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Quantum phase transition in an atomic Bose gas near a Feshbach resonance
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We study the quantum phase transition in an atomic Bose gas near a Feshbach resonance in terms of the
renormalization group. This quantum phase transition is characterized by an Ising order parameter. We show
that in the low temperature regime where the quantum fluctuations dominate the low-energy physics this phase
transition is of first order because of the coupling between the Ising order parameter and the Goldstone mode
existing in the bosonic superfluid. However, when the thermal fluctuations become important, the phase
transition turns into the second order one, which belongs to the three-dimensional Ising universality class. We
also calculate the damping rate of the collective mode in the phase with only a molecular Bose-Einstein
condensate near the second-order transition line, which can serve as an experimental signature of the second-
order transition.
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I. INTRODUCTION tors of atoms and molecules, respectivetyand M are the

mass of the atom and that of the molecule, respectively. In

. _Trap.ped d_|Iute cold atomic gases are}gsne OT the most Xhe path integral formulay,, is an ordinary number. On the
citing fields in condensed matter physicSAn important other hand\W, is an ordinary number for the atomic Bose

recent development in this area is the application of I_:es gas, while it is a Grassmann number for the atomic Fermi
bach resonances. A Feshbach resonance in the scattering a%&- ’

. s.(For the atomic Fermi gasl, contains the indices for
plitude of two atoms occurs when the total energy of thehyperfine spins and should be understood as a spifibe

atoms is close to the energy of a molecular state that ifagrangianL [Eq. (1)] has aU(1) symmetry. That is, it is
weakly coupled to the atomic continuum. Especially, the en- : S . ' '
ergy difference between the molecular state and the two'—m/a”a”t against the)(1) transformation
atom continuum, known as the detuniidg can be experi-

mentally tuned by means of a magnetic field. Therefore, by
sweeping the magnetic field from positive to negative detun

ing through the Feshbach resonance, it is actually possible

Log;nn mgl;es(i:tlnjlfiolr::::aetsg)gg;g%ﬁ:;é?ﬁ%gﬁg:;gég 2?3 (molecular BEGQ. However, the reverse is not true. That is, it
P is possible for the gas to contain only a molecular BEC. In

molecules_sln an atomic Fermi gas with a Fe.Shbacrlhe case with both atomic BEC and molecular BEC, lti#&)
resonancé: This oﬁgrs the opportunity for_ observ_lng a symmetry ofL is completely broken. But for the case with
Bardeen-Cooper-Schrieffe(BCS) transition in a dilute . S )
Fermi gas only molecular BEC there is a residugl symmetry. That is,
gas. e%he effective Lagrangian in this case is invariant against the

V,—dW, W, P, (2)

For an atomic Bose gas, due to tiyeterm, a nonzero value
G (¥, (atomic BEQ must lead to a nonzero value ¢¥ )

In the present paper, we study an analogous situation b " _ :
varying § in an atomic Bose gas with a Feshbach resonancég;? trar}sfprmatlon.\lfae Vs and Wp—Wp,, The earller
Two recent work3'° have shown that by varyingthere is a analys_li md;catﬁs thhat at low terr;]peraturer;[he até)mlc Bos”e

" : . gas with a Feshbach resonance has two thermodynamically
true guantum phase transitig@PT) in an atomic Bose gas, istinct phases: the “atomic superfluidASF) phase with

;nmgg?rt]ragltzctc_)Btgg g?;:sgje?nejé?? Igs Foenrgﬂcﬁgf'@\ggf e %oth atomic BEC and molecular BEC, and the “molecular
Wguperfluid”(MSF) phase with molecular BEC only. For an

argument to understand this has been given in Ref. 10. tomic Eermi due to the t | f
recapitulate it in the following to fix our notation. The effec- aq?r\r;c ermi gas, due to .h% ng, a “O”Z.er;’. va uel 0 f
tive Lagrangian describing a dilute atomic gas with a Fesh-< aVa) mu.st be accompanied with 2 nonvanishing vaiue o
bach resonance can be written as (¥» and vice versa. Therefore, the BCS region has the same
symmetry as the BEC region, and only a crossover occurs.
)\P +\IfT<a v _..)\P Based on the earlier observation, the MSF phase is dis-
a® Fm| O T o0 TH)Fm tinct from the ASF phase by & symmetry. Thus, the phase
transition between the two phases is characterized by an

2

t \%
L=v; 37_%_:“

T ot : ) :
+Qo(WhW, W, +H . c.) +usWwiw v, Ising (Z,) order parameter. Naively, one may expect that this
Up 4y Up + s QPT is of second order and belongs to the four-dimensional
+ E‘I’a‘l’a‘l’a‘l’a’fz‘l’m‘l’m‘l’m‘l’m, (1) Ising universality class at zero temperature and the three-

dimensional(3D) Ising universality class at finite tempera-
with w=2u— 8. Here¥, and ¥, are the annihilation opera- ture. However, there is a gapless excitation in the MSF
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r consist of the Ising order parameigrwhich can be taken as
the imaginary part ofV,, and the phase o¥,,, 6. Following
MSF Landau, the corresponding effective Lagrangian can be writ-
ten down through symmetry consideration. The symmetries
involved here are th&, symmetry, a subgroup of thg(1)
symmetry[Eq. (2)], under which theb and @ fields transform
Gt as

continuum high 7'

ASF

¢—=¢ 0 0+2m, 3

quantum regime

o - and theU(1) symmetry under whichy transforms asi(x)
— 6(X)+a wherea is an arbitrary constant. The most general

FIG. 1. The schematic phase diagram of the dilute Bose gafocal action consistent with th&, and U(1) symmetries is
with a single Feshbach resonance near the transition line betweqn_-|¢+|0+|im where
the ASF and MSF phases beloly(5), whereT(5) represents the )
transition temperature between the normal Bose gas and the super- (/1 to Ug
fluid phase. The dotted line denotes the crossover from low tem- |¢:f deSX{E{(C_O&#’) +(V ¢)Z} + E¢2+ Z¢4},
perature to high temperature regimes. The solid line is the phase
boundary between the ASF and MSF phases. The poiig a (4)
tricritical point. On the phase boundary, the portion below the pointyitp Up>0,
C is of first order while the one above the poi@tis of second

der. S 1 i
order l,= ZP_MJ dq'd3X|:<_&7-0> +(V 0)2], (5)

Uo

phase, which is the Goldstone mode associated with the mo-

lecular BEC. An additional gapless excitation may result in@n

severe infrared divergences and modify the critical behavior.

Therefore, a proper theory describing the QPT should consist lint :J drd®iNgd, 007, (6)

of the Ising order parameter as well as the Goldstone mode.

A renormalization group(RG) analysis indicates that the Heret, measures thémean-field distance from the transi-
coupling between the Ising order parameter and the Goldtion point. (t,>0 in the MSF phase whilg,<0 in the ASF
stone mode will drive the zero-temperature phase transitiophase). p is the “bare” superfluid density arg andv, are

to become weakly first ord€r through the Colemann- bare velocities for the order parametgrand the Goldstone
Weinberg mechanisit. The question in which we are inter- bosoné, respectively. In Eg(6), only the most relevartnear
ested here is the nature of this phase transition at finite temhe transition pointcoupling between the Goldstone mode
perature. We study this problem in terms of the RG. Ourand the order parameter is kept. The fadtan Eq. (6) is
main results are shown in Fig. 1, which are valid at thedictated by the charge conjugation symmetry of the original
temperature much lower than the amplitude fluctuations in_agrangianL [Eq. (1)]. It requires thatL—L" when ¥,

the molecular BEC. At low temperature where the quantum—, 11/; and\Ifm—ﬂI/;rn, which leads td — 1T when¢— -¢ and
fluctuations dominate the low-energy physics, the phase trarg— —4. The natural cutoff of this action is provided by the
sition between the MSF and ASF phases is of weakly firsgap of amplitude fluctuations in the molecular BEC. A simi-
order. When the thermal fluctuations become important, théar action has appeared in other contéxt.

effects of the coupling between the Ising order parameter and The action(4)—(6) can also be derived from the Lagrang-
the Goldstone mode are suppressed and the transition bgmn L [Eq. (1)] by considering the fluctuations around its
comes a second-order one belonging to the 3D Ising univeimean-field solution in the MSF phase. By integrating out the
sality class. Thus, a tricritical point must exist on the phasesectors with finite gaps at the transition point, i.e. the real
boundary to separate these two kinds of phase transition. part of ¥, and the amplitude o¥,, in terms of the pertur-

The rest of the paper is organized as follows: We writebation theory inu;, u,, Uz, andgy/vn, to the leading order,
down the effective Lagrangian describing the QPT by sym-one may obtain

metry argument and perform one-loop RG analysis in Sec. Il.
The solution of the scaling equations is presented in Sec. Ill. o~ \/Q(Zn)l"‘
In Sec. IV, we calculate the damping rate of the collective 0 m '
excitation in the MSF phase near the second-order transition

line. The last section is devoted to our conclusion. to=m(8,—9),
II. LANDAU THEORY AND RENORMALIZATION 1 2 \2
GROUP ANALYSIS Up~12muf 1-——| U+ \/~Qo) |.
UqUp n
A. Effective Lagrangian
We start with the “normal phase” for this QPT. The fun- o=~ n
damental fields of the effective theory describing the QPT s 2
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U,N CSM 1/2
Vo= \| 7, A=|—] Ao
2M Ps

where A is an ultraviolet(UV) cutoff in momenta and is
m 2 2 the temperature. Them, r, u, A, and 8 become dimension-
Ao~ 2 1 W U + ﬁgo ' () less parameters and our working action is written las
2 =[Bd7[d® £ where
near the transition poinfHere we take the real part df, as 1 1 1
the gapped sector at the transition point. This amounts to L= —[((9,¢>)2+ (V¢)2] +org?+ —ugt
assumingg,>0.) In Eq. (7), n is the total particle density 2 2 4l

and &, denotes the magnetic field detuning at which the zero- 171 2

temperature quantum phase transition occurs at the mean- + 5[(—&0) +(V 0)2} +iNd, 047 (9
field level, which is given byd,= (uz—u,/2)n—2%2gon/2, v

(This value of &y has already been given by Ref) %rom By integrating out the fast modes, i.e., those modes with

Eq. (7), it is obvious that the value af, may become nega- momenta within the momentum sheil' <|k| <1 wheree™
tive in some parameter regime. Fog<0, one should in- is the scaling factor, we obtain the one-loop RG equations
clude the terms with higher powers @f like ¢° in I, to

make it stable, and the QPT between the MSF and ASF d_t,:t (10)
phases will be of first ordéf even in the absence of the d "

coupling to the Goldstone mode In this case, it is of little

interest because the correlation length is always finite and do, Kv, N

thus there are no universal behaviors for physical quantities —= fo(N1+rft), (11

- 312
at both zero and finite temperatures. Therefore, in the follow- dl 41+n)

ing, we shall concentrate on the parameter regime which

ives rise to a positive value af. From Eq.(7), this corre- dr _ Uit [ra 2K, ra
Sponds toly = 2/ngo2< Uyl ol =20t gy TSRO0/,
At T=0, 1, with uy> 0 describes the 4D Ising universality (12)
class. It exhibits a Gaussian behavior with logarithmic cor-
rections due to the presence of the marginally irrelevant cou- —_—
pling u,. Therefore, we may consider the RG transformation ki _ E(U £ 2K) f,(V1+n/t)
dl 4TV (1432
T— 1S, X— XIS, oK2
| 1 .
LA+ -2 GV il oilt)
b sh, 0 S0, ®) s
4K,

while cg, vg, ps, and M remain invariant. Hers>1 is the (1+1, _Ul)zfl(vlltl)’ (13
rescaling factor. Then, the actibp+1 o+l With up=0=\g is
invariant under the RG transformatiofEq. (8)]. It is —
straightforward to see that the coupling constaptend \q ay, - 2&9 (1 +1,/t,0,/t)
are marginal at the tree level with respect to the Gaussian dI I(1+r| —v,z)2 3 e
fixed point under the RG transformati@ig. (8)]. Within the ; -
weak-cpuplmg region, one-loop RG equatlon§ are needed to + 24K|2—'2294(V"1 +1/t,u/t)
determine their roles on the low-energy physics. (1+r-0))

B. One-loop RG equations - I +ri?f: > 92(\f'1 +r/t,ult)

To compute the one-loop RG equations, we employ the ! ! o 5

momentum-shell RG. Before integrating out the fast modes, L LK FL(wnfty) - 3U; Lty
we make a change on the variables (L+r-0pD2 VOV T g a3 2N T

X — A‘lx, T— A_lcalq-, v= UO/CO' (14)

wheret=1/8, K=(\v)?/(27?), U=u/(27) and

12 coM |12 X
¢— Acyp, 06— A(—) 0, fl(x):xcotl'<—>,
Ps 2
B Acy ’_<x> X (x)
=A2tl = 1 =, f = t - +_th2_ ,
r o U=CoUg, B T »(X) =co AR i >
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e = 25—,
g(Xy) = %cotl—(%) + )—Z(sinh‘2<)—2(>,
g(X,y) = :213;};200&()_2() + )—z(sinh-2<)_2(),
da(X,y) = 3;:(szﬁllxgzcotl-(%) - %sinh‘2<)—2/).

Here the rescaled quantities have expligiependence indi-
cated, e.g.t;, while quantities without dependencée.g.,T)
refer to physical quantities.

SinceK>0, we always havely,/dI<0 from Eq. (1),
and thusv, will flow to zero. Therefore, we may set=0 in
Eqgs.(12)—(14), yielding

dr| 4K\t (U| + 8K|)t| (\”1 +r|>

—=2r - + f , 15
di : 1+r, 4(1+r|) ! t ( )
dK,_ 8K KU+ 10K, (\"1 +r,> a8
dl ~ (1+r)2 4@+ 2 )

dy, _ 24Ut 3(U+ 8K|)2]c <\’1 +r|> (17
dl ~(1+r)2 8 (1+r)3¥2 2\ ¢y )

The solution of Eq(10) is simply given by
te. (18

In the next section, we shall solve Eq45)—(17) approxi-
mately by neglecting the possible logarithmic corrections.

IIl. SOLUTION OF SCALING EQUATIONS

Scaling stops whefr||~ 1. One must distinguish two re-
gimes:t; <1 andt;> 1. The former corresponds to the quan-

PHYSICAL REVIEW B 70, 224506(2004)

To obtain the condition o for the occurrence of the
quantum regime, one may get0 in Eqgs.(19)—«21), yielding

an_, .1, .1
a - 2r + GX' + 12U|, (22
dx; 3
dl sX'Z’ 23
dj 1 _
X'd_X, = 9(34 HV-1). (24)

Here X=U,;+ 12K, and ),=U,/ A]. The solution of Eqs(23)
and(24) is written as

){IZL,
1+3%/8

_ dOXvIl/'S_ 4

= 25
1 (25)

| s
wherexy,=U+12K and the value ofi; is chosen such that
U,=U when X;=x,. [In fact, doxg/>=4+U/(4K). Therefore,
do>1 for K, U<1]

By solving Egs(22)—24) numerically, we notice that the
value ofK, remains almost unchanged whegr= 1, as shown
in Fig. 2. However, the behavior &f; depends on the sign of
the functionG(r,U,K), roughly given by

3
16 {(1 +%> - 1} —In(1/r). (26)

G(r,UK)=—
( ) 3Xg

[Equation(26) is determined from Eq25) by requiring that
Ur=0 or deX*=4 where r-=1. The conditionr.-=1
roughly gives rise to P=In(1/r).] (i) As G(r,U,K)>0,
U,>0 and its magnitude does not change muclhrferl, as
shown in Figs. 2a) and 2b). (ii) As G(r,U,K) <0, the value
of U, becomes negative rapidly befare=1 as shown in Fig.
2(c).

For givenK andU, we may increase the value pftart-

tum (T=0) regime where the quantum fluctuations dominateing with r=0. In the beginningG(r,K,U)<0 andU be-
the low-energy physics. Otherwise, it is the continuum highcomes negative when scaling stops. Thug®&erm must be
T regime where the thermal fluctuations become important.included in the effective action. A mean-field theory in this

A. Quantum regime

case gives rise td¢)# 0. This corresponds to the ASF
phase. On the other hand, for sufficiently largsuch that

In the quantum regime, the nonlinear dependence of th&(U,K)>0, U is still positive when scaling stops, and
RG functiongthose terms appearing at the right-hand side ofhus @ mean-field theory gives rise ¢¢)=0. This corre-

Egs. (15—17)] on r; will not be important. Thus, we shall
consider the limiting equations, valid for K, U<1:

dr| U| 1
—= 2I’| - 4K|t| +|—+ 2K| t|f1 =,
4 t)
!
t/)’

dl (19

dK,

i (20

K
8Kty — (U + 10K.>f2(

dy,

1
di t

= 24K\(Y, +4K|)t|‘§(U|+8K|)2fz< I)- (21

sponds to the MSF phase. Consequently, there are two
phases at zero temperature separated by a transition point,
denoted byr. The value ofr, can be estimated by requir-
ing that G(r,U,K)=0. A negative value ofJ is usually
interpreted as a fluctuation-induced first-order phase
transition!* Therefore, the QPT &f=0 is of first order. In
the following, we shall focus on caghg, i.e., theZ, symmet-
ric (MSF) phase.

In case(i), because the values Bf andU, do not change
significantly when scaling stops, we may $t/X >0 and
U =U>0 in Eq. (22) for simplicity, where /K=1 and
UIU=<1. Within this approximation, the logarithmic correc-
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1005 T T T T T T T T
* K
1 x UH
0.995 F ¥k ok ox % % % % * * % * * * ]
Xxxx
099 XX x .
X x X X X x %
0985 1 1 1 1 1 1 1 1 1
(@ O 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 09 1
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0.9 X .
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x X
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08 1 1 | | 1 | | 1 |
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FIG. 2. Typical solutions of Eq$22)—(24) with the initial conditionga) r=0.002,K=0.0003, andJ=0.005,(b) r=0.002,K=0.003, and
U=0.005, andc) r=0.002,K=0.03, andU=0.005. Thex axis isr, and they axis isK;/K or U,/U.

tions are neglectedThe approximation we use amounts to dr, |

neglecting thd dependence af;. Inclusion of it will result o - At 2A - Ak, (29
in logarithmic correction$.Settingr,=1, solving forl, sub-

stituting the result into Eq(18), and demanding; <1, one  The solution of Eq(29) is written as

may obtain the condition for the occurrence of the quantum

— 2l _a2) _ _al
regime in the MSF phase d —ez[r +A(1-e?)-aKi(1-e )] (30)
1/2 The correlation length is given b§/~e'* whererjs=1. From
r+A; )
t< 1T+A , (27) Eqg. (30), one may obtain
1

E~(r+ A=A (31)
whereA,;=C+U/8. _ . v o _ .
In terms of Eq.(7), the crossover line between the quan-With A;=4KC. Therefore ¢ is always finite for givert satis-
tum and continuum higf regimes in the MSF phase, cor- fying the inequality(27), as expected for a first-order phase

responding ta >r, can be expressed by transition. To sum up, the phase transition between the MSF
and ASF phases in the quantytfow temperaturgregime is
( T )2 : cOA2< .2 Uo) 28) of weakly first order.
— | =tg+ =5 UNG+ = |,
o 0 2m?\ %0 8

as shown in Fig. 1. Here the valuesaf to, Ao, andugy near
the transition point is given by E@7). In addition, the mo-
mentum UV cutoff A can be estimated byA In this regime, it is convenient to divide the scaling into
=~ min{25/4\s“m—%n1/4, \;UQM/an/Z}, where the former and the two StepSI| <1 f’ilndt| > 1. This intrc')duceslmultiplicative er-
latter arise from the gap of the real partbf, and that of the ~ OrS of order u_nlt coming from _the imprecise treatment of the
amplitude fluctuations ofb,, respectively. To obtain Eq. Crossover regimg~1. In the first step, we integrate over
(28), we have neglected 14 in Eq. (27) becauseA;<1.  from O tol, such thattj=1. Next we consider the cage
Further,IC and{ are replaced b and U, respectively. > 1. In this case, it is more convenient to define the coupling

Finally, we determine the correlation length in the quan-V,=t,U,. We would like to show that the RG equations fer
tum regime. To do so, we may skf=K andU,;=U/ in Eq.  andV, in the continuum highl regime are identical to those
(19) and performing low-temperature expansion, yielding for the 3D Ising model.

B. Continuum high T regime

224506-5
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We start with Eqs(15) and (17) and taket;>1. Using Vo

f,(0)=2 andf,(x— 0)=~4/x, we obtain Ki~7e (38)
dn =2r + Vi , (32)  near the transition line. When scaling stops, we may perform
dl 2(1+r1) the perturbation theory irk, and V, as long asV', Ky

=V'/(4&) < 1. Within the spirit of thee expansion, it is in-

avi _ . 3%} (33) deed the case becauge=0(e).
dl ~ ' 2 +r)?

Equations(32) and (33) are identical to the one-loop RG

equations for the 3D Ising model. Therefore, we conclude IV. DAMPING RATE OF COLLECTIVE

that the transition between the MSF and ASF phases in the EXCITATIONS IN THE MSF PHASE

continuum highT regime is of second order and belongs 0 g gamping in the collective excitations of condensates
the 3D Ising universality class. Near the transition point, thejj hecome much more severe near the second-order transi-
solution of Eqs(32) and(33) is given by tion line due to the coupling to the critical fluctuations.

n-r=@F-r)e"s v,=V, (34) Therefore, a measurement of the damping in the collective

. ) modes may serve as a signature of the second-order Ising

wherer;~0.63 is the correlation length exponent for the 3D transition between the MSF and ASF phases. In this section,
Ising model and=rj, which are dete*rmlned*by the RG equa- we shall use the RG equations to calculate the damping rate
tions in the quantum regime. Here and V' are the fixed  of the collective mode in the MSF phase near the second-
points of Egs.(32) and(33), which within thee expansion  order transition line, arising from the coupling to the critical
corresponds to the Wilson-Fisher fixed point, where4  fiyctuations. Since the identification of the Ising transition is
—-d andd is the spatial dimensions. The exact values of _established within thee expansion, the following RG-

and V' are nonuniversal, and the determination of them iSmproved perturbative calculation is supposed to be under-
beyond the present field-theoretical approach. stood within such a context.

case, one may neglect the possible logarithmic CO_”eCtioné‘l(iwn,k):Dal(iwn,k)+2(,(iwn,k) where w,=2n7/8, 3,
and setK;=K£>0 andU,;=/>0 where C/K~1 andl//U is the self-energy of thé field, and
=< 1. (Note that bothC andi/ may not be equal t&C andi/.)

Then, from Eq.(19), we obtain 1
DO(k): 2, 2 2
_ r+B; B, w v +k
r=——-—+C, (35 _ _
t t is the free propagator of the field. The spectrum is deter-
whereB, =K +1//8, B,=4K, and mined by

D Yiw,— w+i0",k) =0,

— U 1
C=3K-5+4B, f dyy®ng(y™), o _ .
8 0 which gives rise tav=¢,—iv, Wwherey, denotes the damping

ith (o)L rate ande, is the dispersion relation of the collection mode.
wit ntx)_( - . _ _Inthe long wavelength limite,=vk wherek= k| andv is the
Scaling stops whetr;-~r’|=1. The correlation length is  gimensjonless renormalized velocity measured.iBy solv-

given by é~dée =t"1¢ . Equation(34) gives rise to ing the equation, one may obtain
* r+ B]_ BZ 2
I~ = valn| =7 -2 +Bg, yk:-zv—ek|mz(,(w+io+,k), (39

whereB;=C-r" is a nonuniversal constant. As a result, we

get with the understanding thab is replaced bye,. Near the

second-order transition lingy=F(k,K,U,t,A) whereA=r
£ t‘l[ Ir = re()l }_”3 36 -r" and we have

2

t F(k,K,U,t,A) = e F(ek K, U, €t Ay,
wherer(t)=-B; +B,t—Bst? denotes the transition point be-
tween the MSF and ASF phases for given temperature. Equ
tion (36) is valid up to logarithmic corrections.

g_ecause the scaling dimensionygfis [ y]=1. Scaling stops
at A=1, and we obtain

Finally, we consider the RG equation f&j in the con- _ &1
tinuum r?ighT regime, which can ge written Ias Ne= ERERKe Up, ), (40)
dR 4, 1 where®(xq,X2,X3,X4) =F(X1,X2,X3,X4, 1) is the scaling func-
U'EZER' —§R|, (37)  tion.
! To the one-loop order, the scaling functidncan be writ-
whereR=K/U. Solving Eq.(37) gives rise to ten as

224506-6



QUANTUM PHASE TRANSITION IN AN ATOMIC BOSE... PHYSICAL REVIEW B 70, 224506(2004)

. __Kvegkj 5 dea—E(p) + E(¢k +p)] Ep | _E(§k+p)}
R B = =TS RN L A B R
K- g f 5 Olea — E(p) ~ E(¢k +p)] E@ | '_E(§k+p>]
16 )P EpEep ™l a T &
_Kregkf 5, dlea+ E(p) + E(¢k +p)] E@ | '_E(§k+p>]
6 )P Epeaep ™ a ™ & |f v

HereE(p)=1p?+1 andng(X)=(e*-1)"L. For smallk, we find ~ Bose gas to the superfluid phase. However, in the other pa-
that the damping rate to the lowest orderkiis given by® rameter region, the physics of the QPT is more interesting. It
I » is of weakly first-order in the low temperature regime where
= Vv (5) [exp( ) _ 11 (42) the inequality given by Eq27) is satisfied. As the tempera-
16 \& V1-v2& ' ture is raised to the continuum high regime where the
- inequality given by Eq(27) is reversed, the transition be-
where from Eq(36) §t~[|r—.r_c(t)|/t I"s. From Eq.(42), we  comes a second-order one, belonging to the 3D Ising univer-
see that away from the critical region, the damping of thegajity class. This second-order transition in the continuum
collective excitations arising from the coupling to the critical high T regime is guaranteed by two facté) Those terms
fluctuations is exponentially small. On the other hadt, containing the coupling constaldtin the one-loop RG equa-
diverges near the transition line, and thus within the criticakjons exactly cancel each other in the high temperature limit.
region, y can be approximated as (i) The coupling constarit becomes an irrelevant operator
( 1) around the 3D IsingWilson-Fishey fixed point in the con-
t

V_, —= ) . . i
Vi = 7T—Ezvl -2%k+0 (43 tinuum highT regime and flows to zero. A schematic phase
16 diagram is shown in Fig. 1, and the crossover line between

Therefore, the collective mode is heavily damped within thethe quantum and continuum highregimes is expressed by
critical region such that no well-defined collective excita-the parameters which are directly related to experimentally
tions exist there on account of/e,=0(1). measurable quantities, as given by E2B). We must empha-
Due to the coupling to the amplitude fluctuations, the col-Sized that all our results are valid only at the temperature
lective mode in the BEC already acquires a damping ratéhuch lower than the gap of amplitude fluctuations in the
which exhibits dramatic temperature dependence as given gyolecular BEC. o _ o
Ref. 16. For example, in the low temperature limit, it is of  We also calculate the damping in the collective excitation
the form: y, = T%k.16 Compared with that result, the damping In the MSF phase near the second-order transition line. Be-
rate due to the coupling to the critical fluctuations in theca@use of the coupling to the critical fluctuations, the damping
critical region is indeed much stronger than the one arisingVill be strongly enhanced, which may serve as an experi-
from the coupling to the amplitude fluctuations. However, amental signature of the second-order transition. Our calcula-
careful measurement of the damping rate near the seconfon shows that the damping rate of the collective mode in
order transition line must be conducted to extract the 30he MSF phase is insensitive to the variation of temperature
Ising correlation length exponent,. Because within the near the second-order transition line, a behavior very differ-

critical region the damping is insensitive to the variation of€nt from the one in the ordinary BEC where the damping is
temperature as shown by E@3). much weaker and exhibits dramatic temperature dependence.
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