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The mixed phase of layered superconductors with no magnetic screening is studied through a partial duality
analysis of the corresponding frustratedXY model in the presence of random columnar pins. A small fraction
of pinned vortex lines is assumed. Thermally induced plastic creep of the vortex lattice within isolated layers
results in an intermediate Bose glass phase that exhibits weak superconductivity across layers in the limit of
weak Josephson coupling. The correlation volume of the vortex lattice is estimated in the strongly coupled
Bose glass regime at lower temperature. In the absence of additional point pins, no peak effect in the critical
current density is predicted to occur on this basis as a function of the Josephson coupling. Also, the phase
transition observed recently inside of the vortex-liquid phase of high-temperature superconductors pierced by
sparse columnar defects is argued to be a sign of dimensional crossover.
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I. INTRODUCTION

Random material defects that are correlated along the
lines of magnetic induction are perhaps the most effective
mechanism known to pin down the vortex lattice in high-
temperature superconductors.1 A Bose glass phase with a di-
vergent tilt-modulus is predicted to exist at relatively low
fields such that each and every flux line can be trapped by a
correlated material defect.2 Experimental studies of the op-
posite limit, where the number of flux lines exceeds the num-
ber of correlated pinning sites, have been made recently.3–5

Less is known theoretically about this regime in comparison
to the former relatively low-field regime. The vortex lattice is
pinned collectively here by the sparse columnar defects in
the low-temperature limit.2 A Bose glass phase that displays
an infinite tilt modulus is therefore still expected. The collec-
tive pinning effect is naturally degraded by thermal fluctua-
tions, however. In stark contrast to the case of point pinning,
two classes of vortex lines exist in the case of sparse colum-
nar defects:3,5 (i) those lines of vortices that are pinned down
at a columnar defect, and(ii ) those lines that are not. An
interstitial phase is therefore predicted to exist theoretically
at intermediate temperatures between the Bose glass and the
vortex liquid phases, where only a fraction of the flux lines
remain pinned down while the remaining lines are free to
wander and thereby degrade the superconductivity.6

High-temperature superconductors are also layered
materials.7,8 Thermal fluctuations of the vortex lines in lay-
ered superconductors are larger than in those of isotropic
materials. This makes them ideal candidates to be a host for
interstitial vortex matter. Monte Carlo simulations of the
frustratedXY model have been performed recently in order
to study extremely type-II layered superconductors in per-
pendicular magnetic field with sparse columnar pins located
at random.9 These simulations find evidence for the existence
of an interstitial liquid/glass phase as described above. We
study this possibility here theoretically through a duality
analysis of the same layeredXY model.10 An intermediate
Bose glass phase that shows weak superconductivity across
layers11 exists at temperatures that lie between the vortex-
liquid phase and the Bose glass phase in the limit of weak

Josephson coupling between layers. We argue that the tran-
sition between the strongly coupled Bose glass that exists in
the zero-temperature limit and the latter weakly coupled
Bose glass is a crossover by comparison with the duality
transformation of the layeredXY model without frustration.12

Numerical simulations find evidence for a sharper transition,
however, which we suggest is an artifact of the relatively
coarse model grid that was used.9 We also argue for the
absence of a peak effect in the critical current density of the
strongly-coupled Bose glass phase as a function of the Jo-
sephson coupling if no additional point pinning is present
(see Ref. 13). This is based on an estimate for the Larkin
correlation volume of the vortex lattice.7,14 Last, a vortex
liquid-vortex liquid transition has been observed very re-
cently in high-temperature superconductors with sparse co-
lumnar defects.5 Both the material defects and the external
magnetic field were oriented perpendicular to the copper-
oxygen planes. We shall interpret this phenomenon as a di-
mensional crossover transition that exists inside of the
vortex-liquid phase of the defective superconductor,15 but
that is absent in the pristine superconductor.16

II. ISOLATED LAYER

Consider first a stack of isolated superconducting layers in
a perpendicular external magnetic field. TheXY model over
the square lattice with uniform frustration then provides a
qualitatively correct description of the mixed phase for each
layer in the absence of Josephson coupling, as well as of
magnetic screening. The neglect of the latter is valid at per-
pendicular fields that are far enough above the lower critical
field such that

avx ! lL, s1d

whereavx is the square root of the area per vortex in each
layer, and wherelL denotes the London penetration depth
associated with supercurrents that flow within each layer. A
weak Josephson coupling will be turned on in the next sec-
tion. The corresponding Boltzmann distribution is set by the
sum of energy functionals
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for the superfluid kinetic energy of each layerl written in
terms of the superconducting phasefsrW , ld. Here DmfsrWd
=fsrW+am̂d−fsrWd andAW =s0,2pfx/ad make up the local su-
percurrent, wheref denotes the concentration of vortices
over the square lattice with lattice constanta. The local
phase rigidityJmsrWd is assumed to be constant over most of
the nearest-neighbor linkssrW ,rW+am̂d in layer l, with the ex-
ception of those links in the vicinity of the pinning sites that
are located at random.

Macroscopic phase coherence is monitored by the two-
dimensional(2D) phase rigidity given by one over the di-
electric constant of the 2D Coulomb gas ensemble17 that cor-
responds to the frustratedXY model (2). Vortex/anti-vortex
excitationsnot associated with displacements of the zero-
temperature vortex lattice are suppressed exponentially at
temperatures far below the Kosterlitz-Thouless transition.
The total number of vortices is conserved in such case. This
then ultimately leads to the result

rs
s2Dd = J0f1 − shvx8 /hswdg s3d

for the 2D phase rigidity, wherehsw=kBT/2pJ0 is the spin-
wave component of the phase correlation exponent, and
where18

hvx8 = pKFo
RW

8duWG2LYNvxavx
2 , s4d

monitors fluctuations of the center of mass of the vortex
lattice.19 Above, duW is the displacement field of each vortex
with respect to its location at zero temperature. Also
above,Nvx denotes the total number of vortices, whileavx
=a/ f1/2. Finally, J0 denotes the Gaussian phase rigidity.17

Generalized phase autocorrelation functionsClfqg
=kexpfiorW qsrWd ·fsrW , ldgl0 within an isolated layerl can also
be computed using the Villain approximation in the low-
temperature limit.20 This yields the form19

Clfqg = uClfqgu · expFio
rW

qsrWdf0srW,ldG s5d

for such autocorrelation functions, wheref0srW , ld represents
the zero-temperature configuration of an isolated layer. In the
ordered phase, wherers

s2DdsTd.0, phase correlations are
found to decay algebraicly as

uClfqgu = g0
n+ · expFh2D o

s1,2d
qs1dlnsr12/r0dqs2dG s6d

at the asymptotic limit,r12→`, with a net correlation expo-
nenth2D=kBT/2prs

s2Dd. Above,g0 is equal to the ratio of the
2D phase rigidity with its value at zero temperature, whilen+
is equal to half the number of probes inqsrWd. Last, r0 is the
natural ultraviolet scale. Phase correlations are short range in
the disordered phase, on the other hand, wherers

s2DdsTd=0.
In particular, the two-point phase autocorrelation function
probed atqsrWd=drW,rW1

−drW,rW2
retains the form(5), but its mag-

nitude decays exponentially as

uCls1,2du = g0e
−r12/j2D s7d

at asymptotically large separationsr12→`. Herej2D denotes
the 2D phase correlation length.

We shall assume now that the array of random columnar
pins quenches-in unbound dislocations into the triangular
vortex lattice of each layer in isolation at zero temperature.21

Direct Monte Carlo simulations of the weakly disordered 2D
XY model(2) in the Coulomb gas representation indicate that
this is indeed the case for sufficiently low frustration22 f, in
which case substrate pinning of the 2D vortex lattice by the
model grid is sufficiently weak. Direct Monte Carlo simula-
tions of the corresponding layeredXY model with sparse
columnar pins confirm the above.9 Also, both simulations
show that the dislocations in the vortex lattice appear either
unbound or bound up into neutral pairs. In particular, dislo-
cations do not line up to form low-angle grain boundaries.9,22

This is consistent with the incompressible nature of the vor-
tex lattice in the extreme type-II limit. The motion of the
most common type of grain boundary requires a combination
of glide and climb by the two orientations of edge disloca-
tions of which it is composed.23 The total number of vortices
is not conserved when a dislocation climbs, however. This is
energetically costly in the incompressible limit. Grain bound-
aries cannot therefore move in or move out from the surface
of the 2D vortex lattice at the extreme type-II limit. Last, a
direct evaluation of the 2D phase rigidity, Eqs.(3) and(4), in
the zero-temperature limit shows that macroscopic phase co-
herence persists in the limit of a dilute concentration of un-
bound dislocations.18 In particular, the thermal fluctuation of
quenched-in dislocations about their home sites results in a
vortex contribution to the phase correlation exponenth2D
that is small compared to the spin-wave contributionhsw
in the limit of a small numberNdf of such dislocations
compared to the number of pinned vorticesNpin:

18

hvx& sNdf /Npindhsw. The phase-coherent vortex lattice state19

thus survives in the presence of a dilute concentration of
dislocations as a hexatic vortex glass state.24 It should melt
into a phase-incoherent liquid state at a transition tempera-
ture Tg

s2Dd that is close to the 2D melting temperature of the
pristine vortex lattice,kBTm

s2Dd>J/14, in the present dilute
limit Ndf!Npin. The existence of such a hexatic vortex glass
state is confirmed by direct Monte Carlo simulation of the
2D XY model (2) in the Coulomb gas representation.22 In
addition, current-voltage measurements of 2D arrays of Jo-
sephson junctions in external magnetic field indicate that the
2D superconducting/normal transition atT=Tg

s2Dd is second
order.25

III. JOSEPHSON COUPLING

Let us now add a weak Josephson coupling energy
−Jz cossDzf−Azd to all of the vertical links in between adja-
cent layers of the three-dimensional(3D) XY model. Here,
Jz=J/g82 is the perpendicular coupling constant that we
write in terms of the 2D phase rigidity at zero temperatureJ
and of the model anisotropy parameterg8.1. Also, Az
=−s2pd/F0dBix is the vector potential that describes the par-
allel component of the magnetic inductionBi, which we take
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to be oriented along they axis. The spacing between adjacent
layers is denoted here byd. Study of the field equation that
was derived by Bulaevskii and Clem in Ref. 26 for the dif-
ference of the superconducting phase across adjacent layers
indicates that the effect of magnetic screening on the Joseph-
son coupling can be neglected for Josephson penetration
depthsL0=g8a that are small compared to the London pen-
etration depth associated with(Josephson) supercurrents that
flow across layers,lL

s'd=glL. Hereg=L0/d is the physical
anisotropy parameter. The previous condition is then equiva-
lent to the inequality

d ! lL, s8d

which is notably independent of the anisotropy parameter.
We shall further assume that the optimum phase configura-
tion of an isolated layer isunique, despite the defective na-
ture of the ordered state. The columnar pins are perfectly
correlated across layers, however. This obviously implies
that the zero-temperature configurations for each layer in iso-
lation are the same:

f0srW,ld = fn8srWd. s9d

Notice then that a small fraction of the vortex lines are
pinned down by the columnar tracks in the case that the
pinning per layer is sparse. The layeredXY model can then
be effectively analyzed in the selective high-temperature
limit kBT@Jz through apartial duality transformation. It
leads to a dilute Coulomb gas(CG) ensemble that describes
the nature of the Josephson coupling in terms of dual charges
that live on the vertical links in between adjacent layers.10

Below we review the results of this analysis.
Phase correlations across layers can be computed from the

quotient

KexpFio
r

psrdfsrdGL = ZCGfpg/ZCGf0g s10d

of partition functions for a layered CG ensemble10

ZCGfpg = o
hnzsrdj

y0
NfnzgPlClfqlg ·e−iornzAz. s11d

Here the dual chargenzsrW , ld is an integer field that lives on
links between adjacent layersl and l +1 located at 2D points
rW. The ensemble is weighted by a product of phase auto-
correlation functions for isolated layersl probed at the dual
charge that accumulates onto that layer:

qlsrWd = psrW,ld + nzsrW,l − 1d − nzsrW,ld. s12d

It is also weighted by a bare fugacityy0 that is raised to the
power Nfnzg equal to the total number of dual chargesnz

= ±1. The fugacity approachesy0=Jz/2kBT in the selective
high-temperature regimeJz!kBT reached at large model an-
isotropy g8→`. Observe now that the phase factors of the
correlation functions(5) cancel out in the CG ensemble(11)
for probesp that go directly across layers due to the perfect
registry across layers of the zero-temperature phase configu-
rations (9). These generalized autocorrelation functions can
then be replaced by their magnitudeuClfqlgu within the CG
ensemble(11).

Expression(10) for phase correlations across layers can
be evaluated perturbatively in the decoupled vortex-liquid
phase at high temperatureT.Tg

s2Dd. Consider, in particular,
the gauge-invariant phase difference between any two layers
l and l8:

fl,l8srWd = fsrW,l8d − fsrW,ld − sl8 − ld ·AzsrWd. s13d

Because of the cancellation of the zero-temperature phase(9)
mentioned above, the lowest-order result for the correspond-
ing phase auto-correlation function in powers of the fugacity
y0 of the dual CG ensemble(11) reads10

keifl,l+nl = sy0/a
2dnPl8=l

l+n−1FE d2r l8uCl8srWl8duGuCl+ns− Sl8=l
l+n−1rWl8du

s14d

at zero parallel field,Az=0. Here uCsrW12du is the magnitude
(7) of the phase autocorrelation function for an isolated layer.
At n=1, the above expression reduces to Koshelev’s formula
for the interlayer cosine in the vortex liquid phase:27

kcosfl,l+1l=y0ed2r uClsrWduuCl+1
* srWdu /a2. Only short-range

phase coherence exists in the disordered phase of isolated
layers atT.Tg

s2Dd over a scale equal to the phase correlation
lengthj2D. Koshelev’s formula hence yields a result of order
g0

2y0sj2D/ad2 for the interlayer cosine, or equivalently

kcosfl,l+1l , g0
2sJ/kBTdsj2D/L0d2. s15d

Here L0=g8a is the Josephson penetration length. The last
factor in expression(14) constrains the 2n-dimensional inte-
gral at larger separations between layersnù2. Its effect can
be neglected in the asymptotic large-n limit, however. This
yields the principal dependence15

keifl,l+nl ~ Sy0E d2r uCsrWdu/a2Dn

s16d

for the phase autocorrelation function at large separations
between layersn→`. The argument that is raised to the
powern on the right-hand side of Eq.(16) above is hence of
orderg0y0sj2D/ad2. The prefactor that is not shown above on
the right-hand side decays only polynomially with the layer
separationn (see Refs. 10 and 15). Observe now that the
phase correlation length across layersj' is equal to the in-
terlayer spacingd when the former argument is equal to 1/e.
This occurs at a dimensional crossover28,29 field

fg38
2 , g0sJ/kBTdsj2D/avxd2, s17d

given in units of the naive decoupling scaleF0/L0
2, that

separates 2D from 3D vortex-liquid behavior.10,15This cross-
over field is traced out in Fig. 1. At a fixed fieldfg82, we
generally conclude that phase coherence across a few to
many layers is absent in the decoupled vortex-liquid phase
that lies at high temperatureT.T3. Last, observe that the
perturbative result(16) for the phase correlation across a
macroscopic number of layersn diverges with the 2D phase
correlation lengthj2D at the 2D hexatic vortex glass transi-
tion. This implies that a transition to a Bose glass occurs at a
critical temperatureTBG that lies inside of the window
fTg

s2Dd ,T3g, below which strict long-range phase coherence
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exists across a macroscopic number of layers:j'→`. In-
deed, the above perturbative result for the phase autocorre-
lation function across layers indicates that the Bose-glass
melting transition occurs at a field approximatelye times
smaller than the 2D-3D crossover field(17), in which case
the argument raised to the powern on the right-hand side of
Eq. (16) is set to unity instead.

Consider now temperatures below the 2D hexatic vortex-
glass transitionT,Tg

s2Dd, where the 2D phase autocorrela-
tion functions decay algebraically following Eq.(6). A
Hubbard-Stratonovich transformation of the dual CG en-
semble(11) reveals30 that it is equivalent to a renormalized
Lawrence-Doniach(LD) model that shows no explicit de-
pendence on the component of the magnetic field perpen-
dicular to the layers:

ELD = rs
s2Dd E d2ro

l
F1

2
s¹W uld2 − L0

−2 cosul,l+1G , s18d

whereul,l+1srWd=ul+1srWd−ulsrWd−AzsrWd. The local phase rigidity
of each layer in the LD model is equal to the macroscopic
one rs

s2Dd=kBT/2ph2D, while the Josephson coupling in the
LD model is set by the Josephson penetration lengthL0
=g8a. Also, the LD model inherits the ultraviolet cutoffr0
from the autocorrelation functions(6) of isolated layers in
the ordered phase. A standard thermodynamic analysis15 then
yields that the strength of the local Josephson coupling is
given by

kcosfl,l+1l = y0 + g0kcosul,l+1l. s19d

Likewise, the system shows phase rigidity across a macro-
scopic number of layers equal to15

rs
'/Jz = g0kcosul,l+1l. s20d

A Gaussian approximation of the LD model(18) yields the
result

kcosul,l+1l = sr0/LJdh2D s21d

for the LD “cosine,” whereLJ is of orderL0. Notice how the
dependence of the LD model with the perpendicular field
enters implicitly through the natural ultraviolet cutoffr0,
which lies somewhere in the range between the scale of the
model grid,a, and the intervortex scaleavx. Because we have
g0sTd=rs

s2DdsTd /rs
s2Dds0d, inspection of Eq.(20) implies that

3D scaling of the phase rigidities breaks down at small LD
cosines,kcosul,l+1l!1. In particular, sinceg0ø1, Eq. (20)
implies that only weak superconductivity can exist across a
macroscopic number of layers in such case:rs

'!Jz. By Eq.
(21), this requires weak enough Josephson coupling such that
the perpendicular field/anisotropy be larger than

fgD8
2 , sr0/avxd2e1/h2D. s22d

The above decoupling scale is astronomically large, how-
ever, at low temperatureh2D!1.

The phase diagram displayed by Fig. 1 in conjunction
with the physical properties that are listed by phase in Table
I summarize the above predictions. At zero temperature, the
correlated nature of the pinning implies that optimum super-
conductivity exists across layers:kcosfl,l+1l=1=rs

' /Jz. All
of the vortex lines are either pinned or caged in by the co-
lumnar tracks in such a case. This phase is therefore a
strongly coupled Bose glass. Quasi-2D plastic creep of the
vortex lattice that is driven by thermally fluctuating edge
dislocations23 sets in at fields/anisotropies above the decou-
pling scale fgD8

2 and this degrades the superconductivity
across layers in comparison to the result expected from scal-
ing the 2D superconductivity inside of each isolated layer.15

We shall refer to this phase as a weakly coupled Bose glass.
Suppose now that the Bose-glass melting transition is con-
tinuous(to be argued for below), and compare the result for
the interlayer cosine at low temperaturesT,Tg

s2Dd, Eqs.(19)
and(21), with the result for the same quantity deep inside the
decoupled vortex-liquid phase, Eq.(15) at j2D,avx. It sug-
gests that the 2D correlation exponent in Eq.(21) should be
replaced by an effective exponent of order unity in the vicin-
ity of the Bose-glass melting transition due to the proximity
of the vortex-liquid result(15). This indicates that the decou-

FIG. 1. Shown is the proposed phase diagram under the assump-
tions that the 2D vortex lattice contains a dilute concentration of
unbound dislocations and that it melts through a continuous phase
transition (see Ref. 25). The dashed line inside of the Bose glass
phase corresponds to the decoupling crossover(22), while the
dashed line inside of the vortex-liquid phase corresponds to the
2D-3D crossover,(17). The concentration of in-plane vorticesf is
held fixed, and a mean-field temperature dependenceJ~Tc0−T is
assumed. Also, the effect of substrate pinning by the 2D model grid
is neglected.

TABLE I. Listed are the “cosine,” the phase rigidity, and the
phase correlation length across layers for the various regimes inside
of the mixed phase of an extremely type-II superconductor at weak
Josephson coupling between layers, and with sparse columnar
pinning.

regime/phase kcosfl,l+1l rs
' /Jz j' /d

strongly coupled Bose glass unity unity `

weakly coupled Bose glass fraction fraction `

vortex-line liquid fraction 0 unity, or greater

decoupled vortex liquid fraction 0 fraction
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pling field/anisotropy(22) is not exponentially big there, un-
like the low-temperature limit. Last, the dual CG ensemble
(11) that was used to obtain the above results is formally
identical to the one derived from the layeredXY model with
no frustration,12 provided that the 2D transition atT=Tg

s2Dd is
second order. The latter is consistent with current-voltage
measurements of 2D arrays of Josephson junctions in exter-
nal magnetic field.25 The standard 3DXY model exhibits a
unique order-disorder transition, however, despite the pres-
ence of extreme anisotropy.28 The former equivalence then
indicates that the transition between the weakly coupled and
strongly coupled Bose glass phases must be a decoupling
crossover, and not a true phase transition. The unique 3DXY
transition is identified instead with the Bose-glass melting
transition, at which point long-range phase coherence across
layers vanishes. Last, study of the CG ensemble(11) indi-
cates that a first-order decoupling transition31 occurs at tem-
peratures outside of the 2D critical regime,j2D,avx, due to
the absence of a diverging length scale.[See Fig. 1, and see
Ref. 10, Eq.(62)].

IV. DISCUSSION AND CONCLUSIONS

The following physical picture emerges from the previous
analysis. A dilute concentration of straight lines of edge dis-
locations that are quenched in by the sparse columnar pins
thread the vortex lattice from top to bottom in the zero-
temperature limit. The pinning of the vortex lattice is there-
fore collective.2 It has a transverse scale for positional cor-
relationsRc that is set by the separation between unbound
dislocations,18,32 and a longitudinal scale for positional cor-
relationsLc given by the length of the columnar pins. The
Larkin correlation volume7,14 LcRc

2 is then notably indepen-
dent of the strength of the Josephson coupling. No peak ef-
fect in the critical current density is therefore expected as a
function of field/anisotropy B'L0

2/F0, in the zero-
temperature limit. It is important to observe that a macro-
scopic scaleLc for correlations of the vortex lattice along the
(perpendicular) field direction is not possible in the case of
point pinning for weakly coupled layers(see Refs. 18 and
33). Double-kink excitations that lie within the glide planes
of the lines of dislocations,23 as well as bound pairs of dis-
locations, are excited thermally within isolated layers at el-
evated temperaturesT,Tg

s2Dd. In the presence of weak Jo-
sephson coupling, however, such excitations are possible
only at temperatures above the decoupling crossover scale
TD, where they act to degrade phase coherence across layers.
The integrity of the thermally fluctuating lines of disloca-
tions is then finally lost at the Bose-glass melting transition
temperatureTBG that lies aboveTD, at which point macro-
scopic phase coherence across layers also vanishes. Last, the
nature of phase correlations in isolated layers, Eqs.(5) and
(9), indicates that the dilute concentration of vortex lines that
are pinned to columnar defects at zero temperature remain
pinned up to the temperature that marks the end of the 2D
critical regime, j2D,avx (see Refs. 3 and 5). Both the
weakly coupled Bose glass regime and the 3D vortex-line-
liquid regime that straddle Bose-glass melting atT=TBG lie
below this cutoff in temperature at field/anisotropy in the

quasi-2D regimefg82.1. They can therefore both be prop-
erly indentified asinterstitial phases,6,9 where the remaining
lines of unpinned vortices show considerable thermal fluc-
tuations in the form of plastic creep.

Recent Monte Carlo simulations of the sameXY model
studied here for the mixed phase of layered supercondunc-
tors with sparse columnar pins also find an intermediate re-
gime between the Bose glass and the vortex liquid that ex-
hibits relatively low phase rigidity across layers.9 The
present calculation strongly suggests the identification of this
intermediate phase with the weakly coupled Bose glass that
is shown in Fig. 1 and that is listed in Table I. Measurements
of the tilt modulus of the vortex lattice by these Monte Carlo
simulations indicate that the boundary that separates the
strongly coupled Bose glass from the intermediate phase rep-
resents a true phase transition, however, as opposed to a
crossover. This may be an artifact of theXY model grid,
which could be checked by performing simulations over
finer model grids(or smallerf). Last, the anisotropy that was
used in the simulations reported in Ref. 9 was only moderate:
fg82=1. Equation(17) then predicts that a decoupled vortex
liquid emerges outside of the 2D critical region,j2D,avx, at
high temperaturekBT@J.

The effects of sparse correlated pinning on the mixed
phase of layered superconductors have also been studied re-
cently in experiments on Bismuth-based high-temperature
superconductors that were irradiated to produce columnar
tracks. An intermediate “nanoliquid” phase is observed at
temperatures and perpendicular magnetic fields that lie just
above the melting line of the vortex lattice.5 This intermedi-
ate vortex liquid phase shows a resistivity ratio between the
perpendicular field direction and the parallel layer direction
that is at least an order of magnitude smaller than that shown
by the more anisotropic vortex liquid phase that lies at higher
temperature. It is very possible then that the boundary sepa-
rating the two liquid phases observed experimentally is just
the dimensional cross-over line(17) shown in Fig. 1, at
which point the phase correlation length across layers be-
comes equal to the interlayer spacing. This identification re-
quires that the vortex lattice of the unirradiated crystalsub-
limate into the decoupled vortex liquid phase, however, since
the intermediate 3D liquid phase is absent in such case.5 A
direct sublimation transition between a vortex solid and a
decoupled vortex-liquid phase is in fact consistent with pre-
vious experimental studies of the unirradiated system.16 It is
also predicted to occur theoretically in the vortex lattice state
of pristine layered superconductors at sufficiently weak Jo-
sephson coupling, provided that the vortex lattice in isolated
layers melts through a first-order transition.15 Last, the bis-
muth based high-temperature superconductor that was stud-
ied experimentally in Ref. 5 is highly anisotropic,8 with a
zero temperature London penetration depth of aboutlLs0d
=0.2 mm, and with a layer spacing ofd=1.5 nm. The first
condition (1) for the extreme type-II limit then yields a
threshold field of 500 G at zero temperature, which is in the
general vicinity of the observed nanoliquid phase. The sec-
ond condition(8) for the extreme type-II limit, on the other
hand, is easily met.

A polycrystalline vortex lattice phase is also observed be-
low the melting line of the same bismuth-based high-
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temperature superconductor.4 As discussed previously at the
end of Sec. II, grain boundaries do not occur in the vortex
lattice of the frustratedXY model (2) used here,9,22 since it
describes incompressible vortex matter. More generally how-
ever, these measurements find that the vortex solid melts
through a second-order phase transition at perpendicular
magnetic fields above a certain critical point.3 This is consis-
tent with the 3D-XY universality class for the Bose-glass
melting transition that was argued for at the end of the pre-
vious section. The same set of experiments find that the melt-
ing transition of the vortex lattice becomes first.order at
fields below the critical point.3 This phenomenon is then
consistent with the first-order decoupling transition10,31 ar-
gued for at the end of the previous section at temperatures
outside of the 2D critical regime,j2D,avx (see Fig. 1).

In conclusion, an intermediate Bose glass phase that
shows weak superconductivity across layers,rs

'!Jz, exists

at weak coupling in extremely type-II layered superconduct-
ors in external magnetic field, with only a sparse arrange-
ment of columnar pins oriented perpendicular to the layers.
This phase is predicted to melt into a 3D vortex-line liquid
that shows phase coherence across layers on length scales
that are large compared to the spacing between adjacent lay-
ers. We believe that the phase transition observed recently
inside of the vortex-liquid regime of high-temperature super-
conductors pierced by sparse columnar tracks5 reflects layer
decoupling by such a 3D vortex-line liquid.15 This proposal
is consistent with the absence of such a dimensional cross-
over transition in the vortex-liquid phase of the unirradiated
(pristine) superconductor.16
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