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Collective pinning of the vortex lattice by columnar defects in layered superconductors
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The mixed phase of layered superconductors with no magnetic screening is studied through a partial duality
analysis of the corresponding frustrat&d model in the presence of random columnar pins. A small fraction
of pinned vortex lines is assumed. Thermally induced plastic creep of the vortex lattice within isolated layers
results in an intermediate Bose glass phase that exhibits weak superconductivity across layers in the limit of
weak Josephson coupling. The correlation volume of the vortex lattice is estimated in the strongly coupled
Bose glass regime at lower temperature. In the absence of additional point pins, no peak effect in the critical
current density is predicted to occur on this basis as a function of the Josephson coupling. Also, the phase
transition observed recently inside of the vortex-liquid phase of high-temperature superconductors pierced by
sparse columnar defects is argued to be a sign of dimensional crossover.
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I. INTRODUCTION Josephson coupling between layers. We argue that the tran-

Random material defects that are correlated along th&ltion between the strongly coupled Bose glass that exists in
lines of magnetic induction are perhaps the most effectivdh® zero-temperature limit and the latter weakly coupled
mechanism known to pin down the vortex lattice in high-Bose glass is a crossover by comparison with the duality
temperature superconductdra.Bose glass phase with a di- transformation of the layeredY model without frustratiof?
vergent tilt-modulus is predicted to exist at relatively low Numerical simulations find evidence for a sharper transition,
fields such that each and every flux line can be trapped by Bowever, which we suggest is an artifact of the relatively
correlated material defegtExperimental studies of the op- coarse model grid that was ustéde also argue for the
posite limit, where the number of flux lines exceeds the numabsence of a peak effect in the critical current density of the
ber of correlated pinning sites, have been made recéitly. strongly-coupled Bose glass phase as a function of the Jo-
Less is known theoretically about this regime in comparisorsephson coupling if no additional point pinning is present
to the former relatively low-field regime. The vortex lattice is (See Ref. 18 This is based on an estimate for the Larkin
pinned collectively here by the sparse columnar defects igorrelation volume of the vortex lattice* Last, a vortex
the low-temperature limit.A Bose glass phase that displays liquid-vortex liquid transition has been observed very re-
an infinite tilt modulus is therefore still expected. The collec-cently in high-temperature superconductors with sparse co-
tive pinning effect is naturally degraded by thermal fluctua-lumnar defect$.Both the material defects and the external
tions, however. In stark contrast to the case of point pinningmagnetic field were oriented perpendicular to the copper-
two classes of vortex lines exist in the case of sparse colunexygen planes. We shall interpret this phenomenon as a di-
nar defects:® (i) those lines of vortices that are pinned down mensional crossover transition that exists inside of the
at a columnar defect, angi) those lines that are not. An vortex-liquid phase of the defective superconduétobut
interstitial phase is therefore predicted to exist theoreticallythat is absent in the pristine superconduéfor.
at intermediate temperatures between the Bose glass and the

vortex liquid phases, where only a fraction of the flux lines Il. ISOLATED LAYER
remain pinned down while the remaining lines are free to ) ) _ ) ]
wander and thereby degrade the superconducfivity. Consider first a stack of isolated superconducting layers in

High-temperature Superconductors are also |ayerea. perpendicular external magnetic f|e|d 'Dh‘é mOdel over
materials’8 Thermal fluctuations of the vortex lines in lay- the square lattice with uniform frustration then provides a
ered superconductors are larger than in those of isotropigualitatively correct description of the mixed phase for each
materials. This makes them ideal candidates to be a host féayer in the absence of Josephson coupling, as well as of
interstitial vortex matter. Monte Carlo simulations of the Mmagnetic screening. The neglect of the latter is valid at per-
frustratedXY model have been performed recently in orderpendicular fields that are far enough above the lower critical
to study extremely type-Il layered superconductors in perfield such that
pendicular magnetic field with sparse columnar pins located ay <\ (1)
at randon® These simulations find evidence for the existence X L
of an interstitial liquid/glass phase as described above. Werherea,, is the square root of the area per vortex in each
study this possibility here theoretically through a duality layer, and where\; denotes the London penetration depth
analysis of the same layerexty modell® An intermediate associated with supercurrents that flow within each layer. A
Bose glass phase that shows weak superconductivity acrosseak Josephson coupling will be turned on in the next sec-
layers! exists at temperatures that lie between the vortextion. The corresponding Boltzmann distribution is set by the
liquid phase and the Bose glass phase in the limit of wealum of energy functionals
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pEXy F at asymptotically large separations— . Hereé,p denotes

for the superfluid kinetic energy of each laylewritten in  the 2D phase correlation length.
terms of the superconducting phasggr,|). Here A, (r) We shall assume now that the array of random columnar

= p(F+af) - B(F) and,&:(o 2mfx/a) make up the local su- pins quenches-in unbound dislocations into the triangular
percurrent, wheref denotes the concentration of vortices vortex lattice of each layer in isolation at zero temperattire.
over the s’quare lattice with lattice constamt The local Pirect Monte Carlo simulations of the weakly disordered 2D
phase rigidityd ,(7) is assumed to be constant over most of X Y M0del(2) in the Coulomb gas representation indicate that
the nearest-neliLghbor linkg,7+ag) in layer |, with the ex- this is indeed the case for sufficiently low frustraié, in
ception of those links in the vicinity of the pinning sites that which ca'se'subst.ra.te pinning of the 2D vortex Iattlce_ by the
are located at random. model grid is sufficiently weak. Direct Monte Carlo simula-

Macroscopic phase coherence is monitored by the twot-'onS of the corresponding layeradY model with sparse

dimensional(2D) phase rigidity given by one over the di- columnar pins confirm the abovedlsa, both simulations
electric constant of the 2D Coulomb gas enseftifeat cor- show that the d|slocat|pns in the vortgx lattice appear Qlther
responds to the frustratedY model (2). Vortex/anti-vortex unbound or bound up into neutral pairs. In particular, dislo-

excitationsnot associated with displacements of the zero—Cations do notline up to form low-angle grain boundaftés.
; ; This is consistent with the incompressible nature of the vor-
temperature vortex lattice are suppressed exponentially %éx lattice in the extreme type-llplimit. The motion of the

temperatures far below the Kosterlitz-Thouless transition. : . o
The total number of vortices is conserved in such case. ThiquSt. common type of grain boundary requires a complnatlon
then ultimately leads to the result Qf glide anq cI.|rr_1b by the two orientations of edge d|§loca—
tions of which it is composetf The total number of vortices
PP = L = (7l 750 (3)  isnotconserved when a dislocation climbs, however. This is
o ) ] energetically costly in the incompressible limit. Grain bound-
for the 2D phase rigidity, wheres,=ksT/27J, is the spin-  4ries cannot therefore move in or move out from the surface
wave component of the phase correlation exponent, angs the 2D vortex lattice at the extreme type-Il limit. Last, a

wheret® direct evaluation of the 2D phase rigidity, E¢3) and(4), in
. L as ]2 2 the zero-temperature limit shows that macroscopic phase co-
T = 7T<{E &J] >/N"XaVX’ (4) herence persists in the limit of a dilute concentration of un-
R bound dislocation&? In particular, the thermal fluctuation of

monitors fluctuations of the center of mass of the vortexduenched-in dislocations about their home sites results in a
lattice 2 Above, &l is the displacement field of each vortex Vortex contribution to the phase correlation exponeps

with respect to its location at zero temperature. Alsothat is small compared to the spin-wave contributigg,
above,N,, denotes the total number of vortices, whidg, ~ In the limit of a small numbem of such d|_5|OCaU?QS
=a/fY2. Finally, J, denotes the Gaussian phase rigidity. compared to the number of pinned vorticeyyy
Generalized phase autocorrelation function€[q] = (Nai/Npin) 75»- The phase-coherent vortex lattice stéte
=(exfiZ¢ q(F) - &(F,1)]), within an isolated layet can also thus survives in the presence of a dilute concentration of
be computed using the Villain approximation in the low- dislocations as a hexatic vortex glass stati.should melt

temperature limi° This yields the forr¥ into a(Z%?ase-incoherent liquid state at a transition tempera-
ture T that is close to the 2D melting temperature of the
Clal=|C[q]l - ex;{iz q(F)¢O(F,I)} (5)  pristine vortex Iattice,kBTfﬁD)sJ/M, in the present dilute
r limit Ngs<<Npin. The existence of such a hexatic vortex glass

state is confirmed by direct Monte Carlo simulation of the
2D XY model (2) in the Coulomb gas representati&nln
lgtddition, current-voltage measurements of 2D arrays of Jo-
sephson junctions in external magnetic field indicate that the
2D superconducting/normal transition 'ﬁtT(QZD) is second

IC[a]l=g5* - ex;{ 772.3(2 q(1)|n(r12/r0)q(2)] 6) order
1,2)

for such autocorrelation functions, whe#g(r,l) represents
the zero-temperature configuration of an isolated layer. In th
ordered phase, wherpr)(T)>0, phase correlations are
found to decay algebraicly as

at the asymptotic limitr,,— 0, with a net correlation expo- lil. JOSEPHSON COUPLING

nent ,p=kgT/2mp{"". Above,go is equal to the ratio of the et us now add a weak Josephson coupling energy
2D phase rigidity with its value at zero temperature, while -3, cogA,¢—A,) to all of the vertical links in between adja-

is equal to half the number of probesdfr). Last,rois the  cent layers of the three-dimension@D) XY model. Here,
natural ultraviolet scale. Phase correlations are short range ipZ:J/),rZ is the perpendicular coupling constant that we

the disordered phase, on the other hand, Wlﬂzé%%(TFO. write in terms of the 2D phase rigidity at zero temperatlire
In particular, the two-point phase autocorrelation functionand of the model anisotropy parametgt>1. Also, A,
probed atq(r*):éffl—ég;z retains the form5), but its mag- =-(27d/dy)B,x is the vector potential that describes the par-
nitude decays exponentially as allel component of the magnetic inducti&y which we take
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to be oriented along thgaxis. The spacing between adjacent  Expression(10) for phase correlations across layers can
layers is denoted here iy Study of the field equation that be evaluated perturbatively in the decoupled vortex-liquid
was derived by Bulaevskii and Clem in Ref. 26 for the dif- phase at high temperatufie> T??). Consider, in particular,
ference of the superconducting phase across adjacent layatse gauge-invariant phase difference between any two layers
indicates that the effect of magnetic screening on the Joseph-andl’:

son coupling can be neglected for Josephson penetration . . ,

depthsA=7'a that are small compared to the London pen- ¢/ (1) = (1) = p(r,1) = (1" = 1) - ALF). (13
etration depth asso(clz):\ted withosephsonsupercurrents that  gecase of the cancellation of the zero-temperature p9ase
flow across layers\, "= y\,. Here y=Ao/d is the physical  mentioned above, the lowest-order result for the correspond-
anisotropy parameter. The previous condition is then equivang phase auto-correlation function in powers of the fugacity

lent to the inequality yo of the dual CG ensembl@l) read3®
d< )\L, (8) i _ 2 nyyl+n-1 2 — I+n-1>
I : : (e = (yo/a®) "I 5 &rps[Cir(Fi)] {|Cran(= 275 110)|
which is notably independent of the anisotropy parameter.
We shall further assume that the optimum phase configura- (14)

tion of an isolated layer isinique despite the defective na-
ture of the ordered state. The columnar pins are perfectljat zero parallel fieldA,=0. Here|C(r,)| is the magnitude
correlated across layers, however. This obviously implieg7) of the phase autocorrelation function for an isolated layer.
that the zero-temperature configurations for each layer in isoAt n=1, the above expression reduces to Koshelev's formula
lation are the same: for the interlayer cosine in the vortex liquid pha<e:
. (CoS¢h 1) =Yo  r|Ci(D||Cl,y(N]/a2.  Only  short-range
bo(F1) = b (F). © phase coherence exists in the disordered phase of isolated

Notice then that a small fraction of the vortex lines arelayers afT>TZ” over a scale equal to the phase correlation
pinned down by the columnar tracks in the case that théengthé;p. Koshelev’s formula hence yields a result of order
pinning per layer is sparse. The layensdf model can then 9oYo(é20/@)? for the interlayer cosine, or equivalently

be effectively analyzed in the selective high-temperature 2 2

limit kBT>Jzythroué]/h apartial duality transf%rmatiopn. It (cosh e ~ GolI/keT) &2/ Ao)”™ (15)
leads to a dilute Coulomb g&€G) ensemble that describes Here Ag=7y'a is the Josephson penetration length. The last
the nature of the Josephson coupling in terms of dual chargdactor in expressiolil4) constrains the r-dimensional inte-
that live on the vertical links in between adjacent layérs. gral at larger separations between layers?2. Its effect can

Below we review the results of this analysis. be neglected in the asymptotic largdimit, however. This
Phase correlations across layers can be computed from tlygelds the principal dependeriée
quotient ]
. g®in oc( fder r /az) 16
<exp[|2 p(r>¢<r>]> =ZedplZed0] (10 (e e\ Yo | )] (19
p
- ) for the phase autocorrelation function at large separations

of partition functions for a layered CG ensenifle between layersi—c. The argument that is raised to the

powern on the right-hand side of E¢16) above is hence of
ordergoyo(&:p/@)%. The prefactor that is not shown above on
the right-hand side decays only polynomially with the layer
Here the dual charge,(r,1) is an integer field that lives on separationn (see Refs. 10 and 150bserve now that the
links between adjacent layersndl+1 located at 2D points phase correlation length across layérsis equal to the in-

r. The ensemble is weighted by a product of phase autoterlayer spacingl when the former argument is equal toel /
correlation functions for isolated layergprobed at the dual This occurs at a dimensional crossc¥e&? field

charge that accumulates onto that layer: £/2 ~ Go(IIkeT) (Expfayy)?. 17

A = p(D + (ol = 1) = na( ). (12 given in units of the naive decoupling scadey/AZ, that
It is also weighted by a bare fugaciyy that is raised to the separates 2D from 3D vortex-liquid behavi8£>This cross-
power N[n,] equal to the total number of dual charges over field is traced out in Fig. 1. At a fixed fielity’?, we
=+1. The fugacity approacheg=J,/2kgT in the selective generally conclude that phase coherence across a few to
high-temperature regim& <kgT reached at large model an- many layers is absent in the decoupled vortex-liquid phase
isotropy y’ — 0. Observe now that the phase factors of thethat lies at high temperature>T. Last, observe that the
correlation functiong5) cancel out in the CG ensemh&l) perturbative resul{16) for the phase correlation across a
for probesp that go directly across layers due to the perfectmacroscopic number of layersdiverges with the 2D phase
registry across layers of the zero-temperature phase configaerrelation lengthé,y at the 2D hexatic vortex glass transi-
rations(9). These generalized autocorrelation functions cartion. This implies that a transition to a Bose glass occurs at a
then be replaced by their magnitu@i®[q,]| within the CG  critical temperatureTgg that lies inside of the window
ensemblg1l). [T(QZD),TX], below which strict long-range phase coherence

Zedpl= X yprClg] - e, (12)
{nin}
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Y \ | TABLE |. Listed are the “cosine,” the phase rigidity, and the
Py WEAKLY 4 2\ DECOUPLED I h lation length layers for the vari imes insid
-4 courep | © VORTEX LIQUID | phase correlation length across layers for the various regimes inside
"\ BOSE GLASS a \ 'H of the mixed phase of an extremely type-Il superconductor at weak
: ‘\ ‘;‘4 \\ : c2 Josephson coupling between layers, and with sparse columnar

\ (P ! pinning.

\ -\ 1

\ % :

o \ =\ I regime/phase (cosgy i+ pald; &d
Ring \\ 5 \\ tirst-order
N =) L Zigﬁi‘lﬁferu strongly coupled Bose glass  unity unity o
N\ O ------- 2D glass transition . .
N N i weakly coupled Bose glass fraction fraction 0
L A \ I vortex-line liquid fraction 0  unity, or greater
~ > 1 N . .
STRONGLY COUPLED ~~X 1 decoupled vortex liquid fraction 0 fraction
BOSE GLASS !
0 B
T 1
ps13;= 9o(COS B 141)- (20)

FIG. 1. Shown is the proposed phase diagram under the assump- . . . .
tions that the 2D vortex lattice contains a dilute concentration of& Gaussian approximation of the LD model8) yields the

unbound dislocations and that it melts through a continuous phasréesu“
transition (see Ref. 2h The dashed I!ne inside of the B.ose glass <C059|,|+1> = (ro/A,) ™0 (21)
phase corresponds to the decoupling crossq2ey, while the
dashed line inside of the vortex-liquid phase corresponds to théor the LD “cosine,” where\; is of orderA,. Notice how the
2D-3D crossover(17). The concentration of in-plane vorticéss ~ dependence of the LD model with the perpendicular field
held fixed, and a mean-field temperature dependdncEy,-Tis  enters implicitly through the natural ultraviolet cutaf§,
assumed. Also, the effect of substrate pinning by the 2D model gridvhich lies somewnhere in the range between the scale of the
is neglected. model grid,a, and the intervortex scakg,. Because we have
90(M =pZ?(T)1p1*”(0), inspection of Eq(20) implies that

exists across a macroscopic number of lay€rs—o. In- 3D scaling of the phase rigidities breaks down at small LD
deed, the above perturbative result for the phase autocorreesines(cosé,.;)<<1. In particular, sinceyy=<1, Eq. (20)
lation function across layers indicates that the Bose-glasgnplies that only weak superconductivity can exist across a
melting transition occurs at a field approximateytimes  macroscopic number of layers in such ca§b< J,. By Eq.
smaller than the 2D-3D crossover figli7), in which case (21), this requires weak enough Josephson coupling such that
the argument raised to the powenon the right-hand side of the perpendicular field/anisotropy be larger than
EqQ. (16) is set to unity instead. 2 .Y

Consider now temperatures below the 2D hexatic vortex- fyp ~ (ro/ay) e "o, (22
glass tran;itionT<T(2D), where the 2D phase autocorrela- The above decoupling scale is astronomically large, how-
tion functions decay algebraically following Ed6). A ever, at low temperature,p<1.
Hubbard-Stratonovich transformation of the dual CG en- The phase diagram displayed by Fig. 1 in conjunction

semble(11) reveald® that it is equivalent to a renormalized \ith the physical properties that are listed by phase in Table
Lawrence-DoniachLD) model that shows no explicit de- | symmarize the above predictions. At zero temperature, the
pendence on the component of the magnetic field perpensorrelated nature of the pinning implies that optimum super-
dicular to the layers: conductivity exists across layer&osd, |.1)=1=p</J,. All
of the vortex lines are either pinned or caged in by the co-
ELD:P(SZD)JerZ [}(60,)2—%2003@ wil, (19 lumnar tracks in such a case. This phase is therefore a
L2 ' strongly coupled Bose glass. Quasi-2D plastic creep of the
vortex lattice that is driven by thermally fluctuating edge
where, 1.1(1) = 6,1(7) - 6(") = AF). The local phase rigidity dislocation$® sets in at fields/anisotropies above the decou-
of each layer in the LD model is equal to the macroscopigpling scale fy? and this degrades the superconductivity
Onep(SZD):kBT/ZanD, while the Josephson coupling in the across layers in comparison to the result expected from scal-
LD model is set by the Josephson penetration lenggh ing the 2D superconductivity inside of each isolated l&yer.
=4'a. Also, the LD model inherits the ultraviolet cutoff, We shall refer to this phase as a weakly coupled Bose glass.
from the autocorrelation function®) of isolated layers in Suppose now that the Bose-glass melting transition is con-
the ordered phase. A standard thermodynamic an&hthisn  tinuous(to be argued for beloyvand compare the result for
yields that the strength of the local Josephson coupling ithe interlayer cosine at low temperatuies: TgZD), Eqgs.(19)
given by and(21), with the result for the same quantity deep inside the
decoupled vortex-liquid phase, E@.5) at &p~ayy. It sug-
(CoS @ 1+1) = Yo+ 9o{COSH |+1). (190  gests that the 2D correlation exponent in E2{l) should be
replaced by an effective exponent of order unity in the vicin-
Likewise, the system shows phase rigidity across a macrdty of the Bose-glass melting transition due to the proximity
scopic number of layers equal‘to of the vortex-liquid result15). This indicates that the decou-
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pling field/anisotropy(22) is not exponentially big there, un- quasi-2D regime y'2> 1. They can therefore both be prop-
like the low-temperature limit. Last, the dual CG ensembleerly indentified asnterstitial phases$;® where the remaining
(11) that was used to obtain the above results is formallylines of unpinned vortices show considerable thermal fluc-
identical to the one derived from the layer ¥ model with  tuations in the form of plastic creep.

no frustration2 provided that the 2D transition a=TZ? is Recent Monte Carlo simulations of the saii® model
second order. The latter is consistent with current-voltag&tudied here for the mixed phase of layered supercondunc-

measurements of 2D arrays of Josephson junctions in extet2rs With sparse columnar pins also find an intermediate re-
nal magnetic field® The standard 3DXY model exhibits a JiMe between the Bose glass and the vortex liquid that ex-

unique order-disorder transition, however, despite the pre{—;irtéi;zn{%glt(i:ﬁziolr?vgtrgr?;‘:‘/esug%igisté tﬁgr%sesntilgga@triihgf this
ence of extreme an|so_tr_0|3§/.The former equivalence then intermediate phase with the weakly coupled Bose glass that
indicates that the transition between the weakly coupled an% shown in Fig. 1 and that is listed in Table I. Measurements

strongly coupled Bose glass phases must be a decoupling ie tiit modulus of the vortex lattice by these Monte Carlo
crossover, and not a true phase transition. The uniqu¥8D i jations indicate that the boundary that separates the
transition is identified instead with the Bose-glass me'“”gstrongly coupled Bose glass from the intermediate phase rep-
transition, at which point long-range phase coherence acrosgsents a true phase transition, however, as opposed to a
layers vanishes. Last, study of the CG ensentlily indi-  crossover. This may be an artifact of ¥ model grid,
cates that a first-order decoupling transiftbaccurs at tem- \which could be checked by performing simulations over
peratures outside of the 2D critical regin@gp~a,, due to  finer model gridgor smallerf). Last, the anisotropy that was
the absence of a diverging length scdfgee Fig. 1, and see used in the simulations reported in Ref. 9 was only moderate:

Ref. 10, Eq.(62)]. fy'2=1. Equation(17) then predicts that a decoupled vortex
liquid emerges outside of the 2D critical regi@ipp~ a,y, at
IV, DISCUSSION AND CONCLUSIONS high temperaturégT>J.

The effects of sparse correlated pinning on the mixed

The following physical picture emerges from the previousphase of layered superconductors have also been studied re-
analysis. A dilute concentration of straight lines of edge discently in experiments on Bismuth-based high-temperature
locations that are quenched in by the sparse columnar pirsuperconductors that were irradiated to produce columnar
thread the vortex lattice from top to bottom in the zero-tracks. An intermediate “nanoliquid” phase is observed at
temperature limit. The pinning of the vortex lattice is there-temperatures and perpendicular magnetic fields that lie just
fore collective? It has a transverse scale for positional cor-above the melting line of the vortex lattiéd his intermedi-
relationsR; that is set by the separation between unboundate vortex liquid phase shows a resistivity ratio between the
dislocations'®32and a longitudinal scale for positional cor- perpendicular field direction and the parallel layer direction
relationsL. given by the length of the columnar pins. The that is at least an order of magnitude smaller than that shown
Larkin correlation volumé'* L R? is then notably indepen- by the more anisotropic vortex liquid phase that lies at higher
dent of the strength of the Josephson coupling. No peak etemperature. It is very possible then that the boundary sepa-
fect in the critical current density is therefore expected as aating the two liquid phases observed experimentally is just
function of field/anisotropy BLA(Z)/CDO, in the zero- the dimensional cross-over lind7) shown in Fig. 1, at
temperature limit. It is important to observe that a macro-which point the phase correlation length across layers be-
scopic scalé. for correlations of the vortex lattice along the comes equal to the interlayer spacing. This identification re-
(perpendicularfield direction is not possible in the case of quires that the vortex lattice of the unirradiated crystath-
point pinning for weakly coupled layersee Refs. 18 and limateinto the decoupled vortex liquid phase, however, since
33). Double-kink excitations that lie within the glide planes the intermediate 3D liquid phase is absent in such ea#se.
of the lines of dislocation® as well as bound pairs of dis- direct sublimation transition between a vortex solid and a
locations, are excited thermally within isolated layers at el-decoupled vortex-liquid phase is in fact consistent with pre-
evated temperatureb~ TP In the presence of weak Jo- vious experimental studies of the unirradiated systeihis
sephson coupling, however, such excitations are possiblalso predicted to occur theoretically in the vortex lattice state
only at temperatures above the decoupling crossover scatd pristine layered superconductors at sufficiently weak Jo-
Tp, Where they act to degrade phase coherence across layesephson coupling, provided that the vortex lattice in isolated
The integrity of the thermally fluctuating lines of disloca- layers melts through a first-order transitibnLast, the bis-
tions is then finally lost at the Bose-glass melting transitionmuth based high-temperature superconductor that was stud-
temperatureTgg that lies aboveTp, at which point macro- ied experimentally in Ref. 5 is highly anisotrogiayith a
scopic phase coherence across layers also vanishes. Last, #eg0o temperature London penetration depth of abqud)
nature of phase correlations in isolated layers, Efsand  =0.2 um, and with a layer spacing af=1.5 nm. The first
(9), indicates that the dilute concentration of vortex lines thatcondition (1) for the extreme type-Il limit then yields a
are pinned to columnar defects at zero temperature remathreshold field of 500 G at zero temperature, which is in the
pinned up to the temperature that marks the end of the 2[@eneral vicinity of the observed nanoliquid phase. The sec-
critical regime, é,p~a,, (see Refs. 3 and)5 Both the ond condition(8) for the extreme type-II limit, on the other
weakly coupled Bose glass regime and the 3D vortex-linehand, is easily met.
liquid regime that straddle Bose-glass meltingTatTgg lie A polycrystalline vortex lattice phase is also observed be-
below this cutoff in temperature at field/anisotropy in thelow the melting line of the same bismuth-based high-
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temperature superconducfols discussed previously at the at weak coupling in extremely type-ll layered superconduct-
end of Sec. Il, grain boundaries do not occur in the vortexors in external magnetic field, with only a sparse arrange-
lattice of the frustratecKY model(2) used heré??? since it ment of columnar pins oriented perpendicular to the layers.
describes incompressible vortex matter. More generally howThis phase is predicted to melt into a 3D vortex-line liquid
ever, these measurements find that the vortex solid melthat shows phase coherence across layers on length scales
through a second-order phase transition at perpendiculdhat are large compared to the spacing between adjacent lay-
magnetic fields above a certain critical poirfhis is consis-  ers. We believe that the phase transition observed recently
tent with the 3DXY universality class for the Bose-glass inside of the vortex-liquid regime of high-temperature super-
melting transition that was argued for at the end of the preeonductors pierced by sparse columnar trackflects layer
vious section. The same set of experiments find that the meltiecoupling by such a 3D vortex-line liquiel.This proposal

ing transition of the vortex lattice becomes first.order atis consistent with the absence of such a dimensional cross-
fields below the critical point. This phenomenon is then over transition in the vortex-liquid phase of the unirradiated
consistent with the first-order decoupling transitfo# ar-  (pristine) superconductot®

gued for at the end of the previous section at temperatures

outside of the_ 2D critic_al regim§2D~avx (see Fig. 1 ACKNOWLEDGMENTS
In conclusion, an intermediate Bose glass phase that

shows weak superconductivity across laygts<J,, exists The author thanks Y. Nonomura for correspondence.
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