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Applying a continuous-time quantum Monte Carlo algorithm we calculate the exact coherent band disper-
sion and the density of states of a two-dimensional lattice polaron in the region of parameters where any
approximation might fail. We find an isotope effect on the band structure, which is different for different wave
vectors of the Brillouin zone and depends on the radius and strength of the electron-phonon interaction. An
isotope effect on the electron spectral function is also discussed.
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Isotope substitution, where an ion massM is varied with-
out any change of electronic configurations, is a powerful
tool in testing the origin of electron correlations in solids. In
particular, a finite value of the isotope exponenta
=−d ln Tc/d ln M(Ref. 1) proved that the superconducting
phase transition atT=Tc is driven by the electron-phonon(
e-ph) interaction in conventional low-temperature supercon-
ductors. Advances in the fabrication of isotope-substituted
samples made it possible to measure a sizable isotope effect
also in many high-temperature superconductors. This led to a
general conclusion that phonons are relevant for highTc.
Essential features of the isotope effect onTc, in particular its
large values in low-Tc cuprates, an overall trend to decrease
asTc increases, and a small or even negativea in some high-
Tc cuprates could be understood in the framework of the
bipolaron theory of high-temperature superconductivity.2

The most compelling evidence for(bi)polaronic carries in
superconductors was provided by the discovery of a substan-
tial isotope effect on the(super)carrier mass.3,4 The effect
was observed by measuring the magnetic field penetration
depth lH of isotope-substituted copper oxides. The carrier
density is unchanged with the isotope substitution of16O by
18O, so that the isotope effect onlH measures directly the
isotope effect on the carrier massm*. A carrier mass isotope
exponentam=d ln m* / d ln M was observed, as predicted by
the bipolaron theory.2 In ordinary metals, where the Migdal
adiabatic approximation is believed to be valid,am=0 is ex-
pected. However, when thee-ph interaction is sufficiently
strong and electrons form polarons(quasiparticles dressed by
lattice distortions), their effective massm* depends onM as
m* = mexpsgEp/vd. Herem is the band mass in the absence
of the electron-phonon interaction,Ep is the polaron binding
energy(polaron level shift), g is a numerical constant less
than 1 that depends on the radius of the electron-phonon
interaction, andv is a characteristic phonon frequency(we
use "=1). In the expression form*, only the phonon fre-
quency depends on the ion mass. Thus there is a large iso-
tope effect on the carrier mass in(bi)polaronic conductors,
am=s1/2dlnsm* / md, in contrast with the zero isotope effect
in ordinary metals.

Recent high-resolution angle-resolved photoemission
spectroscopy6 (ARPES) provided another piece of compel-
ling evidence for a stronge-ph interaction in the cuprates. It

revealed a fine phonon structure in the electron self-energy
of the underdoped La2−xSrxCuO4 samples7 and a complicated
isotope effect on the electron spectral function in Bi2212.8

Polaronic carriers were also observed in colossal magnetore-
sistance manganites including their low-temperature ferro-
magnetic phase, where an isotope effect on the residual re-
sistivity was measured and explained.9

These and many other experimental and theoretical obser-
vations point towards unusuale-ph interactions in complex
oxides, which remain to be quantitatively addressed. While
the many-particlee-ph problem has been solved in the weak-
coupling, l;Ep/zt!1,5,10,11 and in the strong-coupling,l
@1,12 limits, any analytical or even semianalytical approxi-
mation (i.e., dynamic mean-field approach13 when it is ap-
plied to finite dimensions) is unreliable in the relevant inter-
mediate region of the coupling strength,l.1, and of the
adiabatic ratio,v / t.1. Heret andz are the nearest-neighbor
hopping integral and the coordination number of the rigid
lattice, respectively.

Advanced variational,14 direct diagonalization,15 and
quantum Monte Carlo16–18 (QMC) techniques addressed the
problem in the intermediate region of parameters, but mainly
in the framework of the Holstein model19 with a local(short-
range) e-ph interaction or in the continuous(effective mass)
approximation for the bare electron band.18 However, in cu-
prates there is virtually no screening ofc-axis-polarized op-
tical phonons because an upper limit for the out-of-plane
plasmon frequency[&200 cm−1 (Ref. 20)] is well below the
characteristic phonon frequencyv.500−1000 cm−1.
Hence, the unscreened long-range Fröhlich interaction is im-
portant in cuprates and other ionic charge-transfer
insulators.14,21–24 A parameter-free estimate25 yields Ep
.1 eV with this interaction alone, which is larger than a
magnetic(i.e., exchangeJ) interaction almost by one order
of magnitude. Qualitatively, a longer-rangee-ph interaction
results in a lighter mass of dressed carriessg,1d because
the extended lattice deformation changes gradually in the
process of tunneling through the lattice.21,22 Also in the
intermediate- and strong-coupling regimes the finite band-
width is important, so that the effective mass approximation
cannot be applied.

In this paper we calculate isotope effects on the whole
coherent band structure and density of states(DOS) of a
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two-dimensional(2D) lattice polaron with short- and long-
rangee-ph interactions by applying a continuous-time QMC
algorithm. Unlike the strong-coupling limit2 the isotope ef-
fect depends on the wave vector in the intermediate region of
parameters. We also discuss the isotope effect on the electron
spectral function including its incoherent part.

Our model Hamiltonian describes any-radiuse-ph inter-
action of an electron(or hole) on a square-lattice plane with
linearly polarized vibrations of all ions of the 3D crystal:22

H = − o
m,n

ftsm − ndcm
† cn + fsm − ndjncm

† cmg + vo
q

bq
†bq.

s1d

Herecm andbq are annihilation electron and phonon opera-
tors, respectively,tsm−nd is the hopping integral, which is
nonzero only for the nearest neighbors,tsad; t (a is the
primitive lattice vector), jn=s2NMvd−1/2oqeiq·nbq+H.c. is
the displacement operator at citen, N is the number of cells,
and fsm−nd is a “force” applied to the electron at sitem due
to the ion displacement at siten.

In the strong-coupling,l@1, and nonadiabatic limitv
* t one can apply the Lang-Firsov transformation26 to obtain
the ground-state energy −Ep=−s2Mvd−2omf2smd and the co-
herent polaron band dispersionek =Ekexps−g2d with the po-
laron narrowing exponent g2=s2Mv3d−1omff2smd
− fsmdfsm+adg and the “bare” band dispersionEk. The band
structure isotope exponentab does not depend on the wave
vector k in this limit, becausee-ph interactions do not
change the band topology:

ab ; −
] ln ek

] ln M
=

g2

2
. s2d

It is the same asam. If the interaction is short range,fsm
−nd~dm,n (the Holstein model), then g2=Ep/v. Generally,
one hasg2=gEp/v with the numerical coefficientg=f1

−omfsmdfsm+adg /onf2snd. g can be significantly less than
1 for a long-range(Fröhlich) interaction,21 such as the un-
screened interaction withc-axis vibrations of apex oxygen
ions in the cuprates:22

fsm − nd ~ sum − nu2 + 1d−3/2. s3d

Here the distance between the in-plane and apex cites
Îum−nu2+1 is measured in units of the in-plane lattice con-
stant a, and the apex-plane distance is taken to be alsoa.
Thus the strong-coupling isotope exponent, Eq.(2) turns out
to be numerically smaller for a longer-rangee-ph interaction
compared with a short-range interaction of the same strength
Ep.

QMC results(see below) show that this tendency also
holds in the intermediate-coupling regime, but the isotope
exponent becomes a nontrivial function of the wave vector:
ab=abskd, becausee-ph interactions substantially modify the
band topology in this regime. We apply a continuous-time
path-integral QMC algorithm developed by one of us,27

which is free from any systematic finite-size and finite-time-
step errors. The finite-temperature errors are exponentially
small when the simulation temperature is smaller than the
phonon frequency. The method allows forexactcalculation
of the whole polaron band dispersion on any-dimensional
infinite lattice with any-rangee-ph interaction using the
many-body path integral,

e0 =
E DrDjwF−

]w

]b
G

E DrDjw

, s4d

FIG. 1. Top panels: small Holstein polaron
band dispersions along the main directions of the
two-dimensional Brillouin zone. Left:l=1.1.
Right: l=1.2. Solid symbols arev=0.70t; open
symbols arev=0.66t. Lower panels: the band
structure isotope exponent forl=1.1 (left) and
l=1.2 (right).
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ek − e0 = −
1

b
ln5E DrDjweikDr

E DrDjw 6 , s5d

wheree0 is the ground-state energy. Configurations described
by the electron position vectorr and ion displacementsj are
obtained at imaginary timet=b=1/skBTd from the configu-
rations att=0 by shifting along the lattice by vectorsDr .
eDrDj integrates over single-electron paths with all possible
shifts satisfying the twisted boundary conditions with the

weight wsr ,jd. The statistics for any number ofk points in
the Brillouin zone are collected during a single QMC run.28

The isotope exponentabskd and DOS are presented in
Figs. 1 and 2, and Fig. 3, respectively, for the small Holstein
polaron (SHP) with the short-range interaction and for the
small Fröhlich polaron(SFP) with the force given by Eq.(3).
The polaron spectra are calculated for two phonon frequen-
ciesv=0.70t andv=0.66t, whose difference corresponds to
a substitution of16O by 18O in cuprates. There is a significant
change in the dispersion law(topology) of SHP, Fig. 1,
which is less significant for SFP, Fig. 2, rather than a simple
band-narrowing(Ref. 27). As a result, the isotope exponent

FIG. 2. Top panels: small Fröhlich polaron
band dispersions along the main directions of the
two-dimensional Brillouin zone. Left:l=2.5.
Right: l=3.0. Solid symbols arev=0.70t; open
symbols arev=0.66t. Lower panels: the band
structure isotope exponent forl=2.5 (left) and
l=3.0 (right).

FIG. 3. Isotope effect on the polaron density
of states. The solid line isv=0.70t; the dashed
line is v=0.66t.
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abskd < 8
ek

16 − ek
18

ek
16 s6d

is k dependent, Figs. 1 and 2(lower panels). The strongest
dispersion ofab is observed for SHP. Importantly, the iso-
tope effect is suppressed near the band edge in contrast with
the k-independent strong-coupling isotope effect, Eq.(2). It
is less dispersive for SFP, especially at largerl, where the
polaron energy band is well described by the strong-coupling
Lang-Firsov expression.

The polaron DOS,NsEd;okdsE−ekd, Fig. 3, is less sen-
sitive to topology, approximately scaling with the renormal-
ized bandwidth. It reveals a giant isotope effect near the van
Hove singularity because the bandwidth changes signifi-
cantly with v even in the intermediate-coupling regime.

The coherent motion of small polarons leads to metallic
conduction at low temperatures. Our results, Figs. 1–3 show
that there should be anomalous isotope effects on the low-
frequency kinetics and thermodynamics of polaronic conduc-
tors which depend on the position of the Fermi level in the
polaron band. In fact, such effects have been observed in
ferromagnetic oxides at low temperatures9 and in cuprates.3,4

To address ARPES isotope exponents8 one has to calculate
the electron spectral functionAsk ,Ed taking into account
phonon sidebands(i.e., off-diagonal transitions) along with
the coherent polaron motion(diagonal transitions). Using the
1/l expansion one obtains12

Ask,Ed = o
l=0

`

fAl
s−dsk,Ed + Al

s+dsk,Edg, s7d

where

Al
s−dsk,Ed =

Zf1 − nsE − lvdg
s2Ndll!

3 o
q1,. . .,ql

p
r=1

l

ugsqrdu2dfE − lv − zsk l
−dg

and

Al
s+dsk,vd =

ZnsE + lvd
s2Ndll! o

q1,. . .,ql

p
r=1

l

ugsqrdu2dfE + lv − zsk l
+dg.

s8d

HereZ=exps−Ep/vd, zskd=ek −m, m is the chemical poten-
tial, nsEd=fexpsbEd+1g−1, k l

±=k ±or=1
l qr, and gsqd is the

Fourier transform of the force fsmd
=N−1M1/2v3/2oqgsqdeiq·m.

Clearly, Eq. (7) is in the form of a perturbative mul-
tiphonon expansion. Each contributionAl

s±dsk ,Ed to the spec-
tral function describes the transition from the initial statek
of the polaron band to the final statek l

7 with the emission(or
absorption) of l phonons. Different from the conventional
Migdal self-energy5 the electron spectral function comprises

two different parts in the strong-coupling limit. The firstsl
=0d k-dependent term arises from the coherent polaron tun-
neling Acohsk ,Ed=fA0

s−dsk ,Ed+A0
s+dsk ,Edg=pZdsE−zkd with

a suppressed spectral weightZ!1. The secondincoherent
part Aincohsk ,Ed comprises all terms withl ù1. It describes
excitations accompanied by emission and absorption of
phonons. We note that its spectral density spreads over a
wide energy range of about twice the polaron level shiftEp,
which might be larger than the unrenormalized bandwidth
2zt in the rigid lattice. On the contrary, the coherent part
shows a dispersion only in the energy window of the order of
the polaron bandwidth. It is important that theincoherent
backgroundAincohsk ,Ed is dispersive(i.e., k dependent) for
the long-range interaction. Only in the Holstein model with
the short-range dispersionlesse-ph interactiongsqd=const
does the incoherent part have no dispersion.

Using Eq.(7) one readily predicts an isotope effect on the
coherent part dispersionek and its spectral weightZ andalso
on the incoherent background becauseZ, gsqd, and v all
depend onM. While our prediction is qualitatively robust it
is difficult to quantify the ARPES isotope effect in the inter-
mediate region of parameters. The spectral function, Eq.(7),
is applied in the strong-coupling limitl@1. While the main
sum rulee−`

` dEAsk ,Ed=1 is satisfied, the higher-momentum
integralse−`

` dEEpAsk ,Ed with p.0, calculated with Eq.(7),
differ from their exact values29 by an amount proportional to
1/l. The difference is due to partial “undressing” of high-
energy excitations in the sidebands, which is beyond the
lowest-order 1/l expansion. The role of electronic correla-
tions should be also addressed in connection with ARPES.
While the results shown in Figs. 1–3 describe band structure
isotope effects in slightly doped conventional and Mott-
Hubbard insulators with a few carriers, their spectral proper-
ties could be significantly modified by the polaron-polaron
interactions,30 including the bipolaron formation31 at finite
doping. On the experimental side, separation of the
coherent and incoherent parts in ARPES remains rather
controversial.32

In conclusion, we have calculated the isotope effect on the
band structure of doped insulators employing a continuous-
time quantum Monte Carlo algorithm and found its disper-
sion in the intermediate-coupling regime which essentially
depends on the radius and strength of the electron-phonon
interaction. Using the strong-coupling electron spectral func-
tion we predicted an isotope effect on the weight and disper-
sion of the coherent part and on the incoherent background.
The exact isotope exponents, Figs. 1 and 2, could be instru-
mental in an understanding of current and future experiments
with isotope-substituted oxides and in assessing different
analytical and semianalytical approximations.
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