- Ke
tions are, of course, Coulomb interactions. Thus, we come to

the first conclusion:

Mesoscopic phase separation in superconductors can b

|af?
Jij=| =3 —Mg|by, (51)
@o
in which « is the charge-lattice couplingy, is the charac-
teristic lattice frequency in the presence of heterostructural

fluctuations3-62 connected by the relation
(52

with the characteristic lattice frequenay of a pure sample,
and M is an effective intensity of direct Coulomb interac-
tions. The latter approximately equals

7Te2 kF 2
Moz—zh’l 1+4 ?

~ —
o= VWawy,

wherekg is a Fermi momentum of charge carriess} is a
screening radius, for whick?~4mye?(3p/ m)*3, andm, e,

thermodynamically stable only in the presence of repulsivé@ndp are mass, charge, and density of carriers.

Coulomb interactions

Keeping in mind inequality42), we setJ;>0 andby;

Now let us recall that, as is discussed in the Introduction?o- Then the condition for the existence of superconductiv-

the gap of the hole-doped high-temperature cuprate supely reads

conductors displays strong anisotropic dependence on mo- |af?

mentum. To describe the anisotropy, one may introduce a — —WMy>0.
basis {x;(k)} of functions y;(k) characterizing the lattice “o

symmetry, with the index=1,2,...enumerating irreducible This differs from the Bardeen-Cooper-Schriefer criterion for
representations of the symmetry group. Let such a basis bguperconductivit§? by the presence of the superconducting

(53

defined, being orthonormal and complete:
> Xi*(k))(j(k) = &, > X (Kxi(p) = Sip-
k i

Then one may expan@ee Refs. 25 and ®ver this basis
the effective interaction

J(k,p) = 2 Iy xi(k)x; (p) (46)
ij
and the gap
Ak) =X Ai(k). (47)
Using this, the gap equatiqdl) reduces to
Ai :EAIIA]’ (48)
j
where
Wl wE(p) | -«
A = % 2E(D) tanr{ o }xi (Pxi(p). (49

The system of uniform algebraic equatio®8) possesses
nontrivial solutions when
de(1-A)=0, (50)

where A1=[5,j] is the unity matrix and the matrif{\:[Aij] is
composed of elementgd9).

The effective interaction46) consists of an attractive

phase probabilityv, which essentially changes the meaning
of Eq. (63). It may happen that Coulomb interactions are so
strong, withMg>|a/w|?, that superconductivity in a pure
sample is impossible. However, sinee<1, criterion (53)
may be valid, which implies the occurrence of superconduc-
tivity. In this way, we get the second conclusion:

Phase separation enables the appearance of superconduc-
tivity in a heterophase sample even if it were impossible in
pure-phase matter

Defining the dimensionless quantity

w5

m* =Mo—3, (54
|of
condition(53) can be presented as
1-wu* >0. (55)

The paramete(54) is of the orde® of u* ~ wy/ w,, Where
w, is the ion plasma frequency. For good conductesg,
<wp, hence,u* <1, and inequality55) is easy to satisfy
even for a pure sample, withh=1. For bad conductorsy,
= wp, SO thatu* =1. In particular, ifu* > 1, superconduc-
tivity cannot arise in a pure sample, though may appear in
phase-separated matter, withh< 1. This yields the third con-
clusion:

Phase separation is crucial for the occurrence of super-
conductivity in bad conductors

V. CRITICAL TEMPERATURE
At the critical temperaturel, the gap tends to zero,

part, caused by phonon exchange, and a repulsive part, ddgk)— 0; hence E(k) — w(k). Then Eq.(49) becomes
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_ W‘]ll Ww(p) *
Aij(Tc)—gzw(p) tan?‘{ o, ]Xi (P)xj(p). (56)

Using the density of states
Nj(w) = % 3w = w(P))X; (P)x|(P) (57)
and satisfying the normalization
f N;(w)do = 5,
Eq. (56) can be written as

A(To) = WJiJf ’ %@ tanl‘(;v?w)dw. (58)

c

The density of state&7), with the standard replacement of

summation by integration,

s 2

peB P 8(2773,

where B implies the Brillouin zone, transforms to

dp

1 «
Nij(w) = ;L N = o(p))x; (D)Xj(p)w- (59

Assuming, as usual, that the density of staig$w) is the

largest on the Fermi surface and quickly decreases after

> wg, Eq. (58) can be reduced to

Ww

2Tc>dw. (60)

g 1
Aij (TC) = WJUNU(O)J - tan"(
0 W

Introducing the coupling matrix, with the elements

Nij =N Owb 61
ij = ij()w(z) ij s (61)

effective coupling matrix\, with

Ajj = wJ;jN;j(0) = (1 —wpu * )N, (62)
and the characteristic integral
1 /2
1 w3
.= f —tan wox)dx, (63)
0 X 2T,

we can present Eq60) as
A(To) = 1A (64)
Substituting this into conditioi50) gives the equation
de(1-1.A)=0 (65)

for the critical temperaturé..
If Aj; is diagonal, thenT, is defined by the largesh;;.
However, in general, for anisotropic superconductdrs,is

PHYSICAL REVIEW B 70, 224516(2004

tween the gap being such a mixture and the magnitude of the
critical temperature, which we describe below.
Let us define areffective coupling\¢¢; by the identity

Agrile=1-detl-1.A). (66)
Then Eq.(65) for the critical temperature takes the form
Aeff lC =1. (67)

Note that, since, according to definitig3), the integrall .
>0 is positive, them\ ;> 0. From Eq.(67) it follows

aT. 2T,
INetr W PAggr 1]

1 W3/2
lL= f secﬁ( wox)dx.
0 2Tc

Inequality (68) tells us thafT, is higher for largerA 4+ This
is valid for all A¢+>0 and can be explicitly illustrated for
the particular cases:

>0, (68

where

1
T = 1.14v%2w, exp(— A—) (Aeri< 1),

eff

1
Te= EwslszAeff (Aesr>1). (69)
Another important inequality is
Aeff > m_aXAii s (70)
I

provided thatA;; #0 for somei # j. And if Ajj=d;A;;, then
Agii=max A;. This property is easy to explicitly demon-
strate for the case when there are two prevailing wave sym-
metries. Thus, ii=1,2,then Eq.(66) yields

1
Acir= S[An+ Agp*+ N(As = Az +4AL]. (1)

Without loss of generality, we may use an enumeration such
that A;1> Aj,. As is seen from Eq(71),

Aeti=Aq1 (A=0).
In addition,

ﬂAeff _ 1
AT, \’/(All - App)?+4A%,

hence,A.; increases with increasing 5. Thus, for a mix-
ture of waves, whef\;;| >0, wherei # j, the effective cou-
pling Aq¢; becomes larger than the maximygl. But in agree-
ment with Eq. (68), the larger Aqs, the higher is the
transition temperatur@.. Therefore, we come to the follow-
ing conclusion:

The critical temperature for a mixture of gap waves is
higher than the critical temperature related to any pure gap

> 0; (72)

not diagonal and\;; # 0 for i # . The latter means that, gen- wave from this mixture.

erally, the gap(47) is presented by a mixture of waves of

In superconductors with phase separation, the critical tem-

different symmetry. There is a very nontrivial relation be- perature can be a nonmonotonic function of the supercon-
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ducting fractionw. To show this, let us consider the case T (w)

when one of the gap symmetries is prevailing, so that one o127
A; is essentially larger than otheY;. Let us denote this

maximal A;; as 0.10

maxA; = (L —wu* )\, 73

i ii ( M ) ( ) 0.08

where the relatior{62) is taken into account. Equatidié?)
for the critical temperature can be written as 0.06

(L-wp* N =1.

0.04 -
The characteristic integra(63) possesses the following
asymptotic properties: 0.02

/2

Wo

le= oT (w—0), 0.00 ey . r . T ]
c 0.00 0.05 0.10 0.15 0.20 0.25
w

/2
I, = |n<1.14W3T“’°> (T.—0).

C

FIG. 1. Critical temperatur&, in units of wg, as a function ofv
for u* =4 and different couplingsa =1 (dotted ling, A\=5 (dashed
Using these properties, we see that the critical temperatunigie), andx =10 (solid line).
tends to zero in two limits, if the superconducting fraction

tends to zero, when cally Eq.(67).
T. 1
—< =1 -wu* w2 (w—0), (74)
(O] 2

VI. DENSITY OF STATES
and also if this fraction tends to a finite value#/ when

T
— =~ 1.140%2ex

wo

To concretize the consideration, let us take into account
1 1 that the crystalline structure of cuprates is such that the car-
- (1-wp* )\ M_ riers move mainly in planes, only rarely jumping between
the latter, which are separated by a distance essentially ex-
(79) ceeding the mean distanee between lattice sites on the
For good conductors, whep* <1, the limit (75) is un-  plane. Neglecting the interplane jumps, one comes to a two-
achievable. But for bad conductors, for whigtt =1, this  dimensional motion of carriers on the plane. In the case of
limit can be achieved. This can be formulated as anothepuch a planar motion, the single-particle dispersio(p)
conclusion: =w,(p), given by Eq.(33), depends only on two momentum
In bad conductors, the critical temperature as a functioncomponents—say; andp,. Then in the following formulas
of the superconducting fraction w has the bell shape, tendingf is easy to integrate out the third compongat
to zero at w—0 and at w—1/u*. In many cuprates, the Cu and O atoms arrange themselves
To estimate the point where the critical temperature isn a square lattice with the point group symme@y, (Ref.
maximal, we may keep in mind that experiments with high-25). This concrete case will be employed in what follows.
temperature superconductors show that only part of a given For a square latticaX a, the Brillouin zone is defined by
sample is in a superconducting phase, this part often beinthe wave vectorp, e [-m/a,w/a], with «=1,2. It is con-
just a few percerft*65This means thatv<1 and, hence, the venient to introduce the dimensionless wave vectlrs

*

value Wy, WhereT =T, . iS maximal, is also smallw,.,  ={k,}, in which k,=p,a, so thatk, e [-#,w]. The point
<1. Taking this into account, from the above equations wegroup C,, of a square lattice is characterized by three one-
obtain dimensional irreducible representations labeledAas B,

andB,. The representatiof, is of rank 3, having three types
of symmetries denoted & s*, and s,,. The representation
B, is of rank 1, with the symmetrgt,>_,>. And the irreducible

Such a bell shape of the critical temperature as a functiof€PresentatiorB; is of rank 1, with the type of symmetry
of doping is typical of experimental curves for high- denoted byd,,. The corresponding basis functions are
temperature cuprate superconductdi®S” where the maxi- (K)=1(9)
mal critical temperature occurs at the optimal doping 0.15. ! ’

Assuming that the superconducting fraction is proportional 1

to the doping, so thaw/,,,~=0.15, we haveu* ~4. Then the x2(K) = =(cosk, + cosk,) (s*),
function To(w) has a striking similarity with the behavior of 2

T. as a function of doping, studied in experiments with cu-

prates. Figure 1 illustrateg.(w) found by solving numeri- xa(K) = cosk; cosk; (sy,),

__ /2 _ 3
Tinax= g)\wo max  Wmax™ Bt .
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k) = sink; sink; (dy,), 1
xa(k) = sink; sink; ( xy) COSkZ(k)=—¥—COSk.

1
xs(k) = z(cosk; — cosk,) (dy2_,2). Then the density of statg¢g8) can be transformed to
(k) 2( k kp) (dy2_y2) hen the density of 8 b f d
For the density of state&7), we have Nii(0) = 1 (7 eikei(kdk 83
1 772 ’/ 2 2!
M Jy, Vt°— (1 +t cosk)

T « dk,dk
Nj(w) = f_waw—w(k))xi(k)x,-(k) omz: 79 where

The basis functiongf(k):xi(k) are real and symmetric with oi(K) = xi(k koK), ko= arcco{l - l) ,

respect to the inversion df, so that x;(-k)=yx;(k). The t

single-particle dispersion is also symmetrig;-k)=w(k). It

is convenient to introduce the dimensionless dispersion O<ky<m (} <t< Oo)
2

w(k) = ' (77) Explicit expressions for the functiong(k) are

Then the density of stat€g6) on the Fermi surface becomes

oK) =1, k)=~

1 1
o @3(k) =- (? + cosk) cosk,

1 ("
Nij(o):ﬂz_,uf (k) xi(k)x;(K)dkdky. — (78)
0

o 1 2 1
To write down an explicit expression for the single- ¢a(k) = sink 1_(Y+COSK> ' ¢5(k)_E+COSk'

particle dispersionw(k), one usually resorts to the tight- o )
binding approximatior®3%4%45n which, for a square lattice, Accomplishing in Eq(83) the change of variables

one has i(X) = ¢j(arccosx)  (x = cosk),

(k) = —tgs(cosk, + cosky) — u, (79 we obtain the form

wheretg; is an effective transport parameter. In our case, 1-1k () 1 (%)
taking into account Eq.33), we see that.; consists of two N;; (0) = f i\
parts, wut) X

dx, (84

tetr= 1o+ WMo, (80)  in which

the nearest-neighbor hopping integtand the intensity of _ 1 _ (1

the repulsive Coulomb interactiobl,. These terms corre- hx)=1, ¢yx)= 2’ Ya(x) = t XX
spond to the transport matrix and mass operator, respectively.
As is well established, both experimentally and theoretically,

2
a strong Coulomb repulsion is present in all cupratas/ith - \/ N (} ) - i
the parameter Ya) (1=9|1 t Hx) | s 2t X

The value of the quantiti;(0) plays an important role in
defining the coupling parametei®l) and(62). The larger is
_ _ . _ the density of statell;(0), the more profitable is the occur-
the dimensionless dispersion7) takes the form rence of the related gap symmetry labeled by the iridex
_ Let us analyze the behavior of E@4) as a function ot
w(k) = —t(cosk, + cosky) — 1. (82) changing fromt=1/2 to largert>1/2. For convenience, we
When the mesoscopic phase separation happens in a stensider the dimensionless quantity
perconductor, so that<1, then, as is seen from E¢B0), .
the parametet,;; decreases. As a result of this, the dispersion Djj = muN; (0), (85)
(79) becomes softer. Thus, we get an important conclusioniyormalized by means of
Phase separation softens the single-particle dispersion

Lot _

t= Lty +wMy), (81)
M

To proceed further, we calculate the density of Star&s. : _ 1
For this purpose, we use the dispers{82) and note that N11(0) = N,(0) = W_’u t= 2/
Nalk)) = (ko = ka(kp)) At t=1/2, theintegral (84) can be calculated analytically,
|t sinky(ky)| giving
where the functiork,(k) is defined by the equation D11=D13=Dy=Dg3=1, Dy4=Dy4=D34=D4ss=Ds5=0,
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FIG. 2. Density of stateB;; as a function of the effective trans-
port parametet: Dy, (upper dash-double-dotted lineD,, (dash-
dotted ling, D33 (dotted ling, Dy, (dashed ling and D55 (solid
line).

Di,=Dy3=-1 (t—1>
12— P23= 5

Also, for allt=1/2, one has
D15=D35=D35=Dy5=0.

Fort>1/2, we calculated the integré84) numerically. The

PHYSICAL REVIEW B 70, 224516(2004)

of d-wave superconductivity and enhances that afave
superconductivity

The value of the superconducting fractisndepends on
such parameters as temperature, pressure or external mag-
netic fields. Therefore the relative contribution of different
wave symmetries will be varying under the action of these
parameters. This can explain why in different experiments
one observes alternately the dominance of either d gap
symmetries.

VIl. SUMMARY

We have studied the main properties of superconductors,
such as cuprates, exhibiting two principal features common
for these high-temperature superconductors: mesoscopic
phase separation and anisotropic gap symmetry. The inter-
play between these two phenomena is investigated by means
of a model incorporating the presence of mesoscopic phase
separation into the randomly distributed regions of supercon-
ducting and normal phases. The following general conclu-
sions are obtained.

(i) Mesoscopic phase separation in superconductors can
be thermodynamically stable only in the presence of repul-
sive Coulomb interactions.

(i) Phase separation enables the appearance of supercon-
ductivity in a heterophase sample even if it were impossible
in pure-phase matter.

(i) Phase separation is crucial for the occurrence of su-
perconductivity in bad conductors.

(iv) The critical temperature for a mixture of gap waves is
higher than the critical temperature related to any pure gap

corresponding densities of states are shown in Fig. 2. Amongave from this mixture.

all D;;, only D;; and D,, monotonically decrease; all other

D;; are nonmonotonic functions of Comparing the density
of statesD;; for differenti=1,2,3,4,5, wehave the follow-
ing. Since att=1/2 only D;=D,,=D33=1 are nonzero,
while D44=Ds5=0; from this, it follows that only thes, s*,
ands,, waves can exist. But a1, we getD;;~0.6, D,,
=Dy4~0.2, D33~0, andDgs~0.1, which tells us that now
the gap symmetries s*, d,,, andd,z_,» may exist, while the
Sy wave disappears. With increasimgthe densityDss in-
creases. For instance, &t3, we haveD,;~0.3, D,,, and
D33 are close to zeroD,y=Dss=0.1. Therefore, here the
probable symmetries arg d,,, and d,2.,2. For t>3, the
highest densities ar®,4, diminishing below 0.3, andss
~0.1, all other densities being smaller. In this way, for
>3 the most probable symmetries arandd,z 2.

To estimate the magnitude offor high-temperature su-

(v) In bad conductors, the critical temperature as a func-
tion of the superconducting fraction has the bell shape.

(vi) Phase separation softens the single-particle energy
dispersion.

(vii) Mesoscopic phase separation suppresses the contri-
bution of d-wave superconductivity and enhances that of
s-wave superconductivity.

These conclusions are in good qualitative agreement with
experiments for high-temperature superconductors. Since in
colossal magnetoresistance materials there also occurs the
phenomenon of mesoscopic phase separtit$86°such
materials may possess some of the features described in this
paper. Moreover, the mesoscopic phase separation is a rather
general phenomenon appearing in different kinds of con-
densed matter and it can be described in the frame of the
general theory,’® which was used in this paper for studying

perconductors, we may take the values of parameters typicéiie general properties of anisotropic phase-separated super-

of cuprate$3°4045 _that is, t,=~(0.5-1 eV, My=1 eV,
and u~0.5 eV. Then the parametér defined in Eq.(81),
with w=1, equalst=3-4. In this region oft, the largest

densities ar®,; andDss; hence, the symmetriessandd,z_,»

conductors.
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APPENDIX: AVERAGING OVER
PHASE CONFIGURATIONS

Let the considered sample occupy in the real satea

Mesoscopic phase separation suppresses the contributiargionV having the volume/= [,dr. Assume that mesos-
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copic phase separation occurs in the sample, so that it is

filled by several thermodynamic phases, which are enumer- &ilr —a,) = {
ated by an index. Say,v=1 corresponds to the supercon-

ducting phase, while=2 to the normal phase. At each given with the property

instant of time, distinct phases are located at different spatial n

regions, which can also be labeled by the phase ind&his 2” £ —a,) = £(r)

means that the total sample volunvecan be divided into i we s

subregionsV , filled by the related phases. A fami{y’,} of

subregionsV, forms an orthogonal covering 6f. This cov- By moving the centera,; and changing the measure'of, it

1, reV,,
0, reVy,,

ering can be characterized by a family is possible to construct various phase configurations. To ex-
plicitly realize the averaging over these configurations, we
E={&0Dr eV} define the differential functional measure
nV
of the manifold indicator functions Dé= lim []1] %5(2 X, = 1)1_[ dx,,
{n,—%} 5 =1 v v
fny=qt TEYy in which
v 0, reV,.

X, = \—tf\ &,(r)dr.

The family £ uniquely defines a phase configuration in the
real-space volumé'. : . , . .

From the physical point of view, distinct thermodynamic Th|s|measur<tar,] with V‘_”;r{mg”i Er?_ indxvlet[o_’lt]r; m;jucels a
phases possess different properties, because of which su@ﬁo °9f¥ on the mani Od_g}' which resufts ”; fe |?p3 0gr-
phases can be distinguished from each other. For exampl& configuration spac&’={¢[D¢}, composed of all admis-
the phases can be distinguished by their order parameters. #P!€ pPhase configurations.

the case of superconductor, a convenient order parameter can O €ach fixed phase configuration, the observable quan-
be chosen as the anomalous average tities, represented by Hermitian operators, depend on the

given configuration and have the structure
71) = () P (r)E,(r), A =a,A[E),

wherey.(r) is a field operator of the field of carriers, when P€ing defined on the fiber spagée=®,H,, whose fibering

the latter are in the phase andé,(r) is the related indicator Yi€lds the weighted Hilbert spacés,. The dependence of
function. For the superconducting regions, one ha&) the operators of observabl_e quantities on the |nd|_cator func-
0, provided that e V,, while for the normal parts, one has tions, marking the space filled by the corresponding phases,

7(r)=0, withr € V,. The anomalous average, as is known,naturally comes from the identity
is directly related to the gap in the spectrum of excitations.
Thus, different phases could be distinguished by the exis- J\ dr :JV &/(r)dr.
tence or absence of the gap in the spectrum. For a while, v
when dealing with a nonuniform sample consisting of sepaThis identity is employed when representing the operators
rate phases, the anomalous average, depending on the spatfabugh the integrals of their operator densities:
variabler, is a more convenient order parameter.

Mesoscopic phase separation occurs in the real space in a A(§) = f Agndr=a,A(E),
random way, which means that the locations and shapes of
the phase subregions, are random. Then observable quan-
tities should be determined with averaging over these ran- ~ ~ ~ ~
dom phase configurations. Since each phase configuration is AT =@, AfEaT), ALE) = f A&, r)dr.
uniquely defined by the setof the manifold indicator func- _ o
tions, it is necessary to describe an enseniBjeof all pos-  Here and everywhere in the paper, we denote, for simplicity,
sible sets¢, corresponding to all possible phase configura-the integration over the whole sample as
tions. For this purpose, we introduce an orthogonal
subcovering{V ,;} of each regionV,, such that fdr = f dr.

V

Vv, = U{‘:VlVyi, Vi NV =08,,6;V.i. For example, let us write down the Hamiltonian density
To each subregiofY ,;, we ascribe a vectoa,; € V ,;, called H(&,1) = £ P NDK () ,(r)
the center, playing the role of a local center of coordinates, 1 .
so that movinga,; implies a congruent motion of ,;. The + Ef ELDE YLD IV ) ()
introduced subcovering is uniquely characterized by a family
of the indicator functions X, (r)drdr’,
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in which kp(r) is an operator of kinetic energy aﬁﬁ,(r ) Q=-InTryeM,

is an effective interaction. Analogously, the number-of- ~

particle operator density is with an effective renormalized HamiltoniaH=® H,, in
- which
Ny(E1) = )BT,

The field operators here are assumed to be columns with Hyzf [H,(w,,r) = uN,(w,,r)]dr,

respect to spin indices.

A nonuniform system, composed of several thermody-ang where the average inverse temperature and average
namic phases, must be described by the quasiequilibf@m  cnemical potentials, respectively, are
locally equilibrium) Gibbs ensemble, with a statistical opera-

tor proportional toe™X®, where ,8=JB(§r)D§ M=JM(§|')D§-
X(§) = f BENH(EDN = m(ENN(EDN Idr. Then the potential
Here the local inverse temperatu@¢,r) and the local Q=80

O s 5B e 0 e Gobs rand poen The e
P 9 g P hig . . §robabilitieswy are defined as the minimizers of eith@ror
by a seté. The natural thermodynamic potential for a quasi-

equilibrium system, with randorg, is In this way, after averaging over heterophase configura-

- tions, we come to the description of the system by means of
Q=-In Tryf e X9D¢. a renormalized Hamiltonian, containing only averaged quan-
tities and not involving anymore random phase distributions
Assuming, as usual, the existence of the thermodynamithat have been averaged out. All expressions throughout the
limit and accomplishing the averaging over phase configurapaper correspond to averaged quantities resulting from the
tions, which is characterized by the differential meaddée  described procedure of heterophase averaging. A complete
it is possible to provethat the thermodynamic potenti§l  and detailed mathematical foundation for this averaging pro-
reduces to the form cedure is given in the reviews in Refs. 5 and 70.
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