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We report a study of the zero-temperature phase diagram of the Bose-Hubbard model on topologically
inhomogeneous arrays. We show that the usual Mott-insulator and superfluid domains, in the paradigmatic case
of the comb lattice, are separated by regions where the superfluid behavior of the bosonic system is confined
along the comb backbone. The existence of suchconfined superfluidity, arising from topological inhomogene-
ity, is proved by different analytical and numerical techniques which we extend to the case of inhomogeneous
arrays. We also discuss the relevance of our results to real systems exhibiting macroscopic phase coherence,
such as coupled Bose condensates and Josephson arrays.
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I. INTRODUCTION

The Bose-Hubbard(BH) Hamiltonian, describing bosons
hopping across the sites of a discrete structure and originally
introduced to model liquid He in confined geometries,1 has
proved successful in capturing the essential physics of a wide
range of condensed-matter systems. The best known ex-
amples are no doubt provided by Josephson-junction
arrays2,3 (JJA) and Bose-Einstein condensate(BEC)
arrays,4,5 which are the subject of a huge amount of both
theoretical and experimental ongoing investigations. The
hallmark of such a class of systems is the presence of a
superfluid phase as opposed to a(Mott-)insulator phase.6 The
theoretical studies hitherto carried out on such a phase tran-
sition have mostly focused on homogeneous ambient lattices
and provide well-established numerical and analytical tech-
niques. Homogeneous lattices are also the basis of the cur-
rent experimental realizations of systems belonging to the
BH class. This is at least partly due to present technical
constraints. For instance the optical techniques used to frag-
ment BEC’s yield quite naturally homogeneous arrays.

However, the striking progress in experimental techniques
suggests the realization of inhomogeneous networks to be at
hand. Actually, JJA’s can be engineered in nontrivial geom-
etries with the only possible constraint of planarity. In this
respect, interesting geometry-driven effects are proposed in
Refs. 7 and 8, while the physics of a fractal JJA is experi-
mentally studied in Ref. 9. As to BEC arrays, two very prom-
ising approaches for realizing inhomogeneous topologies are
provided by holographic optical traps10,11 and magnetic
microtraps.12–14 In the latter case, ongoing efforts are aimed
at reducing the spacing between individual microtraps, cur-
rently bound above a fewmm, in order to couple the con-
densates therein confined.

The deep influence of topological inhomogeneities on the
thermodynamic properties of discrete boson systems is evi-
denced by the occurrence of unexpected features even in the
absence of boson interactions. Indeed, a finite-temperature
Bose-Einstein condensation can take place despite the low
dimensionality of the system. This is illustrated in Refs. 15
and 16 in the case of the square comb lattice: namely, an
array of linear chains(fingers) joined along a transverse di-

rection(backbone) such as the one shown in the inset of Fig.
1. More precisely, inhomogeneity induces ahiddenband in
the single-particle energy spectrum which is ultimately re-
sponsible for condensation.

On the other hand, the rich zero-temperature phase dia-
gram of the BH model ensues from the competition between
the on-site repulsion and the kinetic energy of the boson gas.
In light of this, a natural question arises as to the influence of
topology on the physics of interacting bosons. In this respect
we mention that the effect of the inhomogeneity arising from
the superposition of a local on-site potential on an otherwise
regular lattice has been recently addressed. In particular, the
existence of local Mott domains induced by a parabolic con-
fining potential has been evidenced for BEC arrays in Refs.
17–21 while Refs. 22–25 analyze the phase diagram on su-
perlattices.

Here, we consider inhomogeneities of purely topological
(i.e., kinetic rather than potential) origin, focusing on the

FIG. 1. Inset: an example of a square comb lattice featuring 11
sites both on the backbone and on the ribs(Ref. 36). Main plot:
mean-field phase diagram of a 1003100 comb lattice. Different
shades of grey denote different phases. The dashed line atT/U
=0.055 signals the set of parameters considered in Fig. 2.
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emblematic case of comb lattices, where the larger connec-
tivity of the backbone is expected to act as a catalyst for
superfluidity. Interestingly, the competition between kinetic
and boson-interaction energies causes the occurrence of an
intermediate domain in the BH phase diagram. The usual
Mott-insulator lobes are separated from the superfluid do-
main by a phase characterized by the localization of super-
fluidity in a narrow region surrounding the comb backbone,
the rest of the structure exhibiting an unexpected insulator-
like behavior. More precisely, we show that thelocal
compressibility19 features an exponential decrease with in-
creasing distance from the backbone. Note indeed that the
topological inhomogeneity of the structure requires a de-
scription in terms of site-dependent quantities. These results,
which—to the best of our knowledge—are the first concern-
ing the influence of topology on the BH phase diagram re-
quired the generalization of different numerical and analyti-
cal techniques.26 The presence ofconfined superfluidityis
first evidenced within a mean-field approach and further con-
firmed by both a third-order analytical strong-coupling per-
turbative expansion(SCPE) and (population) quantum
Monte Carlo(QMC) simulations.

II. BOSE-HUBBARD MODEL ON A GENERIC
STRUCTURE

The BH Hamiltonian, describing locally interacting
bosons on a generic discrete structure consisting ofM sites,
is

H = o
j=1

M FU

2
njsnj − 1d − mnjG − T o

h,j=1

M

Ahjahaj
†, s1d

where the operatoraj
† sajd creates(annihilates) a boson at

site j andnj =aj
†aj counts the bosons sitting at sitej . As to the

parameters,U.0 accounts for the(on-site) repulsion among
bosons,m is the chemical potential, andT is the hopping
amplitude between adjacent sites, specified by the adjacency
matrix A. This is a useful tool supplied by graph theory,27

allowing an algebraic description of the topology of a ge-
neric discrete structure. Its generic matrix elementAhj is 1 if
sitessh, jd are nearest neighbors and 0 otherwise. In view of
fN,Hg=0, whereN=o jnj, Hamiltonian (1) can be conve-
niently studied exploiting its block-diagonal structure. Since
we are interested in the zero-temperature phase diagram,
hereafterk·l denotes the expectation value on the ground
state ofH.

As we mentioned above, in the case of homogeneous to-
pology the competition between on-site interaction and hop-
ping gives rise to an interesting zero-temperature phase dia-
gram in them /U-T/U plane, where two different domains
can be recognized: a superfluid phase, where the energy
cost of adding or subtracting a boson to the system vanishes
in the thermodynamic limit, and an incompressible Mott-
insulator phase, consisting of a series of adjacent lobes,
where such operations cost a finite amount of energy and the
filling f ;N/M is pinned to an integer value. The Mott-
insulator–superfluid transition can be furthermore character-
ized by the compressibilityk=]N/]m, which is finite in the

superfluid region and vanishes within the Mott lobes. In the
case of inhomogeneous systems, the possible effects of to-
pology can be described in detail by the site-dependentlocal
compressibility,19 k j =]r j /]m, wherer j =knjl is the local den-
sity of bosons.

Owing to the enormous size of the Fock space, an exact
solution of the model cannot be faced even for relatively
small structures. However, the essential elements of the
Mott-insulator–superfluid transition can be captured resort-
ing to different approximate schemes, such as
mean-field,28,29 SCPE,30 the renormalization approach,31 and
QMC computations.32,33

III. MEAN-FIELD APPROXIMATION

The key point of the mean-field approach of Ref. 28 con-
sists in the approximation

sah − kahldsaj
† − kaj

†ld < 0, s2d

allowing us to recast Hamiltonian(1) as the sum of on-site
Hamiltonians H<H=o jH j. In the simple case of a
d-dimensional(translationally invariant) lattice,H j is site in-
dependent and one is left with a single-site problem28

Hsad = MFU

2
nsn − 1d − mn − 2dTsa + a†da + 2dTa2G ,

subject to the self-consistency constrainta=kal,34 where the
so-called superfluid parametera can be considered real
without loss of generality. The phase diagram of the homo-
geneous case can be obtained numerically28 or even
analytically.25,35

For nonhomogeneous structures,

Hshahjd = o
j=1

M

H j , s3d

H j =
U

2
njsnj − 1d − mnj − To

h=1

M

Ajhahsaj + aj
† − a jd, s4d

and the ground state ofH has the formucl= ^ ju j ; hahjl,
whereu j ; hahjl is the ground state ofH j. Thus the problem is
solved by finding the set of real quantitieshahjh=1

M such that

k j ;hahjuaju j ;hahjl = a j . s5d

This can be easily done numerically by means of a self-
consistent iterative algorithm.17,25 Despite the approximation
in Eq. (2) strongly suppressing spatial correlation, some to-
pological information is retained in the above mean-field for-
mulation owing to the presence of the adjacency matrixA in
Hamiltonian (3). In this caser j, kj, and a j are in general
site-dependent quantities. For comb lattices these quantities
are constant along the backbone direction, owing to the sym-
metry of the system.

Figure 1 shows the numerically determined mean-field
phase diagram for a 1003100 comb lattice. In the regions If
(where f is the integer filling), k j =0 for all j ’s and the total
number of bosons is pinned atN= fM. The system is there-
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fore an incompressible Mott insulator. In the regions IIf, k j is
finite, yet it vanishes exponentially along the fingers. The
same behavior is observed forr j, which is exponentially
close tof with increasing distance from the backbone. Hence
in these regions the superfluid behavior of the system is con-
fined along the backbone direction alone. An extended super-
fluid behavior is recovered in region III, where the local
densityr j far from the backbone is not necessarily an integer
quantity andk j is nowhere vanishing. Such behavior of the
local density of bosons and compressibility are summarized
in Fig. 2 and in the upper panel of Fig. 3, respectively.

We mention that it is possible to evaluate the exact ana-
lytical form of the boundaries of the If regions as provided
by the mean-field approach described by Eqs.(3)–(5). This
can be, for instance, accomplished making use of the finite-
temperature method reported in Ref. 25 and subsequently
letting the temperature go to zero. The function ofT/U de-
scribing the If boundary for a generic structure characterized
by the adjacency matrixA is obtained by rescaling the cor-
responding function for a homogeneousd-dimensional
lattice25,35 by a factor ofl /2d, wherel is the maximal ei-
genvalue ofA.

In general, topological inhomogeneities make the study of
critical behaviors a rather difficult task. However, the above
results suggest some considerations in this respect. On regu-
lar lattices the correlation length diverges in any direction at
a critical point. Conversely, on the comb lattice, the correla-
tion length is expected to diverge only along a specific direc-
tion, depending on the critical border under concern. To wit,
the correlation length between sites of the same finger is the
only divergent quantity at the IIf-III transition, while it is
finite at the border between regions If and IIf (where the
divergent quantity is the correlation length between sites of
different fingers). We also mention that preliminary results
based on the mean-field approach of Ref. 25 indicate that the

above picture is robust at small finite temperatures and
hence, in principle, accessible to experiments. In this respect
we note that the three different phases in Fig. 1 can be
probed as in Ref. 5, provided that the system is realized in
terms of coupled BEC’s, possibly using holographic
traps.10,11 Indeed, after the trapping potential is released, the
expanding atomic clouds should produce either a
one-dimensional37 or a two-dimensional38 interference pat-
tern depending on whether superfluidity is confined along the
backbone or extended on the entire comb.

IV. BEYOND THE MEAN FIELD

A step beyond the mean-field approximation consists in
the strong-coupling perturbative expansion. Indeed, time-
independent perturbation theory in the hopping parameter
allows us to obtain an analytical approximation of the Mott
lobes, which, in the case of the linear chain, proves to be
quite satisfactory already at third order.30 This approach, in-
troduced in Ref. 30 for homogeneous bipartite structures, is
extended to any structure in Ref. 26. Quite interestingly, it
turns out that topological inhomogeneity gives rise to a third-
order correction featuring an unusual dependence on the ad-
jacency matrix describing the topology of the structure. In-
deed, unlike the previously reported perturbative terms,
depending only on the maximal eigenpair ofA, the “topo-
logical correction” depends on the entire spectrum of the
adjacency matrix. The solid line in the inset of Fig. 4 is the
border of the Mott lobe I1 for a comb lattice as provided by
the analytical third-order strong-coupling perturbative expan-
sion reported in Ref. 26. The above-described exponential
localization of superfluidity characterizing phases IIf is also
captured by SCPE even at order zero. Indeed it can be easily
shown thatr j = f +Cuv ju2 and k j =Kuv ju2, whereC and K are

FIG. 2. Behavior of the local density of bosonsr j for sites j
along a finger of the comb lattice(j =0 backbone). The figure refers
to a fixed value of the hopping amplitudeT/U=0.055 and a finite
interval of m /U (dashed line in Fig. 1). The white density profiles
correspond to the borders of the different regions of the phase dia-
gram. As we discussed in the textr j =1 inside region I1, r j → f in
regions IIf, whereasr j tends to a not necessarily integer number in
region III.

FIG. 3. Local compressibilityk j for sites j along one finger of
the comb lattice(j =0 is on the backbone). Dashed, solid, and dotted
lines refer to region II0, II1, and III, respectively. Note the exponen-
tial decrease with increasing distance from the backbone character-
izing the first two curves. Upper panel: mean-field result. Lower
panel: QMC data for a 12312 lattice.
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normalizing constants andv j is the j th component of the
maximal eigenvector of the adjacency matrix, depending
only on the distancedj from the backbone,15,16 v j
=expf−dj asinhs1dg. First-order SCPE confirms this behavior,
though with a different decay rate, as well as the above con-
siderations about the correlation functions.26

The data points in the inset of 4, satisfactorily agreeing
with the perturbative curve, have been obtained with a popu-
lation QMC approach,39 adopting the resampling procedure
described in Ref. 40. Based on a generalization of the power
method for finding the maximal eigenpair of a matrix, this
technique essentially amounts to a stochastic evaluation of
the ground state of Hamiltonian(1) and therefore allows us
to study the zero-temperature phase diagram of the BH
model. Note that both in the SCPE and QMC apprachesm is
evaluated as the difference between the ground-state energies
of systems whose total number of bosons differs by one.30,32

In particular, the border of phases If are obtained considering
the energy cost of adding or subtracting one boson from the
integer filling situationN=Mf.

The QMC approach also confirms the existence of the
confined superfluid phases IIf. Figure 4 clearly shows the

transition between phases II0 and III. Indeed in the former
region the local densityr j at a site far from the backbone
(downward triangles) is very close tof =0, and it features a
sudden increase only after entering phase III. Conversely, the
local density on the backbone(upward triangles) is fractional
also in region II0, thus confirming that the superfluid is lo-
calized there.

A further confirmation of confined superfluidity is pro-
vided by the local compressibility profiles appearing in the
lower panel of Fig. 3, obtained by means of QMC simula-
tions in the case of a 12312 comb lattice. Indeed, in the
extended superfluid region the local compressibility is every-
where significantly larger than zero, whereas the curves rel-
evant to the regions II0 and II1 feature a sharp decrease with
increasing distance from the backbone. Note that the local
compressibility within the Mott lobes If is everywhere zero,
since, by definition, the ground state of the system can be
changed only if the chemical potentialm is varied of an
amount sufficient to cross the lobe border.

V. CONCLUSIONS

In summary, we reported an analysis of the influence of
topological inhomogeneity on the phase diagram of interact-
ing bosons, considering the emblematic case of comb lat-
tices. This supplies a basis and a conceptual framework for a
more general study aimed at a deeper understanding of the
role of topology in quantum phase transitions. Furthermore,
we suggested a possible experimental setup, based on BEC
arrays trapped in holographic potentials,10,11 where the inter-
mediate phase occurring on a comb lattice could be
observed.5,37,38

The recently disclosed relation between the critical behav-
ior and system-state entanglement41 provides a further con-
text where the influence of geometry might play a significant
role. In particular, inhomogeneous arrays have been recently
proposed as quantum-information-processing devices.42 We
point out that, owing to the formal mathematical analogy
between Heisenberg and BH models(see, e.g., Refs. 2 and
43), the results herewith presented have also relevant impli-
cations for quantum spin systems on inhomogeneous struc-
tures. As a concluding remark, we observe that a comb lat-
tice can be obtained by joining one-dimensional structures or
appropriately removing the exceeding links from a two-
dimensional regular array.8 This makes the structures consid-
ered here not only interesting from the theoretical point of
view, but also very promising for actual realizations based on
JJA technology.3,9,44
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FIG. 4. Inset: Mott lobe I1 for a comb lattice according to third-
order SCPE(solid line) and population QMC(error bars). The latter
refer to a 12312 lattice. Main plot: QMC results for the on-site
density of bosons on a comb lattice atT/U=0.01. Upward triangles:
average result for a site on the backbone. Downward triangles: av-
erage result for the farthest site from the backbone. Open and solid
symbols refer to a 12312 and a 16316 comb lattice, respectively.
The larger error on the QMC data(abscissas) is smaller than the
symbol size.
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