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The hypothesis that holes doped into high-Tc cuprate superconductors organize themselves in two-
dimensional(2D) array of diagonal stripes is discussed, and, on the basis of this hypothesis, a new microscopic
model of superconductivity is proposed and solved. The model describes two kinds of hole states localized
either inside the stripes or in the antiferromagnetic domains between the stripes. The characteristic energy
difference between these two kinds of states is identified with the pseudogap. The onset of superconductivity
is caused by the interaction, which is assumed to be mediated by the transverse fluctuations of stripes. The
superconducting(SC) order parameter predicted by the model has two components, whose quantum phases
exhibit a complex dependence on the the center-of-mass coordinate. The model predictions for the tunneling
characteristics and for the dependence of the critical temperaturesTcd on the superfluid density show good
quantitative agreement with a number of experiments. The model, in particular, predicts that the SC peaks in
the tunneling spectra are asymmetric, only whenD /Tc.4, whereD is the SC gap. It is also proposed that, at
least in some high-Tc cuprates, there exist two different superconducting states corresponding to the same
doping concentration and the same critical temperature. Finally, the checkerboard pattern in the local density of
states observed by scanning tunneling microscopy in Bi2Sr2CaCu2O8+d is interpreted as coming from the states
localized around the centers of stripe elements forming the 2D superstructure.
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I. INTRODUCTION

At present, the school of thought, which stipulates the
importance of local inhomogeneous structures called
“stripes” for the physics of high-Tc cuprate superconductors,
is dominated by the view that stripes form a one-dimensional
(1D) array, where each of them runs parallel to one of the
principal lattice directions.1–11 This picture, however, entails
a number of difficulties associated with the stripe geometry.
In particular, in the presence of stripes parallel to the princi-
pal lattice directions, it is difficult to explain why the “nodal”
quasiparticles having momentum directed along lattice di-
agonals(i.e., at 45° with respect to stripes), remain least
gapped with the onset of both the pseudogap phenomenon
and superconductivity.

In this work, I propose a microscopic model, which is
based on the hypothesis that, at those doping concentrations,
where superconductivity is observed in high-Tc cuprates, the
holes organize themselves into a two-dimensional(2D) array
of diagonal stripes. The 2D stripe superstructure does not
incur the geometrical difficulties associated with 1D stripe
arrays. This superstructure has been mentioned in the
literature1,5,9,11–13(sometimes under the name of “grid” or
“checkerboard”), but a number of experimental and theoret-
ical arguments have been put forward against its existence.
However, as I discuss later(in Sec. III), the 2D stripe sce-
nario has not been yet ruled out entirely. At the same time,
this scenario has never been analyzed persistently enough, in
part, because no theoretical model has been put forward,
which would relate the 2D stripe superstructure to supercon-
ductivity.

The model proposed in this work reconciles the 2D stripe
geometry with superconductivity by demonstrating, that the

superconductivity can be carried by states localized in the 2D
stripe background. The interaction, which, in the model,
leads to the superconducting(SC) transition, is, presumably,
mediated by the transverse fluctuations of stripes.

The picture emerging in the framework of the 2D diago-
nal stripe hypothesis also offers a very simple interpretation
of the pseudogap phenomenon,14–17 including its role in the
superconductivity of cuprates. Other experimental facts to be
interpreted in this work are:(i) quasiparticle coherence in
k-space, which emerges only below the SC transition;(ii ) the
asymmetry in the tunneling density of states;(iii ) linear den-
sity of states in the vicinity of the chemical potential;(iii ) the
checkerboard pattern in the local density of states in
Bi2Sr2CaCu2O8+d (Bi-2212) observed by scanning tunneling
microscopy(STM)18–21 (iv) low superfluid density and the
universal dependence thereof on the critical temperature.

The SC order parameter obtained in this work has com-
plex two-component structure, which cannot be described as
eithers-wave ord-wave or the combination of two. The dis-
tinctive unconventional feature of this order parameter is the
nontrivial symmetry with respect to spatial translations,
which includes the sign change of at least one of the two
components.

Reviewing the relevant literature, it should be noted that
the general idea of superconductivity carried by localized
states has been discussed in the past in the context of various
physical systems including high-Tc cuprates.22–26At a differ-
ent level, this work also contains parallels with several the-
oretical proposals,27–29 which involve two-component sce-
narios for high-Tc cuprates. Since the 2D stripe
superstructure can be viewed as a collection of nanodomains
having different electronic properties, the present work can
be linked to a more general class of ideas stipulating some
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kind of phase separation in cuprates(see, e.g., Ref. 30). If
only the charge ordering associated with the 2D stripe super-
structure is considered, then it exhibits certain similarities
with Wigner crystals advocated in some of more recent
proposals.31,32

The rest of the paper is organized as follows: In Sec. II the
hypothesis of 2D diagonal stripe configuration is formulated.
In Sec. III, the arguments in favor and against the existence
of such a configuration are discussed. Possible dynamic
properties of this configuration are briefly analyzed in Sec.
IV. In Sec. V, the properties of hole excitations in the pres-
ence of the 2D stripe configuration are described, and the
pseudogap phenomenon is identified. In Sec. VI, a model
describing the hole excitations in the stripe background is
formulated and solved in the mean-field approximation. In
Sec. VII, the realistic features of the model and the resulting
phase diagram are discussed. The model predictions are
compared with experiments in Sec. VIII.

This paper is quite long, in part, because some of the
model predictions tested in Sec. VIII require detailed calcu-
lations. In the first reading, one can, therefore, review all the
figures in the theoretical sections, read Sec. VI A, and then
proceed with reading Sec. VIII.

II. TWO-DIMENSIONAL CONFIGURATION
OF DIAGONAL STRIPES

In this section, I introduce the basic assumption of the
present work, namely, the two-dimensional configuration of
energetically deep and spatially narrow stripes.

I assume that, at sufficiently high doping concentrations,
high-Tc cuprates find it energetically favorable to organize
the spins of copper atoms into the background of antiferro-
magnetic(AF) domains as shown in Fig. 1(a). Such a back-
ground creates an effective potential for the holes with mini-
mum at the boundaries between those domains.33 Indeed, if
one considers only the nearest neighbor exchange interaction
between spins, then placing a hole in the middle of an AF
domain would cost energy 4J, whereas at the domain bound-
ary it costs 0J. (Here J is the nearest neighbor exchange
coupling constant.) The hole kinetic energy at the boundary
is also lower than inside an AF domain, because in the latter
case, the hole cannot hop to the neighboring sites without
increasing the exchange energy of the system, while, in the
former case, it can. I further assume that the gain in the
exchange and the kinetic energies outweighs the loss in the
Coulomb energy(associated with the repulsion between
holes). Therefore, holes fill the domain boundaries and thus
form stripes[see Figs. 1(b) and 1(c)]. It is not important for
the present work whether stripes are centered on copper at-
oms, as shown in Figs. 1(b) and 1(c), or on oxygen atoms
(i.e., on the “bonds” between copper sites).

The AF domains formed between the stripes fall in two
groups, which can be distinguished by the value of an AF
index h (+1 or −1) representing the sign of the AF order
parameter within a given domain. It is easy to see in Figs.
1(a)–1(c), that the AF indicesh of two neighboring AF do-
mains always have opposite signs.

A few mathematical facts about this kind of superlattice:

FIG. 1. (Color online) 2D configuration of diagonal stripes:(a)
Stripes in spin structure isolating two AF domains with opposite
sign of AF vector.(b) The same as(a) but with holes(filled circles)
occupying every second site along the spin stripes. Spins on the
remaining stripe sites are circled to guide the eye.(c) The same as
(b) but with more stripe supercells shown.
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The spin periodicity of such a structure along each of the
two diagonal directions is 2,, where, is the side length of a
single AF domain.

For such a structure, the main splitting of the magnetic
inelastic neutron scattering(INS) peak around the AF wave
vector s p

a0
; p

a0
d is expected to be fourfold as shown in Fig. 2.

(Herea0 is the lattice period.) The characteristic wave vector
qp of this splitting is frequently parametrized as

qp =
2p

a0
d, s1d

where, in the present case

d =
a0

,Î2
. s2d

Theoretically, there should also exist other peaks correspond-
ing to the higher order Fourier harmonics of the stripe super-
structure.

Neglecting the intersections between stripes, the fraction
of lattice sites lying on the stripes is

f =
a0

Î2

,
= 2d. s3d

The assumption of energetically deep stripes made earlier
implies that most holes are located inside the stripes. In this
case, the fraction of stripe sites occupied by holes is

c =
xd

f
=

xd

2d
, s4d

wherexd is the dimensionless doping concentration.
Yamadaet al.34 have discovered experimentally that in

underdoped La2−xSrxCuO4 (LSCO)

d < xd, s5d

which means thatc< 1
2, or the hole content of diagonal

stripes can be set empirically at 1 hole per two stripe sites
(the same as 1 hole per length 2a0

Î2).
Below, I will use the term “stripe element” to refer to the

part of a stripe which constitutes a side of one AF domain.
On the basis of empirical relation(5), I can estimate the
number of lattice sites in one stripe element as

,

a0
Î2

=
1

2xd
. s6d

Doping concentrationxd=1/8, taken as an example, then
corresponds to,=4a0

Î2.

III. ARGUMENTS IN FAVOR AND AGAINST
THE EXISTENCE OF THE 2D DIAGONAL

STRIPE STRUCTURE

If stripes exist, then the primary evidence for their geo-
metrical properties comes from the fourfold splitting of the
magnetic INS peak[usually called thesp ,pd peak], which
was described in the previous section and shown in Fig. 2.
This splitting was observed in the underdoped compounds of
LSCO34 and YBa2Cu3O6+x (YBCO)35–37 families of high-Tc
superconductors.

A straightforward interpretation of this peak pattern is that
the antiferromagnetic spin structure coss p

a0
xd ·coss p

a0
yd is

modulated along both diagonal directions by function
cosfpd

a0
sx+ydgcosfpd

a0
sx−ydg. (Coordinatesx and y corre-

spond, respectively, to the horizontal and vertical axes in
Figs. 1(a)–1(c).) The modulation function can then be
expanded as the sum 1

4fei2pdx/a0+e−i2pdx/a0+ei2pdy/a0

+e−i2pdy/a0g—hence the fourfold splitting of the main peak.
However, since the early indications of the stripe nature of

the sp ,pd peak splitting,8 most of the “stripe community”
has opted for an interpretation of experiments in terms of the
superposition of two two-peak splittings. The two kinds of
splitting were described as coming from two kinds of spa-
tially separated domains—each representing a one-
dimensional array of stripes running along one of the princi-
pal lattice directions.

There, indeed, exist a number of theories1–7 suggesting
that stripes extending along the principal lattice directions
are more favorable energetically than diagonal stripes.(The
2D diagonal stripe superstructure has been explicitly consid-
ered, e.g., in Refs. 1, 5, and 12.) This is, however, a delicate
energetic balance, which should be sensitive to numerous
factors, not all of which are taken into account by the above-
mentioned theories. For example, the interaction with the
crystal lattice and the long-range Coulomb interaction are,
typically, neglected in the numerical studies, even though the
energy associated with each of these two interactions can
change the outcome of the competition between different
stripe configurations. Since the chances of bringing the stripe
energetics under the full control of first principles calcula-
tions are quite slim, the choice between different stripe con-
figurations(including the absence of stripes) should be made,
eventually, on the basis of experiments.

FIG. 2. Fourfold splitting of magnetic inelastic neutron scatter-
ing peak.
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On the experimental side, one can find three main obser-
vations suggesting the one-dimensional nature of the stripe
pattern.11

First, in other materials structurally similar to high-Tc su-
perconducting cuprates, such as, e.g., insulating
La1.95Sr0.05CuO4

38 and nickelate La2−xSrxNiO4+y,
39,40 there

exists direct experimental evidence of the 1D nature of stripe
modulations.

Second, the two-dimensional spin structure modulation of
the form cosfpd

a0
sx+ydgcosfpd

a0
sx−ydg should induce an effec-

tive potential for electric charge roughly of the form
hcosfpd

a0
sx+ydgcosfpd

a0
sx−ydgj2. If the spin modulation is

weak, then it follows from the Landau theory of the second
order phase transitions13,41 that the peak structure for the
charge inelastic neutron scattering corresponding to the
above potential should exhibit four main peaks around(0,0).
The orientation of these peaks should be rotated by 45° with
respect to the splitting of the magnetic peak, and character-
ized by the separation2p

a0
dÎ2 from (0,0). The argument

against the diagonal 2D spin stripes is that the above charge
peaks have not been observed, while the charge peaks ex-
pected for the 1D superstructure were observed.13

Finally, the third and, perhaps, the most direct experimen-
tal observation suggesting the one-dimensionality of the
stripe superstructure comes from Ref. 9(also supported by
Ref. 42), where it was found that partial detwinning of a
YBCO sample leads to a very strong asymmetry of the
sp ,pd peak splitting. This asymmetry is in quantitative
agreement with the expectation that each of the twin domains
in YBCO has only one kind of one-dimensional stripe pat-
tern, and, therefore, partial detwinning should lead to a sig-
nificant redistribution of intensities between the four peaks.

The arguments counterbalancing the above experimental
observations can be the following:

The first observation, although important, is only indirect
and thus cannot substitute for direct observations.

The interpretation of the second observation is based on
the assumption that the spin structure is weakly modulated
by function cosfpd

a0
sx+ydgcosfpd

a0
sx−ydg. As a result the

charge modulation is also assumed to be small, and, there-
fore, the Landau theory is applied. However, if the modula-
tion of the the AF structure is strong, and the stripes are,
indeed, deep and narrow as assumed in Sec. II, then
the four charge peaks proposed as an indicator of the 2D
nature of stripe pattern would only be a part of a more com-
plicated peak structure, and not necessarily the most pro-
nounced one. For example, for a more realistic charge
profile modulated as cos8fpd

a0
sx+ydgsin2fpd

a0
sx−ydg

+sin2fpd
a0

sx+ydgcos8fpd
a0

sx−ydg, the positions of the strongest
satellite peaks coincide with those expected for the 1D pic-
ture.

The effect of the 45° rotation of some modulation peaks
can, nevertheless, be relevant in another context. It will be
shown in Sec. VIII C, that this effect can lead to the check-
erboard pattern observed by STM in the local density of
states of Bi2212.18–20

Concerning the third argument against the 2D diagonal
stripe picture, the experimental data, as they stand, appear
quite convincing. Yet, this kind of evidence has been limited

so far only to YBCO. The significant internal anisotropy of
the lattice structure in YBCO can, in principle, induce an
anisotropic INS response even of a truly two-dimensional
stripe superstructure. Thus the final resolution of the di-
lemma between 2D structure with anisotropic properties and
a 1D structure cannot be relied on this experiment alone.
[Later note: A very recent INS study43 has shown that the
splitting of the sp ,pd peak measured ondetwinnedYBCO
crystals is anisotropic but clearly two-dimensional.]

IV. DYNAMIC PROPERTIES OF THE STRIPE
STRUCTURE

Now I address the question, to what extent the stripe pic-
ture described in Sec. II can possess dynamic properties.

There are two possibilities for the time dependence of that
structure.

The first possibility is that the stripe boundaries of AF
domains can fluctuate and then drift away. One circumstance
that favors the fluctuations of stripes with or without average
drift is that, in the approximation of the nearest neighbor
exchange and without holes placed inside the stripes, the
spins located on the diagonal boundaries of AF domains have
zero exchange energy and thus are free to flip[see Fig. 1(a)].
This would not be the case if the AF domain boundaries were
oriented along the principal lattice directions.

With holes inside the stripes, it is even easier for the
stripes to fluctuate locally, but it is more difficult to drift on
average. The Coulomb repulsion between different stripe el-
ements, the topology of the 2D stripe superstructure and pin-
ning on impurities and structural disorder should inhibit the
average drift of the stripe pattern.

Thus, in the following, I will assume that, on the time
scales relevant to the physics of superconductivity, the stripe
superstructure does not drift, even though individual stripe
elements may exhibit strong transverse fluctuations.

The second possibility for the time dependence of the
stripe superstructure is that the AF order parameter of a given
AF domain can fluctuate and then, perhaps, exhibit “rota-
tional diffusion.” The relative spin orientation of neighboring
AF domains is fixed not by direct exchange interaction but
by the overall energy balance of the entire structure, which
does not allow holes to leave the stripes. Spins of a single AF
domain cannot simply flip by 180°, because such a flip
would dissolve the domain boundaries, which, in turn, would
contradict to the assumption that the high energy balance
favors the stripe structure. It can, however, happen that the
AF order parameter of a given domain fluctuates slightly
away from the the anti-alignment orientation with respect to
the neighboring domains, and then either this fluctuation is
damped back to the initial orientation, or, on the contrary, the
neighboring supercells adjust the orientation of their spins,
and, in this way, the average orientation of the spin order
diffuses away for relatively large regions of the sample. The
range of the spin orientations swept by the rotational diffu-
sion will, eventually, depend on the relative strength of the
local anisotropy interaction with respect to the the spin fluc-
tuations.

As a consequence of the above kind of rotational diffu-
sion, the elastic response from the modulated AF spin struc-
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ture should be either unobservable or strongly suppressed. At
the same time, I assume that this diffusion is slow enough
and thus can be neglected in a theoretical model of supercon-
ductivity. (To date, the elastic response of presumed stripe
superstructure has been detected from the superconducting
samples of Nd-doped,8,44 Zn-doped45–47 and “pure” LSCO46

and from La1.875Ba0.125−xSrxCuO4, see Ref. 48.)

V. POTENTIAL PROFILE AND THE TWO KINDS
OF HOLE STATES

The potential profile for the hole excitations in the back-
ground of 2D stripe superstructure is sketched in Fig. 3. This
profile consists of two main components: the network of nar-
row potential wells running along the stripes and the(repul-
sive) Coulomb potential created around them.

It is clear from the above picture, that there are two kinds
of hole states: those localized mainly inside the stripes—I
will call them b-states—and those localized mainly in the
shallow potential wells inside the AF domains—I will call
thema-states.

It is particularly easy to discuss the situation when(A) the
in-stripe potential wells are deep enough, so that, at low tem-
peratures, almost all holes stay inside the stripes, and(B) the
AF domains are large enough, so that the energy levels of
both a-states andb-states are spaced closely enough, as
shown in Fig. 3(c). In this case, the chemical potentialm of
holes is approximately equal to the highest energy of occu-
pied b-state at zero temperature. This energy should be be-
low EK [the minimal energy ofa-states indicated in Fig.
3(c)], which is a formal restatement of the assumption that
the stripes are deep.

Such a situation may well correspond to strongly under-
doped(but superconducting) cuprates, in which case, the dif-
ferenceEK−m can be identified with the pseudogap defined
as the leading-edge midpoint in angle-resolved photoemis-
sion spectroscopy.17 The phenomenology of the pseudogap
can then be interpreted as follows. At energies betweenm
andEK−m, the density of states is low, because onlyb-states
contribute to this energy range. Moreover, sinceb-states are
extended along the diagonal stripes, the momentum of pho-
toelectrons emitted fromb-states should be preferentially ori-
ented along the lattice diagonals. Above the pseudogap, the
density of states gradually increases due to the contribution
from a-states. The characteristic energy scale of this increase
can be estimated as 0.1−0.2 eV[a typical height of the Cou-
lomb potential barrierEM −EK shown in Fig. 3(c)].

If the assumptions(A) and(B) hold at higher doping con-
centrations, then one can envision some critical concentra-
tion (perhaps, not far from the optimal doping), at which the
pseudogap measured asEK−m becomes equal to zero. How-
ever, the other measure of the pseudogap, the gradual in-
crease of the density of states aboveEK=m, will not disap-
pear as long as stripes remain stable and, therefore, generate
locally inhomogeneous Coulomb potential landscape.

One should note, however, that the validity of assumption
(B) above is particularly questionable at the doping concen-
trations corresponding to the physically interesting sizes of
AF domains of the order,=4a0

Î2<23 Å (for a0=4 Å). If,

for an estimate of the level spacing of botha- andb-states,
one takes the spacing between the lowest levels of a free
particle having effective massme

* =5me in a box of size,,
then one obtains 40 meV.(Here me is the bare electron
mass.) The number 40 meV is of the order of the experimen-
tal values of the pseudogap and also notably larger than a
typical critical temperatures<7 meVd.

If the level spacing is, indeed, as large as estimated above,
then it is likely that there are no states(or very few due to
disorder) in the energy range between the highest occupied
b-state and the lowesta-state. In such a case, the position of
the chemical potential within the above energy window be-
comes uncertain. However, the pseudogap can still be de-

FIG. 3. (a) Sketch of potential landscape within one stripe su-
percell. (b) Scheme of a stripe supercell.(c) Sketch of potential
landscape along the thick line drawn across plot(a). EnergiesEK,
EM andEP correspond to pointsK, M andP marked in figure(b).
Solid horizontal lines indicate quantum levels inside the respective
potential wells. Dashed line indicates the position of chemical po-
tential m.

HYPOTHESIS OF TWO-DIMENSIONAL STRIPE… PHYSICAL REVIEW B 70, 224508(2004)

224508-5



fined as«a−«b, where«a is the lowest energy ofa-states, and
«b the energy of ab-state closest to the chemical potential.

Formally speaking, the latter definition extends to a some-
what counterintuitive situation characterized by inequality
«a,«b. While in the underdoped cuprates the strong expec-
tation is that«a.«b for both large and small values of the
level spacing, the analysis of experiments in Sec. VIII D will
suggest that inequality«a,«b may characterize high-Tc cu-
prates having doping concentrations abovexdC<0.19. The
condition «a,«b contradicts to the assumption(A) made
above. However, as long as there are only a fewa-states with
energies smaller than«b, a significant fraction of holes will
still be localized inside the stripes and generate the Coulomb
potential required for the validity of the sketch shown in
Figs. 3(a) and 3(c).

One should also note that the condition«a,«b is detri-
mental to stripe stability, because it implies that holes pen-
etrate inside AF domains. However, the emergence or disap-
pearance of stripes is not just the subject of one-particle
considerations. This process is governed by the balance of
global energy, which, among others, includes the contribu-
tions from lattice strain and quantum AF fluctuations. It is,
therefore, not necessary, and, in fact, unlikely, that stripes
become unstable precisely when«a=«b. Furthermore, in the
present work, the condition«a,«b will only imply one filled
a-state per AF domain, which the stripe superstructure may,
indeed, sustain.

Now I motivate the form of the model Hamiltonian,
which will be introduced in the next section.

Describing b-states, I assume that they are fermionic
states carrying chargee and belonging to one stripe element.
It will only be important for the model thatb-states can form
pairs with total spin 0. Whether or not they carry spin 1/2 is
not of primary importance.

An a-state is the state of one hole injected into a finite AF
domain. It is not important for the model to know exactly the
orbital and the spin wave functions ofa-states. It is, how-
ever, important to note that(i) the spin wave function of an
a-state should be fixed by the AF background, which is as-
sumed to be static on the time scale of interest, and(ii ) the
AF order parameter has opposite signs for two neighboring
AF domains. Therefore, if two orbitally equivalenta-states
from neighboring AF domains form a pair, then the total spin
of that pair is equal to zero.

It should be mentioned here that the analogs ofa and
b-states have been identified in the numerical study of spin
polarons in the stripe background.33

As discussed in Sec. IV, the diagonal orientation of stripes
predisposes them to strong transverse fluctuations. These
fluctuations should, in turn, strongly interact with botha- and
b-states. The effect of this interaction is then twofold. On the
one hand, the stripe fluctuations couple to holes both elasti-
cally and inelastically, and thus suppress the hole transport
across the stripe superstructure. On the other hand, they can
efficiently mediate the interaction between different hole
states.

The first effect justifies the following “center-of-mass” se-
lection rule:The model Hamiltonian can have transition el-
ements only between quantum states having the same center-
of-mass coordinate.

This selection rule, first of all, eliminates the direct hop-
ping terms betweena- andb-states belonging to different AF
domains or stripe elements. Since this is quite a radical as-
sumption, here I list several additional factors, which con-
tribute to the suppression of hopping in addition to the stripe
fluctuations. These factors are:(i) mismatch of AF back-
grounds between two neighboring AF domains;(ii ) Coulomb
potential barriers between neighboring AF domains and be-
tween intersecting stripe elements;(iii ) disorder in the stripe
superstructure(which is not present in Fig. 3 but should be
present in a real system). For the subsequent treatment, it is
not important, whethera- and b-states are rigorously local-
ized. All the above factors together should only ensure that
the hopping terms are small in comparison with the interac-
tion term discussed below.

In the absence of hopping, everya-state and everyb-state
are to be characterized by “on-site” energies«a and «b, re-
spectively.

I assume that diagonal interactions involvinga- and
b-states, and also nondiagonal interactions betweena-states
inside the same AF domain and betweenb-states inside the
same stripe element can be satisfactorily taken into account
by the renormalization of energies«a and«b.

Considering the alternatives for nondiagonal interaction
terms, I limit the model choices only to the terms of the
fourth order with respect to the fermionic creation and anni-
hilation operators. Most of these terms fail to qualify under
the center-of-mass selection rule. Among the few terms,
which qualify, the only one which will be included in the
model corresponds to the transition of two holes occupying
two a-stateson the opposite sidesof a given stripe element
into two b-states inside that stripe element andvice versa
[see Fig. 4(b)]. One can check that the center of mass of two
“initial” a-states coincides with the center of the stripe ele-
ment between them, and thus coincides with the center of
mass of two “final”b-states.

The above transition can be efficiently mediated by the
fluctuating stripe element itself. The relevant mechanism
would involve two steps.Step 1:A hole hops between two
adjacenta- andb-states. Since the two states have different
centers of mass, the transition between them should be ac-
companied by a virtual excitation of the transverse oscilla-
tion mode of the stripe element “housing” theb-state.Step 2:
The above oscillation mode is absorbed in the course of the
symmetric transition of a second hole, which involves an
a-state from the other side of the same stripe element and,
therefore, restores the center-of-mass position. In order to
appreciate this mechanism, one can look at Fig. 3(c), and
imagine that, in the course of a transverse fluctuation, one of
the two potential wells, which represent stripes, shifts to-
wards the center of the figure. As a result of this shift, the
wave function of ana-state in the center of the figure
strongly overlaps with the wave function of ab-state inside
the shifted stripe. Such a strong overlap constitutes a precon-
dition for a large value of the interaction term selected for
the model.

The above term, which can be schematically described as
“aa↔bb,” is sufficient to achieve the primary goal of the
present work, which is to find at least one plausible channel

B. V. FINE PHYSICAL REVIEW B 70, 224508(2004)

224508-6



for the superconductivity in the presence of the 2D arrange-
ment of diagonal stripes. There exist, however, a few other
fourth order nondiagonal terms having form “ab↔ab”,
“aa↔aa,” or “bb↔bb,” which qualify under the center-of-
mass selection rule. At the moment, I rank these terms as less
important, because either they involve states, which are too
far separated from each other, or they imply no charge flow
between different components of the stripe superstructure.
Nevertheless, the effect of including additional nondiagonal
(and also diagonal) terms in the Hamiltonian would merit
further study.

VI. SUPERCONDUCTIVITY MODEL

A. Hamiltonian

In this section, I introduce a model which is minimally
sufficient to capture all the elements of the qualitative de-
scription given in Sec. V.

The model is limited to the two-dimensional superlattice
of a- andb-states, which is shown in Fig. 4. This superlattice
is divided into diamond-shaped supercells, like the one
shown in Fig. 3(b). The supercells are labeled by single in-
dex i (or j). Each of them is characterized by the AF indexhi
(defined in Sec. II but now with subscripti). I will use the
terms “even supercell” and “odd supercell” to refer to the
supercells havinghi =1 andhi =−1, respectively. The total
(macroscopic) number of supercells in the system is denoted
by variableN. I will further assume that the system has rect-
angular form of dimensionsLx and Ly along thex- and the
y-directions, respectively.

In the present model, there exists only onea-state inside
each supercell described by hole annihilation and creation
operatorsai and ai

+, respectively. Eacha-state is character-
ized by the on-site energy«a. In order to implement the
observation made in the previous section that orbitally
equivalenta-states from the neighboring supercells have op-
posite spins, the spins ofa-states alternate together with the
AF index hi, i.e., the spin ofith a-state is equal to1

2hi.
Operatorsai do not need an additional spin index, because,
in this model, the spin of ana-state is not an independent
quantum number but instead fixed by the lattice indexi.

The next assumption is that, inside each stripe element
separating theith and thej th neighboring supercells, there
exist only twob-states both characterized by the same on-site
energy«b but having different spins(+1/2 or −1/2). The
hole annihilation and creation operators for these states are
bij ,s andbij ,s

+ , respectively. Here indexs represents the spin
of a b-state and assumes values1 and2. (The assumption
of a well defined spin is made just for the concreteness of the
model. In reality, it can, indeed, be spin but also any other
quantum number.)

In total, this model contains onea-state and fourb-states
per one supercell(two b-states per stripe element times two
stripe elements per supercell).

The on-site energies«a (the same for alla-states) and«b
(the same for allb-states) are both measured from the chemi-
cal potential. More detailed assumptions about their values
will be made later.

Finally, the model Hamiltonian is

H = «ao
i

ai
+ai + «b o

i,jsid,s

hi=1

bij ,s
+ bij ,s + go

i,jsid

hi=1

sbij ,+
+ bij ,−

+ aiaj + h.c.d,

s7d

whereg is the interaction constant. Here and below the no-
tation jsid in the sum subscript implies that the sum over
index j extends only over the nearest neighbors of theith
supercell. Expressionhi =1 in the sum superscript means that
the summation over indexi includes only even supercells
[marked by pluses in Fig. 4(b)].

FIG. 4. (Color online) (a) Model quantum states: onea state
with energy«a inside every AF domain, and two degenerateb-states
with energy«b inside every stripe element. This picture is to be
compared with Fig. 1(c). (b) Two-dimensional scheme ofa-states
and b-states. Each circle represents the center of ana-state, while
each ellipsoid extended along the stripe boundaries represents the
location of twob-states. Signs “1” or “ 2” inside the circles indi-
cate the sign of AF indexhi. Also shown: two operators ofa-states
and two operators ofb-states in their respective spatial domains.
The transition between these two pairs ofa-states andb-states rep-
resents a typical term in the interaction part of Hamiltonian(7).
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Hamiltonian (7) can be described as an exotic two-band
model, where the noninteracting states are localized but still
have the same on-site energy, and the interaction includes
only interband coupling. In such a model, the variational SC
ground state exists independently of the sign of the coupling
constantg. In the calculations, I will, therefore, assume that
g.0.

Two b-states per stripe element and onea-state per AF
domain represent the minimal configuration required for
implementing the interaction term in the Hamiltonian(7). At
the same time, it should be noted here that the ratio “one hole
per 2a0

Î2” extracted in Sec. II from the scaling of INS data
also corresponds to two holes per stripe element in the most
interesting case of,<4a0

Î2. Furthermore, if the level spac-
ing inside AF domains is, indeed, as large as estimated in
Sec. V, then keeping only onea-state per AF domain also
constitutes a meaningful approximation for the description of
low-energy properties of the system.

B. Classification of the model regimes

The present work is mostly limited to the analytical re-
sults describing the following regimes:

Case IA:«aù0, «b=0,
Case IB:«aø0, «b=0,
Case IIA:«a=0, «bù0,
Case IIB:«a=0, «bø0,
Critical case:«a=«b=0.
The diagrams of energy levels representing Cases IA,

IB, IIA, and IIB are sketched in Fig. 5. The reasons for
distinguishing those special regimes from the general case
s«aÞ0,«bÞ0d are the following:(i) As shown later in sub-
section VI D, for the fixed difference«a−«b, the situations,
when either«a or «b coincides with the chemical potential
(i.e., equal to zero), correspond to sharp minima in the
ground state energy.(ii ) The condition«a=0 or«b=0 leads to
a significant simplification of the model calculations.

Since most observables characterizing Cases IA and IB
are identical, these two Cases will be referred to as Case I,
whenever the difference between IA and IB is not important.
Similarly, “Case II” will refer simultaneously to Cases IIA
and IIB.

C. Mean-field solution

In this subsection I shall proceed with finding the varia-
tional ground state using the method of Bogoliubov transfor-

mation. The variational procedure will consist of(i) making
Bogoliubov transformation forb-states in real space;(ii )
truncating the Hamiltonian(7) by leaving only the diagonal
terms with respect to the new Bogoliubov quasiparticles and
then averaging those terms;(iii ) making the Fourier trans-
form of a-states;(iv) introducing the Bogoliubov transforma-
tion of a-states ink-space; and, finally,(v) minimizing the
energy with respect to the both transformations. Although
straightforward, the above procedure is somewhat involved.
For this reason, in Appendix A, I also present an approxi-
mate version of the same mean-field solution. The content of
Appendix A also reveals a number of interesting facts about
the robustness of the full solution.

The first step of the variational scheme consists of the
following Bogoliubov transformation:

bij + = sBij + + weiwi jBij −
+ , s8d

bij − = sBij − − weiwi jBij +
+ , s9d

whereBij ,s are the annihilation operators of the Bogoliubov
quasiparticles,s and w are the(real) transformation coeffi-
cients satisfying the normalization constraint

s2 + w2 = 1 s10d

andwi j are the transformation phases chosen to be the same
for all translationally equivalent stripe elements.

There exist four translationally nonequivalent types of
stripe elements. Each type corresponds to one of the four
possible orientations of vectorr j −r i, wherer i andr j are the
positions of the centers of two neighboring supercells. One
of these two supercells is always even, while the other one is
always odd. I will use the convention assigningr i to an even
supercell, andr j to an odd one. The four possible realizations
of vector r j −r i are

R1 =
,

Î2
s1,1d, s11d

R2 =
,

Î2
s− 1,1d, s12d

R3 =
,

Î2
s− 1,− 1d, s13d

R4 =
,

Î2
s1,− 1d. s14d

Phaseswi j can now be presented as

wi j = wsr j − r id. s15d

They can have, at most, four different valuesw1=wsR1d,
w2=wsR2d, w3=wsR3d and w4=wsR4d. I label these four
phases by indexa and refer to them using the notation

wa = wsRad. s16d

The physical explanation, why the four phaseswa should be
tracked in the variational solution, is given at the end of
Appendix A.

FIG. 5. Sketches representing Cases IA, IB, IIA and IIB.
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Substituting transformation(8) and (9) into the Hamil-
tonian (7), and then averaging the result with respect to
B-operators, I obtain

Ha = 4«bNfs2nB + w2s1 − nBdg + «ao
i

ai
+ai

+ gsws1 − 2nBdo
a
Fe−iwa o

i

hi=1

aiajsi,Rad + h.c.G ,

s17d

where

nB =
1

expS«B

T
D + 1

. s18d

Here,nB and«B are, respectively, the occupation number and
the energy of aB-state; andT is the temperature measured in
energy units. Indexjsi ,Rad in Eq. (17) labels the nearest
neighbor ofith supercell such thatr j −r i =Ra.

At this point, it is convenient to replace supercell indices
i and j in Eq. (17) by the set of the radius-vectors and also to
separate explicitly the summations over even and odd super-
cells. This gives

Ha = 4«bNfs2nB + w2s1 − nBdg + «ao
r e

a+sr edasr ed

+ «ao
r o

a+sr odasr od + gsws1 − 2nBd

3o
a
Fe−iwao

r e

asr edasr e + Rad + h.c.G , s19d

where even supercells are characterized by the discrete set of
radius-vectorshr ej and odd supercells by the complementary
discrete sethr oj. Note: any vector of the formr e+Ra belongs
to the “odd” subset.

Now I introduce the Fourier transformseparatelyfor even
and odd supercells

aeskd =Î 2

N
o
r e

asr ede−ikr e, s20d

aoskd =Î 2

N
o
r o

asr ode−ikr o. s21d

The two Fourier transforms, although involving different
parts of real space, still performed with the same set of
k-vectors, because the even and the odd subsets have the
same periodicity. The projectionskx andky of the k-vectors
change in discrete steps 2p /Lx and 2p /Ly, respectively.
They fall in the interval −p /døkx,kyøp /d, whered is the
period of the sublattice of even(or odd) supercells equal to
,Î2. The total number ofk-vectors is

Nk = LxLy/sd2d = N/2. s22d

After transformation(20) and(21), the Hamiltonian(19) can
be written as

Ha = 4«bNfs2nB + w2s1 − nBdg + «ao
k

ae
+skdaeskd

+ «ao
k

ao
+skdaoskd + gsws1 − 2nBd

3o
k

faeskdaos− kdVskd + h.c.g, s23d

where

Vskd ; o
a

e−iwa−ikRa

= 2 expF− i
w1 + w3

2
GcosFkR1 +

w1 − w3

2
G

+ 2 expF− i
w2 + w4

2
GcosFkR2 +

w2 − w4

2
G .

s24d

Given the form of the interaction term in the Hamiltonian
(23), the choice of canonical transformation fora-states is
clear

aeskd = uskdAeskd + vskdeifaskdAo
+s− kd, s25d

aos− kd = uskdAos− kd − vskdeifaskdAe
+skd, s26d

whereAeskd andAoskd are annihilation operators of the new
Bogoliubov quasiparticles;faskd is the phase of this trans-
formation; anduskd and vskd are the real numbers obeying
the following normalization condition:

u2skd + v2skd = 1. s27d

An important conceptual detail to be noted here is that
transformation(25) and (26) will eventually lead a coherent
one-particle dispersion ofA-quasiparticles ink-space. This
kind of k-space coherence emerges only in the SC phase and
appears to be “protected” by the Fermi statistics(see the end
of Appendix A).

Substitution of transformation(25) and (26) into the
Hamiltonian(19) results in the following expression for the
energy of the system:

E = 4«bNfs2nB + w2s1 − nBdg + 2«ao
k

hu2skdnAskd

+ v2skdf1 − nAskdgj + 2gsws1 − 2nBd

3o
k

uskdvskds2nAskd − 1duVskducosffVskd + faskdg,

s28d

whereuVskdu andfVskd are the absolute value and the phase
of the complex-valued function(24), and

nAskd =
1

expS«Askd
T

D + 1

. s29d

HerenAskd and«Askd are, respectively, the occupation num-
ber and the energy of a Bogoliubov quasiparticle created by
operatorAe

+skd or Ao
+skd.
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It is immediately obvious that the minimization of the
above expression requires the last term to have maximally
negative value. All the sign conventions used below will be
such that gsws1−2nBduskdvskds2nAskd−1d,0. Therefore,
the maximally negative value will be reached, when

cosffVskd + faskdg = 1, s30d

which means that(up to an integer number of 2p’s)

faskd = − fVskd. s31d

For the reasons discussed in subsection VI B, the rest of
the calculations will be mostly limited to Cases IA, IB, IIA
and IIB. Formulas for the critical case will be summarized in
subsection VI G. For the general case, only the condensation
energy will be obtained(in subsection VI D).

Case IA: «b=0, «aù0.
A natural sign convention in this case is:«Askd.0 and

«B,0, i.e., atT=0, nAskd=0 and nB=1. Given the above
convention, the minimization of energy(28) gives

uskd =Î1

2
+

1

2Î 1

1 +
T2skd
Q2skd

, s32d

vskd =Î1

2
−

1

2Î 1

1 +
T2skd
Q2skd

, s33d

s=
1
Î2

, s34d

w = −
1
Î2

, s35d

where

Qskd = 2«as2nAskd − 1d, s36d

Tskd = gs1 − 2nBds2nAskd − 1duVskdu. s37d

By varying E with respect tonAskd and nB, one can now
obtain the quasiparticle energies

«Askd =Î«a
2 +

1

4
g2s2nB − 1d2uVskdu2, s38d

«B = −
g2s2nB − 1d

8N
o
k

s1 − 2nAskdduVskdu2

«Askd
s39d

and then express the total energy of the system as

E = − o
k

fs1 − 2nAskdd«Askd − «ag. s40d

Here and everywhere, the summation overk can be replaced
by integration according to the following rule:

1

N
o
k

→ d2

8p2E
−p

d

p
d dkxE

−p
d

p
d dky. s41d

Energy (40) is the function of uVskdu (via «Askd and
nAskd;nAf«Askdg). In turn, uVskdu is the function of four
phases(16) [via Eq. (24)]. Therefore, energy(40) should be
further minimized with respect to the values of those phases.
As shown in Appendix B, such a minimization imposes only
one constraint

w2 + w4 − w1 − w3

2
=

p

2
+ pn, s42d

wheren is an integer number. Among three other indepen-
dent combinations of phasesw1, w2, w3 and w4, one should
remain free as a consequence of the global gauge invariance,
while two other combinations should, in principle, be fixed,
but not in the framework of the present model.

The main thermodynamic and transport properties of the
model are independent of the choice of phasesw1, w2, w3 and
w4 as long as this choice is consistent with Eq.(42). This
situation is somewhat similar to that of superfluid3He, where
the interaction causing the superfluid transition does not fix
the values of all variables characterizing the order
parameter.49 In 3He, the remaining freedom is eliminated by
magnetic dipolar interaction between nuclei, and by other
small interactions. In the present case, the same role can be
played, e.g., by pair hopping betweena-states orb-states
belonging to different supercells. In this work, the issue of
the “phase freedom” is not resolved. It is, however, possible
to speculate that the additional terms will lead to sufficiently
symmetric selection of phases, such that

Vskd = 2hcosfkR1g − i cosfkR2gj, s43d

or

Vskd = 2hsinfkR1g − i sinfkR2gj, s44d

or

Vskd = 2hcosfkR1g − i sinfkR2gj. s45d

The first choice corresponds tow1=w3=0, w2=w4=p /2; the
second one tow1=−p /2, w2=0, w3=p /2, andw4=p; and the
third one tow1=0, w2=0, w3=0, andw4=p; The resulting
patterns of phases are shown in Fig. 6.

Having specified the parameters of transformations(8),
(9), (25), and(26), one can calculate the temperature depen-
dence of various thermodynamic quantities. This requires a
numerical solution of the system of equations(18), (29),
(38), and(39), which is not done in the present work. With-
out the full numerical solution only the zero-temperature
characteristics and the SC transition temperatureTc can be
evaluated. The evaluation ofTc is based on a manipulation
described in Appendix C, which gives the following simple
equation:

Tc =

g2FexpS«a

Tc
D − 1G

8«aFexpS«a

Tc
D + 1G . s46d
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Whengø«a, the approximate solution of Eq.(46) is

Tc >
g2

8«a
. s47d

Another simple limit is«a=0, in which case Eq.(46) yields

Tc =
g

4
. s48d

In general, however, Eq.(46) has to be solved numerically.
Since the operators of both real holes and real electrons

do not commute withA- and B-operators defined by Eqs.
(A1)–(A3), the tunneling studies of bothA- and
B-quasiparticles(via a contact with normal metal) should
show the density of states on the both sides of the chemical
potential, i.e., at«= ±«A and «= ±«B. Moreover, as long as
«b=0, tunneling intoB-states should result in the density of
states symmetric with respect to the chemical potential. As
far as A-states are concerned, then tunneling into them
should show asymmetric density of states. This asymmetry is
characterized by the ratio

Df«Askdg
Df− «Askdg

=
u2skd
v2skd

=
«Askd + «a

«Askd − «a
. s49d

The zero-temperature tunneling spectra ofA- and
B-quasiparticles are shown in Fig. 7(a). The spectrum of
B-quasiparticles consists of two delta-peaks located at ±«B.
A-quasiparticles have a continuous spectrum, which is fully
gapped with minimal energy«a. It was obtained by first cal-
culating the density of states following from Eq.(38) as a
function of positive energies«A and then dividing the weight
between positive and negative tunneling energies according
to formula (49).

In addition to the gap and the asymmetry, two other im-
portant features of the spectrum ofA-quasiparticles are: the
Van Hove singularity and the sharp termination point at a
higher energy. These two features correspond, respectively,
to the saddle points and to the maxima ofuVskdu. Function
uVskdu obtained from Eq.(43) is shown in Fig. 8. It has four
saddle points atkS=p /2ds±1, ±1d. With another choice of
phases consistent with Eq.(42), the k-space position of the
saddle points may change but not the value ofuVskSdu=2.
Therefore, according to Eq.(38), the density ofA-states ex-
hibits a Van Hove singularity at

«A0 = Î«a
2 + g2s2nB − 1d2. s50d

The maximum energy ofA-states, which corresponds to the
tunneling spectrum termination point, can be found by sub-
stituting the maximum value ofuVskdu equal to 2Î2 into Eq.
(38), which gives

«A1 = Î«a
2 + 2g2s2nB − 1d2. s51d

It should be noted here that the appearance of the tunnel-
ing spectrum ofA-states shown in Fig. 7(a) is quite similar to
that of the fermion spectrum obtained by Altman and Auer-
bach from the plaquette boson-fermion model.28

FIG. 6. (Color online) Three examples of particularly symmetric
patterns of phaseswi j consistent with the variational SC solution.
The values of the phases are indicated on the top of the correspond-
ing stripe elements. Each pattern is obtained by the periodic trans-
lation of four circled phases denoted in the text aswa. These phases
are constrained by Eq.(42). The expressions forVskd correspond-
ing to the phase patterns(a), (b) and (c) are given, in respective
order, by Eqs.(43)–(45).
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Case IB: «b=0, «aø0.
In this case, if one keeps the same sign convention as in

Case IA, thenuskd and vskd given by Eqs.(32) and (33)
should switch values. All formulas for the quasiparticle en-
ergies and the tunneling spectrum asymmetry obtained for
Case IA apply without modification to the present case.
Equation (46) for the critical temperature also applies but
with the trivial substitution ofu«au instead of«a.

The only observable difference between Cases IA and IB
is the opposite asymmetry with respect to the chemical po-

tential: in Case IA, the density ofA-states is greater on the
hole side, while, in Case IB, on the electron side.

Case IIA: «a=0, «bù0.
The sign convention in this case is chosen to be opposite

to that of Case IA, namely:«Askd,0 and «B.0, i.e., at
T=0, nAskd=1 andnB=0.

In this case

uskd =
1
Î2

, s52d

vskd =
1
Î2

, s53d

s=Î1

2
+

1

2Î 1

1 +
T2

Q2

, s54d

FIG. 7. (Color online) Examples of the tunneling density of
states atT=0: (a) Case IA s«a=0.5g,«b=0d; (b) critical case
s«a=0,«b=0d; (c) Case IIA s«a=0,«b=0.5gd. In each case, the
spectra contain two vertical delta-peaks representingB-states and
located at ±«B given by(a) Eq. (38); (b,c) Eq. (59). The continuous
part in each spectrum representsA-states. It is calculated from:(a)
Eq. (38); (b,c) Eq. (59). In all three cases, the spectra ofA-states
have Van-Hove singularities located at ±«A0 and the termination
points located at ±«A1. The spectrum ofA-states in figure(a) also
has a gap between«a and −«a. The asymmetry of the spectra is
obtained from:(a) Eq. (49); (c) Eq. (64). Note: the positive direc-
tion of the horizontal axis corresponds to negative hole energies.
(This reflects a convention of tunneling spectroscopy.)

FIG. 8. (a) Three-dimensional plot and(b) contour plot ofuVskdu
corresponding to Eq.(43). Each plot shows the first Brillouin zone
of the stripe superstructure. In the contour plot, the saddle points are
indicated with “S,” and zeros with “O.”
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w = −Î1

2
−

1

2Î 1

1 +
T2

Q2

, s55d

where

Q = 4N«bs2nB − 1d, s56d

T = gs1 − 2nBdCaN, s57d

Ca =
1

N
o
k

s2nAskd − 1duVskdu. s58d

One can then obtain the quasiparticle energies

«Askd = −
g2uVskduCas1 − 2nBd

8«B
, s59d

«B =Î«b
2 +

1

16
g2Ca

2 s60d

and the total energy

E = − 2Nfs1 − 2nBd«B − «bg. s61d

The choice of phases(16) is still constrained by condition
(42) (see Appendix B). Given this constraint, the zero tem-
perature value ofCa (obtained numerically) is

Ca0 ;
1

N
o
k

uVskdu = 0.958 . . . . s62d

A manipulation analogous to the one described in Appen-
dix C gives the following equation for the critical tempera-
ture:

Tc =

g2FexpS«b

Tc
D − 1G

8«bFexpS«b

Tc
D + 1G . s63d

The tunneling density of states corresponding to Eqs.(59)
and (60) is shown in Fig. 7(c). Contrary to the result for
Case I, the tunneling density ofA-states in Case II is sym-
metric, while the density ofB-states is asymmetric. This
asymmetry is characterized by the ratio

Ds«Bd
Ds− «Bd

=
s2

w2 =
«B + «b

«B − «b
. s64d

An important feature of Case II, which is absent in Case I,
is that the energy spectrum ofA-quasiparticles is gapless
with the linear density of states around the chemical poten-
tial. Indeed,«Askd given by Eq.(59) touches zero in an iso-
lated set of nonanalytic points corresponding touVskdu=0.
For the specific choice ofVskd given by Eq. (43), the
zeros of uVskdu are shown in Fig. 8. They are located at
k0= p

d s±1,0d andk0= p
d s0, ±1d. This feature is a direct con-

sequence of the phase relation(42). A deviation from that
relation would produce a line of zeros, which implies a non-
zero density of states at«A=0.

The density ofA-states in Case IIA has Van Hove singu-
larity and the termination point located, respectively, at

«A0 = −
g2Cas1 − 2nBd

4«B
s65d

and

«A1 = Î2«A0. s66d

Case IIB: «a=0, «bø0.
All formulas for the quasiparticle energies and the tunnel-

ing spectrum asymmetry obtained for Case IIA apply without
modification to Case IIB. Equation(63) for the critical tem-
perature only requires the substitution ofu«bu instead of«b.
The only difference between Cases IIA and IIB is the oppo-
site asymmetries in the tunneling spectra ofB-quasiparticles.
In Case IIA, the hole side of theB-quasiparticle spectrum has
more weight, while in Case IIB, the larger weight is on the
electron side.

D. Chemical potential as a variational parameter

In this subsection, I argue that the situations correspond-
ing to m=«b (Case I) or m=«a (Case II) should be considered
as likely scenarios describing realistic stripe systems.

The constraint on the total number of particles, which is
usually used to fixm, cannot be straightforwardly applied to
the present model for the following reasons:(i) The model
quantum states form a subset of all quantum states of a real
“striped” system, and, therefore, the actual total number of
particles cannot be reliably counted.(ii ) The system can al-
ways readjust the periodicity of the stripe superstructure,
which would change the ratio between the number of model
states and the number of holes doped into CuO2 planes.(iii )
The chemical potential can change within the model
pseudogap without affecting the total number of particles
occupying model states(at T=0).

It is, therefore, reasonable to treat the chemical potential
as a variational parameter, which is fixed by the minimiza-
tion of the total energy of the real system considered as the
sum of the contribution from the model states and the con-
tribution from environment(unspecified here).

The model contribution to the total energy as a function of
the chemical potential can be obtained by solving the model
in the general case:«aÞ0, «bÞ0. The description of general
case is as straightforward as that of Cases I and II. However,
the minimization routine produces an integral equation,
which couples the values ofuskd, vskd, s andw, and which
has to be solved numerically.

Figure 9 shows three representative curves for the evolu-
tion of the SC ground state energy as a function of the
chemical potential. Each curve was obtained numerically for
the fixed values of«a, «b andg indicated in the caption. In
order to allow for the variation ofm, the reference point for
one-particle energies was shifted(in this part only) from
m=0 to some arbitrary value«b=0. The SC ground state
energy was measured from the energy of the normal state.
The absolute value of thus defined quantity is conventionally
called condensation energy.

HYPOTHESIS OF TWO-DIMENSIONAL STRIPE… PHYSICAL REVIEW B 70, 224508(2004)

224508-13



In a generic situation(two lower curves in Fig. 9), the
ground state energy has two minima: the deeper one—
corresponding to Case I, and the shallower one—
corresponding to Case II. For a fixed value ofg, the SC
transition is possible only, when the value ofm lies close
enough to either«a or «b. Dependently on the ratio
u«a−«bu /g, the values ofm compatible with superconductiv-
ity fill either one finite interval including both«a and «b or
two disconnected finite intervals around«a and «b. The top
curve in Fig. 9 illustrates a nongeneric situation, when the
two minima coincide. The resulting single minimum then
corresponds to the critical case.

The main purpose of Fig. 9 is to illustrate, that, not only
do Cases I and II correspond to local minima in them de-
pendence of the ground state energy, but also that these
minima have the form of cusps. This implies that, if the
environment contribution to the total energy of the model-
plus-environment system is a smooth function ofm, then the
total energy should have the cusp minima due to the model

contribution at exactly the same values ofm as those ob-
tained without environment. If only the model contribution
were taken into account, then it would follow from Fig. 9
that the minimum corresponding to Case I is the global one.
However, the environment contribution can change the rela-
tive values of energies, corresponding to the two minima and
thus shift the global minimum to that of Case II.

In principle, it is also possible that environment intro-
duces an extra energy minimum in addition to the two cusps
described above, and, moreover, that additional minimum is
the global one.

The resulting possibilities can be summarized as follows:
Cases I and II of the present model describe two different SC
states corresponding to two different positions of the chemi-
cal potential. In the “best case” scenario(which I also con-
sider more likely), one of these two states corresponds to the
global energy minimum of the real system, while the other
one represents a metastable state. In the “worst case” sce-
nario, both SC states are metastable, but the true SC state
may still be describable by the present model with«aÞ0 and
«bÞ0.

It is further possible that the position of the chemical po-
tential near the sample surface is different from that in the
bulk. Therefore, the SC state, which is metastable in the
bulk, may become stable near the surface andvice versa. In
principle, it is also possible that the system phase separates
and forms domains describable either by Case I or by
Case II.

In Sec. VIII E, I will try to discriminate between the SC
states corresponding to Cases I and II by making a compari-
son between the model predictions and the experiments.

E. Anomalous correlation functions

Bogoliubov transformations(8), (9), (25), and(26) imply
that, belowTc, the following anomalous correlation functions
have nonzero values:

Caskd = kaeskdaos− kdl = uskdvskdefaskdf2nAskd − 1g,

s67d

Cbsr i j ,r pnd ; kbij ,−bpn,+l = sweiwi js1 − 2nBddsr i j − r pnd,

s68d

where r i j represents the positions of the centers of stripe
elements, andds. . .d is defined as Kronneker delta on the
discrete superlattice, i.e., it is equal to 1, when its argument
is zero, and 0 otherwise. The two correlation functions(67)
and (68) are the two components of the SC order parameter
corresponding toa- andb-states, respectively.

In the real space, the first component can be defined as

Casr i,r jd ; kasr idasr jdl. s69d

It has nonzero values only when its two arguments corre-
spond to the supercells of different kind(i.e., even and odd).
The formal structure ofCasr i ,r jd can be expressed as fol-
lows:

Casr e,r od =
2

N
o
k

Caskdeiksr e−r od, s70d

FIG. 9. Condensation energy(with the negative sign) as a func-
tion of the chemical potentialm. Each of the three curves was
calculated on the basis of Hamiltonian(7) by fixing «a, «b andg and
then varyingm. In the calculations,g and «b were equal, respec-
tively, to 1 and 0 in all three cases, while«a admitted the following
values(top to bottom): 0, 0.6 and 1.1. The solid/dashed lines indi-
cate the SC/non-SC ground state. The deeper minima of the lower
two curves correspond to Case I, and the shallower ones to Case II.
The single minimum of the top curve corresponds to the critical
case. The vertical coordinates of the middle and the bottom curves
are shifted by −0.6 and −1, respectively.
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Casr o,r ed = − Casr e,r od, s71d

Casr e,r e8d = Casr o,r o8d = 0, s72d

where Caskd is given by Eq.(67). Note: Eq. (71) is the
consequence of the fermionic anticommutation rule.

The coherence length of the order parameterCasr i ,r jd
should be inversely proportional to the one characterizing
Vskd in k-space. The examination of Eq.(24) reveals that the
characteristic scale ofVskd is p / uR1u=p /,. Therefore, the
coherence length associated withCasr i ,r jd can be estimated
as the supercell size,. It is likely, that on a longer scale
Casr i ,r jd exhibits an oscillatory power law decay with the
period of oscillations being of the order of,.

The coherence length associated withCb is equal to zero,
which means that onlyb-states belonging to the same stripe
element form coherent pairs.

Two useful quantities, which will later be required in the
calculation of supercurrent, are

Casi j d ; Ca
n.n.sr i,r jd ; kaiajln.n. s73d

and

Cbsi j d ; Cbsr i j ,r i jd ; kbij ,−bij ,+l, s74d

where the superscript “n.n.” indicates that indicesi and j
represent the nearest neighbors.

In Case I, the explicit expression forCbsi j d can be ob-
tained by substituting the values ofs and w given by Eqs.
(34) and (35) into Eq. (68) for r i j =r pn, which gives

Cbsi j d =
1

2
eiwi js2nB − 1d. s75d

One can then obtainCasi j d by making use of the fact that

Cbsi j d
* Casi j d =

Eint

4gN
, s76d

where Eint is the interaction part of the energy(28) (i.e.,
Eint=2gsws1−2nBdok. . .). After Eint is evaluated with the
help of Eqs.(32)–(35), one can use Eqs.(75) and (76) to
obtain

Casi j d =
gs1 − 2nBdhie

iwi j

8N
o
k

f1 − 2nAskdguVskdu2

«Askd
. s77d

The role of indexhi in Eq. (77) is to supply factor 1 or −1
dependently on whether the first index ofCasi j d corresponds
to an even or an odd supercell.

In Case II, the expressions analogous to Eqs.(77) and
(75) are

Casi j d =
1

4
hie

iwi j , s78d

Cbsi j d = −
gCae

iwi js1 − 2nBd
8«B

. s79d

The essential elements of the symmetry of the SC order
parameter(75) and (77) or, alternatively, Eqs.(78) and (79)

are captured in Fig. 6. This symmetry is characterized by the
pattern of phaseswi j indicated on the top of each stripe ele-
ment, and, in addition, by the pattern of indexhi.

The order parameterCbsr i j ,r pnd has no dependence on
the relative orientation ofr i j and r pn. Therefore, it can be
described as having orientationals-wave symmetry with ad-
ditional strong phase dependence on the center-of-mass po-
sition of the paired holes.

The symmetry ofCasr i ,r jd is even more different from
conventional analogs. It includes the strong dependence on
wi j , which traces the phase dependence ofCbsr i j ,r pnd, but, in
addition, Casr i ,r jd also exhibits a sign change under the
translation by one period of the stripe superstructure. This
sign change reflects the switching between even/odd and
odd/even order in Eq.(71).

F. Supercurrent and the penetration depth

The superconducting properties of the present model are
unusual, because the superconducting phase stiffness comes
solely from the interaction term of the Hamiltonian(7). This
term induces the fundamental “internal supercurrent” associ-
ated with the transfer of particle density froma-states to
b-states andvice versa. The translational supercurrent then
appears as a gradient of the internal one.

The operator expression for the internal current fromith
a-state to the surroundingb-states can be obtained by con-
sidering the time derivative of the particle density operator

Jabsid ; −
d

dt
sai

+aid = −
i

"
fHai

+ai − ai
+aiHg

= −
ig

"
o
jsid

sbij ,+
+ bij ,−

+ aiaj − h.c.d. s80d

Here and everywhere in this subsection, indexi corresponds
to an even supercell, and indexj to an odd one.

The sum in Eq.(80) has four terms—each corresponding
to the transfer of the particle density from theith AF domain
into a nearby stripe element labeled by the pair of indicesi j .
Therefore, the operator of translational current through the
ith supercell(to be denoted asJi

t) can be obtained by assign-
ing the direction to the flow of particle density associated
with each of the above four terms, i.e.

Ji
t = −

ig

2"
o
jsid

n̂i jsbij ,+
+ bij ,−

+ aiaj − h . c .d, s81d

wheren̂i j is the unit vector in the direction from theith to the
j th supercell.

The translational current is created when the probability
of an a-particle to hop into one of the surrounding stripe
elements is greater in one direction than in the opposite one.
For this reason, the translational current can only be carried
by a-states. The number ofb-particles hopping on the both
sides of a given stripe element is the same for each quantum
transition generated by the Hamiltonian(7).

Now, I show that the phase, which drives the internal
supercurrent, is

fab = − faskd − fVskd. s82d
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In equilibrium, according to Eq.(31), fab=0. The state
with nonzerofab can be obtained by modifying the Bogo-
liubov transformation forb-states[Eqs. (8) and (9)] as fol-
lows:

bij + = sBij + + weiswi j+fabdBij −
+ , s83d

bij − = sBij − − weiswi j+fabdBij +
+ s84d

while keeping the transformation(25) and (26) for a-states
unchanged. In this case, the anomalous correlation functions
are, fora-states belonging to the neighboring supercells

kaiajl = Casi j d s85d

and, forb-states belonging to the same stripe element

kbij −bij +l = Cbsi j de
ifab, s86d

whereCasi j d andCbsi j d are theequilibrium values of the two
SC components given, in Case I, by Eqs.(75) and(77), and,
in Case II, by Eqs.(78) and (79).

The averaging of operator(80) with the subsequent sub-
stitution of Eqs.(85) and(86) gives the internal supercurrent

kJabsidl = −
2g sinfab

"
o
jsid

Cbsi j d
* Casi j d. s87d

Each term in the above sum is a real number given by Eq.
(76). [Spatially homogeneous internal supercurrent(87) can
exist, when the particle density oscillates betweena- and
b-states.]

The translational supercurrent emerges, whenfab be-
comes position dependent[to be denoted asfabsr i jd]. In this
case, the relevant Bogoliubov transformation forb-states is

bij + = sBij + + weifwi j+fabsr i j dgBij −
+ , s88d

bij − = sBij − − weifwi j+fabsr i j dgBij +
+ . s89d

The transformation fora-states is still given by Eqs.(25) and
(26). The averaging of Eq.(81) under the assumption that
phasesfabsr i jd are small and have weak positional depen-
dence, gives the following expression for the translational
supercurrent

kJi
tl = −

g,

"
Cbsi j d

* Casi j d ¹ fab. s90d

Note: according to Eq.(76), the value of the product
Cbsi j d

* Casi j d is independent of the orientation of the stripe el-
ement labeled by indicesi j .

From Eq.(90), the supercurrent density can be obtained
as

j =
e

,z0
kJi

tl = Sf ¹ fab, s91d

where

Sf = −
eg

"z0
Cbsi j d

* Casi j d, s92d

z0 is the transverse distance per one SC plane, ande the
charge of electron. As follows from Eq.(91), the unconven-

tional feature of the present model is that the supercurrent is
induced not by the phase gradients ofCa andCb separately,
but by the gradient of the phase difference betweenCa and
Cb. Keeping up with convention in the literature, I will refer
to the phase stiffnessSf as “superfluid density,” but the in-
tuitive associations with some kind of real density would be
misleading in this case.

In Case I, the substitution of Eqs.(75) and (77) into Eq.
(92) gives

Sf =
eg2s1 − 2nBd2

16N"z0
o
k

s1 − 2nAskdduVskdu2

«Askd
s93d

and, in Case II, the analogous Eqs.(78) and (79) lead to

Sf =
eg2s1 − 2nBdCa

2

32"z0«B
. s94d

Now I calculate the in-plane penetration depthl of mag-
netic field directed perpendicularly to the SC planes.

The natural expectation is that the gauge-invariant gener-
alization of Eq.(91) accounting for the presence of the vec-
tor potential of electromagnetic fieldA has form

j = SfS¹fab −
2e

"c
AD , s95d

wherec is the speed of light. In the present work, I do not
derive Eq.(95) but take it as an additional postulate.

The equivalent of the London limit in the present model is
l@,. In this limit, the standard result50 for the penetration
depth, which follows from Eq.(95), is

l =Î "c2

8peSf

. s96d

For the numbers relevant to high-Tc cuprates, the value ofSf

is very small, i.e.,l is large, and, therefore, the London limit
is well fulfilled (see the estimate in the end of subsection
VI G).

The vector potential entering Eq.(95) should be inter-
preted as describing magnetic field averaged over a large
number of supercells. It is, therefore, possible, that, on the
scale of,, the true magnetic field fluctuates around the ex-
ponentially decaying penetration profile characterized byl.

The relationship betweenTc and the zero-temperature su-
perfluid density(represented as 1/l2) is plotted in Fig. 10.
The points in this plot were obtained by fixing the value of
the interaction constantg and then varying«a (in Case I) or
«b (in Case II) from zero to very large values. The
Tc-coordinate of each plot point was obtained by taking a
pair of valuess«a,gd or s«b,gd and then solving numerically
Eqs.(46) and(63) for Cases I and II, respectively. The 1/l2

coordinate was obtained for the same values ofs«a,gd or
s«b,gd by calculatingSf according to Eqs.(93) or (94). The
theoretical plot of Fig. 10 is compared with experiments in
Sec. VIII D.

G. Critical case: «a=«b=0

In the critical case, all the formulas obtained earlier have
very simple form. In particular, the SC transition temperature
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is given by Eq.(48), which is rewritten here as

g = 4Tc. s97d

Substituting Eq.(97) and«a=0 into Eqs.(38)–(40), (50), and
(93) and using Eq.(62) when necessary, the zero-temperature
values of several key quantities can be expressed as follows:

«A0 = 4Tc, s98d

«B = Ca0Tc, s99d

EGS= − 2Ca0TcN s100d

and, finally

l =
"c

2e
Î z0

pCa0Tc
. s101d

The tunneling spectrum for the critical case is shown in
Fig. 7(b).

I now assume that one model layer represents one copper-
oxide layer of a real compound, which allows me to express
the condensation energy per one in-plane copper atom as

U0 =
uEGSua0

2

N,2 =
2Ca0Tca0

2

,2 . s102d

SubstitutingTc=90 K, ,=4a0
Î2<23 Å andz0=6 Å into

Eqs. (98), (99), (101), and (102) and recalling that
Ca0=0.958. . ., I obtain: «A0=31 meV, «B=7.4 meV, U0
=5.4 K andl=417 nm.

VII. DISCUSSION

A. Realistic features of the model

In this subsection I list the features, which I expect will
survive the adaptation of the above model to the properties

of real materials, if the 2D diagonal stripe hypothesis turns
out to be correct.

The basic underlying feature of this model—the potential
background, which localizes botha- and b-states,—should
survive the generalizations. In particular, the actual shape of
the AF domains can be quite distorted and thus noticeably
different from the perfect diamond shape drawn in Fig. 1. It
is only important that the stripes divide the plane into finite
AF domains with the alternating sign of the AF order param-
eter. In the model, the disorder in the shape of AF domains
can be accommodated through the disorder in the values of
«a, «b andg.

Other supposedly realistic features include the coherence
length of the order of, and the decrease of the critical tem-
perature with the increase ofu«a−«bu, which is associated
with the pseudogap.

Finally, the very unconventional translational symmetry
of the SC order parameter described in Sec. VI E should also
survive generalizations.

B. Phase diagram

In this part, I give the description of the phase diagram of
high-Tc cuprates, which is based, in part, on the SC model of
Sec. VI, and, in another part, on a few facts borrowed from
the next section, where the model predictions are compared
with experiments. The phase diagram itself is shown in
Fig. 11.

I start at doping concentrationxd<0.06. From the view-
point of the hypothesis adopted in this work, this is the low-
est concentration at which the 2D stripe pattern stabilizes by
virtue of some unknown energy balance. At this concentra-
tion, according to the description given in Secs. II, V, and VI:
(i) the length of the stripe supercell can be estimated as
,=1/s2xdd<8 lattice sites;(ii ) «a.«b; (iii ) the value of the
pseudogap«a−«b is maximal; and(iv) the superconducting
transition temperature is minimal.

At higher doping concentrations, the size of the AF do-
mains decreases, eventually saturating at,<4a0

Î2. Simul-
taneously, the pseudogap«a−«b also decreases. The rationale
for the latter assertion is that, at some threshold doping con-
centration, stripes should disappear, which implies that holes

FIG. 10. (Color online) Critical temperature vs superfluid den-
sity (represented as 1/l2) at T=0: solid line—Case I; dashed line—
Case II. The plot points are calculated as described in the text.

FIG. 11. Cuprate phase diagram proposed in the text.
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should be expelled from them. According to Eqs.(46) or
(63), the decrease of the pseudogap is accompanied by the
increase of the critical temperature.

The interaction strengthg should also change with the
increase of doping. It is not obviousa priori whether it in-
creases or decreases, but, at least, it is likely that the value of
g never approaches zero, while the value of«a−«b either
reaches zero at some critical doping or becomes very small.
This suggests that the relative change of«a−«b across the SC
doping range has stronger effect on the observable quantities
than the relative change ofg.

If the value ofg were independent of the doping concen-
tration, then the maximum ofTc would be achieved at a
critical doping corresponding to«a−«b=0. However, be-
cause of the presumed dependence ofg on the doping level,
the optimal doping concentration,xd0, corresponding to the
actual maximum ofTc, can be slightly shifted with respect to
the critical one. The comparison with experiments in Sec.
VIII D indicates that the above notion of the critical doping
coincides with the “critical doping”xdC<0.19 identified ex-
perimentally in Refs.51–53 As expected,xd0<0.16 is not
much different fromxdC. The fact thatxd0,xdC suggests that
g decreases as the doping level increases.

Below the critical doping, the inequality«a.«b implies
that the real materials can be describable by the model either
as Case IA or as Case IIB(see Sec. VIII E for the discussion
of this issue).

Above the critical doping, it is, in principle, possible that
either «a−«b stays equal to zero, while onlyg changes, or
«a−«b becomes negative, which means that the absolute
value of the “inverted” pseudogap starts growing again and
thus additionally suppresses the critical temperature. The
analysis of experiments in Sec. VIII D favors the inverted
pseudogap scenario and, given the model choice between
Cases IB and IIA, clearly points to Case IB. As discussed in
Sec. V, the stripe superstructure may, for a while, remain
stable even after«b becomes greater than«a. It is further
possible that the SC transition can contribute to the stabili-
zation of stripes by lowering the total energy of the stripe
phase.

In the context of the present proposal, stripes should exist
in the SC phases of both underdoped and overdoped cu-
prates. It is, however, unclear, whether, in overdoped cu-
prates, stripes can be stabilized without the SC transition.
Negative answer to this question would imply that above the
SC transition, overdoped cuprates enter a stripeless normal
state. Otherwise, the normal state of overdoped cuprates may
still exhibit some kind of stripe order. In turn, if overdoped
cuprates enter stripeless phase simultaneously with the SC
transition, then this important aspect cannot be captured by
the model of Sec. VI. In such a case, the model scenario for
the overdoped situations becomes doubtful.

The conceptual difference between the above description
and the popular idea of competing orders is that, in the
present proposal, the two orders are not competing, but, on
the contrary, cooperating: the stripe order is crucial for the
existence of the SC transition, while the SC transition can
also help stabilizing the stripe order.

VIII. COMPARISON WITH EXPERIMENTS

A. Qualitative aspects

The primary concern in the context of the present pro-
posal is that no evidence of stripes has been observed so far
in most optimally doped and overdoped materials. It should
be pointed out, however, that this proposal stipulates that
strong transverse fluctuations of stripes mediate supercon-
ductivity. If true, this would imply that any attempt to ob-
serve stripes by pinning charges or freezing spins, would
suppress their transverse fluctuations, and thus suppress the
SC transition or, at least, significantly reduce the critical tem-
perature. Such an inverse relation between the amplitude of
the stripe fluctuations andTc can explain why the stripes are
best observable in cuprates having lowerTc, such as
underdoped,34,46 Nd-doped44 and Zn-doped45–47 LSCO. The
transverse fluctuations of stripes should be strongly coupled
to the lattice. Therefore, some kind of isotope effect should
also be present in such a system.

The proper treatment of the single particle excitations in
the nonsuperconducting(normal) 2D stripe phase is not de-
veloped in this work. It is, however, difficult not to see that
the description of the normal state pseudogap given in
Sec. V, while following only from the basic facts about the
2D stripe geometry, bears a strong resemblance to the experi-
mental facts.17 In particular, the disappearance of the
pseudogap in the diagonal crystal directions can be naturally
explained by the presence of holes inside the diagonal
stripes. In the model framework, the absolute value of the
pseudogapu«a−«bu constitutes the primary factor suppressing
the SC transition[see Eqs.(46) and (63)].

In the SC state, the model predicts such distinctive prop-
erties as(i) the suppression ofTc with the growth of the
pseudogapu«a−«bu [see Eqs.(46) and (63)]; (ii ) the emer-
gence of quasiparticles having coherent dispersion ink-space
only at T,Tc [see the remark following Eq.(27)]; (iii ) the
asymmetry of the tunneling density of states[Fig. 7(a)]; (iv)
linear density of states around the chemical potential(Figs.
7(b) and 7(c)); and(v) low superfluid density(Sec. VI F). In
the following subsections VIII B–VIII D), I show that some
of the quantitative model predictions made without adjust-
able parameters also agree with experiments.

B. Tunneling characteristics

In this subsection I compare the theoretical tunneling
spectra atT=0 with experimental tunneling spectra at
T!Tc. Therefore, the discussion will imply the zero-
temperature values of all relevant quantities.

The model predicts two kinds of contributions to the tun-
neling density of states corresponding toA- andB- Bogoliu-
bov quasiparticles(see Fig. 7). If the Van Hove singularities
at ±«A0 and the delta-function peaks at ±«B exist at all, they
should be identifiable in experimental data.

The difficulty now is that the tunneling spectra of high-Tc
cuprates have, in general, only one prominent feature,
namely, two SC peaks at the opposite values of the bias. The
energies of the SC peaks are, usually, denoted as ±D, andD
is referred to as the SC gap. In the superconductivity model
of Bardeen, Cooper and Schrieffer(BCS), D /Tc=1.76. In
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high-Tc cuprates, the reported values ofD /Tc show signifi-
cant variations but, typically, fall in the range between 1.5
and 7, with 4 being a representative value. In the present
model, the ratiosu«A0u /Tc and u«Bu /Tc can also vary broadly.
Their representative values are 4 and 1, respectively(see
Sec. VI G). Having observed thatD /Tc,u«A0u /Tc, I identify
the experimental SC peak with the Van Hove singularity in
the density ofA-states. This identification will later prove to
be consistent with a number of other qualitative and quanti-
tative facts. In the following, the variablesu«A0u and D will
refer, respectively, to the theoretical and experimental values
of the same quantity.

The identification ofB-states is more problematic. The
evidence for their existence is nontrivial, but largely indirect.
It is based on the STM observations of the checkerboard
patters in the local density of states(LDOS) of Bi-221218–21

(to be discussed in subsection VIII C). Another possibly re-
lated observation is that of asymmetric resonance peaks in
YBCO by Derroet al. The asymmetry and the energy range
of those peaks agree well with the expectations for the delta
peaks due toB-states[see Fig. 7(c)].

There are two possible explanations why, in general,
B-states are more difficult to observe experimentally.

The first explanation is that, in a real system, the on-site
energies«b can be distributed. As a result, the spectrum of
B-states may become broad and featureless.

The second explanation is that the matrix elements for
tunneling into b-states(and henceB-states) can be much
smaller than those fora-states. This, in turn, can be related to
the fact thatb-states are localized in the narrow regions in-
side the stripes, whilea-states spread over the AF domains
and thus have a broader “interface” with the environment.
Alternatively, it might happen thatb-states have exotic quan-
tum numbers, in which case tunneling into them can be sup-
pressed at all.

In the rest of this subsection, I assume thatB-states are
mostly unobservable, and, unless specified otherwise, the
tests of the model will amount to the comparison between
the density ofA-states and the experimental tunneling spec-
tra.

I limit the choices to the special Cases I and II defined in
Sec. VI B. Therefore, the model calculation of the density of
A-states only requires the knowledge of two parameters:g
and«a in Case I, org and«b in Case II. UsingTc andD as
input parameters, I can both discriminate between Cases I
and II, and determine the values ofg, «a and«b.

The inequalityD /Tc.4 can appear only in the framework
of Case I, in which case,u«au andg should be obtained nu-
merically from Eqs. (46) and (50) (with nB=1 and
«A0=D). The opposite inequality,D /Tc,4, can only corre-
spond to Case II, i.e.,u«bu and g have to be obtained from
Eqs.(60), (63), and(65) (with nB=0, Ca=Ca0 and«A0=−D).
The situationD /Tc=4 corresponds to the critical case de-
scribed in Sec. VI G.

After the model Hamiltonian is specified, the following
tunneling characteristics can be predicted without adjustable
parameters:(i) the asymmetry in the density ofA-states or
the absence thereof,(ii ) the maximum energy ofA-states«A1,
and also(iii ) the expected positions ±«B of the delta-peaks
representingB-states.

The selection of Case I implies a strong qualitative pre-
diction of asymmetric SC peaks. However, the knowledge of
D andTc alone cannot help to discriminate between Cases IA
and IB, which correspond to the opposite “polarities” of the
SC peak asymmetry. However, if Case I is identified in un-
derdoped cuprates, then the strong expectation is that«a
.«b, which implies Case IA(larger SC peak at the negative
bias). The identification of Case II implies that the SC peaks
are symmetric.(The inequality «a.«b would then favor
Case IIB for underdoped cuprates.)

In Fig. 12, the model calculations are compared with two
particularly well resolved STM spectra of Bi-2212. The ex-
perimental spectrum in Fig. 12(a) was extracted from Fig. 2
of Ref. 54. It is representative of “regular” parts of the
sample surface(i.e., vortex free and impurity free). In this
case, the experimentally determined numbersD=32 meV,
Tc=87 K and D /Tc=4.3 imply Case I withu«au=7.3 meV

FIG. 12. (Color online) Comparison between zero-temperature
model calculations and low-temperature STM spectra of Bi-2212.
Solid lines represent the theoretical density of states in the same
way as in Fig. 7. Dashed lines represent experimental spectra ex-
tracted from the following references:(a) Fig. 2 of Ref. 54(regular
part of Bi-2212 surface); (b) Fig. 7 of Ref. 55.
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and g=31 meV. The theoretical spectrum presented in
Fig. 12(a) corresponds to«a.0, i.e., to Case IA.

The experimental spectrum in Fig. 12(b) was extracted
from Fig. 7 of Ref. 55. The relevant experimental numbers
D=28 meV, Tc=92.3 K andD /Tc=3.5 imply Case II with
u«bu=4.3 meV andg=32 meV. The asymmetry of the theo-
retical delta-peaks in Fig. 12(b) corresponds to«b,0, i.e., to
Case IIB. The vertical scale of the theoretical plots in Fig. 12
was chosen to fit best the experimental data.

It thus appears, that not only does the model give the
correct prediction of the presence or the absence of the SC
peak asymmetry, but also it predicts the degree of asymmetry
quantitatively. One should also note that the termination
points of the theoretical spectra have experimental counter-
parts in the form of the shoulder-like features located ap-
proximately at energies ±«A1 predicted theoretically. Finally,
the delta-peaks shown in Fig. 12(a) are located at ±«B
= ±7.3 meV. These are precisely the energies, at which, in
Ref. 54, the vortex cores have shown anomaloussymmetric
“humps” absent in the regular SC regions. The local density
of states(LDOS) associated with the above humps was later
shown to exhibit a checkerboard pattern inside the vortex
cores.18 In subsection VIII C, I will show that this pattern is
precisely what one should expect from LDOS associated
with B-states.

Now I discuss to what extent the model-based rule

“ D/Tc . 4 ⇔ asymmetric SC peaks;

D/Tc ø 4 ⇔ symmetric SC peaks” s103d

is supported by other STM or point-contact
superconductor—insulator—normal-metal(S-I-N) experi-
ments. The values ofD used below are obtained as half of
the difference between the energies of the SC peak maxima.

Supporting evidence:
Clearly asymmetric SC peaks corresponding toD /Tc.4

have been reported for bilayer compounds
Bi-2212 in Refs. 54 and 56–62,
HgBa2CaCu2O6+d (Hg-1212) in Ref. 63;
and trilayer compounds
Bi2Sr2Ca2Cu3O10+d (Bi-2223) in Ref. 64,
HgBa2Ca2Cu3O8+d (Hg-1223) in Refs. 63 and 65.
The values ofD /Tc extracted from the above references

cover the range between 4.1 and 6.9.
Symmetric SC peaks corresponding toD /Tcø4 have

been reported for single layer compounds
HgBa2CuO4+d (Hg-1201) in Refs. 63 and 64,
Tl2Ba2CuO6 (Tl-2201) in Ref. 66;
and bilayer compounds
Bi-2212 in Refs. 55 and 56, also Pb-doped Bi-2212 in

Ref. 67,
YBCO in Ref. 68,
Tl2Ba2CaCu2Ox (Tl-2212) in Ref. 69.
The values ofD /Tc extracted from the above references

cover the range between 1.7 and 3.9.
Contradicting evidence:
Symmetric SC peaks corresponding toD /Tc.4 have

been reported for
Bi-2212 in Refs. 55, 59, 60, and 70.

Asymmetric SC peaks corresponding toD /Tcø4 have
been reported for

LSCO in Ref. 71,
Tl-2201 in Ref. 66,
Tl-2212 in Ref. 69.
However, in the case of LSCO, the difference between the

peak heights was certainly within the limits of experimental
uncertainty. In the case of Tl-2201 and Tl-2212, the overall
impression from the cited references is that the SC peaks are
largely symmetric.(Most of the spectra reported in the same
references and measured on similar junctions pass as sym-
metric and contribute to the “supporting evidence.”)

Unlike the two spectra shown in Fig. 12, most of the
measured tunneling spectra have more rounded SC peaks,
which may be the consequence of limited experimental reso-
lution. Since a significant broadening of a SC peak also shifts
the position of its maximum, it is possible that, a measured
symmetric spectrum indicates the ratioD /Tc greater than 4,
while the true ratioD /Tc is slightly smaller than 4.(One such
an example is given in Ref. 55.) The resolution-limited
broadening of the SC peaks can, therefore, be responsible for
at least a part of the “contradicting evidence” in Bi-2212.

Taken as a whole, the above review of experimental data
clearly supports the rule(103). Furthermore, this rule(103)
seems to unify the experimental data, which, otherwise, may
appear contradicting to each other.(I will return to this issue
in Sec. VIII E.)

Another interesting fact is that, in the references cited
above, the SC peak asymmetry of the bilayer compounds is
opposite to that of the trilayer compounds: the bilayer com-
pounds have the higher SC peak mostly at the negative bias
[as in Fig. 12(a)], while the trilayer compounds have the
higher peak at the positive bias.

Rule (103) can be compared with a more simple predic-
tion made by Altman and Auerbach,28 that the asymmetry of
the kind shown in Fig. 12(a) is inherent in all high-Tc cu-
prates. The lack of the asymmetry in some of the tunneling
spectra and the opposite asymmetry of the tri-layer com-
pounds would contradict to the above prediction.

Finally, one additional clear prediction of the model is
that the inequalityD /Tc.4 implies that, asT approachesTc,
the energy of the SC peaks approaches the finite valueu«au
[see Eq.(50)]. The inequalityD /Tc,4 implies the zero en-
ergy of the SC peaks atT=Tc [see Eq.(65)]. The above
prediction is difficult to test, because the SC peaks tend to be
totally “washed out” in the vicinity ofTc. Nevertheless, one
can observe that the first part of this prediction is consistent
with the trend in the tunneling data from Refs. 59 and 72–75.
The second part is more difficult to test, but it also appears to
be consistent with the results reported in Refs. 74, 76, and
77, though the results from Refs. 73 and 75 leave either
ambiguous or the opposite impression.

C. B-states and the checkerboard patterns observed by STM

The only experimental evidence, which, at the moment, I
can identify withB-states is the checkerboard modulation of
the LDOS observed by STM in the vortex cores.18 The
analogous modulations observed in the normal state of
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Bi-221221 can be attributed tob-states.[For the alternative
interpretations of these(and other) checkerboard patterns see
Refs. 11, 19, 20, 31, and 78–82].

The checkerboard modulations revealed by the above ex-
periments have periodicity of approximately four lattice pe-
riods along the principal lattice directions. From the view-
point of the present proposal, this periodicity is due to the
response fromB-states in the SC state orb-states in the nor-
mal state. These model states are localized around the centers
of the stripe elements, which, as shown in Fig. 13, form a
pattern with the required orientation of the “checkerboard.”

As a corroborating evidence, I can mention that, in the
vortex core experiments,18,54 the LDOS modulation was
most pronounced at energies approximately equal to
±7 meV, in almost exact correspondence with ±«B obtained
in Sec. VIII B just from the knowledge ofD andTc for the
spectrum presented in Fig. 12(a). In the normal state
experiment,21 the typical range of energies, where the modu-
lations were most pronounced, was also consistent with the
possible energies ofb-states.

In regular SC regions of nearly optimally doped Bi-2212,
a different kind of LDOS modulations showing strong en-
ergy dependence has also been observed.19,20From the view-
point of the present proposal, this energy dependence can be
caused by two factors:(i) the crossover from the pattern
corresponding toB-states to the pattern corresponding to
A-states; and (ii ) the defect-induced interference of
A-quasiparticles. The first factor can be appreciated after one
observes that the spatial patterns ofA-states andB-states are
characterized by different sets of wave vectors. The pattern
of A-states has diagonal periods, coinciding with that of the
underlying stripe superstructure, while the periods of
B-states(shown in Fig. 13) are equal to, /Î2 and oriented
along the principal lattice directions. Therefore, as the energy
probed by STM increases, the pattern representative of
B-states gradually transforms into the pattern representative
of A-states, hence the energy dependence of the characteris-
tic wave vectors. The description of the second(interference)

factor would require quantitative analysis extending beyond
the scope of the present work.(The idea, that a different kind
of the quasiparticle interference can entirely explain the
energy-dependent modulation patterns, was advocated in
Refs. 20 and 80).

Since, in the 2D diagonal stripe picture, the experimen-
tally observed checkerboard periodicity of 4a0 implies the
true underlying period,=4a0

Î2 along the diagonal direc-
tions, a direct test for the existence of the diagonal super-
structure can consist of reconstructing the position of hypo-
thetical diagonal stripes from the knowledge of the
checkerboard pattern at lower energies, and then checking
whether the LDOS modulation at higher energies has more
pronounced correlations between the(approximately)
equivalent positions belonging to different supercells.

Finally, the in-stripe hole content corresponding to the
present interpretation can be estimated by substituting
xd<0.16 and f =a0

Î2/,=1/4, into Eq. (4), which gives
c=xd/ f =0.6. This number is only slightly greater than 0.5
extracted in Sec. II from the experimentally observed INS
peak splitting in underdoped LSCO compounds.

D. Superfluid density

In the model framework, the calculation of the critical
temperatureTc and the superfluid density,Sf, requires the
knowledge of three numbers:u«a−«bu, g and the prefactor of
Sf. In general, one should expect that bothu«a−«bu and g
change as functions of doping concentration. However, since
u«a−«bu, presumably, approaches zero not far from the opti-
mal doping, the relative effect of this change on the observ-
able quantities should be stronger than the effect of the
change ofg. Therefore, for a given family of high-Tc cu-
prates, one can obtain an approximate relation betweenSf

and Tc by fixing the value ofg and then varying«a in
Case I or«b in Case II. The two theoretical curves shown in
Fig. 10 were obtained precisely in this way.

In this subsection, I test the model relationship between
Sf andTc by superimposing the(rescaled) theoretical plot of
Fig. 10 on the experimental results for Tl-2201,83–85

Tl0.5−yPb0.5+ySr2Ca1−xYxCu2O7 (Tl-1212),51 Hg-1201,86

LSCO,53,87 Bi-2212,53 Ca-doped YBCO(Y:Ca-123)53 and
YBCO,88 which report either relaxation rates measured by
muon spin rotationsmSRd technique, or the inverse square of
the penetration depthl extracted from themSR data, field-
dependent thermodynamic measurements, or electron spin
resonance studies. Boths andl−2 should be proportional to
Sf. The result is shown in Figs. 14 and 15.

In each of Figs. 14(b)–14(f), the theoretical plot is res-
caled in such a way that the critical case point(the one,
where the dashed and the solid curves intersect) coincides
with the experimental critical point. The latter is defined as
the point where the derivative of the experimentalTc vs Sf

dependence undergoes an apparent discontinuous change. In
Refs. 51–53, the same point was found to correspond to the
so-called “critical doping concentration” approximately
equal to 0.19. In Figs. 14(g) and 14(h) the theoretical critical
point simply matched the experimental point of the maximal
superfluid density.(Here I ignored the issue of anisotropy

FIG. 13. (Color online) Checkerboard pattern formed by the
centers of stripe elements. Circles indicate the regions, where the
densities ofB-states in the SC phase orb-states in the normal phase
are expected to be particularly high.
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and treateda-axis andb-axis data as independent data sets.)
In Figs. 14(a) and 14(c), the rescaling relied on the overall

best fit to the experimental data rather than on matching a
specific point.

The comparison with experiments in Fig. 14 amounts to
the following(crude) quantitative test of the model: After the
interaction constantg and the prefactor ofSf are fixed by
establishing the absolute scale for the theoretical critical
point, the values oftwo independent numbersSf andTc for
noncritical points are obtained by varying onlyone theoreti-
cal parameter:«a in Case I or«b in Case II.

As is evident from Figs. 14 and 15, the theoretical “fish-
like” plot clearly captures the main features of the experi-
mental data, namely: the existence of two different regimes,
with a critical point of the maximal superfluid density sepa-
rating them. The quality of the quantitative agreement in
Figs. 14(a) and 14(f) is particularly surprising, given the
crudeness of the test and the fact that the data extend into the
overdoped region, where the model assumptions appear less
reliablea priori.

At the point corresponding to the critical case, one can
also estimate the absolute value of the penetration depth
from Eq. (101). This estimate, which only requires the
knowledge of the critical temperature and the transverse dis-
tance per one CuO2 plane, was made in Sec. VI G with the
numbers close to those of YBCO or Bi-2212. The number
obtainedsl=417 nmd is about 3–4 times greater than the
numbers typically cited for YBCO(see, e.g., Ref. 88) and
about two times greater than the numbers cited for Bi-2212
(see, e.g., Ref. 53). This comparison is representative of the
general trend: the theoretical formula(101) overestimates the
penetration depth by about a factor of 3.

For a simple estimate, which involves only the fundamen-
tal constants and two well-known material parameters(Tc
and z0), the factor-of-3 agreement with the experimental
numbers is quite reasonable. One should also be conscious of

FIG. 14. (Color online) Critical temperature vs superfluid den-
sity (presented ass or l−2) at T>0. The theoretical plots(solid and
dashed lines) are obtained by simple rescaling of the plot presented
in Fig. 10. The experimental points are extracted from the following
references:(a) filled circles—Ref. 85, open circles—Ref. 84,
squares—Ref. 83;(b) Ref. 51; (c) Ref. 86; (d) filled circles—Ref.
53, open circles—Ref. 87;(e, f) Ref. 53;(g, h) Ref. 88. The doping
ranges corresponding to the experimental points are shown in
Fig. 15.

FIG. 15. (Color online) All the data points from Fig. 14 rescaled
in such a way that the theoretical plots coincide with each other.
The arrows indicate the direction, in which the doping concentra-
tions increase. “UD” and “OD” indicate underdoped and overdoped
samples, respectively.
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the possibility(mentioned in Sec. VI F) that the profile of
magnetic field may strongly fluctuate within the penetration
depth layer. At the same time, the absolute values of the
penetration depth are typically extracted from the experimen-
tal data on the basis of theoretical formulas, which do not
take into account such a possibility.

E. Correspondence between the model regimes
and the doping concentrations

In this subsection, I attempt to establish the correspon-
dence between model Cases IA, IB, IIA and IIB and the
doping concentrations of high-Tc cuprates. On the basis of
the content of Secs. V, VIII B, and VIII D, the following four
criteria discriminating between the four model Cases can be
proposed:

Criterion 1: The inequalityD /Tc.4 indicates Case I,
while D /Tc,4 indicates Case II.

Criterion 2: When the theoretical fish plot from Fig. 10 is
superimposed on the experimental dependence ofTc on the
superfluid density, the proximity of a data point to the solid
line indicates Case I, while the proximity to the dashed line
indicates Case II.

Criterion 3: The asymmetry in the tunneling density of
states characterized by a larger SC peak at negative voltages
indicates Case IA. The opposite asymmetry indicates Case
IB.

Criterion 4: When the asymmetry in the tunneling density
of states is not accessible, I will rely on the postulate, that, in
underdoped cuprates,«a.«b, which favors Case IA over IB,
and IIB over IIA.

Criterion 2, when applied to Fig. 15, suggests a very
simple picture: The cuprates are describable by Case II at
subcritical doping concentrationsxd,xdC<0.19, and by
Case I at the supercritical concentrationsxd.xdC.
Criterion 4 then further narrows the choice to Case IIB for
xd,xdC. This identification implies that, at low doping,m
=«a.«b, and then, as the doping concentration increases, the
difference «a−«b decreases until, at the critical doping, it
becomes equal to zero. The identification of Case I forxd
.xdC then suggests thatu«a−«bu starts increasing again(but
now with m=«b). Since the derivative of«a−«b as a function
of doping is unlikely to change sign exactly atxd=xdC, I
conclude that the model pseudogap«a−«b changes signasxd
passesxdC. This means that, at the supercritical doping con-
centrations,«a,«b, which implies Case IB. Thus the assign-
ment following from the above discussion is

xd , xdC ⇒ Case IIB,

xd . xdC ⇒ Case IB. s104d

The clear systematics of the superfluid density data should
now be contrasted with a less systematic picture emerging
from the tunneling data.

Most of the point-contact and STM tunneling spectra dis-
cussed in subsection VIII B, as well as break junction and
interlayer tunneling spectra, are collected at doping concen-
trationsxdøxdC. In this doping range, the tunneling data for
Tl-2201,66 Tl2Ba2CaCu2O8+d (Tl-2212),69 Hg-1201,63,64

LSCO,71 YBCO68,89,90(and also YbBa2Cu3O7−x
89,90) support

inequality D /Tcø4, which, according toCriterion 1, sug-
gests Case II in agreement with the assignment(104).

The tunneling studies of Bi-2212 do not reveal a coherent
picture either in terms of the ratioD /Tc or in terms of the SC
peak asymmetry. Most of more recent Bi-2212 tunneling
data forxdøxdC

54,58–61,70,72–74,91show D /Tc.4, and when-
ever the asymmetry is evident in the data, it mostly points to
Case IA—in clear contradiction with the assignment(104).
At the same time, many other(and some of the same) tun-
neling studies55,56,67,74,76,92find in the same doping range the
gap values correspondingD /Tcø4 and thus, according to
Criterion 1 support the assignment(104).

The remarkable fact is that, at least on two
occasions,56,57,74 the tunneling spectra of Bi-2212 presented
in the same paper and measured on samples with nearly
equal critical temperatures have shown two different values
of D /Tc—one significantly greater than 4, and the other one
smaller than 4.

The tunneling phenomenology of Bi-2212 can be ex-
plained by the existence of two different SC states, which,
for xd,xdC, correspond either to Case IA or to Case IIB. As
argued in Sec. VI D, both SC states are characterized by
sharp minima of the total energy of the system and by the
same critical temperature. One of them can, e.g., constitute a
stable bulk state, while the other one a stable or metastable
surface state.

The asymmetric STM spectrum of Hg-1212 reported in
Ref. 63 clearly suggests Case IA, which cannot be placed
within the assignment(104).

Criteria 1 and 3, when applied to the asymmetric STM
spectra for the trilayer compounds Bi-222393 and Hg-122363

suggest Case IB, and thus could be compatible to the assign-
ment (104) provided that the doping concentration in those
samples exceeds the(unknown) critical concentration for the
corresponding families of cuprates. However, the recent in-
terlayer tunneling results for Bi-222375 indicate that, as the
doping concentration increases, the ratioD /Tc decreases
from values larger than 4 to values smaller than 4, which, in
combination with the STM data,93 rather suggests the assign-
ment opposite to(104), namely: Case IB forxdøxdC and
Case IIB forxd.xdC.

Summary of the findings of this subsection: Assignment
(104) is consistent with the superfluid density data and/or the
tunneling data reported for Tl-2201, Tl-2212, Tl-1212, Hg-
1201, LSCO and YBCO. For Bi-2212, the same assignment
is partially supported by experiments, while the overall phe-
nomenology rather suggests the occurrence of two different
SC states at the same doping concentration. The limited tun-
neling data on Hg-1212, Hg-1223 and Bi-2223 appear to
contradict to the assignment(104) with varying degrees of
certainty. Assignment(104), if true, implies that the
pseudogap changes sign at the critical doping concentration.

F. Symmetry of the SC order parameter

The prediction, which distinguishes the present proposal
from many others, is the nontrivial translational symmetry of
the SC order parameter. This property has not yet been in-
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vestigated experimentally. One straightforward experimental
test would be to construct a nanoscale probe, which is sen-
sitive to the SC phase difference between two points sepa-
rated by one period of the expected stripe superstructure.
Slightly prior to the appearance of the present work, the
position-dependent sign change of the SC order parameter
has also been proposed by Ashkenazi29 in the context of a
different stripe-related model.

An important question is whether the SC order parameter
introduced in this work is consistent with the phase sensitive
experiments, which are usually interpreted as the evidence
for dx2−y2 symmetry of a spatially uniform SC state(see, e.g.,
Ref. 94). Here I am primarily concerned with the corner
superconducting quantum interference device(SQUID)
experiments95 and with the tricrystal junction
experiments.96,97

A definitive discussion of these experiments cannot be
given at this time because of the following two uncertainties:

(i) The continuous family of possible SC solutions ob-
tained in Sec. VI C has not been narrowed to a single one.

(ii ) The boundary conditions necessary for the discussion
of the phase sensitive experiments have not been specified.

In view of the above uncertainties, I limit further discus-
sion to presenting just one of several possible interpretations
of the well-known p phase shift observed in the corner
SQUID experiments.95 This interpretation is illustrated in
Fig. 16. It is based on the same SC phase pattern as the one
shown in Fig. 6(a). The examination of Fig. 16 reveals that
the phases “0” and “p /2,” which characterize bothCa and
Cb, form the same pattern along both of the SQUID inter-
faces, which means that this aspect of the phase symmetry is
unlikely to contribute to the relative phase shift between the
two interfaces. However, in addition, theCa component also
has the position dependent sign factor, which is indicated in
the centers of the supercells as “1” or “ 2.” The important
fact is that, despite the sign change ofCa, the Josephson
coupling betweenCa and the order parameter of the conven-
tional superconductor is not averaged to zero along each of
the two interfaces shown in Fig. 16. Now I assume that, at

these interfaces, the order parameter of the conventional su-
perconductor preferentially couples toCa (as opposed to
Cb). In such a case, the opposite signs ofCa along the two
interfaces imply the required phase shift ofp.

The interpretation of the tricrystal experiments,96,97 in
which vortices carrying half of the flux quantum were ob-
served, is not practical at this time, because it should depend
critically on the unknown boundary conditions. Here, I can
only mention, that, the design geometry of the tricrystal ex-
periments is such that, if the postulated 2D stripe superstruc-
ture exists in each of the three adjacent crystals, then the
three interfaces between the intersecting stripe superstruc-
tures are nearly equivalent to each other. Therefore, the ex-
planation of these experiments will likely amount to showing
that each of the junctions generates ap phase shift.

Finally, I discuss the observation of thec-axis Josephson
pair tunneling between YBCO single crystals and the films of
Pb.98 (Pb is a conventional s-wave superconductor.) This ex-
perimental fact is difficult to explain on the basis of the
“d-wave” picture.94 At the same time, in the framework of
the present proposal, it can be easily interpreted as follows:
When a conventional superconductor is placed on the top of
the 2D striped system shown in Fig. 16, the contribution of
the Ca component to the Josephson coupling changes sign
and thus averages to zero, but the contribution from theCb
component, which does not change sign, can lead to a finite
Josephson current.

IX. CONCLUSIONS

In the present work, I have analyzed several consequences
of the hypothesis that holes doped into high-Tc cuprates or-
ganize themselves in two-dimensional arrays of deep stripes.
In particular, on the basis of this hypothesis, I have formu-
lated and solved a model of superconductivity. From that
model, I have obtained the tunneling spectrum and the su-
perfluid density, which show good agreement with experi-
ments. The symmetry of the SC order parameter derived
from the model is different from that ofdx2−y2 BCS order
parameter. The order parameter obtained in this work has
two components, at least one of which changes sign as a
function of the absolute position of the pair on the spatial
scale of the stripe superstructure. A number of other features
of this proposal such as the geometry of the pseudogap and
the effect of the pseudogap on the superconducting transition
temperature appear to be in qualitative agreement with the
phenomenology of high-Tc cuprates. The checkerboard pat-
tern of LDOS observed by STM has been interpreted as
coming from the centers of stripe elements in the 2D ar-
rangement of diagonal stripes. This work also indicates the
possibility, that, in underdoped cuprates, there may exist two
different kinds of SC states, and that, at the critical doping
concentration, the pseudogap may change sign.

Even if a future work demonstrates the inadequacy of the
theoretical assumptions of the present one, the systematics of
the asymmetry in the tunneling spectra discussed in Sec.
VIII B and the scaling of the superfluid density data shown
in Fig. 15 should retain the status of useful empirical facts.

FIG. 16. (Color online) Possible geometry of a corner SQUID
experiment.
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APPENDIX A: APPROXIMATE SOLUTION VIA A
NONCANONICAL TRANSFORMATION

In this appendix, I present an approximate scheme of find-
ing the variational ground state of Hamiltonian(7) using the
following Bogoliubov-like noncanonicaltransformation of
a-statesin real space

ai = uAi + vhio
jsid

Aj
+ sA1d

together with regular Bogoliubov transformation ofb-states

bij ,+ = sBij ,+ + wBij ,−
+ , sA2d

bij ,− = sBij ,− − wBij ,+
+ , sA3d

whereAi and Bij ,s are the annihilation operators of the Bo-
goliubov quasiparticles;u, v, s andw are the transformation
coefficients. These coefficients can be chosen real. They
must then obey the following normalization constraints:

u2 + 4v2 = 1, sA4d

s2 + w2 = 1. sA5d

(Variablesu andv of this appendix should not be confused
with functionsuskd andvskd defined by Eqs.(25) and (26).

The second term on the right-hand side of Eq.(A1)
changes sign from supercell to supercell following the sign
of hi. This sign change is necessary to ensure that the ca-
nonical fermionic anticommutation relations between opera-
tors Ai andAj corresponding to neighboring AF domains are
not violated in the first order ofv. This transformation is still
noncanonical, because it violates the anticommutation rela-
tions in the second and higher orders ofv. In order to see
this, one can assume thatA-operators represent true fermions
and then check the anticommutation relation between opera-
tors ai andap

+ corresponding to a pair of next nearest neigh-
bors.

Despite the fact that transformation(A1) is not canonical,
I will substitute it (together with transformations(A2) and
(A3), into the Hamiltonian(7) and then handleA-operators
as if they were true fermionic operators.

The justification for such a scheme is threefold:(i) The
noncanonical transformation(A1) is very natural for the
structure of Hamiltonian(7). (ii ) A priori, this scheme repre-
sents a controllable approximation in the case of smallv
(large«a). (iii ) For arbitrary values of parameters«a, «b and
g, the ground state energy and the quasiparticle excitation
energies obtained in the present framework turn out to be
very close to those obtained with the help of the fully ca-
nonical transformation of Sec. VI C.

Transformation(A1)–(A3) minimizes the energy of the
system when

u =11

2
+

signsXd
2 Î1 +

Y2

Z2

1 +
Z2

X2
2

1/2

, sA6d

v =
1

211

2
−

signsXd
2 Î1 +

Y2

Z2

1 +
Z2

X2
2

1/2

, sA7d

s=11

2
+

signsYd
2 Î1 +

X2

Z2

1 +
Z2

Y2
2

1/2

, sA8d

w = −11

2
−

signsYd
2 Î1 +

X2

Z2

1 +
Z2

Y2
2

1/2

, sA9d

where

X = «as1 − 2nAd, sA10d

Y = 4«bs1 − 2nBd, sA11d

Z = gs1 − 2nAds1 − 2nBd. sA12d

HerenA andnB are the occupation numbers of the quasipar-
ticle states described by operatorsAi andBij ,s, respectively,
i.e.,

nA =
1

expS«A

T
D + 1

, sA13d

nB =
1

expS«B

T
D + 1

. sA14d

In Eqs.(A13) and(A14), variables«A and«B are the energies
of the respective quasiparticle states.

At T=0, the constraintsuuu,1 andusu,1 impose the fol-
lowing condition for the existence of the physical solution:

g ù Î4u«a«bu. sA15d

This condition is satisfied for any nonzero value ofg, when
either«a=0 or «b=0.

In the rest of this appendix, I limit the calculations only to
Cases IA and IIA(in the classification of Sec. VI B).

Case IA: «b=0, «aù0.
Condition«b=0 implies that, according to Eqs.(A8) and

(A9), s=1/Î2 andw=−1/Î2, both independent of tempera-
ture. The coefficientsu andv given by Eqs.(A6) and (A7)
with Y=0 have temperature-dependent values.
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A natural sign convention for this case is«A.0 and«B
,0, i.e., atT=0, nA=0 andnB=1.

One can then obtain the energies

«A = Î«a
2 + g2s1 − 2nBd2 sA16d

and

«B =
g2s1 − 2nAds1 − 2nBd

4«A
sA17d

of A-andB-quasiparticles, respectively.
The zero-temperature value of«A following from Eq.

(A16) coincides with that of the Van Hove singularity(50)
characterizing the spectrum of the “canonical solution.” The
values of«B given by Eqs.(A17) and (39) for the two solu-
tions are also close to each other.

The ground state energy in the present case can be evalu-
ated as

EGS= −
N

2
fÎ«a

2 + g2 − «ag . sA18d

If EGS given by Eq.(A18) is compared with the ground state
energy of the canonical solution[Eq. (40)], then the differ-
ence is never greater than 5%.

At finite temperatures, in order to obtainnA, nB, «A and«B
one has to solve the system of equations(A13), (A14),
(A16), and (A17) numerically. It is easy to find, however,
that the above system of equations always has one trivial
solution:«A=«a, «B=0 with nA andnB given by Eqs.(A13)
and(18). The condition for the existence of the second, non-
trivial, solution can be found analytically. This condition is:
T,Tc, where the critical temperatureTc is the solution of
Eq. (46). Thus the remarkable fact is thatTc obtained in the
framework of the present noncanonical scheme reproduces
the canonical result of Sec. VI C.

Case IIA: «a=0, «bù0.
According to Eqs.(A6)–(A9), the condition«a=0 implies

that u=1/Î2 andv=1/Î8, while s andw have temperature-
dependent values.

The sign convention in this case is:«A,0, «B.0, i.e., at
T=0, nA=1 andnB=0. The calculation now gives

«A =
g2s1 − 2nAds1 − 2nBd

4«B
, sA19d

«B =Î«b
2 +

1

16
g2s1 − 2nAd2, sA20d

EGS= − 2NFÎ«b
2 +

1

16
g2 − «bG . sA21d

The critical temperature in this case is again the same as
obtained from the canonical solution, i.e., it is given by Eq.
(63).

In summary: The noncanonical variational scheme based
on Eqs.(A1)–(A3) predicts the same critical temperature as
the canonical scheme of Sec. VI C. Furthermore, the nonca-
nonical scheme predicts the ground state energy and the im-
portant tunneling characteristics within a few per cent from

the canonical result. The only significant feature of the ca-
nonical solution missing in the noncanonical one is the ab-
sence of the gap in the spectrum ofA-quasiparticles in
Case II. A related conceptual detail is that the noncanonical
scheme fails to predict the coherent dispersion«Askd of
A-quasiparticles.

I conclude this appendix with the following comment:
In the present variational scheme one can easily find that

neither the variational energy nor the excitation spectrum
will change, if the phases of transformation(A1)–(A3) are
modified in the following way:

ai = uAi + vhio
jsid

eiwi jAj
+, sA22d

bij ,+ = sBij ,+ + weiwi jBij ,−
+ , sA23d

bij ,− = sBij ,− − weiwi jBij ,+
+ , sA24d

where phaseswi j can be different for different pairs of indi-
cesi and j .

The freedom to vary phaseswi j in Eqs.(A22)–(A24) is, at
least in part, due to the fact that the parameter space of
noncanonical transformations is larger than that of canonical
ones. Therefore, one may try to choose phases in Eqs.
(A22)–(A24) such that transformation(A22) becomes ca-
nonical. I have found, that, in this way(with the selection of
phases shown later in Fig. 6), the next nearest neighbor an-
ticommutation test described earlier in this appendix can,
indeed, be satisfied. However, a similar test for the pairs of
supercells separated by one common neighbor cannot be sat-
isfied independently of the choice of phaseswi j . Transforma-
tion (A22) cannot be made rigorously canonical, because it
involves only the nearest neighbors. It is, however, possible
to conform with the canonical anticommutation relations, if
transformation(A22) is modified to include more remote
neighbors. Such a canonical transformation is much easier to
describe ink-space—subject of Sec. VI C. One can thus con-
clude that the coherent dispersion ofA-quasiparticles in
k-space is protected by the Fermi statistics.

From a different perspective, one can also observe that, in
the canonical scheme, the nonintuitive combination of
phaseswa given by Eq.(42) minimizes the pairing amplitude
between more remote neighbors, which leads to the maxi-
mum energy gain from the nearest neighbors interactingvia
the Hamiltonian(7).

APPENDIX B: MINIMIZATION OF ENERGIES
(40) and (61) WITH RESPECT TO PHASESfa

The minimization procedure presented in this appendix is
equally applicable to the total energy expressions both in
Case I[Eq. (40)] and in Case II[Eq. (61)]. Below, in order to
be specific, I focus on the expression(40). This expression
can be considered as an implicit function of phaseswa enter-
ing it through the dependence on a single functionuVskdu2.
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From Eq.(24)

uVskdu2 = 4Hcos2FkR1 +
w1 − w3

2
G + cos2FkR2 +

w2 − w4

2
G

+ 2 cosFkR1 +
w1 − w3

2
G 3 cosFkR2 +

w2 − w4

2
G

3 cosFw2 + w4 − w1 − w3

2
GJ . sB1d

I first note thatuVskdu2 is a periodic function ofk in the
directions ofR1 and R2. Replacing sum in Eq.(40) by the
integral according to the prescription(41), I further note that
the symmetry of the functionuVskdu2 is such, that any shift of
the integration region does not change the value of the inte-
gral. Therefore, the result of the integration does not depend
on the values of

w1−w3

2 and
w2−w4

2 . In the following, in order to
be specific, I choose

w1−w3

2 =0 and
w2−w4

2 =0.
The only phase combination to be constrained by the

minimization of energy(40) is
w2+w4−w1−w3

2 . Now I switch
back to the language of summation and note that the sum-
mation points in Eq.(40) can be divided in pairssk ,k8d as
shown in Fig. 17. Pointk is chosen inside the white area
surrounded by the dashed line, whilek8 is the nearest mirror
image ofk in the dark area outside of the dashed line. For
each such a pair

uVskdu2 = 4fhskd + pskdzg, sB2d

while

uVsk8du2 = 4fhskd − pskdzg, sB3d

where

hskd = cos2fkR1g + cos2fkR2g, sB4d

pskd = 2 cosfkR1gcosfkR2g, sB5d

z = cosFw2 + w4 − w1 − w3

2
G . sB6d

Thus the energy(40) can be presented as

E = − o
k

,

hFfhskd + pskdzg + Ffhskd − pskdzgj, sB7d

where symbol “;” in the sum superscript implies that the
summation is limited to the area shown in Fig. 17 inside the
dashed line. FunctionF is implicitly defined by equation

FF1

4
uVskdu2G = f1 − 2nAskdg«Askd − «a, sB8d

where «Askd and nAskd;nAf«Askdg are expressed as func-
tions of uVskdu2 with the help of Eqs.(29) and (38). Even
without specifying functionF explicitly, one can take the
derivative ofE with respect toz to find

]E

]z
= − o

k

,

pskd Hh
h

F8fhskd + pskdzg − F8fhskd − pskdzgJ ,

sB9d

where F8 is the first derivative of functionF. Each term
in the sum(B9) is equal to zero, whenz=0, which implies
an extremum ofE. I have examined a large number of
examples numerically and have found that, in all cases
considered, the above extremum corresponds to the global
maximum. This result is also easy to derive analytically
in the critical case by showing that all pairs of terms
Ffhskd+pskdzg+Ffhskd−pskdzg in Eq. (B7) simultaneously
reach their maximal values, whenz=0.

Conditionz=0 substituted into Eq.(B6), then gives

cosFw2 + w4 − w1 − w3

2
G = 0, sB10d

from which Eq.(42) follows.

APPENDIX C: DERIVATION OF THE EQUATION
FOR THE CRITICAL TEMPERATURE

In order to obtain the critical temperature in Case I of Sec.
VI C, I substitute into Eq.(39) the limiting values of all
quantities asT−Tc→0−. In this limit

«Askd → «a, sC1d

nAskd → 1

expS«a

Tc
D + 1

. sC2d

FIG. 17. Two examples of the pairsk points referred to in the
text: sk1,k18d andsk2,k28d. Thick solid lines represent the boundary
of the first Brillouin zone of the stripe superstructure. The firstk
point of each pair should belong to the light region inside the
dashed boundary. The second point should be obtained from the
first one by reflection with respect to the nearest dashed line.
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Simultaneously,«B→0, and nB→1/2, i.e., 2nB−1→0. In
order to resolve the uncertainty associated with substituting
the limiting values of«B and 2nB−1, it is necessary to keep
the next order of«B in the expression for 2nB−1, i.e.

2nB − 1→ −
«B

2Tc
. sC3d

The substitution of Eqs.(C1)–(C3) into Eq. (39) leads to the
following equation:

Tc =

g2FexpS«a

Tc
D − 1G

16«aFexpS«a

Tc
D + 1G

1

N
o
k

uVskdu2. sC4d

Now I note, that, independently of the choice of phases in
Eq. (B1),

o
k

uVskdu2 = 2N. sC5d

The substitution of Eq.(C5) into Eq. (C4) then gives Eq.
(46).
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