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The hypothesis that holes doped into high-cuprate superconductors organize themselves in two-
dimensional2D) array of diagonal stripes is discussed, and, on the basis of this hypothesis, a new microscopic
model of superconductivity is proposed and solved. The model describes two kinds of hole states localized
either inside the stripes or in the antiferromagnetic domains between the stripes. The characteristic energy
difference between these two kinds of states is identified with the pseudogap. The onset of superconductivity
is caused by the interaction, which is assumed to be mediated by the transverse fluctuations of stripes. The
superconductingSC) order parameter predicted by the model has two components, whose quantum phases
exhibit a complex dependence on the the center-of-mass coordinate. The model predictions for the tunneling
characteristics and for the dependence of the critical temperéfgreon the superfluid density show good
quantitative agreement with a number of experiments. The model, in particular, predicts that the SC peaks in
the tunneling spectra are asymmetric, only wheT.>4, whereA is the SC gap. It is also proposed that, at
least in some high-, cuprates, there exist two different superconducting states corresponding to the same
doping concentration and the same critical temperature. Finally, the checkerboard pattern in the local density of
states observed by scanning tunneling microscopy j8BCaCuy0g, s is interpreted as coming from the states
localized around the centers of stripe elements forming the 2D superstructure.
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[. INTRODUCTION superconductivity can be carried by states localized in the 2D
stripe background. The interaction, which, in the model,
At present, the school of thought, which stipulates theleads to the superconductit§C) transition, is, presumably,
importance of local inhomogeneous structures callednediated by the transverse fluctuations of stripes.
“stripes” for the physics of higf-, cuprate superconductors,  The picture emerging in the framework of the 2D diago-
is dominated by the view that stripes form a one-dimensionahal stripe hypothesis also offers a very simple interpretation
(1D) array, where each of them runs parallel to one of theof the pseudogap phenomentnt’including its role in the
principal lattice directiond:'! This picture, however, entails superconductivity of cuprates. Other experimental facts to be
a number of difficulties associated with the stripe geometryinterpreted in this work are(i) quasiparticle coherence in
In particular, in the presence of stripes parallel to the princik-space, which emerges only below the SC transitiphthe
pal lattice directions, it is difficult to explain why the “nodal” asymmetry in the tunneling density of statés; linear den-
quasiparticles having momentum directed along lattice disity of states in the vicinity of the chemical potenti@ii) the
agonals(i.e., at 45° with respect to stripgsremain least checkerboard pattern in the local density of states in
gapped with the onset of both the pseudogap phenomendsi,Sr,CaCyOg, s (Bi-2212) observed by scanning tunneling
and superconductivity. microscopy(STM)18-2 (iv) low superfluid density and the
In this work, | propose a microscopic model, which is universal dependence thereof on the critical temperature.
based on the hypothesis that, at those doping concentrations, The SC order parameter obtained in this work has com-
where superconductivity is observed in higheuprates, the plex two-component structure, which cannot be described as
holes organize themselves into a two-dimensi@@B)) array  eithers-wave ord-wave or the combination of two. The dis-
of diagonal stripes. The 2D stripe superstructure does ndinctive unconventional feature of this order parameter is the
incur the geometrical difficulties associated with 1D stripenontrivial symmetry with respect to spatial translations,
arrays. This superstructure has been mentioned in thehich includes the sign change of at least one of the two
literature->211-13(sometimes under the name of “grid” or components.
“checkerboard}, but a number of experimental and theoret- Reviewing the relevant literature, it should be noted that
ical arguments have been put forward against its existencéhe general idea of superconductivity carried by localized
However, as | discuss lat¢in Sec. lll), the 2D stripe sce- states has been discussed in the past in the context of various
nario has not been yet ruled out entirely. At the same timephysical systems including highs cuprateg>-26At a differ-
this scenario has never been analyzed persistently enough, émt level, this work also contains parallels with several the-
part, because no theoretical model has been put forwardyetical proposald/~2° which involve two-component sce-
which would relate the 2D stripe superstructure to superconnarios for highT, cuprates. Since the 2D stripe
ductivity. superstructure can be viewed as a collection of nanodomains
The model proposed in this work reconciles the 2D stripehaving different electronic properties, the present work can
geometry with superconductivity by demonstrating, that thebe linked to a more general class of ideas stipulating some
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kind of phase separation in cuprateee, e.g., Ref. 30If

only the charge ordering associated with the 2D stripe super-
structure is considered, then it exhibits certain similarities
with Wigner crystals advocated in some of more recent
proposals’l32

The rest of the paper is organized as follows: In Sec. Il the
hypothesis of 2D diagonal stripe configuration is formulated.
In Sec. lll, the arguments in favor and against the existence
of such a configuration are discussed. Possible dynamic
properties of this configuration are briefly analyzed in Sec.
IV. In Sec. V, the properties of hole excitations in the pres-
ence of the 2D stripe configuration are described, and the
pseudogap phenomenon is identified. In Sec. VI, a model
describing the hole excitations in the stripe background is
formulated and solved in the mean-field approximation. In
Sec. VI, the realistic features of the model and the resulting
phase diagram are discussed. The model predictions are
compared with experiments in Sec. VIII.

This paper is quite long, in part, because some of the
model predictions tested in Sec. VIII require detailed calcu-
lations. In the first reading, one can, therefore, review all the
figures in the theoretical sections, read Sec. VI A, and then
proceed with reading Sec. VIII.

II. TWO-DIMENSIONAL CONFIGURATION
OF DIAGONAL STRIPES

In this section, | introduce the basic assumption of the
present work, namely, the two-dimensional configuration of
energetically deep and spatially narrow stripes.

| assume that, at sufficiently high doping concentrations,
high-T. cuprates find it energetically favorable to organize
the spins of copper atoms into the background of antiferro-
magnetic(AF) domains as shown in Fig(d). Such a back-
ground creates an effective potential for the holes with mini-
mum at the boundaries between those dom#isdeed, if
one considers only the nearest neighbor exchange interaction
between spins, then placing a hole in the middle of an AF
domain would cost energyJdwhereas at the domain bound-
ary it costs Q. (Here J is the nearest neighbor exchange
coupling constant.The hole kinetic energy at the boundary
is also lower than inside an AF domain, because in the latter
case, the hole cannot hop to the neighboring sites without
increasing the exchange energy of the system, while, in the
former case, it can. | further assume that the gain in the
exchange and the kinetic energies outweighs the loss in the
Coulomb energy(associated with the repulsion between
holes. Therefore, holes fill the domain boundaries and thus
form stripes[see Figs. (b) and Xc)]. It is not important for
the present work whether stripes are centered on copper at-
oms, as shown in Figs.()) and Xc), or on oxygen atoms
(i.e., on the “bonds” between copper sites

The AF domains formed between the stripes fall in two
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groups, which can be distinguished by the value of an AF FIG. 1. (Color onling 2D configuration of diagonal stripega)
index n (+1 or -1 representing the sign of the AF order Stripes in spin structure isolating two AF domains with opposite
parameter within a given domain. It is easy to see in Figssign of AF vector(b) The same aga) but with holes(filled circleg
1(a)-1(c), that the AF indices; of two neighboring AF do- occupying every second site along the spin stripes. Spins on the
mains always have opposite signs. remaining stripe sites are circled to guide the @ggThe same as

A few mathematical facts about this kind of superlattice: (b) but with more stripe supercells shown.
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Iy 5= Xg, (5)
which means thatx%, or the hole content of diagonal
stripes can be set empirically at 1 hole per two stripe sites
(the same as 1 hole per lengthy22).

Below, | will use the term “stripe element” to refer to the

j q part of a stripe which constitutes a side of one AF domain.

p

On the basis of empirical relatio(b), | can estimate the
number of lattice sites in one stripe element as

¢ 1
= 5 (6)
V2 2Xg
Doping concentratiork;=1/8, taken as an example, then
corresponds td =4ay\2.

IIl. ARGUMENTS IN FAVOR AND AGAINST
0 p dx THE EXISTENCE OF THE 2D DIAGONAL
a, STRIPE STRUCTURE

FIG. 2. Fourfold splitting of magnetic inelastic neutron scatter- If .str|pes eX|§t, then the primary evidence fo_r .thelr geo-
ing peak. metrical properties comes from the fourfold splitting of the

magnetic INS peaKusually called thew,7) peal, which
e\;_vas described in the previous section and shown in Fig. 2.
. L . ; . his splitting was observed in the underdoped compounds of
tv_vo Id|e'1ag\]|(:)r:jal dlr_ectlons is€2 where( is the side length of a LSCO* and YBaCu,Os., (YBCO)®5= families of highT,
singie omain. superconductors.

For such a structure, the main splitting of the magnetic ; ; ; ; ;
. . " A straightforward interpretation of this peak pattern is that
inelastic neutron scatteringNS) peak around the AF wave g P b P =

. A h ntiferromagneti in str r . -y) i
vector(a—’z;a—’;) is expected to be fourfold as shown in Fig. 2.t € antiferromagnetic spin structure (:gx) codzy) is

. . 3 .
(Herea, is the lattice period.The characteristic wave vector modulated along both _diagonal directions by function
gp of this splitting is frequently parametrized as

cod 22(x+y)]cod 22(x-y)]. (Coordinatesx and y corre-
spond, respectively, to the horizontal and vertical axes in

The spin periodicity of such a structure along each of th

20 Figs. Xa-1(c).) The modulation function can then be
Op=""6, (1)  expanded as the sumj[€270+g 12N g2mdV%
2 +e712m%%]_hence the fourfold splitting of the main peak.
where, in the present case However, since t_he_ early indications of f[he stripe nature of
the (7, 7) peak splitting® most of the “stripe community”
ag has opted for an interpretation of experiments in terms of the
o= P (2 superposition of two two-peak splittings. The two kinds of

splitting were described as coming from two kinds of spa-

Theoretically, there should also exist other peaks correspon(%—aIIy separated - domains—each _ representing a one-

. . . . . imensional array of stripes running along one of the princi-
!Srl?utccil}?ee higher order Fourier harmonics of the stripe superbal lattice directions.

Neglecting the intersections between stripes, the fractio There, indeed, exist a number of theoffigssuggesting
giecting the ; . Pes, That stripes extending along the principal lattice directions
of lattice sites lying on the stripes is

are more favorable energetically than diagonal strigEse

5 2D diagonal stripe superstructure has been explicitly consid-
f=20VE o (3) ered,eg.,inRefs. 1,5, and 17his is, however, a delicate
4 energetic balance, which should be sensitive to numerous

) ] ] _factors, not all of which are taken into account by the above-
The assumption of energetically deep stripes made earlighentioned theories. For example, the interaction with the
implies that most holes are located inside the stripes. In thigrystal lattice and the long-range Coulomb interaction are,

case, the fraction of stripe sites occupied by holes is typically, neglected in the numerical studies, even though the
energy associated with each of these two interactions can
c=Xd_Xd () change the outcome of the competition between different
f 25 stripe configurations. Since the chances of bringing the stripe
energetics under the full control of first principles calcula-
wherexy is the dimensionless doping concentration. tions are quite slim, the choice between different stripe con-
Yamadaet al®* have discovered experimentally that in figurations(including the absence of stripeshould be made,
underdoped La,Sr,CuQ, (LSCO) eventually, on the basis of experiments.
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On the experimental side, one can find three main obseiso far only to YBCO. The significant internal anisotropy of
vations suggesting the one-dimensional nature of the stripthe lattice structure in YBCO can, in principle, induce an
patternit anisotropic INS response even of a truly two-dimensional

First, in other materials structurally similar to higisu-  stripe superstructure. Thus the final resolution of the di-
perconducting cuprates, such as, e.g., insulatingemma between 2D structure with anisotropic properties and
Lay ¢5579.05CUO,* and nickelate La,SKNiO44,**47 there  a 1D structure cannot be relied on this experiment alone.
exists di_rect experimental evidence of the 1D nature of strip@_ater note: A very recent INS stutfyhas shown that the
modulations. splitting of the (7, 7) peak measured odetwinnedYBCO

Second, the two-dimensional spin structure modulation oE : : : : :
) . rystals is anisotropic but clearly two-dimensiohal.
the form coéf(x+y)]cos{f(x—y)]pshould induce an effec- 4 P y 4

tive potential for electric charge roughly of the form IV. DYNAMIC PROPERTIES OF THE STRIPE
{cos[f(x+y)]cos[§(x—y)]}2. If the spin modulation is STRUCTURE

weak, then it follows from the Landau theory of the second
order phase transitiohs*! that the peak structure for the
charge inelastic neutron scattering corresponding to th
above potential should exhibit four main peaks aro(@).
The orientation of these peaks should be rotated by 45° witfftructure. S . .

respect to the splitting of the magnetic peak, and character- '€ first possibility is that the stripe boundaries of AF
ized by the separatiorﬁé\s’a from (0,0. The argument domains can fluctuate and then drift away. One circumstance

against the diagonal 2D spin stripes is that the above charg‘&at favors the fluctuations of stripes with or without average

peaks have not been observed, while the charge peaks € rift is that, in the approximation of the nearest neighbor
pected for the 1D superstructuré were obseded exchange and without holes placed inside the stripes, the

Finally, the third and, perhaps, the most direct experimen-SpinS located on the diagonal boundaries of AF domains have

; : ; ; : hange energy and thus are free to fige Fig. 1a)].
tal observation suggesting the one-dimensionality of th ero exc . ) .
stripe superstructure comes from Ref(8s0 supported by his would not be the case if the AF domain boundaries were

Ref. 42, where it was found that partial detwinning of a oriented along the principal lattice directions.

YBCO sample leads to a very strong asymmetry of the With holes inside the stripes, it is even easier for the
(m,m) peak splitting. This asymmetry is in quantitative stripes to fluctuate locally, but it is more difficult to drift on

agreement with the expectation that each of the twin domaing Erage. The Coulomb repulsion between different stripe el-

in YBCO has only one kind of one-dimensional stripe pat_ements, the topology of the 2D stripe superstructure and pin-

tern, and, therefore, partial detwinning should lead to a sig_nlng on impurities and structural disorder should inhibit the

nificant redistribution of intensities between the four peaks.average drift of the stripe pattern.

The arguments counterbalancing he above experimentgl [10% 1 1" olowing, | il assume tat on the tme
observations can be the following: pny P Y, P

The first observation, although important, is only indirect SUPerstructure doe's. not drift, even though indiyidual stripe
and thus cannot substitute for direct observations. elements may eXh'b'F strong transverse fluctuations.

The interpretation of the second observation is based on _The second p033|_bll|ty for the time dependence of _the
the assumption that the spin structure is weakly modulate tripe superstructure is that the AF order parameter of a given

: ) a8, F domain can fluctuate and then, perhaps, exhibit “rota-
by function COE&O(XW)]COE{%(X y)l. As a result the tional diffusion.” The relative spin orientation of neighboring

charge modulation is also assumed to be small, and, therr omains is fixed not by direct exchange interaction but
fore, the Landau theory is applied. However, if the modula,, the overall energy balance of the entire structure, which
tion of the the AF structure is strong, and the stripes areqqeq ot allow holes to leave the stripes. Spins of a single AF

indeed, deep and narrow as assumed in Sec. I, the§ymain cannot simply flip by 180°, because such a flip

the four charge peaks proposed as an indicator of the 2[4 dissolve the domain boundaries, which, in turn, would
nature of stripe pattern would only be a part of a more COMqnadict to the assumption that the high energy balance
plicated peak structure, and not necessarily the most prgz s the stripe structure. It can, however, happen that the
nounced one. For example, forﬁa more re"ﬂft'c charge\r order parameter of a given domain fluctuates slightly
profile  modulated as ¢ sa(x+y)]sm2[a(x—y)] away from the the anti-alignment orientation with respect to
+sir12[§(x+y)]co§[§(x—y)], the positions of the strongest the neighboring domains, and then either this fluctuation is
satellite peaks coincide with those expected for the 1D picdamped back to the initial orientation, or, on the contrary, the
ture. neighboring supercells adjust the orientation of their spins,
The effect of the 45° rotation of some modulation peaksand, in this way, the average orientation of the spin order
can, nevertheless, be relevant in another context. It will beliffuses away for relatively large regions of the sample. The
shown in Sec. VIII C, that this effect can lead to the check-range of the spin orientations swept by the rotational diffu-
erboard pattern observed by STM in the local density ofsion will, eventually, depend on the relative strength of the
states of Bi22128-20 local anisotropy interaction with respect to the the spin fluc-
Concerning the third argument against the 2D diagonatuations.
stripe picture, the experimental data, as they stand, appear As a consequence of the above kind of rotational diffu-
quite convincing. Yet, this kind of evidence has been limitedsion, the elastic response from the modulated AF spin struc-

Now | address the question, to what extent the stripe pic-
éure described in Sec. Il can possess dynamic properties.
There are two possibilities for the time dependence of that
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ture should be either unobservable or strongly suppressed. At
the same time, | assume that this diffusion is slow enough
and thus can be neglected in a theoretical model of supercon-
ductivity. (To date, the elastic response of presumed stripe
superstructure has been detected from the superconducting
samples of Nd-dopet}* Zn-doped>*” and “pure” LSCO°

and from La g7B8g 1254SKCUO,, see Ref. 4§.

V. POTENTIAL PROFILE AND THE TWO KINDS
OF HOLE STATES

The potential profile for the hole excitations in the back-
ground of 2D stripe superstructure is sketched in Fig. 3. This
profile consists of two main components: the network of nar-
row potential wells running along the stripes and ¢repul-
sive) Coulomb potential created around them.

It is clear from the above picture, that there are two kinds
of hole states: those localized mainly inside the stripes—I
will call them b-states—and those localized mainly in the b
shallow potential wells inside the AF domains—I will call ( )
thema-states.

It is particularly easy to discuss the situation wiién the )
in-stripe potential wells are deep enough, so that, at low tem-
peratures, almost all holes stay inside the stripes,(Bnthe
AF domains are large enough, so that the energy levels of P
both a-states andb-states are spaced closely enough, as
shown in Fig. 8c). In this case, the chemical potentjalof
holes is approximately equal to the highest energy of occu- (C)
pied b-state at zero temperature. This energy should be be-
low Ex [the minimal energy ofa-states indicated in Fig.

Em
3(c)], which is a formal restatement of the assumption that -
the stripes are deep. \g
Such a situation may well correspond to strongly under- F
doped(but superconductinguprates, in which case, the dif- H K
ferenceEy —u can be identified with the pseudogap defined
Ep

potential

as the leading-edge midpoint in angle-resolved photoemis-

sion spectroscopy. The phenomenology of the pseudogap

can then be interpreted as follows. At energies between

andEx — u, the density of states is low, because omgtates

contribute to this energy range. Moreover, silestates are FIG. 3. (a) Sketch of potential landscape within one stripe su-
extended along the diagonal stripes, the momentum of ph(percell. (b) Scheme of a st.ripe superce{t) Sketch of pqtential
toelectrons emitted frorb-states should be preferentially ori- 'andscape along the thick line drawn across g9t EnergiesE,
ented along the lattice diagonals. Above the pseudogap, tHem @ndEp correspond to point, M and P marked in figureb).
density of states gradually increases due to the contributioﬁond horlzontal lines |nd|_cat(? qgantum levels _|r_1$|de the res_pectlve
from a-states. The characteristic energy scale of this increas%Ot?m'al wells. Dashed line indicates the position of chemical po-
can be estimated as 0.1-0.2 g/typical height of the Cou- tential .

lomb potential barrieEy ~Ex shown in Fig. 8c)]. for an estimate of the level spacing of bathand b-states,
If the assumptiongA) and(B) hold at higher doping con- one takes the spacing between the lowest levels of a free
centrations, then one can envision some critical concentrgarticle having effective mass,=5m, in a box of sizet,
tion (perhaps, not far from the optimal dopip@t which the  then one obtains 40 meMHere m, is the bare electron
pseudogap measured Bg— n becomes equal to zero. How- mass) The number 40 meV is of the order of the experimen-
ever, the other measure of the pseudogap, the gradual ital values of the pseudogap and also notably larger than a
crease of the density of states abdye=u, will not disap-  typical critical temperaturé=7 me\).
pear as long as stripes remain stable and, therefore, generatelf the level spacing is, indeed, as large as estimated above,
locally inhomogeneous Coulomb potential landscape. then it is likely that there are no statésr very few due to
One should note, however, that the validity of assumptiordisordej in the energy range between the highest occupied
(B) above is particularly questionable at the doping concenb-state and the lowest-state. In such a case, the position of
trations corresponding to the physically interesting sizes ofhe chemical potential within the above energy window be-
AF domains of the ordef=4ay\2~23 A (for a,=4 A). If, comes uncertain. However, the pseudogap can still be de-
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fined ase,— ¢y, Wheree, is the lowest energy dd-states, and This selection rule, first of all, eliminates the direct hop-
ep the energy of @-state closest to the chemical potential. ping terms betweea- andb-states belonging to different AF
Formally speaking, the latter definition extends to a somedomains or stripe elements. Since this is quite a radical as-
what count_erintuitive situation characterized by inequalitysumption’ here | list several additional factors, which con-
ea< &p. While in the underdoped cuprates the strong expecgip, te to the suppression of hopping in addition to the stripe
tation is thate, > e, for both large and small values of the 4\ \ations. These factors aré) mismatch of AF back-
level spacing, the analysis of experiments in Sec. VIII D will grounds between two neighboring AF domaifii; Coulomb

;lrjgtgeis';];@?;énggg?nl;wgon‘zbemgtigﬂzrggxgi 8 I%gc '(I:'lﬁe potential barriers between neighboring AF domains and be-
1 tween intersecting stripe elemengsi) disorder in the stripe

condition e,<¢g, contradicts to the assumptiai) made J = e
above. However, as long as there are only adestates with superstrgcturewhlch is not present in Fig. 3 but should_bg
energies smaller thas,, a significant fraction of holes will Presentin a real systgmfor the subsequent treatment, it is
still be localized inside the stripes and generate the CoulomBot important, whethea- and b-states are rigorously local-
potential required for the validity of the sketch shown inized. All the above factors together should only ensure that
Figs. 3a) and 3c). the hopping terms are small in comparison with the interac-

One should also note that the conditieg<g, is detri-  tion term discussed below.
mental to stripe stability, because it implies that holes pen- In the absence of hopping, evemystate and everp-state
etrate inside AF domains. However, the emergence or disa@re to be characterized by “on-site” energigsand ¢, re-
pearance of stripes is not just the subject of one-particlspectively.
considerations. This process is governed by the balance of | assume that diagonal interactions involvireg and
global energy, which, among others, includes the contribub-states, and also nondiagonal interactions betwaestates
tions from lattice strain and quantum AF fluctuations. It is,inside the same AF domain and betwdestates inside the
therefore, not necessary, and, in fact, unlikely, that stripesame stripe element can be satisfactorily taken into account
become unstable precisely wheg=e¢,. Furthermore, in the by the renormalization of energieg and ¢y,
present work, the conditios, < e, will only imply one filled Considering the alternatives for nondiagonal interaction
a-state per AF domain, which the stripe superstructure mayterms, | limit the model choices only to the terms of the
indeed, sustain. fourth order with respect to the fermionic creation and anni-

Now | motivate the form of the model Hamiltonian, hilation operators. Most of these terms fail to qualify under
which will be introduced in the next section. the center-of-mass selection rule. Among the few terms,

Describing b-states, | assume that they are fermionicwhich qualify, the only one which will be included in the
states carrying chargeand belonging to one stripe element. model corresponds to the transition of two holes occupying
It will only be important for the model thdi-states can form two a-stateson the opposite sidesf a given stripe element
pairs with total spin 0. Whether or not they carry spin 1/2 isinto two b-states inside that stripe element avide versa
not of primary importance. [see Fig. 4b)]. One can check that the center of mass of two

An a-state is the state of one hole injected into a finite AF“initial” a-states coincides with the center of the stripe ele-
domain. It is not important for the model to know exactly the ment between them, and thus coincides with the center of
orbital and the spin wave functions afstates. It is, how- mass of two “final”b-states.
ever, important to note thdt) the spin wave function of an The above transition can be efficiently mediated by the
a-state should be fixed by the AF background, which is asfluctuating stripe element itself. The relevant mechanism
sumed to be static on the time scale of interest, @dhe  would involve two stepsStep 1:A hole hops between two
AF order parameter has opposite signs for two neighborin@djacenta- and b-states. Since the two states have different
AF domains. Therefore, if two orbitally equivaleatstates centers of mass, the transition between them should be ac-
from neighboring AF domains form a pair, then the total spincompanied by a virtual excitation of the transverse oscilla-
of that pair is equal to zero. tion mode of the stripe element “housing” thestate Step 2:

It should be mentioned here that the analogsacind  The above oscillation mode is absorbed in the course of the
b-states have been identified in the numerical study of spisymmetric transition of a second hole, which involves an
polarons in the stripe backgroufd. a-state from the other side of the same stripe element and,

As discussed in Sec. 1V, the diagonal orientation of stripegherefore, restores the center-of-mass position. In order to
predisposes them to strong transverse fluctuations. Thes@preciate this mechanism, one can look at Fig),3and
fluctuations should, in turn, strongly interact with bethand  imagine that, in the course of a transverse fluctuation, one of
b-states. The effect of this interaction is then twofold. On thethe two potential wells, which represent stripes, shifts to-
one hand, the stripe fluctuations couple to holes both elastivards the center of the figure. As a result of this shift, the
cally and inelastically, and thus suppress the hole transpowave function of ana-state in the center of the figure
across the stripe superstructure. On the other hand, they catrongly overlaps with the wave function oftastate inside
efficiently mediate the interaction between different holethe shifted stripe. Such a strong overlap constitutes a precon-
states. dition for a large value of the interaction term selected for

The first effect justifies the following “center-of-mass” se- the model.
lection rule:The model Hamiltonian can have transition el-  The above term, which can be schematically described as
ements only between quantum states having the same centeaa« bb,” is sufficient to achieve the primary goal of the
of-mass coordinate present work, which is to find at least one plausible channel
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VI. SUPERCONDUCTIVITY MODEL

(@

A. Hamiltonian

In this section, | introduce a model which is minimally
€4 sufficient to capture all the elements of the qualitative de-
scription given in Sec. V.
The model is limited to the two-dimensional superlattice
of a- andb-states, which is shown in Fig. 4. This superlattice
€b is divided into diamond-shaped supercells, like the one
shown in Fig. 8b). The supercells are labeled by single in-
dexi (or j). Each of them is characterized by the AF indgx
(defined in Sec. Il but now with subscript | will use the
terms “even supercell” and “odd supercell” to refer to the
supercells havingy =1 and »,=-1, respectively. The total
(macroscopignumber of supercells in the system is denoted
by variableN. | will further assume that the system has rect-
angular form of dimensionk, andL, along thex- and the
(b) N y-directions, respectively.
In the present model, there exists only amstate inside
each supercell described by hole annihilation and creation

P + X operatorsa; and &, respectively. Eacla-state is character-
ized by the on-site energy,. In order to implement the
Y ” 7 observation made in the previous section that orbitally

equivalenta-states from the neighboring supercells have op-
posite spins, the spins @fstates alternate together with the

>< " v a; + v + )< AF index 7, i.e., the spin ofith a-state is equal toélni.
b;i Operatorsy; do not need an additional spin index, because,
Uyt
A by; _ in this model, the spin of ama-state is not an independent
X E J’x = X quantum number but instead fixed by the lattice index

The next assumption is that, inside each stripe element
separating theth and thejth neighboring supercells, there
X 9r X exist only twob-states both characterized by the same on-site
energy e, but having different sping+1/2 or —=1/2. The
hole annihilation and creation operators for these states are
A bjj - and bﬁyg, respectively. Here indeux represents the spin
of a b-state and assumes valug¢sand —. (The assumption
FIG. 4. (Color onling (a) Model quantum states: ore state  of a well defined spin is made just for the concreteness of the
with energye, inside every AF domain, and two degeneraistates ~ model. In reality, it can, indeed, be spin but also any other
with energyey, inside every stripe element. This picture is to be quantum numbey.
compared with Fig. &). (b) Two-dimensional scheme akstates In total, this model contains orestate and foub-states
and b-states. Each circle represents the center oé-atate, while er one superceltwo b-states per stripe element times two
each_ ellipsoid extended a_long ‘t,r’1e strlpe bqundarie§ repre_septs tg?ripe elements per supergell
location of twob-sta_tes. Signs+” or N inside the circles indi- The on-site energies, (the same for alb-state$ and e,
cate the sign of AF index;.. Also shown: two operators afstates (the same for alb-state$ are both measured from the chemi-

and two operators db-states in their respective spatial domains. . : - .
o . cal potential. More detailed assumptions about their values
The transition between these two pairsaedtates andd-states rep- will be made later

resents a typical term in the interaction part of Hamiltonjan Finally, the model Hamiltonian is

for the superconductivity in the presence of the 2D arrange- m=1 7=l

ment of diagonal stripes. There exist, however, a few other? = e & a+tey, 2 by by, +9> (b).bj _aa+hc),
fourth order nondiagonal terms having formabis ab’, i L@ L

“aa<aa,” or “bb< bb,” which qualify under the center-of- (7)
mass selection rule. At the moment, | rank these terms as less

important, because either they involve states, which are towhereg is the interaction constant. Here and below the no-
far separated from each other, or they imply no charge flowation j(i) in the sum subscript implies that the sum over
between different components of the stripe superstructuréndex j extends only over the nearest neighbors of ite
Nevertheless, the effect of including additional nondiagonakupercell. Expression;, =1 in the sum superscript means that
(and also diagonalterms in the Hamiltonian would merit the summation over indek includes only even supercells
further study. [marked by pluses in Fig.(8)].
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1a 11a mation. The variational procedure will consist @f making
Bogoliubov transformation foib-states in real spacii)
truncating the Hamiltoniaii7) by leaving only the diagonal
terms with respect to the new Bogoliubov quasiparticles and
then averaging those termg@ii) making the Fourier trans-
form of a-statesyiv) introducing the Bogoliubov transforma-
tion of a-states ink-space; and, finally(v) minimizing the
energy with respect to the both transformations. Although
€3 ! straightforward, the above procedure is somewhat involved.
N U o ~u For this reason, in Appendix A, | also present an approxi-
£2 mate version of the same mean-field solution. The content of
Appendix A also reveals a number of interesting facts about
the robustness of the full solution.
FIG. 5. Sketches representing Cases IA, IB, IIA and 1IB. The first step of the variational scheme consists of the

I , . following Bogoliubov transformation:
Hamiltonian(7) can be described as an exotic two-band

IB IIB

model, where the noninteracting states are localized but still bij+ =sBj. + we i Bﬁ_, (8)
have the same on-site energy, and the interaction includes
only interband coupling. In such a model, the variational SC bjj- =sBj- - wé i Bﬁw 9

ground state exists independently of the sign of the coupling o )
constantg. In the calculations, | will, therefore, assume that WhereB;; , are the annihilation operators of the Bogoliubov

g>0. quasiparticless and w are the(real) transformation coeffi-
Two b-states per stripe element and omstate per AF  cients satisfying the normalization constraint
domain represent the minimal configuration required for Liwl=1 (10)

implementing the interaction term in the Hamiltoni@h. At

the same time, it should be noted here that the ratio “one holand ¢;; are the transformation phases chosen to be the same
per 2a5\2" extracted in Sec. Il from the scaling of INS data for all translationally equivalent stripe elements.

also corresponds to two holes per stripe element in the most There exist four translationally nonequivalent types of
interesting case of = 4a,\2. Furthermore, if the level spac- stripe elements. Each type corresponds to one of the four
ing inside AF domains is, indeed, as large as estimated ipossible orientations of vectoj—r;, wherer; andr; are the
Sec. V, then keeping only onestate per AF domain also positions of the centers of two neighboring supercells. One
constitutes a meaningful approximation for the description of these two supercells is always even, while the other one is

low-energy properties of the system. always odd. | will use the convention assigningo an even
- _ supercell, and; to an odd one. The four possible realizations
B. Classification of the model regimes of vectorr,—r, are
The present work is mostly limited to the analytical re- ¢
sults describing the following regimes: R,=—=(1,1), (11)
Case IA:g,=0, g,=0, V2
Case IB:g,=<0, ¢,=0,
Case llA:g,=0, g,=0, R
Case 1IB:8,=0, £, <0, Ro= 5~ 1.0, (12)
Critical casez,=¢,=0.
The diagrams of energy levels representing Cases IA, ¢
IB, IlA, and IIB are sketched in Fig. 5. The reasons for R;=—=(-1,-1, (13
distinguishing those special regimes from the general case V2
(e4#0,ep,# 0) are the following:(i) As shown later in sub-
section VI D, for the fixed difference,—¢y, the situations, R, = i(l -1 (14)
when eithere, or g, coincides with the chemical potential AN
(i.e., equal to zerp correspond to sharp minima in the
ground state energgii) The conditions,=0 ore,=0 leads to Phasesp;; can now be presented as
a significant simplification of the model calculations. o = ¢(rj=ry). (15)

Since most observables characterizing Cases IA and 1B
are identical, these two Cases will be referred to as Case They can have, at most, four different valugs=¢(R),
whenever the difference between IA and IB is not important®2=¢(R2), ¢3=¢(R3) and ¢,=¢(R,). | label these four
Similarly, “Case II” will refer simultaneously to Cases IIA phases by index and refer to them using the notation

and 11B. 0= o(R,). (16)

C. Mean-field solution The physical explanation, why the four phagesshould be
In this subsection | shall proceed with finding the varia-tracked in the variational solution, is given at the end of
tional ground state using the method of Bogoliubov transforAppendix A.
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HYPOTHESIS OF TWO-DIMENSIONAL STRIPE. PHYSICAL REVIEW B 70, 224508(2004)

Substituting transformatio8) and (9) into the Hamil- - + _ + +

tonian (7), and then averaging the result with respect to Ha=4eN[Sng + Wi(1~ng)] 86‘% Be(k)ae(k)

B-operators, | obtain

+£22) ag(K)ag(k) + gsw(1 - 2ng)

H, = 4e N[Sng + WA(1 —ng)] + saE a’a k
I

- x 2. [ad(k)as(~ k)V(k) + h.c], (23)
. k
+gsw(l1-2ng)> |:e_“p"z ajiRr,)* h.C.] , where
(17) V(K) = S ei¢aikRq
where “
;. 19 =2ex;{—i%¢3}cos{le+%]

Ne =
’ exp<83> +1

2 N _

T +2 exp{—i%‘]cos{mﬁ %]

Here,ng andeg are, respectively, the occupation number and (24)

the energy of 8-state; andr is the temperature measured in

energy units. Index(i,R,) in Eq. (17) labels the nearest Given the form of the interaction term in the Hamiltonian

neighbor ofith supercell such that—r;=R,. (23), the choice of canonical transformation farstates is
At this point, it is convenient to replace supercell indicesclear

i andj in Eq. (17) by the set of the radius-vectors and also to

— i da(K) At (—
separate explicitly the summations over even and odd super- ag(k) = u(k)Ag(k) +v(k)e A (- k), (29
cells. This gives .
’ 8= k) = UK)AL(- K) - o(K)@%WAK), (26
Ha=4epN[sng + W1 —ng)] + 832 a'(realre) whereA(k) andA,(k) are annihilation operators of the new
fe Bogoliubov quasiparticlesp,(k) is the phase of this trans-
+ eaE a'(rya(ry) + gswl — 2ng) formation; andu(k) anduv(k) are the real numbers obeying
Mo the following normalization condition:
x> [e‘i%E a(rya(r,+R,) +h.c.|, (19) W2(K) +0%(k) = 1. 27)
a e

An important conceptual detail to be noted here is that
where even supercells are characterized by the discrete sethnsformation25) and(26) will eventually lead a coherent
radius-vectorgr ¢} and odd supercells by the complementaryone-particle dispersion oA-quasiparticles irk-space. This
discrete sefr,}. Note: any vector of the form,+R,, belongs  kind of k-space coherence emerges only in the SC phase and

to the “odd” subset. appears to be “protected” by the Fermi statist®se the end
Now | introduce the Fourier transforgeparatelyfor even  of Appendix A).
and odd supercells Substitution of transformation25) and (26) into the
Hamiltonian(19) results in the following expression for the
ag(k) = \/%E a(r)e e, (20) energy of the system:
re

E = 4euN[s?ng + WA(1 —ng)] + 2e,. >, {UA(K)na(k)
k

ay(k) = \/%2 a(ro)e ko, (21) +02(K)[1 = na(K)]} + 2gsW(1 - 2np)
° x 2 u(k)u(K)(2na(k) = DIV(K)|cog py(K) + ¢a(K)],
The two Fourier transforms, although involving different k

parts of real space, still performed with the same set of (28)
k-vectors, because the even and the odd subsets have the
same periodicity. The projectior andk, of the k-vectors ~ Where|V(k)| and ¢y (k) are the absolute value and the phase

change in discrete stepsm2L, and 27/L,, respectively. ©f the complex-valued functio(24), and

They fall in the interval -m/d<Kk,,k,<=/d, whered is the 1
period of the sublattice of eveor odd supercells equal to na(k) = T (29
€42. The total number ok-vectors is p<8A?> +1

Ny =L,L,/(d? =N/2. 22
=Ly =N 22 Herena(k) andex(k) are, respectively, the occupation num-

After transformation(20) and(21), the Hamiltonian(19) can  ber and the energy of a Bogoliubov quasiparticle created by
be written as operatorA;(k) or A (k).
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It is immediately obvious that the minimization of the 1 d? z z
above expression requires the last term to have maximally N< g2 ﬁdka ~ dk. (41)
negative value. All the sign conventions used below will be K “d “d
such thgtgsw(l—ZnB)u(k)u(k)(Z_nA(k)—l)<0. Therefore, Energy (40) is the function of [V(k)| (via ea(k) and
the maximally negative value will be reached, when na(K) =naleak)]). In turn, [V(K)| is the function of four
cog (k) + pa(k)]=1, (30) phases(lE'B)'[v!a Eq.(24)]. Therefore, energy40) should be

. . further minimized with respect to the values of those phases.

which means thatup to an integer number of72s) As shown in Appendix B, such a minimization imposes only

Pa(k) == dy(k) 31 ©°ne constraint

+ - —-—
For the reasons discussed in subsection VI B, the rest of Por P AT P _ T
the calculations will be mostly limited to Cases IA, 1B, IIA 2 2

and IIB. Formulas for the critical case will be summarized inyheren is an integer number. Among three other indepen-

subsection VI G. For the general case, only the condensatiofflent combinations of phases, ¢,, ¢s and ¢, one should

energy will be obtainedin subsection VI D. remain free as a consequence of the global gauge invariance,
Case IA: £,=0,8,=0. . while two other combinations should, in principle, be fixed,
A natural sign convention in this case isi(k)>0 and  pyt not in the framework of the present model.

eg<0, i.e.,, atT=0, ny(k)=0 andng=1. Given the above  The main thermodynamic and transport properties of the

+ mn, (42

convention, the minimization of energg8) gives model are independent of the choice of phasgsp,, ¢3 and
¢4 as long as this choice is consistent with E42). This
u(k) = \/} L1 \/ 1 (32  Situation is somewhat similar to that of superfidide, where
2 2 7°(k) the interaction causing the superfluid transition does not fix
1+ 55 the values of all variables characterizing the order
Q (k) 9 3 .. . . .
parametef? In °He, the remaining freedom is eliminated by
magnetic dipolar interaction between nuclei, and by other
_ 11 1 small interactions. In the present case, the same role can be
v(k) = 272 7(K) (33 played, e.g., by pair hopping betweerstates orb-states
1+ belonging to different supercells. In this work, the issue of

2
(k) the “phase freedom” is not resolved. It is, however, possible
to speculate that the additional terms will lead to sufficiently

o= i_ (34) symmetric selection of phases, such that
V2 V(k) = 2{cog§kR ] —i cogkR,]}, (43
1 or
W= (35) V(k) = 2({sinkRy] - i SikR 1}, (44)
where or o
Ok = 26,(2m(K) - 1), 36 V(k) = 2{cogkR ] —i sifkR>]}. (45)

The first choice corresponds 9 =¢3=0, ¢,=¢p,=7/2; the
_ _ _ second one tg,=—7/2, ¢,=0, p3=7/2, andp,=m; and the
k) =g(1 = 2ng)(2na(k) — V(K)]. (37) third one tog,=0, ¢,=0, ¢3=0, andg,=7; The resulting
By varying E with respect tona(k) and ng, one can now Patterns of phases are shown in Fig. 6.

obtain the quasiparticle energies Having specified the parameters of transformati@®s
(9), (25), and(26), one can calculate the temperature depen-

» 1, 5 5 dence of various thermodynamic quantities. This requires a
ea(k) = at .9 (2ng = D IV(K)[?, (38)  numerical solution of the system of equatiofis), (29),
(38), and(39), which is not done in the present work. With-
) ) out the full numerical solution only the zero-temperature
__9 (2ng - 1)2 (1 = 2na(k)VK)| (39) characteristics and the SC transition temperafyrean be
k

8= 8N ep(k) evaluated. The evaluation @t. is based on a manipulation
described in Appendix C, which gives the following simple
and then express the total energy of the system as equation:
E=-S[A-2k)e) el (40 gz[exp<8_a) ] 1]
k T
Te= : (46)
Here and everywhere, the summation okeran be replaced 8e exp<3‘> +1
by integration according to the following rule: é T
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¢ Wheng=g,, the approximate solution of E¢46) is
(a) ”/2 0 gz
x + ¥ Te= 8e. (47
€a
4 0 T 0
- X - Another simple limit ise,=0, in which case Eq46) yields

T,= %. (48)

0 4 @ @ 0 "
AN AP A In general, however, Eq46) has to be solved numerically.
0 " 0 /) Since the operators of both real holes and real electrons
X ar X do not commute withA- and B-operators defined by Egs.
0 T/ (A1)—«(A3), the tunneling studies of bothA- and
X B-quasiparticlegvia a contact with normal metalkhould
show the density of states on the both sides of the chemical
potential, i.e., ak=+¢g, and e=+gg. Moreover, as long as
"% £,=0, tunneling intoB-states should result in the density of
) VA states symmetric with respect to the chemical potential. As
h far as A-states are concerned, then tunneling into them
% + X should show asymmetric density of states. This asymmetry is
Ry characterized by the ratio
- x (= ¥
o -m, @ @ o -m, Dlea(k)] u?(k) _eak) + e, (49)
X ar

(©) 0 0

®
©)

D[-eak)] v3Kk) eak)—eq

The zero-temperature tunneling spectra A&f and
B-quasiparticles are shown in Fig(aJ. The spectrum of
B-quasiparticles consists of two delta-peaks locatedeat £
A-quasiparticles have a continuous spectrum, which is fully
gapped with minimal energy,. It was obtained by first cal-
culating the density of states following from E(8) as a
function of positive energies, and then dividing the weight
between positive and negative tunneling energies according
to formula(49).

In addition to the gap and the asymmetry, two other im-
portant features of the spectrum Afquasiparticles are: the
Van Hove singularity and the sharp termination point at a
higher energy. These two features correspond, respectively,
to the saddle points and to the maximal|¥tk)|. Function
[V(k)| obtained from Eq(43) is shown in Fig. 8. It has four
saddle points akg=/2d(+1, +1). With another choice of
phases consistent with E¢42), the k-space position of the
saddle points may change but not the value\dks)|=2.

AW AP A Therefore, according to E@38), the density ofA-states ex-
0 g 0 g hibits a Van Hove singularity at
AW A s
0 x ga0= Ve +g%(2ng — 1)2. (50)
A

The maximum energy of-states, which corresponds to the
tunneling spectrum termination point, can be found by sub-
stituting the maximum value d¥(k)| equal to 22 into Eq.

FIG. 6. (Color onling Three examples of particularly symmetric (3g) which gives
patterns of phaseg;; consistent with the variational SC solution.
The values of the phases are indicated on the top of the correspond-
ing stripe elements. Each pattern is obtained by the periodic trans-
lation of four circled phases denoted in the textigs These phases It should be noted here that the appearance of the tunnel-
are constrained by E@42). The expressions fov(k) correspond-  ing spectrum ofA-states shown in Fig.(@) is quite similar to
ing to the phase pattern®), (b) and (c) are given, in respective that of the fermion spectrum obtained by Altman and Auer-
order, by Eqs(43)+45). bach from the plaquette boson-fermion motfel.

ear = Vel + 20%(2ng - 1)2. (51)
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FIG. 8. (a) Three-dimensional plot and) contour plot off\V(k)|
corresponding to Eq43). Each plot shows the first Brillouin zone

of the stripe superstructure. In the contour plot, the saddle points are

indicated with ‘'S,” and zeros with O.”

FIG. 7. (Color online Examples of the tunneling density of
states atT=0: (a) Case IA (g,=0.59,e,=0); (b) critical case

(4=0,8,=0); (c) Case IIA (¢,=0,e,=0.59). In each case, the
spectra contain two vertical delta-peaks represenBrgjates and
located at g given by(a) Eq. (38); (b,c) Eq. (59). The continuous
part in each spectrum represeftstates. It is calculated fronga)
Eq. (38); (b,0 Eq. (59). In all three cases, the spectra Afstates
have Van-Hove singularities located atxs and the termination
points located at &,;. The spectrum ofA-states in figurga) also
has a gap betwees, and —=,. The asymmetry of the spectra is

tential: in Case IA, the density dfk-states is greater on the
hole side, while, in Case IB, on the electron side.
Case llIA: £,=0, &,=0.

to that of Case IA, namelysa(k) <0 and eg>0, i.e., at
T=0, na(k)=1 andng=0.
In this case

obtained from:(a) Eq. (49); (c) Eqg. (64). Note: the positive direc-

tion of the horizontal axis corresponds to negative hole energies.
(This reflects a convention of tunneling spectroscppy.

Case IB: ¢,=0, g,<0.

1
u(k) = E, (52

In this case, if one keeps the same sign convention as in

Case |A, thenu(k) and v(k) given by Eqgs.(32) and (33
should switch values. All formulas for the quasiparticle en-

1
v(k)= 2 (53

ergies and the tunneling spectrum asymmetry obtained for
Case |A apply without modification to the present case.

Equation (46) for the critical temperature also applies but

with the trivial substitution ofe,| instead ofe,.

The only observable difference between Cases IA and IB

(54)

is the opposite asymmetry with respect to the chemical po- 02
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W FE T 55
- 2 2 7’
1+ &
where
Q =4Ngy(2ng - 1), (56)
T=9(1-2ng)CoN, (57)
1
Ca= 2 (2ma(k) = DIV(K)]. (58)
k
One can then obtain the quasiparticle energies
V(k)|Ca(1-2n
ea(k) = - g7V )|8a( B), (59)
B
eg= /el + igzc2 (60)
B b 16 a
and the total energy
E=—2N[(1—Z13)85—8b]. (61)

The choice of phasg4.6) is still constrained by condition
(42) (see Appendix B Given this constraint, the zero tem-
perature value o€, (obtained numericallyis

1
CaO =

== |V(k)|=0.958..... (62)
N7

A manipulation analogous to the one described in Appen
dix C gives the following equation for the critical tempera-

B T
safonl )4

The tunneling density of states corresponding to E59).
and (60) is shown in Fig. {c). Contrary to the result for
Case |, the tunneling density @f-states in Case Il is sym-
metric, while the density oB-states is asymmetric. This
asymmetry is characterized by the ratio

D(eg) _f_ egtep
D(-eg) W eg—sp

b

2 &
o

T (63)

c

(64)

PHYSICAL REVIEW B 70, 224508(2004)

The density ofA-states in Case IIA has Van Hove singu-
larity and the termination point located, respectively, at

’Cy(1-2n
Ep0= "~ w (65)
€B
and
Epl = \”ESA(). (66)

Case IIB: ¢,=0, ¢,=<0.

All formulas for the quasiparticle energies and the tunnel-
ing spectrum asymmetry obtained for Case IIA apply without
modification to Case 1IB. Equatiof63) for the critical tem-
perature only requires the substitution |ef| instead ofs,,
The only difference between Cases IIA and 1IB is the oppo-
site asymmetries in the tunneling spectraBedjuasiparticles.

In Case lIA, the hole side of thB-quasiparticle spectrum has
more weight, while in Case 1B, the larger weight is on the
electron side.

D. Chemical potential as a variational parameter

In this subsection, | argue that the situations correspond-
ing to u=g, (Case ) or u=¢, (Case I) should be considered
as likely scenarios describing realistic stripe systems.

The constraint on the total number of particles, which is
usually used to fixx, cannot be straightforwardly applied to
the present model for the following reasoiiy: The model
quantum states form a subset of all quantum states of a real
“striped” system, and, therefore, the actual total number of
particles cannot be reliably counte@.) The system can al-
ways readjust the periodicity of the stripe superstructure,
which would change the ratio between the number of model
states and the number of holes doped into €planes(iii)

The chemical potential can change within the model
pseudogap without affecting the total number of particles
occupying model state@t T=0).

It is, therefore, reasonable to treat the chemical potential
as a variational parameter, which is fixed by the minimiza-
tion of the total energy of the real system considered as the
sum of the contribution from the model states and the con-
tribution from environmentunspecified hepe

The model contribution to the total energy as a function of
the chemical potential can be obtained by solving the model
in the general case,# 0, ,# 0. The description of general
case is as straightforward as that of Cases | and Il. However,
the minimization routine produces an integral equation,
which couples the values ai(k), v(k), s andw, and which

An important feature of Case Il, which is absent in Case |55 to be solved numerically.

is that the energy spectrum @-quasiparticles is gapless

Figure 9 shows three representative curves for the evolu-

with the linear density of states around the chemical potenggon of the SC ground state energy as a function of the

tial. Indeed,e5(k) given by Eq.(59) touches zero in an iso-
lated set of nonanalytic points corresponding|¥k)|=0.
For the specific choice oW(k) given by Eq.(43), the
zeros of |[V(k)| are shown in Fig. 8. They are located at
Ko=5(¥1,0) andky=5(0, £1). This feature is a direct con-
sequence of the phase relatiof?). A deviation from that

chemical potential. Each curve was obtained numerically for
the fixed values ot,, ¢, andg indicated in the caption. In
order to allow for the variation of:, the reference point for
one-particle energies was shiftgoh this part only from
©=0 to some arbitrary value,=0. The SC ground state
energy was measured from the energy of the normal state.

relation would produce a line of zeros, which implies a non-The absolute value of thus defined quantity is conventionally

zero density of states af,=0.

called condensation energy.
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ok ' e e contribution at exactly the same values p@fas those ob-
tained without environment. If only the model contribution
were taken into account, then it would follow from Fig. 9
that the minimum corresponding to Case | is the global one.
_0.21 | However, the environment contribution can change the rela-
tive values of energies, corresponding to the two minima and
thus shift the global minimum to that of Case II.

In principle, it is also possible that environment intro-
duces an extra energy minimum in addition to the two cusps
described above, and, moreover, that additional minimum is
the global one.

The resulting possibilities can be summarized as follows:
Cases | and Il of the present model describe two different SC
states corresponding to two different positions of the chemi-
cal potential. In the “best case” scenafishich | also con-
€a sider more likely, one of these two states corresponds to the
global energy minimum of the real system, while the other
one represents a metastable state. In the “worst case” sce-
nario, both SC states are metastable, but the true SC state
may still be describable by the present model with- 0 and
Ep + O
“lpees T \/’ 1 It is further possible that the position of the chemical po-
£a tential near the sample surface is different from that in the
bulk. Therefore, the SC state, which is metastable in the
bulk, may become stable near the surface aind versaln
-1.2¢} £p ] principle, it is also possible that the system phase separates

—01.5 0 015 1 and forms domains describable either by Case | or by

u [units of g] Case Il. . N
In Sec. VIII E, I will try to discriminate between the SC

FIG. 9. Condensation energwith the negative signas a func-  states corresponding to Cases | and Il by making a compari-
tion of the chemical potentiak. Each of the three curves was son between the model predictions and the experiments.
calculated on the basis of Hamiltonién by fixing e,, &, andg and
then varyingu. In the calculationsg and ¢, were equal, respec-
tively, to 1 and 0 in all three cases, whitg admitted the following Bogoliubov transformationés), (9), (25), and(26) imply
values(top to bottom: 0, 0.6 and 1.1. The solid/dashed lines indi- that, belowT,, the following anomalous correlation functions
cate the SC/non-SC ground state. The deeper minima of the low&{gye nonzero values:
two curves correspond to Case |, and the shallower ones to Case II.

The single minimum of the top curve corresponds to the critical ~ Wa(k) = (ag(k)ay(— k)) = u(k)v(k)e?a®[2n,(k) - 1],
case. The vertical coordinates of the middle and the bottom curves (67)
are shifted by —0.6 and -1, respectively.

(units of g]

€ar€p

Condensation energy per supercell
!
o
@]

E. Anomalous correlation functions

In a generic situatioritwo lower curves in Fig. 9 the Wy(rijr pn) = (Bjj -bpn+) = SWEiI (L = 2ng) 81 jj = I py)
ground state energy has two minima: the deeper one— (68)
corresponding to Case |, and the shallower one— N )
corresponding to Case II. For a fixed value gfthe SC where r;; represents the positions of the centers of stripe
transition is possible only, when the value gflies close elements, andy(...) is defined as Kronneker delta on the
enough to eithere, or &, Dependently on the ratio discrete superlattice, i.e., it is equal to 1, when its argument
lea—ep|/ g, the values ofu compatible with superconductiv- is zero, and 0 otherwise. The two correlation functi¢®®)
ity fill either one finite interval including botle, ande, or ~ and(68) are the two components of the SC order parameter
two disconnected finite intervals arousg ande,. The top ~ corresponding t@- andb-states, respectively.
curve in Fig. 9 illustrates a nongeneric situation, when the In the real space, the first component can be defined as
two minima coincide. The resulting single minimum then ey = Nalr.
corresponds to the critical case. Walriry) = alrjatry). (69)

The main purpose of Fig. 9 is to illustrate, that, not only It has nonzero values only when its two arguments corre-
do Cases | and Il correspond to local minima in faede-  spond to the supercells of different kigice., even and odd
pendence of the ground state energy, but also that thedéhe formal structure of¥,(r;,r;) can be expressed as fol-
minima have the form of cusps. This implies that, if thelows:
environment contribution to the total energy of the model- 5
plus-environment system is a smooth functionuotthen the W(Falo) ==, Wy(k)ekreTo), (70)
total energy should have the cusp minima due to the model N7y
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Vol le) == Vallaly), (70 are captured in Fig. 6. This symmetry is characterized by the
pattern of phaseg; indicated on the top of each stripe ele-
Vo1l ) =Wa(rorl) =0 (72) ment, and, in addition, by the pattern of index

The order parameteWy,(rj;,r,,) has no dependence on
where W,(k) is given by Eq.(67). Note: Eq.(71) is the  the relative orientation of;; andr ,,. Therefore, it can be
consequence of the fermionic anticommutation rule. described as having orientatiorewave symmetry with ad-

The coherence length of the order paramelg(r;,r;) ditional strong phase dependence on the center-of-mass po-
should be inversely proportional to the one characterizingition of the paired holes.
V(k) in k-space. The examination of E@4) reveals that the The symmetry of¥4(r;,r;) is even more different from
characteristic scale o¥(k) is 7/|R,|=m/€. Therefore, the conventional analogs. It includes the strong dependence on
coherence length associated withy(r;,r;) can be estimated ¢;;, which traces the phase dependenc®gffr;,r ), but, in
as the supercell sizé. It is likely, that on a longer scale addition, W,(r;,r;) also exhibits a sign change under the
W,(ri,rj) exhibits an oscillatory power law decay with the translation by one period of the stripe superstructure. This
period of oscillations being of the order 6f sign change reflects the switching between even/odd and
The coherence length associated withis equal to zero, odd/even order in Eq.72).
which means that onl-states belonging to the same stripe
element form coherent pairs. F. Supercurrent and the penetration depth
Two useful quantities, which will later be required in the

) The superconducting properties of the present model are
calculation of supercurrent, are

unusual, because the superconducting phase stiffness comes

Waij) = ‘Ifg'”'(ri,rj) = (ga)"" (73) solely from the interaction term of the Hamiltoni@r). This
term induces the fundamental “internal supercurrent” associ-
and ated with the transfer of particle density fromstates to
_ —h R b-states andvice versa The translational supercurrent then
Wi = Worijari) = By, Dy 0) (74 appears as a gradient of the internal one.
where the superscript “n.n.” indicates that indideand j The operator expression for the internal current fridim
represent the nearest neighbors. a-state to the surroundinig-states can be obtained by con-
In Case |, the explicit expression foky;, can be ob- sidering the time derivative of the particle density operator
tained by substituting the values sfandw given by Eqgs. d i
(34 and(3Y) into Eq. (68) for rj;=r,, which gives Janiy =~ d—t(a;fai) =— %[Hafai -a'aH]
1.
Wiy = —€%i(2ng — 1). 75 i
bij) = 5 i(2ng—1) (75) - %gz (b; by _aa;—h.c). (80)
i)

One can then obtait¥ 4, by making use of the fact that o o
Here and everywhere in this subsection, indeorresponds

Oy Eint (76) to an even supercell, and indgxo an odd one.
b(ij) * adij) = 4gN The sum in Eq(80) has four terms—each corresponding
) ) _ ) to the transfer of the particle density from tiie AF domain
where Ey is the interaction part of the enerd?8) (i.e.,  into a nearby stripe element labeled by the pair of indiges

Ein=29SW1-2p)%...). After Ey is evaluated with the Therefore, the operator of translational current through the
help of Egs.(32)«35), one can use Eqs/5) and(76) to  jth supercelfto be denoted ad) can be obtained by assign-

obtain ing the direction to the flow of particle density associated
(1 - 2ng) 7€ < [1 - 2np(K)JV(K) |2 with each of the above four terms, i.e.
|
Vi = 8N E ea(k) (77
J=- ZﬁE i (b} .b; _aa;—h.c.), (81)
i)

The role of indexs, in Eq. (77) is to supply factor 1 or -1
dependently on whether the first index ;) corresponds  wherefi; is the unit vector in the direction from thith to the

to an even or an odd supercell. jth supercell.
In Case Il, the expressions analogous to EJ3) and The translational current is created when the probability
(75) are of an a-particle to hop into one of the surrounding stripe
1 . elements is greater in one direction than in the opposite one.
Wagij) = Zme“Pij' (78)  For this reason, the translational current can only be carried

by a-states. The number di-particles hopping on the both
, sides of a given stripe element is the same for each quantum
gCe¥i(1 - 2ng) (79  transition generated by the Hamiltonieh.
8eg ' Now, | show that the phase, which drives the internal

supercurrentis
The essential elements of the symmetry of the SC order

parametel75) and(77) or, alternatively, Eqs(78) and(79) bap=— da(k) — Py(K). (82

Wyij) = =
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In equilibrium, according to Eq(31), ¢,,=0. The state tional feature of the present model is that the supercurrent is
with nonzerog¢,, can be obtained by modifying the Bogo- induced not by the phase gradientsdof andW¥,, separately,
liubov transformation fotb-states[Eqgs. (8) and (9)] as fol-  but by the gradient of the phase difference betwdgrand
lows: V¥,. Keeping up with convention in the literature, | will refer

Dy =SBy + we %1 (83 {0iive hasociations wih some kind of real density would be
by = SBH—‘Wé(q)ijﬂ/)f"b)e’ﬁ+ (84) miTIne:E\:oggg :?t:\héssiiss,?i.tution of Eqér5) and (77) into Eq.
while keeping the transformatiof25) and (26) for a-states (92) gives
g I 1 o, e el coreon oot -
(&ay) = Wyj) (85) 1Az eallo

and, in Case Il, the analogous E¢g8) and(79) lead to

_ed(1-2p)C
4 32ﬁZOSB '

Now | calculate the in-plane penetration deptlof mag-
netic field directed perpendicularly to the SC planes.

The natural expectation is that the gauge-invariant gener-
alization of Eq.(91) accounting for the presence of the vec-
tor potential of electromagnetic field has form

and, forb-states belonging to the same stripe element

(byj-byj) = W€ Peo, (86) (94

whereW;, andWy,;, are theequilibriumvalues of the two
SC components given, in Case |, by E¢&b) and(77), and,
in Case I, by Egs(78) and(79).

The averaging of operat@B0) with the subsequent sub-
stitution of Eqs(85) and(86) gives the internal supercurrent

29 sin ¢y

Japiy) =~ 7

DRI e (87) _ 2e
i(i) bl e =S, , (95

V pap — %A
Each term in the above sum is a real number given by E
(76). [Spatially homogeneous internal supercurr@w can
exist, when the particle density oscillates betweenand
b-states).

The translational supercurrent emerges, whkp be-
comes position dependefib be denoted ag,(r;;)]. In this

C\Nherec is the speed of light. In the present work, | do not
derive Eq.(95) but take it as an additional postulate.

The equivalent of the London limit in the present model is
A> (. In this limit, the standard resa®for the penetration
depth, which follows from Eq(95), is

case, the relevant Bogoliubov transformation lestates is A2
Lo+ IRt A= : (96)
bij+:SBj++Wé ij " Pabllij Bij—’ (88) 8’7Teszg
by =SB - Wé[¢ii+¢ab(rii)]Bﬁ+. (89) For the numbers relevant to high-cuprates, the value &,

is very small, i.e.\ is large, and, therefore, the London limit
The transformation foa-states is still given by Eqg25) and  is well fulfilled (see the estimate in the end of subsection
(26). The averaging of Eq(81) under the assumption that VI G).

phasese,(rj;) are small and have weak positional depen- The vector potential entering E@95) should be inter-

dence, gives the following expression for the translationaPreted as describing magnetic field averaged over a large
supercurrent number of supercells. It is, therefore, possible, that, on the

scale of¢, the true magnetic field fluctuates around the ex-
IH=- g_gwb Wiy V dba- (90) ponentially decaying penetration profile characterized\ by
' 4 b Al The relationship betweef, and the zero-temperature su-
perfluid density(represented as 17) is plotted in Fig. 10.
The points in this plot were obtained by fixing the value of
the interaction constar and then varying:, (in Case ) or

Note: according to Eq(76), the value of the product
Wi Wagj) is independent of the orientation of the stripe el-

ement labeled by indicei§. _ &, (in Case I) from zero to very large values. The
From Eq.(90), the supercurrent density can be obtainedr _coordinate of each plot point was obtained by taking a
as pair of values(e,,g) or (gp,g) and then solving numerically
e . Egs.(46) and(63) for Cases | and II, respectively. The X%
1= E{)(JQ:S(,)V Pap, (91) coordinate was obtained for the same valueg«fg) or
(ep,9) by calculatingS, according to Eqs(93) or (94). The
where theoretical plot of Fig. 10 is compared with experiments in
< &9 9 Sec. VIIID.
v hz, i) = ) %2 G. Critical case: g,=¢,=0

Zy is the transverse distance per one SC plane, arite In the critical case, all the formulas obtained earlier have
charge of electron. As follows from E¢91), the unconven- very simple form. In particular, the SC transition temperature
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T. [arb. units]

0 1 2

1
A—Z[arb. units]

FIG. 10. (Color onling Critical temperature vs superfluid den-
sity (represented as ) at T=0: solid line—Case I; dashed line—

Case Il. The plot points are calculated as described in the text.

is given by Eq.(48), which is rewritten here as

g=4Tc. (97)
Substituting Eq(97) ande,=0 into Eqs(38)—40), (50), and

PHYSICAL REVIEW B 70, 224508(2004)

non-SC phase
. with unknown stripe properties
striped Ry
non-SC phase‘ ’

striped SC phase

0.05 0.15 0.25

Xa

FIG. 11. Cuprate phase diagram proposed in the text.

of real materials, if the 2D diagonal stripe hypothesis turns
out to be correct.

The basic underlying feature of this model—the potential
background, which localizes botl and b-states,—should
survive the generalizations. In particular, the actual shape of
the AF domains can be quite distorted and thus noticeably
different from the perfect diamond shape drawn in Fig. 1. It
is only important that the stripes divide the plane into finite
AF domains with the alternating sign of the AF order param-
eter. In the model, the disorder in the shape of AF domains
can be accommodated through the disorder in the values of

(93) and using Eq(62) when necessary, the zero—temperaturega ep andg.
values of several key quantities can be expressed as follows. other supposedly realistic features include the coherence

Eno = 4TC’ (98)
eg=CyTe, (99)
EGS: - 2Ca0TcN (100)
and, finally
fic
Ny . By (101)
29 WCaOTc

length of the order of and the decrease of the critical tem-
perature with the increase ¢f,—¢;|, which is associated
with the pseudogap.

Finally, the very unconventional translational symmetry
of the SC order parameter described in Sec. VI E should also
survive generalizations.

B. Phase diagram

In this part, | give the description of the phase diagram of
high-T, cuprates, which is based, in part, on the SC model of

The tunneling spectrum for the critical case is shown i”Sec. VI, and, in another part, on a few facts borrowed from

Fig. 7(b).

the next section, where the model predictions are compared

I now assume that one model layer represents one COPP&jth experiments. The phase diagram itself is shown in

oxide layer of a real compound, which allows me to expresg
the condensation energy per one in-plane copper atom as

U - [Ecda _ 2CacTedl

07 Ne? ¢

SubstitutingT.=90 K, ¢=4a,2~23 A andz,=6 A into

Egs. (98), (99, (101), and (102 and recalling that

C,0=0.958..., | obtain: epp=31 meV, eg=7.4 meV, U,
=5.4 K and\=417 nm.

(102

VII. DISCUSSION

A. Realistic features of the model

ig. 11.

| start at doping concentratiax= 0.06. From the view-
point of the hypothesis adopted in this work, this is the low-
est concentration at which the 2D stripe pattern stabilizes by
virtue of some unknown energy balance. At this concentra-
tion, according to the description given in Secs. Il, V, and VI:
(i) the length of the stripe supercell can be estimated as
€=1/(2xy) =8 lattice sites{ii) 5> ¢y, (iii ) the value of the
pseudogap:,—¢, is maximal; and(iv) the superconducting
transition temperature is minimal.

At higher doping concentrations, the size of the AF do-

mains decreases, eventually saturating &t4ag\2. Simul-
taneously, the pseudogap- ¢y, also decreases. The rationale

In this subsection | list the features, which | expect will for the latter assertion is that, at some threshold doping con-
survive the adaptation of the above model to the propertiesentration, stripes should disappear, which implies that holes
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should be expelled from them. According to E@46) or VIll. COMPARISON WITH EXPERIMENTS
(63), the decrease of the pseudogap is accompanied by the
increase of the critical temperature. ) )
The interaction strengtly should also change with the ~ The primary concern in the context of the present pro-
increase of doping. It is not obviows priori whether it in- posal is that no evidence of stripes has been observed so far

creases or decreases, but, at least, it is likely that the value g? most o%timallyhdoped an(:] over:_doped matleriqls. Ilt Sho‘#d
g never approaches zero, while the valueegf-¢, either e pointed out, however, that this proposal stipulates that

reaches zero at some critical doping or becomes very smaﬁtrong transverse fluctuations of stripes mediate supercon-

This suggests that the relative change of ¢, across the SC ductivity. .If true, th|_s V.VOUId imply that any attempt to ob-
doping range has stronger effect on the observable quantitiéc’s?rve stripes by pinning charges_ or freezing spins, would

. Suppress their transverse fluctuations, and thus suppress the
than the relative change of

If th I f d d ¢ the doni SC transition or, at least, significantly reduce the critical tem-
f'the value ofg were independent of the doping concen- perature. Such an inverse relation between the amplitude of
tration, then the maximum of

" , 1 of; would be achieved at a he gtripe fluctuations an, can explain why the stripes are
critical doping corresponding t@,~ep=0. However, be- past observable in cuprates having low&, such as

cause of the presumed dependencg of the doping level, nderdoped**® Nd-doped* and Zn-dope#-47 LSCO. The
the optimal doping concentratioRy, corresponding to the transverse fluctuations of stripes should be strongly coupled
actual maximum off, can be slightly shifted with respect to tg the lattice. Therefore, some kind of isotope effect should
the critical one. The comparison with experiments in Secalso be present in such a system.
VIII D indicates that the above notion of the critical doping ~ The proper treatment of the single particle excitations in
coincides with the “critical dopingkyc=0.19 identified ex- the nonsuperconductingiormal 2D stripe phase is not de-
perimentally in Ref8153 As expected,x,,~0.16 is not veloped in this work. It is, however, difficult not to see that
much different fromx,c. The fact thato<Xyc suggests that the description of the normal state pseudogap given in
g decreases as the doping level increases. Sec. V, while following only from the basic facts about the
Below the critical doping, the inequality,> ¢, implies 2D stripe geometry, bears a strong resemblance to the experi-
that the real materials can be describable by the model eithépental facts.” In particular, the disappearance of the

as Case IA or as Case liBee Sec. VIII E for the discussion Pseudogap in the diagonal crystal directions can be naturally
of this issug. explained by the presence of holes inside the diagonal

Above the critical doping, it is, in principle, possible that stripes. In the model ffamework, t'he absolute value of'the
either e,— &, stays equal to zero, while only changes, or pseudogafpe,—&,| constitutes the primary factor suppressing

e,—e, becomes negative, which means that the absolutd'® SC transitiorisee Eqs(46) and (63)]. N

value of the “inverted” pseudogap starts growing again and ]n the .SC state, the mgdel predl_cts such distinctive prop-
thus additionally suppresses the critical temperature. ThE'iES as(i) the suppression of¢ with the growth of the
analysis of experiments in Sec. VIII D favors the invertedF’SeUdoganga_.8b| [see Eq§(46) and (63)];. (i) the emer-
pseudogap scenario and, given the model choice betwedF"c€ of quasiparticles having coherent dispersidaspace

Cases IB and IIA, clearly points to Case IB. As discussed iP"Y atT<T [see the remark following Eq27)]; (iii) the
Sec. V, the stripe superstructure may, for a while, remairf?SYMmetry of the tunneling density of sta{ésy. 7(a)]; (iv)

. i density of states around the chemical poteras.
stable even after,, becomes greater thasy. It is further Inear 4 . .
possible that the SC transition can contribute to the stabilij(b) and 1c)); and(v) low superfluid densitySec. VI . In

zation of stripes by lowering the total energy of the stripethe followmg. su'bsectlons vill E?_\,/“I D. ' show 'that SOme
phase. of the quantitative model pre(_j|ct|ons made without adjust-

In the context of the present proposal, stripes should exigiPle parameters also agree with experiments.
in the SC phases of both underdoped and overdoped cu-
prates. It is, however, unclear, whether, in overdoped cu-
prates, stripes can be stabilized without the SC transition. In this subsection | compare the theoretical tunneling
Negative answer to this question would imply that above thespectra atT=0 with experimental tunneling spectra at
SC transition, overdoped cuprates enter a stripeless norma@lk<T.. Therefore, the discussion will imply the zero-
state. Otherwise, the normal state of overdoped cuprates magmperature values of all relevant quantities.
still exhibit some kind of stripe order. In turn, if overdoped  The model predicts two kinds of contributions to the tun-
cuprates enter stripeless phase simultaneously with the S@eling density of states correspondingAoandB- Bogoliu-
transition, then this important aspect cannot be captured blyov quasiparticlegsee Fig. J. If the Van Hove singularities
the model of Sec. VI. In such a case, the model scenario foat te5g and the delta-function peaks atgexist at all, they
the overdoped situations becomes doubtful. should be identifiable in experimental data.

The conceptual difference between the above description The difficulty now is that the tunneling spectra of high-
and the popular idea of competing orders is that, in thecuprates have, in general, only one prominent feature,
present proposal, the two orders are not competing, but, onamely, two SC peaks at the opposite values of the bias. The
the contrary, cooperating: the stripe order is crucial for theenergies of the SC peaks are, usually, denotedAgsatid A
existence of the SC transition, while the SC transition caris referred to as the SC gap. In the superconductivity model
also help stabilizing the stripe order. of Bardeen, Cooper and Schrieff@8CS), A/T.=1.76. In

A. Qualitative aspects

B. Tunneling characteristics
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high-T,. cuprates, the reported values &f T, show signifi-
cant variations but, typically, fall in the range between 1.5
and 7, with 4 being a representative value. In the present
model, the ratioge |/ T, and|eg|/ T, can also vary broadly.
Their representative values are 4 and 1, respectivebe
Sec. VI G. Having observed thak/T,~ |eao|/ T, | identify
the experimental SC peak with the Van Hove singularity in
the density ofA-states. This identification will later prove to
be consistent with a number of other qualitative and quanti-
tative facts. In the following, the variables,,| and A will
refer, respectively, to the theoretical and experimental values
of the same quantity.

The identification ofB-states is more problematic. The
evidence for their existence is nontrivial, but largely indirect.
It is based on the STM observations of the checkerboard

\

Differential conductance [GQ™!]

patters in the local density of statdsDOS) of Bi-221218-21 0 I A PR
(to be discussed in subsection VII).GAnother possibly re- -100 -50 0 50 100
lated observation is that of asymmetric resonance peaks in Sample Bias [mV]

YBCO by Derroet al. The asymmetry and the energy range
of those peaks agree well with the expectations for the delta
peaks due td-states[see Fig. {©)].

There are two possible explanations why, in general,
B-states are more difficult to observe experimentally.

The first explanation is that, in a real system, the on-site
energiese, can be distributed. As a result, the spectrum of
B-states may become broad and featureless.

The second explanation is that the matrix elements for
tunneling into b-states(and henceB-state$ can be much 1 |
smaller than those fa-states. This, in turn, can be related to i }*
the fact thatb-states are localized in the narrow regions in- { i ‘
side the stripes, whil@-states spread over the AF domains | '
and thus have a broader “interface” with the environment. \ /
Alternatively, it might happen that-states have exotic quan- -
tum numbers, in which case tunneling into them can be sup- 0 w ! N 74 w
pressed at all. -100 -50 0 50 100

In the rest of this subsection, | assume tBastates are sample Biae. [my]
mostly unobservable, and, unless specified otherwise, the ) i
tests of the model will amount to the comparison between_ "'G- 12. (Color onling Comparison between zero-temperature
the density ofA-states and the experimental tunneling spec-moqel.Calcmaltlons and 'OW'temp.erature STM spectra .Of BI-2212.
tra. Solid lines represent the theoretical density of states in the same

o . . . . in Fig. 7. Dashed lines represent experimental spectra ex-
I limit the choices to the special Cases | and Il defined in/ o s 1h Hid b P P

; . tracted from the following reference@) Fig. 2 of Ref. 54(regular
Sec. VI B. Therefore, the model calculation of the density ofIDart of Bi-2212 surface (b) Fig. 7 of Ref. 55.

A-states only requires the knowledge of two parametgrs:

!

Differential conductance [GQ!]

ande, in Case |, org andeg, in Case Il. UsingT, andA as The selection of Case | implies a strong qualitative pre-
input parameters, | can both discriminate between Casesdiction of asymmetric SC peaks. However, the knowledge of
and I, and determine the values @fe, and ey, A andT, alone cannot help to discriminate between Cases IA

The inequalityA/ T.>4 can appear only in the framework and IB, which correspond to the opposite “polarities” of the
of Case I, in which caség,| andg should be obtained nu- SC peak asymmetry. However, if Case | is identified in un-
merically from Egs. (46) and (50) (with ng=1 and derdoped cuprates, then the strong expectation is dhat
eao=A). The opposite inequalityd/T,<4, can only corre- > g, which implies Case IAlarger SC peak at the negative
spond to Case Il, i.elg,] and g have to be obtained from biag. The identification of Case Il implies that the SC peaks
Egs.(60), (63), and(65) (with ng=0,C,=C,y andepy=—A).  are symmetric.(The inequality e,>¢, would then favor
The situationA/T.=4 corresponds to the critical case de- Case IIB for underdoped cuprates.
scribed in Sec. VI G. In Fig. 12, the model calculations are compared with two

After the model Hamiltonian is specified, the following particularly well resolved STM spectra of Bi-2212. The ex-
tunneling characteristics can be predicted without adjustablperimental spectrum in Fig. 1® was extracted from Fig. 2
parameters(i) the asymmetry in the density &f-states or of Ref. 54. It is representative of “regular” parts of the
the absence theredfi) the maximum energy oA-statese 5y, sample surfacéi.e., vortex free and impurity frgeln this
and also(iii ) the expected positionseg of the delta-peaks case, the experimentally determined numbArs32 meV,
representing3-states. T.=87 K and A/T.=4.3 imply Case | with|e,/=7.3 meV
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and g=31 meV. The theoretical spectrum presented in Asymmetric SC peaks corresponding AdT.<4 have
Fig. 14a) corresponds te,>0, i.e., to Case IA. been reported for

The experimental spectrum in Fig. (b2 was extracted LSCO in Ref. 71,
from Fig. 7 of Ref. 55. The relevant experimental numbers TI-2201 in Ref. 66,
A=28 meV,T.=92.3 K andA/T.=3.5 imply Case Il with TI-2212 in Ref. 69.
lep|=4.3 meV andg=32 meV. The asymmetry of the theo-  However, in the case of LSCO, the difference between the
retical delta-peaks in Fig. 1B) corresponds te, <0, i.e., to  peak heights was certainly within the limits of experimental
Case IIB. The vertical scale of the theoretical plots in Fig. 12uncertainty. In the case of TI-2201 and TI-2212, the overall
was chosen to fit best the experimental data. impression from the cited references is that the SC peaks are

It thus appears, that not only does the model give thdargely symmetric(Most of the spectra reported in the same
correct prediction of the presence or the absence of the Sfeferences and measured on similar junctions pass as sym-
peak asymmetry, but also it predicts the degree of asymmetmpetric and contribute to the “supporting evidenge.”
quantitatively. One should also note that the termination Unlike the two spectra shown in Fig. 12, most of the
points of the theoretical spectra have experimental countemeasured tunneling spectra have more rounded SC peaks,
parts in the form of the shoulder-like features located apwhich may be the consequence of limited experimental reso-
proximately at energieses,; predicted theoretically. Finally, lution. Since a significant broadening of a SC peak also shifts
the delta-peaks shown in Fig. (8 are located at &  the position of its maximum, it is possible that, a measured
=+7.3 meV. These are precisely the energies, at which, isymmetric spectrum indicates the rafid T, greater than 4,
Ref. 54, the vortex cores have shown anomaleyrametric ~ while the true ratia\/ T, is slightly smaller than 4One such
“humps” absent in the regular SC regions. The local densityan example is given in Ref. 55The resolution-limited
of stategLDOS) associated with the above humps was latertbroadening of the SC peaks can, therefore, be responsible for
shown to exhibit a checkerboard pattern inside the vortexat least a part of the “contradicting evidence” in Bi-2212.
cores!® In subsection VIII C, | will show that this pattern is Taken as a whole, the above review of experimental data
precisely what one should expect from LDOS associatedlearly supports the rul€l03). Furthermore, this rul¢103)

with B-states. seems to unify the experimental data, which, otherwise, may
Now | discuss to what extent the model-based rule appear contradicting to each oth@rwill return to this issue
in Sec. VIIIE)

“AlT;> 4 ~ asymmetric SC peaks Another interesting fact is that, in the references cited

i above, the SC peak asymmetry of the bilayer compounds is
AT, <4 = symmetric SC peaks (103 opposite to that of the trilayer compounds: the bilayer com-
is supported by other STM or point-contact pour_lds have the higher SC pe_:ak mostly at the negative bias
superconductor—insulator—normal-met&B-I-N) experi-  [as in Fig. 12a)], while the trilayer compounds have the
ments. The values o used below are obtained as half of higher peak at the positive bias. _ _
the difference between the energies of the SC peak maxima. Rule (103) can be compared with a more simple predic-

Supporting evidence: tion made by Altman and Auerbachthat the asymmetry of
Clearly asymmetric SC peaks corresponding\d,>4  the kind shown in Fig. 1@) is inherent in all hight. cu-
have been reported for bilayer compounds prates. The lack of the asymmetry in some of the tunneling
Bi-2212 in Refs. 54 and 56—62, spectra and the opposite asymmetry of the tri-layer com-
HgBa,CaCuOg, s (Hg-1212 in Ref. 63; pounds would contradict to the above prediction. _
and trilayer compounds Finally, one additional clear prediction of the model is
Bi,Sr,CaCls010.5 (Bi-2223) in Ref. 64, that the inequalityd/T.> 4 implies that, a§ approacheg.,
HgBa,Ca,CuOg. 5 (Hg-1223 in Refs. 63 and 65. the energy of the SC peaks approaches the finite Vialje
The values ofA/T, extracted from the above references [S€€ EQ(50)]. The inequalityA/T. <4 implies the zero en-

cover the range between 4.1 and 6.9. ergy of the SC peaks af=T. [see Eq.(65]. The above
Symmetric SC peaks corresponding A0T.<4 have Prediction s difficult to test, because the SC peaks tend to be

been reported for single layer compounds totally “washed out” in the vicinity ofl.. Nevertheless, one
HgBaCuO,,s (Hg-120]) in Refs. 63 and 64, can observe that the first part of this prediction is consistent
TI,Ba,CuQ; (TI-2201) in Ref. 66; with the trend in the tunneling data from Refs. 59 and 72-75.
and bilayer compounds The second part is more difficult to test, but it also appears to
Bi-2212 in Refs. 55 and 56, also Pb-doped Bi-2212 inPe consistent with the results reported in Refs. 74, 76, and

Ref. 67 77, though the results from Refs. 73 and 75 leave either
YBCO in Ref. 68, ambiguous or the opposite impression.

Tl,Ba,CaCyO, (TI-2212) in Ref. 69.
The values ofA/T, extracted from the above references

cover the range between 1.7 and 3.9. C. B-states and the checkerboard patterns observed by STM

Contradicting evidence: The only experimental evidence, which, at the moment, |

Symmetric SC peaks corresponding 20T.>4 have can identify withB-states is the checkerboard modulation of
been reported for the LDOS observed by STM in the vortex cofésThe

Bi-2212 in Refs. 55, 59, 60, and 70. analogous modulations observed in the normal state of
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factor would require quantitative analysis extending beyond
‘ ‘ the scope of the present wokR he idea, that a different kind

of the quasiparticle interference can entirely explain the

energy-dependent modulation patterns, was advocated in

‘ . @ ‘ Refs. 20 and 80

Since, in the 2D diagonal stripe picture, the experimen-

tally observed checkerboard periodicity oddimplies the
. @ o 0 0 d checkerboard p . .

true underlying periodd =4a5y2 along the diagonal direc-

. . . . . . tions, a direct test for the existenc_e of the dia_lgonal super-
structure can consist of reconstructing the position of hypo-
thetical diagonal stripes from the knowledge of the
‘ . . ‘ checkerboard pattern at lower energies, and then checking
whether the LDOS modulation at higher energies has more

‘ . pronounced correlations between th@pproximately

equivalent positions belonging to different supercells.
Finally, the in-stripe hole content corresponding to the

) present interpretation can be estimated by substituting
FIG. 13. (Color onlineg Checkerboard pattern formed by the %;~0.16 and f= a0\2/€ 1/4, into Eq. (4), which gives

centers of stripe elements. Circles indicate the regions, where th _
densities oB-states in the SC phase loistates in the normal phase fxt):a/cfte(? ﬁ] -IS-QICS r|1|ufr:1 obmer t;lse Oer])i)[/)esrliglgtrl]):aﬁ;eiﬁgemig (I)N5S
are expected to be particularly high. peak splitting in underdoped LSCO compounds.

Bi-2212! can be attributed t®-states.[For the alternative
interpretations of thes@nd othey checkerboard patterns see . .
Refs. 11, 19, 20, 31, and 78-182 D. Superfluid density

The checkerboard modulations revealed by the above ex- In the model framework, the calculation of the critical
periments have periodicity of approximately four lattice pe-temperatureT, and the superfluid densit{,, requires the
riods along the principal lattice directions. From the view-knowledge of three numberfs,—¢,|, g and the prefactor of
point of the present proposal, this periodicity is due to theS,. In general, one should expect that boih—s,| and g
response fronB-states in the SC state brstates in the nor- change as functions of doping concentration. However, since
approaches zero not far from the opti-
of the stripe elements, which, as shown in Fig. 13, form amal doping, the relative effect of this change on the observ-
pattern with the required orientation of the “checkerboard.” able quantities should be stronger than the effect of the

As a corroborating evidence, | can mention that, in thechange ofg. Therefore, for a given family of higfi; cu-
vortex core experiment$;>* the LDOS modulation was prates, one can obtain an approximate relation betvBen
most pronounced at energies approximately equal tend T, by fixing the value ofg and then varyinge, in
+7 meV, in almost exact correspondence witkgbtained Case | ore, in Case Il. The two theoretical curves shown in
in Sec. VIII B just from the knowledge of and T, for the  Fig. 10 were obtained precisely in this way.
spectrum presented in Fig. B In the normal state In this subsection, | test the model relationship between
experimeng! the typical range of energies, where the modu-S; and T, by superimposing th@escaleg theoretical plot of
lations were most pronounced, was also consistent with thEig. 10 on the experimental results for TI-22818°
possible energies df-states. TlosyPhy 54SKCa Y CWLO;  (TI-1212,51  Hg-1201%

In regular SC regions of nearly optimally doped Bi-2212, LSCO53 67 Bi. 221253 Ca-doped YBCO(Y:Ca-123% and
a different kind of LDOS modulations showing strong en- YBCO 2 which report either relaxation rate measured by
ergy dependence has also been obsel¥&trom the view- muon spin rotatiorfuSR) technique, or the inverse square of
point of the present proposal, this energy dependence can lige penetration depth extracted from theuSR data, field-
caused by two factors(i) the crossover from the pattern dependent thermodynamic measurements, or electron spin
corresponding toB-states to the pattern corresponding toresonance studies. Bothand\™2 should be proportional to
A-states; and (ii)) the defect-induced interference of S, The result is shown in Figs. 14 and 15.
A-quasiparticles. The first factor can be appreciated after one In each of Figs. 1éb)-14f), the theoretical plot is res-
observes that the spatial patternsfe$tates and-states are caled in such a way that the critical case pajtite one,
characterized by different sets of wave vectors. The patterwwhere the dashed and the solid curves intejseaincides
of A-states has diagonal periofi€oinciding with that of the  with the experimental critical point. The latter is defined as
underlying stripe superstructure, while the periods ofthe point where the derivative of the experimentalvs S
B-states(shown in Fig. 13 are equal tof/\2 and oriented dependence undergoes an apparent discontinuous change In
along the principal lattice directions. Therefore, as the energirefs. 51-53, the same point was found to correspond to the
probed by STM increases, the pattern representative cfo-called *“critical doping concentration” approximately
B-states gradually transforms into the pattern representativequal to 0.19. In Figs. 14) and 14h) the theoretical critical
of A-states, hence the energy dependence of the characteraint simply matched the experimental point of the maximal
tic wave vectors. The description of the secgimerferencg  superfluid density(Here | ignored the issue of anisotropy
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FIG. 15. (Color onling All the data points from Fig. 14 rescaled

0' > 4 6 0' 10 20 in such a way that the theoretical plots coincide with each other.
ofps™] A2 [um™?] The arrows indicate the direction, in which the doping concentra-
tions increase. “UD” and “OD” indicate underdoped and overdoped

(e) Bi-2212 (fy Y:Ca-123

samples, respectively.

80}
best fit to the experimental data rather than on matching a
specific point.

The comparison with experiments in Fig. 14 amounts to
the following (crude quantitative test of the model: After the
interaction constany and the prefactor 0§, are fixed by
establishing the absolute scale for the theoretical critical

60 -

40

21 J

g 15 55 35 g 25 25 e point, the values ofwo independent numberS, and T, for
A2 [um™2] A2 [um™2] noncritical points are obtained by varying ordpetheoreti-
cal parameterg, in Case | orgy, in Case |l.
(@ YBCO :a-axis (h) YBCO : b-axis As is evident from Figs. 14 and 15, the theoretical “fish-

100 like” plot clearly captures the main features of the experi-

mental data, namely: the existence of two different regimes,
with a critical point of the maximal superfluid density sepa-
rating them. The quality of the quantitative agreement in
Figs. 14a) and 14f) is particularly surprising, given the
crudeness of the test and the fact that the data extend into the
overdoped region, where the model assumptions appear less
‘ ‘ , reliablea priori.
2% 0 50}_2[;:192] 150 At the point corresponding to the critical case, one can
' also estimate the absolute value of the penetration depth
from Eqg. (101). This estimate, which only requires the
knowledge of the critical temperature and the transverse dis-
FIG. 14. (Color onling Critical temperature vs superfluid den- t@nce per one Cufplane, was made in Sec. VI G with the
sity (presented as or \"?) at T=0. The theoretical plotgsolid and ~ NUMbers close to those of YBCO or Bi-2212. The number
dashed linesare obtained by simple rescaling of the plot presentedobtained (A =417 nnj is about 3-4 times greater than the
in Fig. 10. The experimental points are extracted from the followingnumbers typically cited for YBCQsee, e.g., Ref. §8and
references:(a) filled circles—Ref. 85, open circles—Ref. 84, about two times greater than the numbers cited for Bi-2212
squares—Ref. 83b) Ref. 51;(c) Ref. 86;(d) filled circles—Ref.  (see, e.g., Ref. 53This comparison is representative of the
53, open circles—Ref. 87g, f) Ref. 53;(g, h) Ref. 88. The doping general trend: the theoretical formylE01) overestimates the
ranges corresponding to the experimental points are shown ipenetration depth by about a factor of 3.
Fig. 15. For a simple estimate, which involves only the fundamen-
tal constants and two well-known material paramei@rs
and treatedh-axis andb-axis data as independent data gets. and zy), the factor-of-3 agreement with the experimental
In Figs. 14a) and 14c), the rescaling relied on the overall numbers is quite reasonable. One should also be conscious of

80
60
40

20
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the possibility(mentioned in Sec. VI Fthat the profile of LSCO/!YBCO®%8:%@and also YbBsCu;0,_,2%%) support
magnetic field may strongly fluctuate within the penetrationinequality A/T,<4, which, according tcCriterion 1, sug-
depth layer. At the same time, the absolute values of thgests Case Il in agreement with the assignni&ad).
penetration depth are typically extracted from the experimen- The tunneling studies of Bi-2212 do not reveal a coherent
tal data on the basis of theoretical formulas, which do nopicture either in terms of the ratitd/ T, or in terms of the SC
take into account such a possibility. peak asymmetry. Most of more recent Bi-2212 tunneling
data forxy= xyc>+58-6%.70.72-74.9%5how A/ T,> 4, and when-
ever the asymmetry is evident in the data, it mostly points to
Case |IA—in clear contradiction with the assignmeéhd4).

At the same time, many othéand some of the saméun-

In this subsection, | attempt to establish the corresponneling studie®56:67.74.76.9%ind in the same doping range the
dence between model Cases IA, IB, IIA and IIB and thegap values Correspondin@/Tcs4 and thus, according to
doping concentrations of highe cuprates. On the basis of Criterion 1 support the assignmefit04).
the content of Secs. V, VIII B, and VIII D, the following four The remarkable fact is that, at least on two
criteria discriminating between the four model Cases can bgccasion$®57-74the tunneling spectra of Bi-2212 presented

E. Correspondence between the model regimes
and the doping concentrations

proposed: in the same paper and measured on samples with nearly
Criterion 1: The inequalityA/T.>4 indicates Case |, equal critical temperatures have shown two different values

while A/T.<4 indicates Case II. of A/T—one significantly greater than 4, and the other one
Criterion 2: When the theoretical fish plot from Fig. 10 iS smaller than 4.

superimposed on the experimental dependencg, @ the The tunneling phenomenology of Bi-2212 can be ex-

superfluid density, the proximity of a data point to the solidpjained by the existence of two different SC states, which,
line indicates Case |, while the proximity to the dashed linefgr Xq<Xqc, correspond either to Case IA or to Case IIB. As
indicates Case II. argued in Sec. VID, both SC states are characterized by

Criterion 3: The asymmetry in the tunneling density of sharp minima of the total energy of the system and by the
states characterized by a larger SC peak at negative voltageame critical temperature. One of them can, e.g., constitute a
indicates Case IA. The opposite asymmetry indicates Casgable bulk state, while the other one a stable or metastable
IB. surface state.

Criterion 4: When the asymmetry in the tunneling density ~ The asymmetric STM spectrum of Hg-1212 reported in
of states is not accessible, | will rely on the postulate, that, irRef. 63 clearly suggests Case IA, which cannot be placed
underdoped cuprates,> ey, which favors Case IA over IB, within the assignmentL04).
and 1B over IIA. Criteria 1 and 3, when applied to the asymmetric STM

Criterion 2, when applied to Fig. 15, suggests a very spectra for the trilayer compounds Bi-222and Hg-1228
simple picture: The cuprates are describable by Case Il ajuggest Case IB, and thus could be compatible to the assign-
subcritical doping concentrationg;<X4c=~0.19, and by ment(104) provided that the doping concentration in those
Case | at the supercritical concentrations;>Xyc.  samples exceeds tiienknown) critical concentration for the
Criterion 4 then further narrows the choice to Case IIB for corresponding families of cuprates. However, the recent in-
X4<Xgc. This identification implies that, at low doping,  terlayer tunneling results for Bi-2223indicate that, as the
=e,> ey, and then, as the doping concentration increases, thgoping concentration increases, the rafi¢T, decreases
difference e,—¢, decreases until, at the critical doping, it from values larger than 4 to values smaller than 4, which, in
becomes equal to zero. The identification of Case IX¥pr combination with the STM dat® rather suggests the assign-
>Xqc then suggests that,—s;| starts increasing agaiut  ment opposite tq104), namely: Case IB foxy<x4c and
now with u=eyp). Since the derivative of,—ep, as a function  Case 1B forxy> x4c.
of doping is unlikely to change sign exactly &{=xqyc, | Summary of the findings of this subsection: Assignment
conclude that the model pseudogap- e, changes sigRsxy  (104) is consistent with the superfluid density data and/or the
passesqc. This means that, at the supercritical doping con-tunneling data reported for TI-2201, TI-2212, TI-1212, Hg-
centrationsg, < &, which implies Case IB. Thus the assign- 1201, LSCO and YBCO. For Bi-2212, the same assignment
ment following from the above discussion is is partially supported by experiments, while the overall phe-
nomenology rather suggests the occurrence of two different
SC states at the same doping concentration. The limited tun-
neling data on Hg-1212, Hg-1223 and Bi-2223 appear to

Xg=> Xgc L Case IB. (104 contradict to the assignme(t04) with varying degrees of

The clear systematics of the superfluid density data shoul@ertainty. Assignment(104), if true, implies that the
now be contrasted with a less systematic picture emergingseudogap changes sign at the critical doping concentration.
from the tunneling data.

Most of the point-contact and STM tunneling spectra dis-
cussed in subsection VIII B, as well as break junction and
interlayer tunneling spectra, are collected at doping concen- The prediction, which distinguishes the present proposal
trationsxy=<Xqc. In this doping range, the tunneling data for from many others, is the nontrivial translational symmetry of
TI-22018  TI,Ba,CaCyOg,s (T1-2212),5° HQ-1201%364  the SC order parameter. This property has not yet been in-

Xq < Xgc U Case IIB,

F. Symmetry of the SC order parameter
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X+ x [+ x [+ x these interfaces, the order parameter of the conventional su-
‘U A A 4 perconductor preferentially couples %, (as opposed to

S < © < < ¢ W¥,). In such a case, the opposite signslof along the two
‘. A A interfaces imply the required phase shiftef

x + x + x [+ x The interpretation of the tricrystal experimefs$; in
Q /A R 7/ S which vortices carrying half of the flux quantum were ob-

= X = X = X - served, is not practical at this time, because it should depend
Y RSN critically on the unknown boundary conditions. Here, | can

< @B X B <X & X only mention, that, the design geometry of the tricrystal ex-
R F R F periments is such that, if the postulated 2D stripe superstruc-

- x (= x (= x (= ture exists in each of the three adjacent crystals, then the
Y R QTN three interfaces between the intersecting stripe superstruc-

< € X 0 X 6 X tures are nearly equivalent to each other. Therefore, the ex-

planation of these experiments will likely amount to showing
that each of the junctions generates phase shift.

Finally, | discuss the observation of tleeaxis Josephson
pair tunneling between YBCO single crystals and the films of
Pb?28 (Pb is a conventional s-wave supercondugt®his ex-
perimental fact is difficult to explain on the basis of the
“d-wave” picture* At the same time, in the framework of

vestigated experimentally. One straightforward experimentai® Present proposal, it can be easily interpreted as follows:
test would be to construct a nanoscale probe, which is serVhen a conventional superconductor is placed on the top of
sitive to the SC phase difference between two points sepdh® 2D striped system shown in Fig. 16, the contribution of
rated by one period of the expected stripe superstructuréh® ¥a component to the Josephson coupling changes sign
Slightly prior to the appearance of the present work, theand thus averages to zero, but the cqntrlbutlon fromlltfge. '
position-dependent sign change of the SC order paramet@PmpOﬂent, which does not change sign, can lead to a finite
has also been proposed by Ashkefin the context of a J0Sephson current.
different stripe-related model.

An important question is whether the SC order parameter

s-wave superconductor

FIG. 16. (Color onling Possible geometry of a corner SQUID
experiment.

introduced in this work is consistent with the phase sensitive IX. CONCLUSIONS
experiments, which are usually interpreted as the evidence
for d,2_y2 symmetry of a spatially uniform SC stateee, e.g., In the present work, | have analyzed several consequences

Ref. 94. Here | am primarily concerned with the corner of the hypothesis that holes doped into hiGheuprates or-
superconducting quantum interference devi(8QUID)  ganize themselves in two-dimensional arrays of deep stripes.
experiment® and with the tricrystal junction In particular, on the basis of this hypothesis, | have formu-
experiment$5.97 lated and solved a model of superconductivity. From that
A definitive discussion of these experiments cannot benodel, | have obtained the tunneling spectrum and the su-
given at this time because of the following two uncertainties:perfluid density, which show good agreement with experi-
(i) The continuous family of possible SC solutions ob-ments. The symmetry of the SC order parameter derived
tained in Sec. VI C has not been narrowed to a single one.from the model is different from that od,..,» BCS order
(ii) The boundary conditions necessary for the discussioparameter. The order parameter obtained in this work has
of the phase sensitive experiments have not been specifiedwo components, at least one of which changes sign as a
In view of the above uncertainties, | limit further discus- function of the absolute position of the pair on the spatial
sion to presenting just one of several possible interpretationscale of the stripe superstructure. A number of other features
of the well-known 7= phase shift observed in the corner of this proposal such as the geometry of the pseudogap and
SQUID experiment8® This interpretation is illustrated in the effect of the pseudogap on the superconducting transition
Fig. 16. It is based on the same SC phase pattern as the otemperature appear to be in qualitative agreement with the
shown in Fig. 6a). The examination of Fig. 16 reveals that phenomenology of high¥, cuprates. The checkerboard pat-
the phases “0” and+#/2,” which characterize boti’, and tern of LDOS observed by STM has been interpreted as
T, form the same pattern along both of the SQUID inter-coming from the centers of stripe elements in the 2D ar-
faces, which means that this aspect of the phase symmetry igngement of diagonal stripes. This work also indicates the
unlikely to contribute to the relative phase shift between thepossibility, that, in underdoped cuprates, there may exist two
two interfaces. However, in addition, thie, component also  different kinds of SC states, and that, at the critical doping
has the position dependent sign factor, which is indicated irroncentration, the pseudogap may change sign.
the centers of the supercells as™or “—.” The important Even if a future work demonstrates the inadequacy of the
fact is that, despite the sign change ®f, the Josephson theoretical assumptions of the present one, the systematics of
coupling betweenV’, and the order parameter of the conven-the asymmetry in the tunneling spectra discussed in Sec.
tional superconductor is not averaged to zero along each d&flll B and the scaling of the superfluid density data shown
the two interfaces shown in Fig. 16. Now | assume that, ain Fig. 15 should retain the status of useful empirical facts.
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1/2
APPENDIX A: APPROXIMATE SOLUTION VIA A 1+ _2
NONCANONICAL TRANSFORMATION _ 1f 1 signX) z? (A7)
. . . , 5l 57 2 '

In this appendix, | present an approximate scheme of find- 2\ 2 2 1+ z
ing the variational ground state of Hamiltoniéf using the X2
following Bogoliubov-like noncanonicaltransformation of
a-statesin real space 32 \ 172

. 1+ =2
a=UA+vy X A (A1) s=| L. S9nY) )
0, 2 2 14 z
together with regular Bogoliubov transformation lm&tates Y?
bij,+233j,++WBﬁ,—' (A2) 2 \ 12
1 signy)  [TTZ
bij,—:SBj,—‘WBE,J,, (A3) - 92 5 , (A9)
whereA; and By , are the annihilation operators of the Bo- 1 +@
goliubov quasiparticlesy, v, s andw are the transformation
coefficients. These coefficients can be chosen real. Thewhere
must then obey the following normalization constraints:
X=g,(1-2n,p), (A10)
u’+4v2=1, (A4)
Y =4ep(1 - 2ng), (Al11)
L+w=1. (A5)
Z=g(1-2n)(1-2ng). (A12)

(Variablesu andv of this appendix should not be confused

with functionsu(k) andv(k) defined by Eqgs(25) and(26).  Heren, andng are the occupation numbers of the quasipar-

The second term on the right-hand side of EAl) ticle states described by operat@sandB; ,, respectively,
changes sign from supercell to supercell following the sign e

of #. This sign change is necessary to ensure that the ca-

nonical fermionic anticommutation relations between opera- Na = 1 (A13)
tors A; andA; corresponding to neighboring AF domains are A R ’

not violated in the first order af. This transformation is still ex T +1

noncanonical, because it violates the anticommutation rela-

tions in the second and higher orderswofin order to see 1

this, one can assume thatoperators represent true fermions ng=———————. (A14)
and then check the anticommutation relation between opera- exp(@) +1

torsa and a; corresponding to a pair of next nearest neigh-

bors.

In Egs.(A13) and(A14), variabless, andeg are the energies
of the respective quasiparticle states.

At T=0, the constraintu| <1 and|s| <1 impose the fol-
lowing condition for the existence of the physical solution:

Despite the fact that transformatigAl) is not canonical,
| will substitute it (together with transformationA2) and
(A3), into the Hamiltonian(7) and then handlé\-operators
as if they were true fermionic operators.

The justification for such a scheme is threefald: The - el

i X . 9= Vlle,ey. (A15)
noncanonical transformatiofAl) is very natural for the
structure of Hamiltoniar7). (ii) A priori, this scheme repre- This condition is satisfied for any nonzero valuegpfwhen
sents a controllable approximation in the case of small eithere,=0 ore,=0.
(large ey). (iii) For arbitrary values of parametess, ¢, and In the rest of this appendix, I limit the calculations only to
g, the ground state energy and the quasiparticle excitatio@ases IA and IIA(in the classification of Sec. VI B
energies obtained in the present framework turn out to be Case IA: g,=0, £,=0.
very close to those obtained with the help of the fully ca- Conditione,=0 implies that, according to EqA8) and

nonical transformation of Sec. VI C. (A9), s=1/42 andw=-1/y2, both independent of tempera-
Transformation(A1)«(A3) minimizes the energy of the ture. The coefficientsi andv given by Eqs.(A6) and (A7)
system when with Y=0 have temperature-dependent values.
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A natural sign convention for this case ég>0 andeg
<0, i.e., atT=0,n,=0 andng=1.
One can then obtain the energies

[
ea= 2+ gA(1 - 2np)? (A16)
and
2(1-2n)(1-2n
e = g( ) ( B) (AL7)

48A

of A-andB-quasiparticles, respectively.
The zero-temperature value ef, following from Eq.
(A16) coincides with that of the Van Hove singularit$0)

characterizing the spectrum of the “canonical solution.” The

values ofeg given by Eqs(A17) and(39) for the two solu-
tions are also close to each other.

The ground state energy in the present case can be evalu-

ated as

2+~ ea).

N /
Ees=-[Vel+g’-e (A18)

If Eqsgiven by Eq.(A18) is compared with the ground state

energy of the canonical solutidieg. (40)], then the differ-
ence is never greater than 5%.

At finite temperatures, in order to obtaiR, ng, €5 andeg
one has to solve the system of equatididl3), (Al4),

(A16), and (A17) numerically. It is easy to find, however,
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the canonical result. The only significant feature of the ca-
nonical solution missing in the noncanonical one is the ab-
sence of the gap in the spectrum Afquasiparticles in
Case Il. A related conceptual detail is that the noncanonical
scheme fails to predict the coherent dispersigyk) of
A-quasiparticles.

| conclude this appendix with the following comment:

In the present variational scheme one can easily find that
neither the variational energy nor the excitation spectrum
will change, if the phases of transformatiéAl)—{A3) are
modified in the following way:

3 =UA +up 2 €A, (A22)
i)

bij’+=Saj'++Wé‘pijB?j—’_, (A23)

bij’_zsaj'__Wé‘pijBa-—’_H (A24)

where phaseg;; can be different for different pairs of indi-
cesi andj.

The freedom to vary phases in Eqs.(A22)«A24) is, at
least in part, due to the fact that the parameter space of
noncanonical transformations is larger than that of canonical

that the above system of equations always has one trivigIn€S. Therefore, one may try to choose phases in Egs.

solution: ep=¢g,, eg=0 with ny andng given by Eqs(A13)

(A22)—(A24) such that transformatiofA22) becomes ca-

and(18). The condition for the existence of the second, non-onical. I have found, that, in this wayith the selection of
trivial, solution can be found analytically. This condition is: Phases shown later in Fig),&he next nearest neighbor an-

T<T., where the critical temperaturg. is the solution of
Eq. (46). Thus the remarkable fact is th@t obtained in the

ticommutation test described earlier in this appendix can,
indeed, be satisfied. However, a similar test for the pairs of

framework of the present noncanonical scheme reproducéd!Percells separated by one common neighbor cannot be sat-

the canonical result of Sec. VI C.
Case llIA: ,=0, £,=0.
According to Eqs(A6)«A9), the conditions,=0 implies

thatu=1/y2 andv=1/,8, while s andw have temperature-

dependent values.
The sign convention in this case i5,<0, eg>0, i.e., at
T=0, n,=1 andng=0. The calculation now gives

_ 92(1 - 2np)(1 - 2ng)

Al19
En 485 ( )
1
ep= \/ g2+ —g?(1 - 2n,)?, (A20)
16
_ 2 1 2
Ees— - 2N Sb + 1_69 - Sb . (A21)

The critical temperature in this case is again the same as
obtained from the canonical solution, i.e., it is given by Eq.

(63).

isfied independently of the choice of phaggs Transforma-

tion (A22) cannot be made rigorously canonical, because it
involves only the nearest neighbors. It is, however, possible
to conform with the canonical anticommutation relations, if
transformation(A22) is modified to include more remote
neighbors. Such a canonical transformation is much easier to
describe irk-space—subject of Sec. VI C. One can thus con-
clude that the coherent dispersion Afquasiparticles in
k-space is protected by the Fermi statistics.

From a different perspective, one can also observe that, in
the canonical scheme, the nonintuitive combination of
phasesp, given by Eq.(42) minimizes the pairing amplitude
between more remote neighbors, which leads to the maxi-
mum energy gain from the nearest neighbors interactiag
the Hamiltonian(7).

APPENDIX B: MINIMIZATION OF ENERGIES
(40) and (61) WITH RESPECT TO PHASES ¢,

The minimization procedure presented in this appendix is

In summary: The noncanonical variational scheme basedqually applicable to the total energy expressions both in
on Egs.(A1)—(A3) predicts the same critical temperature asCase I[Eq.(40)] and in Case I[Eq.(61)]. Below, in order to
the canonical scheme of Sec. VI C. Furthermore, the noncae specific, | focus on the expressiofD). This expression
nonical scheme predicts the ground state energy and the incan be considered as an implicit function of phagggnter-
portant tunneling characteristics within a few per cent froming it through the dependence on a single functiatk)|?.
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ky where
i h(k) = co2[kR ;] + coZ[kR ], (B4)
"I \\‘ P
©n p(k) = 2 co$kR ;]cogkR>], (B5)
5 s X
4 ki
P . + - -
4 g;co{w} (86)
’l \\ kx
A% 0 s Thus the energy40) can be presented as
‘\ L ,"’ -
k of E=- 2 {F[h(k) + p(k)¢] + F[h(k) = p(){J},  (B7)
\‘ " K
“.‘ ,"' .k§ where symbol “” in the sum superscript implies that the
7% summation is limited to the area shown in Fig. 17 inside the

dashed line. FunctioR is implicitly defined by equation

FIG. 17. Two examples of the paikspoints referred to in the 1
text: (ky,k;) and (ky, k). Thick solid lines represent the boundary F Z|V(k)|2 =[1 - 2na(k)Jea(k) — &4, (B8)
of the first Brillouin zone of the stripe superstructure. The first
point of each pair should belong to the light region inside theyhere g,(k) and na(k)=nu[ea(k)] are expressed as func-
dashed boundary. The second point should be obtained from tt‘@ons of |V(k)|2 with the help of Egs(29) and (38). Even
first one by reflection with respect to the nearest dashed line. without specifying functionF explicitly, one can take the

derivative ofE with respect ta? to find
From Eq.(24)

~ [
JE
oo o — =2 (k) %F'[h(k)+p(k>§]—F'[h<k>—p<km} ,
IV(K)|2= 41 cog| kRy + =2 | + cod| kR, + 2 ¢ k L
2 2
(B9)
+2 co{kR1+ M} X COS{kR2+M] where F’ is the first derivative of functiorF. Each term
2 2 in the sum(B9) is equal to zero, whe=0, which implies
©ot @4~ O~ @3 an extremum ofE. | have examined a large number of
Xeog = (B1)  examples numerically and have found that, in all cases

considered, the above extremum corresponds to the global

| first note that|V(k)|? is a periodic function ok in the  maximum. This result is also easy to derive analytically
directions ofR; andR,. Replacing sum in Eqi40) by the in the critical case by showing that all pairs of terms
integral according to the prescriptigal), | further note that  F[h(k)+p(k)Z]+F[h(k)-p(k){] in Eq. (B7) simultaneously
the symmetry of the functiofv(k)|? is such, that any shift of reach their maximal values, wheis0.
the integration region does not change the value of the inte- Condition {=0 substituted into Eq:B6), then gives
gral. Therefore, the result of the integration does not depend
on the values of5% and ¥5*. In the following, in order to co{w} -0, (B10)
be specific, | choosé5==0 and%*=0. 2

The only phase combination to be constrained by th
minimization of energy(40) is Z#-27%  Now | switch
back to the language of summation and note that the sum-
mation points in Eq(40) can be divided in pairgk ,k’) as
shown in Fig. 17. Poink is chosen inside the white area

&rom which Eq.(42) follows.

APPENDIX C: DERIVATION OF THE EQUATION
FOR THE CRITICAL TEMPERATURE

surrounded by the dashed line, whideis the nearest mirror In order to obtain the critical temperature in Case | of Sec.
image ofk in the dark area outside of the dashed line. Forv| C, | substitute into Eq.(39) the limiting values of all
each such a pair quantities asT—T.— O_. In this limit

V)= 4h(k) + p(k)2], (82) ealk) = ea, €D

i 1
while (k) = ————. (c2)
expl 2| +1
IV(k")[?= 4[h(k) - p(k)Z], (B3) p<Tc>
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Simultaneouslyeg—0, andng—1/2, i.e., 2g—1—0. In ) €a
order to resolve the uncertainty associated with substituting g7|ex 1) 1 1
the limiting values ofeg and g—1, it is necessary to keep T.= € NE IV(K)|?. (C4)
the next order okg in the expression forigz—1, i.e. 168{9)@(3‘) + 1J K
C
Now | note, that, independently of the choice of phases in
ong—1—— -8 (3 Eq.B1).
2T,
> [V(K)[*=2N. (CH
k
The substitution of EGXC1)—C3J) into Eq.(39) leads to the  The substitution of Eq(C5) into Eq. (C4) then gives Eq.
following equation: (46).
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