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The general properties of anisotropic superconductors with mesoscopic phase separation are analyzed. The
main conclusions are as follows: Mesoscopic phase separation can be thermodynamically stable only in the
presence of repulsive Coulomb interactions. Phase separation enables the appearance of superconductivity in a
heterophase sample even if it were impossible in pure-phase matter. Phase separation is crucial for the occur-
rence of superconductivity in bad conductors. The critical temperature for a mixture of pairing symmetries is
higher than the critical temperature related to any pure gap-wave symmetry of this mixture. In bad conductors,
the critical temperature as a function of the superconductivity fraction has a bell shape. Phase separation makes
the single-particle energy dispersion softer. For planar structures phase separation suppressesd-wave super-
conductivity and enhancess-wave superconductivity. These features are in agreement with experiments for
cuprates.
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I. INTRODUCTION

It is generally accepted that the majority of high-
temperature superconductors, such as cuprates, possess two
principal properties distinguishing them from the conven-
tional low-temperature superconductors. These properties
are mesoscopic phase separation and anisotropic pairing
symmetry.

Phase separation in superconductors implies that not the
whole volume of a sample is actually superconducting but is
separated into regions of superconducting and normal
phases. The latter may even be insulating. There exist numer-
ous experiments confirming the occurrence of the phase
separation in high-temperature superconductors, as is sum-
marized in Refs. 1–4.

The phase separation is termed mesoscopic since the re-
gions of coexisting phases form a kind of fog of clusters or
droplets, whose typical sizes, corresponding to the coherence
length lcoh, are in between the mean interparticle distancea
and the length of the sampleL, so that

a ! lcoh! L.

These regions are intermixed, being randomly distributed in
space. In general, the phase droplets are not static but can be
dynamic, randomly fluctuating in time. In any case, whether
they are static or not, their main features are the mesoscopic
size and chaotic space location. Because of the random spa-
tial distribution of the mesoscopic phase nuclei, they can be
called heterophase fluctuations.5

The mesoscopic phase separation is, actually, a very gen-
eral phenomenon inherent to condensed matter.4–7 This phe-
nomenon happens in many systems, being responsible for a
variety of unusual effects. For instance, it plays the key role
in colossal magnetoresistant materials8–10 and relaxor
ferroelectrics.11,12 Heterophase fluctuations, spatial or spa-
tiotemporal, can exist in physical systems, without any no-

ticeable external influence, thus beingself-organized.5,13 The
action of external forces can, of course, provoke the appear-
ance of such mesoscopic fluctuations,5,14 making them more
intensive. However, in general, the noticeable external per-
turbations are not compulsory, and heterophase fluctuations
can really arise in a self-organized way. In some cases, these
fluctuations can be triggered by infinitesimally small stochas-
tic noise that always exists in all realistic systems, which are
never completely isolated from their surrounding but are not
more than quasi-isolated.5,15

The possibility of mesoscopic phase separation in super-
conductors was advanced16,17 yet before high-temperature
superconductors were discovered.18 Theoretical models con-
firm that this phenomenon can be thermodynamically profit-
able, rending the heterophase material more stable.17,19–23

Another specific feature of high-temperature cuprate su-
perconductors is the anisotropy of the gap. A number of ex-
periments point at the predominantlyd-wave symmetry of
the superconducting order parameter24,25, though in some
cases one claims that the isotropics-wave symmetry can be
dominant.26–29The majority of experiments evidence the ex-
istence of the mixeds+d pairing in cuprates.25,30–38Several
theoretical models, blendings-wave andd-wave features, de-
scribe thes+d superconducting gap state and provide a rea-
sonable explanation for various experiments.39–52 Thus, the
occurrence of anisotropy in the gap of high-temperature cu-
prate superconductors seems to be well established.

In the present paper, we suggest a model of superconduct-
ors, which combines two main features:mesoscopic phase
separationand anisotropic pairing symmetry. We study in-
terplay between these characteristics. We do not narrow
down the consideration by fitting parameters to a particular
material, but we rather concentrate on the general properties
of the model. The basic goal of the paper is to formulate the
principal qualitative conclusions characterizing such a super-
conductor with both phase separation and an anisotropic gap.
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The treatment of the suggested model of superconductor
is based on the theory of heterophase materials5 possessing
the properties typical of the matter with mesoscopic phase
separation. There are some important points that are worth
emphasizing in order to better understand the following con-
sideration.

First of all, one should keep in mind that the basic spatial
structure of matter is defined by ions forming a crystalline
lattice. Charge carriers, such as electrons and holes, exist
inside the given crystalline structure of a particular solid.
Therefore the properties of all spatial characteristics—e.g.
interaction potentials—are prescribed by a concrete crystal-
line structure of ions forming the lattice.

Superconductivity or normal conductivity are the features
of the charge carriers, reflecting the level of correlations be-
tween the latter. A solid with the same crystalline structure,
as is well known, can be superconducting or not depending
on the values of the thermodynamic parameters. The occur-
rence of superconductivity of carriers does not substantially
change the crystalline structure of ions. Thus, superconduct-
ing and normal phases of carriers may coexist inside the
same crystalline lattice.

The coexistence of different phases, typical of mesoscopic
phase separation, means that the spatial regions of the
sample are occupied by different phases; these regions, gen-
erally, have diverse shapes and random spatial locations.
Then, in order to describe the properties of the sample as a
whole, one has to average over phase configurations. The
procedure of such a heterophase averaging is rather non-
trivial, being analogous to the renormalization-group tech-
nique, when one averages out one type of fluctuations with
temporal or spatial scales that are distinct from another type
of fluctuations. In our case, the heterophase fluctuations are
mesoscopic, which distinguishes them from microscopic
quantum fluctuations. All mathematical details of the het-
erophase averaging over configurations have been thor-
oughly expounded in the review in Ref. 5. In order that the
reader could catch the main points of this procedure, these
are sketched in the Appendix.

After averaging over phase configurations, one obtains a
renormalized Hamiltonian representing the phase replicas
that would occupy the whole sample with a certain probabil-
ity. In this way one comes to the picture where all character-
istics do not involve anymore random spatial distributions
but correspond to the averaged quantities resulting from their
averaging over these random phase configurations. In the
following sections, we deal with such averaged characteris-
tics appearingafter the heterophase averaging, whose es-
sence is surveyed in the Appendix.

II. HETEROPHASE SUPERCONDUCTOR

A superconductor with phase separation is a sample con-
sisting of intermixed regions of different thermodynamic
phases. Assume there are two phases, superconducting and
normal, enumerated by the indexn=1,2. Let n=1 corre-
spond to the superconducting phase, whilen=2 to the nor-
mal phase. Quantum states of the phases pertain to the re-
lated spacesHn, which are the weighted Hilbert spaces.5 The

phases can be distinguished by theirorder parameters, such
as the gapsDnskd in momentum space, so that

D1skd ò 0, D2skd ; 0. s1d

Another way of distinguishing phases is by the associated
order indices, which are defined for reduced density
matrices53 and have been generalized for arbitrary

operators.54 The order indexfor a bounded operatorÂ is

vsÂd ;
lniÂi

lnuTrÂu
.

Considering, in the place ofÂ, p-particle density matrices
r̂pn of the phasesn=1,2, wehave the following.53,54 For the
superconducting phase, the order indices of odd-density ma-
trices are

vsr̂p1d =
p − 1

2p
sp = 1,3,5, . . .d

and those of even density matrices are

vsr̂p1d =
1

2
sp = 2,4,6, . . .d.

But for the normal phase, the order indices of all reduced
density matrices are zero:

vsr̂p2d = 0 sp = 1,2,3, . . .d.

Coexisting phases occupy different spatial regions of the
sample. These regions are composed of mesoscopic subre-
gions that are randomly intermixed in space, forming com-
plicated configurations. For each given configuration, we can
define a locally equilibrium Gibbs ensemble. Then, since the
spatial phase distribution is random, it is necessary to aver-
age over these phase configurations. This procedure makes
the basis of the theory of statistical systems with mesoscopic
phase separation.5 After averaging over random phase con-
figurations, we come(see the Appendix) to the renormalized
Hamiltonian

H̃ = H1 % H2 s2d

defined on the fiber space

Y = H1 ^ H2, s3d

being the tensor product of the weighted Hilbert spaces. The
phase-replica HamiltoniansHn can be written in the form

Hn = wnHn
kin + wn

2Hn
int, s4d

whereHn
kin is an operator of kinetic energy,Hn

int is an operator
describing pair interactions, andwn are phase probabilities
satisfying the conditions

w1 + w2 = 1, 0ø wn ø 1. s5d

The phase probabilities are defined as the minimizers of the
thermodynamic potential
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V = − T ln TrYe−bH̃ sbT ; 1d. s6d

Here and in what follows,T is temperature andkB=1. Setting
the notation

w1 ; w, w2 = 1 −w, s7d

the minimization condition reads

]V

]w
= 0,

]2V

]w2 . 0. s8d

This condition shows when mesoscopic phase separation is
profitable, as compared to a pure system.

The average of an operatorÂ is given as

kÂl ; TrYr̂Â, r̂ ;
e−bH̃

TrYe−bH̃
, s9d

with r̂ being the statistical operator. Then the first equation
from condition(8) takes the form

K ]H̃

]w
L = 0, s10d

and the second equation yields the inequality, being thecon-
dition of heterophase stability:

FK ]2H̃

]w2L − bKS ]H̃

]w
D2LG . 0. s11d

To illustrate the meaning of Eqs.(10) and(11), let us take the
Hamiltonian(2) with the terms(4) and suppose that the ki-
netic partHn

kin and the interaction partHn
int do not depend on

wn. Let us define the mean kinetic energyKn and the mean
interaction potentialFn by the notation

Kn ; kHn
kinl, Fn ; 2kHn

intl. s12d

Then Eq.(10) gives the probability of the superconducting
phase:

w =
F2 + K2 − K1

F1 + F2
. s13d

From here, since 0øwø1, we get

− F1 ø K1 − K2 ø F2. s14d

The stability condition(11) yields

F1 + F2 .
b

N
KS ]H̃

]w
D2L ,

from where it follows that the necessary condition for the
stability of a phase-separated sample is

F1 + F2 . 0. s15d

In that case, phase separation becomes thermodynamically
profitable, for which, as is seen from Eq.(15), the existence
of repulsive interactions is compulsory.

III. STRUCTURE OF THE HAMILTONIAN

Employing the field representation, we deal with the field
operatorscsnsr d, in which s= ↑ ,↓ denotes spin andr is a
spatial vector. Fermi commutation relations are assumed.
The kinetic part has the standard form

Hn
kin = o

s
E csn

† sr dfK̂nsr d − mgcsnsr ddr , s16d

whereK̂nsr d is a kinetic transport operator andm a chemical
potential. The interaction partHn

int, in general, consists of
direct interactions and of effective interactions due to a kind
of boson exchange. This, for instance, can be the phonon
exchange if one considers the usual picture based on the
Frölich Hamiltonian.55–58 In principle, one may consider the
exchange by other types of bosons—say, excitons—but for
concreteness, we shall keep in mind the conventional phonon
picture. For simplicity and at the same time for generality,
we take for the interaction Hamiltonian the expression

Hn
int =

1

2o
ss8
E csn

† sr dcs8n
† sr 8dV̂nsr ,r 8dcs8nsr 8dcsnsr ddrdr 8,

s17d

where the vertex operatorV̂n models all effective interac-
tions, direct as well as those caused by boson exchange. The
vertex operator is supposed to be symmetric:

V̂nsr ,r 8d = V̂nsr 8,r d. s18d

In agreement with condition(1), the anomalous averages
for the superconducting phase are not trivial,

kcs1sr dcs81sr 8dl ò 0, s19d

at least for some spins, while such averages for the normal
phase are identically zero:

kcs2sr dcs82sr 8dl ; 0. s20d

For crystalline matter with a periodic structure, the field
operator can be expanded over Bloch functions, which, for
the single-zone case, is written

csnsr d = o
k

csnskdwksr d, s21d

with k being a wave vector. Let us introduce the matrix
elements over the Bloch functionswksr d, resulting in the
transport matrix

tnsk,pd ; swk,K̂nwpd s22d

and the vertex

Vnsk,k8,p8,pd ; swkwk8,V̂nwp8wpd. s23d

The latter, due to Eq.(18), has the symmetry property

Vnsk,k8,p8,pd = Vnsk8,k,p,p8d. s24d

Invoking expansion(21), the kinetic part(16) transforms
to
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Hn
kin = o

s
o
kp

ftnsk,pd − mdkpgcsn
† skdcsnspd s25d

and the interaction term(17) becomes

Hn
int =

1

2o
ss8

o
kk8

o
pp8

Vnsk,k8,p8,pdcsn
† skdcs8n

† sk8dcs8nsp8dcsnspd.

s26d

To make the problem treatable, let us resort to the
Hartree-Fock-Bogolubov approximation, according to which
the four-operator products are expressed as

c1c2c3c4 = c1c2kc3c4l + kc1c2lc3c4 − kc1c2lkc3c4l + c1c4kc2c3l

+ kc1c4lc2c3 − kc1c4lkc2c3l − c1c3kc2c4l

− kc1c3lc2c4 + kc1c3lkc2c4l, s27d

whereci represents any of the operatorscsnskd andcsn
† skd and

the Fermi commutation relations are assumed. Also, we shall
consider the restricted spaces of quantum states, for which
the Bardeen-Cooper-Schrieffer restriction is valid:

csn
† skdcs8nsk8d = dss8dkk8csn

† skdcsnskd,

csn
† skdcs8n

† sk8d = d−ss8d−kk8csn
† skdc−sn

† s− kd. s28d

This means that the restricted spaces consist of the wave
functions for which spin and momentum are conserved.

The normal average

nnskd ; o
s

kcsn
† skdcsnskdl s29d

is the momentum distribution of particles. Introducing the
anomalous average

snskd ; kc−sns− kdcsnskdl, s30d

conditions(19) and (20) can be rewritten as

s1skd ò 0, s2skd ; 0. s31d

With the approximations(27) and (28), the Hamiltonian
(4) can be diagonalized by means of the Bogolubov canoni-
cal transformation

csnskd = unskdasnskd + vnskda−sn
† skd, s32d

in which

uunskdu2 =
1

2
F1 +

vnskd
Enskd G, uvnskdu2 =

1

2
F1 −

vnskd
Enskd G .

Here, the single-particle dispersion is

vnskd = tnsk,kd + wnMnskd − m, s33d

with the mass operator

Mnskd ; o
p
FVnsk,p,p,kd −

1

2
Vnsk,p,k,pdGnnspd,

s34d

and the excitation spectrum

Enskd = ÎDn
2skd + vn

2skd s35d

contains the gap

Dnskd = wno
p

Jnsk,pdsnspd, s36d

where the effective interaction

Jnsk,pd ; − Vnsk,− k,− p,pd. s37d

Then the Hamiltonian(4) reduces to

Hn = wno
s

o
k

Enskdasn
† skdasnskd + wnCn, s38d

with the nonoperator term

Cn = o
k
Fvnskd − Enskd + Dnskdsnskd −

1

2
wnMn skdnnskdG .

For the averages(29) and (30), one gets

nnskd = 1 −
vnskd
Enskd

tanh
wnEnskd

2T
,

snskd =
Dnskd
2Enskd

tanh
wnEnskd

2T
. s39d

These expressions have sense for both the superconducting
and normal phases; however, for the normal phase, according
to condition(31), one has

s2skd = D2skd = 0, s40d

from which

n2skd =
2

exphbw2v2skdj + 1
.

Note that the phase probabilitieswn enter all equations in
a rather nontrivial way, which will essentially influence the
properties of superconductors with mesoscopic phase sepa-
ration.

IV. PHASE SEPARATION

In what follows, we shall use the notation(7), writing w
=w1, and, similarly, we shall omit, for the sake of simplicity,
the indexn=1 at all related quantities. For instance, we shall
write Dskd, sskd, Eskd, and so on instead ofD1skd, s1skd,
andE1skd.

The gap equation(36) can be presented as

Dskd =
w

2o
p

Jsk,pd
Dspd
Espd

tanh
wEspd

2T
. s41d

Looking for a positive solution forDskd, we see that this is
possible when the right-hand side of Eq.(41) is also positive,
which requires that the effective interaction

Jsk,pd . 0 s42d

be positive in the region of momenta making the main con-
tribution in the summation of Eq.(41).
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Another necessary condition is the condition(15) for the
profitability of phase separation. For the mean interaction
potential, defined in Eq.(12), we find

Fn = o
k

Mnskdnnskd − 2o
kp

Jnsk,pdsnskdsnspd. s43d

Then the stability condition(15) yields

o
n

o
k

Mnskdnnskd . 2o
kp

Jsk,pdsskdsspd. s44d

From here, we get the necessary condition

o
n

o
k

Mnskdnnskd . 0, s45d

which tells us that some sufficiently strong repulsive interac-
tions are to be present in the system. Such natural interac-
tions are, of course, Coulomb interactions. Thus, we come to
the first conclusion:

Mesoscopic phase separation in superconductors can be
thermodynamically stable only in the presence of repulsive
Coulomb interactions.

Now let us recall that, as is discussed in the Introduction,
the gap of the hole-doped high-temperature cuprate super-
conductors displays strong anisotropic dependence on mo-
mentum. To describe the anisotropy, one may introduce a
basis hxiskdj of functions xiskd characterizing the lattice
symmetry, with the indexi =1,2, . . .enumerating irreducible
representations of the symmetry group. Let such a basis be
defined, being orthonormal and complete:

o
k

xi
*skdx jskd = di j , o

i

xi
*skdxispd = dkp.

Then one may expand(see Refs. 25 and 59) over this basis
the effective interaction

Jsk,pd = o
i j

Jijxiskdx j
*spd s46d

and the gap

Dskd = o
i

Dixiskd. s47d

Using this, the gap equation(41) reduces to

Di = o
j

AijD j , s48d

where

Aij ; o
p

wJij

2Espd
tanhFwEspd

2T
Gxi

*spdx jspd. s49d

The system of uniform algebraic equations(48) possesses
nontrivial solutions when

dets1̂ − Âd = 0, s50d

where 1̂=fdi jg is the unity matrix and the matrixÂ=fAijg is
composed of elements(49).

The effective interaction(46) consists of an attractive
part, caused by phonon exchange, and a repulsive part, due

to direct Coulomb interactions,60 because of whichJij has the
structure

Jij = S uau2

ṽ0
2 − M0Dbij , s51d

in which a is the charge-lattice coupling,ṽ0 is the charac-
teristic lattice frequency in the presence of heterostructural
fluctuations,61,62 connected by the relation

ṽ0 = Îwv0, s52d

with the characteristic lattice frequencyv0 of a pure sample,
and M0 is an effective intensity of direct Coulomb interac-
tions. The latter approximately equals

M0 <
pe2

kF
2 lnU1 + 4SkF

k
D2U ,

wherekF is a Fermi momentum of charge carriers,k−1 is a
screening radius, for whichk2<4m0e

2s3r /pd1/3, andm0, e,
andr are mass, charge, and density of carriers.

Keeping in mind inequality(42), we setJij .0 and bij
.0. Then the condition for the existence of superconductiv-
ity reads

uau2

v0
2 − wM0 . 0. s53d

This differs from the Bardeen-Cooper-Schriefer criterion for
superconductivity63 by the presence of the superconducting
phase probabilityw, which essentially changes the meaning
of Eq. (53). It may happen that Coulomb interactions are so
strong, withM0. ua /v0u2, that superconductivity in a pure
sample is impossible. However, sincew,1, criterion (53)
may be valid, which implies the occurrence of superconduc-
tivity. In this way, we get the second conclusion:

Phase separation enables the appearance of superconduc-
tivity in a heterophase sample even if it were impossible in
pure-phase matter.

Defining the dimensionless quantity

m * ; M0
v0

2

uau2
, s54d

condition (53) can be presented as

1 − wm * . 0. s55d

The parameter(54) is of the order60 of m* ,v0/vp, where
vp is the ion plasma frequency. For good conductors,v0
!vp; hence,m* !1, and inequality(55) is easy to satisfy
even for a pure sample, withw=1. For bad conductors,v0
ùvp, so thatm* ù1. In particular, ifm* .1, superconduc-
tivity cannot arise in a pure sample, though may appear in
phase-separated matter, withw,1. This yields the third con-
clusion:

Phase separation is crucial for the occurrence of super-
conductivity in bad conductors.

V. CRITICAL TEMPERATURE

At the critical temperatureTc, the gap tends to zero,
Dskd→0; hence,Eskd→vskd. Then Eq.(49) becomes
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AijsTcd = o
p

wJij

2vspd
tanhFwvspd

2Tc
Gxi

*spdx jspd. s56d

Using the density of states

Nijsvd ; o
p

d„v − vspd…xi
*spdx jspd s57d

and satisfying the normalization

E
−`

+`

Nijsvddv = di j ,

Eq. (56) can be written as

AijsTcd = wJijE
−`

+` Nijsvd
2v

tanhSwv

2Tc
Ddv. s58d

The density of states(57), with the standard replacement of
summation by integration,

o
pPB

→ 1

r
E

B

dp

s2pd3 ,

whereB implies the Brillouin zone, transforms to

Nijsvd =
1

r
E

B
d„v − vspd…xi

*spdx jspd
dp

s2pd3 . s59d

Assuming, as usual, that the density of statesNijsvd is the
largest on the Fermi surface and quickly decreases afterv
.ṽ0, Eq. (58) can be reduced to

AijsTcd = wJijNijs0dE
0

ṽ0 1

v
tanhSwv

2Tc
Ddv. s60d

Introducing the coupling matrixl̂, with the elements

li j ; Nijs0d
uau2

v0
2 bij , s61d

effective coupling matrixL̂, with

Li j ; wJijNijs0d = s1 − wm * dli j , s62d

and the characteristic integral

Ic ; E
0

1 1

x
tanhSw3/2v0

2Tc
xDdx, s63d

we can present Eq.(60) as

AijsTcd = IcLi j . s64d

Substituting this into condition(50) gives the equation

dets1̂ − IcL̂d = 0 s65d

for the critical temperatureTc.
If Li j is diagonal, thenTc is defined by the largestLii .

However, in general, for anisotropic superconductors,Li j is
not diagonal andLi j Þ0 for i Þ j . The latter means that, gen-
erally, the gap(47) is presented by a mixture of waves of
different symmetry. There is a very nontrivial relation be-

tween the gap being such a mixture and the magnitude of the
critical temperature, which we describe below.

Let us define aneffective couplingLef f by the identity

Lef f Ic ; 1 − dets1̂ − IcL̂d. s66d

Then Eq.(65) for the critical temperature takes the form

Lef f Ic = 1. s67d

Note that, since, according to definition(63), the integralIc
.0 is positive, thenLef f.0. From Eq.(67) it follows

]Tc

]Lef f
=

2Tc
2Ic

v0w
3/2Lef f Ic8

. 0, s68d

where

Ic8 ; E
0

1

sech2Sw3/2v0

2Tc
xDdx.

Inequality (68) tells us thatTc is higher for largerLef f. This
is valid for all Lef f.0 and can be explicitly illustrated for
the particular cases:

Tc . 1.14w3/2v0 expS−
1

Lef f
D sLef f ! 1d,

Tc .
1

2
w3/2v0Lef f sLef f @ 1d. s69d

Another important inequality is

Lef f . max
i

Lii , s70d

provided thatLi j Þ0 for somei Þ j . And if Li j =di jLii , then
Lef f=maxi Lii . This property is easy to explicitly demon-
strate for the case when there are two prevailing wave sym-
metries. Thus, ifi =1,2, then Eq.(66) yields

Lef f =
1

2
fL11 + L22 + ÎsL11 − L22d2 + 4L12

2 g. s71d

Without loss of generality, we may use an enumeration such
that L11.L22. As is seen from Eq.(71),

Lef f = L11 sL12 = 0d.

In addition,

]Lef f

]L12
2 =

1

ÎsL11 − L22d2 + 4L12
2

. 0; s72d

hence,Lef f increases with increasinguL12u. Thus, for a mix-
ture of waves, whenuLi j u.0, wherei Þ j , the effective cou-
pling Lef f becomes larger than the maximalLii . But in agree-
ment with Eq. (68), the larger Lef f, the higher is the
transition temperatureTc. Therefore, we come to the follow-
ing conclusion:

The critical temperature for a mixture of gap waves is
higher than the critical temperature related to any pure gap
wave from this mixture.

In superconductors with phase separation, the critical tem-
perature can be a nonmonotonic function of the supercon-
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ducting fractionw. To show this, let us consider the case
when one of the gap symmetries is prevailing, so that one of
Lii is essentially larger than otherLii . Let us denote this
maximalLii as

max
i

Lii ; s1 − wm * dl, s73d

where the relation(62) is taken into account. Equation(67)
for the critical temperature can be written as

s1 − wm * dlIc = 1.

The characteristic integral(63) possesses the following
asymptotic properties:

Ic .
w3/2v0

2Tc
sw → 0d,

Ic . lnS1.14
w3/2v0

Tc
D sTc → 0d.

Using these properties, we see that the critical temperature
tends to zero in two limits, if the superconducting fraction
tends to zero, when

Tc

v0
.

1

2
s1 − wm * dlw3/2 sw → 0d, s74d

and also if this fraction tends to a finite value 1/m*, when

Tc

v0
. 1.14w3/2 expH−

1

s1 − wm * dlJ Sw → 1

m*
D .

s75d

For good conductors, whenm* !1, the limit (75) is un-
achievable. But for bad conductors, for whichm* ù1, this
limit can be achieved. This can be formulated as another
conclusion:

In bad conductors, the critical temperature as a function
of the superconducting fraction w has the bell shape, tending
to zero at w→0 and at w→1/m*.

To estimate the point where the critical temperature is
maximal, we may keep in mind that experiments with high-
temperature superconductors show that only part of a given
sample is in a superconducting phase, this part often being
just a few percent.64,65This means thatw!1 and, hence, the
value wmax, whereTc=Tmax is maximal, is also small,wmax
!1. Taking this into account, from the above equations we
obtain

Tmax.
1

5
lv0wmax

3/2 , wmax.
3

5m*
.

Such a bell shape of the critical temperature as a function
of doping is typical of experimental curves for high-
temperature cuprate superconductors,1,66,67 where the maxi-
mal critical temperature occurs at the optimal doping 0.15.
Assuming that the superconducting fraction is proportional
to the doping, so thatwmax<0.15, we havem* <4. Then the
function Tcswd has a striking similarity with the behavior of
Tc as a function of doping, studied in experiments with cu-
prates. Figure 1 illustratesTcswd found by solving numeri-

cally Eq. (67).

VI. DENSITY OF STATES

To concretize the consideration, let us take into account
that the crystalline structure of cuprates is such that the car-
riers move mainly in planes, only rarely jumping between
the latter, which are separated by a distance essentially ex-
ceeding the mean distancea between lattice sites on the
plane. Neglecting the interplane jumps, one comes to a two-
dimensional motion of carriers on the plane. In the case of
such a planar motion, the single-particle dispersionvspd
=v1spd, given by Eq.(33), depends only on two momentum
components—say,p1 andp2. Then in the following formulas
it is easy to integrate out the third componentp3.

In many cuprates, the Cu and O atoms arrange themselves
in a square lattice with the point group symmetryC4v (Ref.
25). This concrete case will be employed in what follows.

For a square latticea3a, the Brillouin zone is defined by
the wave vectorspaP f−p /a,p /ag, with a=1,2. It is con-
venient to introduce the dimensionless wave vectorsk
=hkaj, in which ka;paa, so thatkaP f−p ,pg. The point
group C4v of a square lattice is characterized by three one-
dimensional irreducible representations labeled asA1, B1,
andB2. The representationA1 is of rank 3, having three types
of symmetries denoted ass, s*, and sxy. The representation
B1 is of rank 1, with the symmetrydx2−y2. And the irreducible
representationB2 is of rank 1, with the type of symmetry
denoted bydxy. The corresponding basis functions are

x1skd = 1 ssd,

x2skd =
1

2
scosk1 + cosk2d ss* d,

x3skd = cosk1 cosk2 ssxyd,

FIG. 1. Critical temperatureTc, in units ofv0, as a function ofw
for m* =4 and different couplings:l=1 (dotted line), l=5 (dashed
line), andl=10 (solid line).
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x4skd = sink1 sink2 sdxyd,

x5skd =
1

2
scosk1 − cosk2d sdx2−y2d.

For the density of states(57), we have

Nijsvd =E
−p

p

d„v − vskd…xi
*skdx jskd

dk1dk2

s2pd2 . s76d

The basis functionsxi
*skd=xiskd are real and symmetric with

respect to the inversion ofk, so that xis−kd=xiskd. The
single-particle dispersion is also symmetric,vs−kd=vskd. It
is convenient to introduce the dimensionless dispersion

v̄skd ;
vskd

m
. s77d

Then the density of states(76) on the Fermi surface becomes

Nijs0d =
1

p2m
E

0

p

d„v̄skd…xiskdx jskddk1dk2. s78d

To write down an explicit expression for the single-
particle dispersionvskd, one usually resorts to the tight-
binding approximation,25,39,40,45in which, for a square lattice,
one has

vskd = − tef fscosk1 + cosk2d − m, s79d

where tef f is an effective transport parameter. In our case,
taking into account Eq.(33), we see thattef f consists of two
parts,

tef f = t0 + wM0, s80d

the nearest-neighbor hopping integralt0 and the intensity of
the repulsive Coulomb interactionM0. These terms corre-
spond to the transport matrix and mass operator, respectively.
As is well established, both experimentally and theoretically,
a strong Coulomb repulsion is present in all cuprates.25 With
the parameter

t ;
tef f

m
=

1

m
st0 + wM0d, s81d

the dimensionless dispersion(77) takes the form

v̄skd = − tscosk1 + cosk2d − 1. s82d

When the mesoscopic phase separation happens in a su-
perconductor, so thatw,1, then, as is seen from Eq.(80),
the parametertef f decreases. As a result of this, the dispersion
(79) becomes softer. Thus, we get an important conclusion:

Phase separation softens the single-particle dispersion.
To proceed further, we calculate the density of states(78).

For this purpose, we use the dispersion(82) and note that

d„v̄skd… =
d„k2 − k2sk1d…
ut sink2sk1du

,

where the functionk2skd is defined by the equation

cosk2skd = −
1

t
− cosk.

Then the density of states(78) can be transformed to

Nijs0d =
1

p2m
E

k0

p wiskdw jskddk
Ît2 − s1 + t coskd2

, s83d

where

wiskd ; xi„k,k2skd…, k0 ; arccosS1 −
1

t
D ,

0 ø k0 ø p S1

2
ø t , `D .

Explicit expressions for the functionswiskd are

w1skd = 1, w2skd = −
1

2t
, w3skd = − S1

t
+ coskDcosk,

w4skd = sinkÎ1 −S1

t
+ coskD2

, w5skd =
1

2t
+ cosk.

Accomplishing in Eq.(83) the change of variables

cisxd ; wisarccosxd sx ; coskd,

we obtain the form

Nijs0d =
1

p2mt
E

−1

1−1/t cisxdc jsxd
c4sxd

dx, s84d

in which

c1sxd = 1, c2sxd = −
1

2t
, c3sxd = − S1

t
+ xDx,

c4sxd =Îs1 − x2dF1 −S1

t
+ xD2G, c5sxd =

1

2t
+ x.

The value of the quantityNijs0d plays an important role in
defining the coupling parameters(61) and(62). The larger is
the density of statesNiis0d, the more profitable is the occur-
rence of the related gap symmetry labeled by the indexi.

Let us analyze the behavior of Eq.(84) as a function oft
changing fromt=1/2 to largert.1/2. For convenience, we
consider the dimensionless quantity

Dij ; pmNijs0d, s85d

normalized by means of

N11s0d = N22s0d =
1

pm
St =

1

2
D .

At t=1/2, the integral (84) can be calculated analytically,
giving

D11 = D13 = D22 = D33 = 1, D14 = D24 = D34 = D44 = D55 = 0,
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D12 = D23 = − 1 St =
1

2
D .

Also, for all tù1/2, one has

D15 = D25 = D35 = D45 = 0.

For t.1/2, we calculated the integral(84) numerically. The
corresponding densities of states are shown in Fig. 2. Among
all Dii , only D11 and D22 monotonically decrease; all other
Dii are nonmonotonic functions oft. Comparing the density
of statesDii for different i =1,2,3,4,5, wehave the follow-
ing. Since at t=1/2 only D11=D22=D33=1 are nonzero,
while D44=D55=0; from this, it follows that only thes, s*,
and sxy waves can exist. But att=1, we getD11<0.6, D22
=D44<0.2, D33<0, andD55<0.1, which tells us that now
the gap symmetriess, s*, dxy, anddx2−y2 may exist, while the
sxy wave disappears. With increasingt, the densityD55 in-
creases. For instance, att=3, we haveD11<0.3, D22, and
D33 are close to zero,D44=D55<0.1. Therefore, here the
probable symmetries ares, dxy, and dx2−y2. For t.3, the
highest densities areD11, diminishing below 0.3, andD55
<0.1, all other densities being smaller. In this way, fort
.3 the most probable symmetries ares anddx2−y2.

To estimate the magnitude oft for high-temperature su-
perconductors, we may take the values of parameters typical
of cuprates25,39,40,45—that is, t0<s0.5–1d eV, M0<1 eV,
and m<0.5 eV. Then the parametert, defined in Eq.(81),
with w<1, equalst<3–4. In this region oft, the largest
densities areD11 andD55; hence, the symmetriess anddx2−y2

are preferable. But when phase separation occurs, the super-
conducting fractionw becomes less than unity, which dimin-
ishes the value oft. The decrease oft suppresses the density
of statesD55 and enhancesD11, which means that the relative
weights ofs anddx2−y2 symmetries are changing. This can be
formulated as the following conclusion:

Mesoscopic phase separation suppresses the contribution

of d-wave superconductivity and enhances that of s-wave
superconductivity.

The value of the superconducting fractionw depends on
such parameters as temperature, pressure or external mag-
netic fields. Therefore the relative contribution of different
wave symmetries will be varying under the action of these
parameters. This can explain why in different experiments
one observes alternately the dominance of eithers or d gap
symmetries.

VII. SUMMARY

We have studied the main properties of superconductors,
such as cuprates, exhibiting two principal features common
for these high-temperature superconductors: mesoscopic
phase separation and anisotropic gap symmetry. The inter-
play between these two phenomena is investigated by means
of a model incorporating the presence of mesoscopic phase
separation into the randomly distributed regions of supercon-
ducting and normal phases. The following general conclu-
sions are obtained.

(i) Mesoscopic phase separation in superconductors can
be thermodynamically stable only in the presence of repul-
sive Coulomb interactions.

(ii ) Phase separation enables the appearance of supercon-
ductivity in a heterophase sample even if it were impossible
in pure-phase matter.

(iii ) Phase separation is crucial for the occurrence of su-
perconductivity in bad conductors.

(iv) The critical temperature for a mixture of gap waves is
higher than the critical temperature related to any pure gap
wave from this mixture.

(v) In bad conductors, the critical temperature as a func-
tion of the superconducting fraction has the bell shape.

(vi) Phase separation softens the single-particle energy
dispersion.

(vii ) Mesoscopic phase separation suppresses the contri-
bution of d-wave superconductivity and enhances that of
s-wave superconductivity.

These conclusions are in good qualitative agreement with
experiments for high-temperature superconductors. Since in
colossal magnetoresistance materials there also occurs the
phenomenon of mesoscopic phase separation,8–10,68,69such
materials may possess some of the features described in this
paper. Moreover, the mesoscopic phase separation is a rather
general phenomenon appearing in different kinds of con-
densed matter and it can be described in the frame of the
general theory,5,70 which was used in this paper for studying
the general properties of anisotropic phase-separated super-
conductors.
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APPENDIX: AVERAGING OVER
PHASE CONFIGURATIONS

Let the considered sample occupy in the real spacehr j a
regionV having the volumeV;eVdr . Assume that mesos-

FIG. 2. Density of statesDii as a function of the effective trans-
port parametert: D11 (upper dash-double-dotted line), D22 (dash-
dotted line), D33 (dotted line), D44 (dashed line), and D55 (solid
line).
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copic phase separation occurs in the sample, so that it is
filled by several thermodynamic phases, which are enumer-
ated by an indexn. Say,n=1 corresponds to the supercon-
ducting phase, whilen=2 to the normal phase. At each given
instant of time, distinct phases are located at different spatial
regions, which can also be labeled by the phase indexn. This
means that the total sample volumeV can be divided into
subregionsVn, filled by the related phases. A familyhVnj of
subregionsVn forms an orthogonal covering ofV. This cov-
ering can be characterized by a family

j ; hjnsr dur P Vj

of the manifold indicator functions

jnsr d ; H1, r P Vn,

0, r ¹ Vn.
J

The family j uniquely defines a phase configuration in the
real-space volumeV.

From the physical point of view, distinct thermodynamic
phases possess different properties, because of which such
phases can be distinguished from each other. For example,
the phases can be distinguished by their order parameters. In
the case of superconductor, a convenient order parameter can
be chosen as the anomalous average,

hnsr d ; kcnsr dcnsr dljnsr d,

wherecnsr d is a field operator of the field of carriers, when
the latter are in the phasen, andjnsr d is the related indicator
function. For the superconducting regions, one hash1sr d
Þ0, provided thatr PV1, while for the normal parts, one has
h2sr d;0, with r PV2. The anomalous average, as is known,
is directly related to the gap in the spectrum of excitations.
Thus, different phases could be distinguished by the exis-
tence or absence of the gap in the spectrum. For a while,
when dealing with a nonuniform sample consisting of sepa-
rate phases, the anomalous average, depending on the spatial
variabler , is a more convenient order parameter.

Mesoscopic phase separation occurs in the real space in a
random way, which means that the locations and shapes of
the phase subregionsVn are random. Then observable quan-
tities should be determined with averaging over these ran-
dom phase configurations. Since each phase configuration is
uniquely defined by the setj of the manifold indicator func-
tions, it is necessary to describe an ensemblehjj of all pos-
sible setsj, corresponding to all possible phase configura-
tions. For this purpose, we introduce an orthogonal
subcoveringhVnij of each regionVn, such that

Vn = øi=1
nn Vni, Vmi ù Vn j = dmndi jVni .

To each subregionVni, we ascribe a vectorani PVni, called
the center, playing the role of a local center of coordinates,
so that movingani implies a congruent motion ofVni. The
introduced subcovering is uniquely characterized by a family
of the indicator functions

jnisr − anid ; H1, r P Vni ,

0, r ¹ Vni ,
J

with the property

o
i=1

nn

jnisr − anid = jnsr d.

By moving the centersani and changing the measure ofVn, it
is possible to construct various phase configurations. To ex-
plicitly realize the averaging over these configurations, we
define the differential functional measure

Dj ; lim
hnn→`j

p
n

p
i=1

nn dani

V
dSo

n

xn − 1Dp
n

dxn,

in which

xn ;
1

V
E

V
jnsr ddr .

This measure, with varyingani PV andxnP f0,1g, induces a
topology on the manifoldhjj, which results in the topologi-
cal configuration spaceX;hj uDjj, composed of all admis-
sible phase configurations.

For each fixed phase configuration, the observable quan-
tities, represented by Hermitian operators, depend on the
given configuration and have the structure

Asjd = %n Ansjnd,

being defined on the fiber spaceY= ^nHn, whose fibering
yields the weighted Hilbert spacesHn. The dependence of
the operators of observable quantities on the indicator func-
tions, marking the space filled by the corresponding phases,
naturally comes from the identity

E
Vn

dr =E
V

jnsr ddr .

This identity is employed when representing the operators
through the integrals of their operator densities:

Âsjd =E Âsj,r ddr = %n Ânsjnd,

Âsj,r d = %n Ânsjn,r d, Ânsjnd =E Ânsjn,r ddr .

Here and everywhere in the paper, we denote, for simplicity,
the integration over the whole sample as

E dr ; E
V

dr .

For example, let us write down the Hamiltonian density

Ĥnsjn,r d = jnsr dcn
†sr dK̂nsr dcnsr d

+
1

2
E jnsr djnsr 8dcn

†sr dcn
†sr 8dV̂nsr ,r 8dcnsr 8d

3cnsr ddrdr 8,
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in which K̂nsr d is an operator of kinetic energy andV̂nsr ,r 8d
is an effective interaction. Analogously, the number-of-
particle operator density is

N̂nsjn,r d = jnsr dcn
†sr dcnsr d.

The field operators here are assumed to be columns with
respect to spin indices.

A nonuniform system, composed of several thermody-
namic phases, must be described by the quasiequilibrium(or
locally equilibrium) Gibbs ensemble, with a statistical opera-

tor proportional toe−X̂sjd, where

X̂sjd ; E bsj,r dfĤsj,r d − msj,r dN̂sj,r dgdr .

Here the local inverse temperaturebsj ,r d and the local
chemical potentialmsj ,r d model the system nonuniformity
corresponding to a given phase configuration characterized
by a setj. The natural thermodynamic potential for a quasi-
equilibrium system, with randomj, is

Q = − ln TrYE e−X̂sjdDj.

Assuming, as usual, the existence of the thermodynamic
limit and accomplishing the averaging over phase configura-
tions, which is characterized by the differential measureDj,
it is possible to prove5 that the thermodynamic potentialQ
reduces to the form

Q = − ln TrY e−bH̃,

with an effective renormalized HamiltonianH̃= %nHn, in
which

Hn =E fĤnswn,r d − mN̂nswn,r dgdr ,

and where the average inverse temperature and average
chemical potentials, respectively, are

b =E bsj,r dDj, m =E msj,r dDj.

Then the potential

Q = bV

is simply related to the Gibbs grand potentialV. The phase
probabilitieswn are defined as the minimizers of eitherQ or
V.

In this way, after averaging over heterophase configura-
tions, we come to the description of the system by means of
a renormalized Hamiltonian, containing only averaged quan-
tities and not involving anymore random phase distributions
that have been averaged out. All expressions throughout the
paper correspond to averaged quantities resulting from the
described procedure of heterophase averaging. A complete
and detailed mathematical foundation for this averaging pro-
cedure is given in the reviews in Refs. 5 and 70.
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