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We study the quantum phase transition in an atomic Bose gas near a Feshbach resonance in terms of the
renormalization group. This quantum phase transition is characterized by an Ising order parameter. We show
that in the low temperature regime where the quantum fluctuations dominate the low-energy physics this phase
transition is of first order because of the coupling between the Ising order parameter and the Goldstone mode
existing in the bosonic superfluid. However, when the thermal fluctuations become important, the phase
transition turns into the second order one, which belongs to the three-dimensional Ising universality class. We
also calculate the damping rate of the collective mode in the phase with only a molecular Bose-Einstein
condensate near the second-order transition line, which can serve as an experimental signature of the second-
order transition.
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I. INTRODUCTION

Trapped dilute cold atomic gases are one of the most ex-
citing fields in condensed matter physics.1,2 An important
recent development in this area is the application of Fesh-
bach resonances. A Feshbach resonance in the scattering am-
plitude of two atoms occurs when the total energy of the
atoms is close to the energy of a molecular state that is
weakly coupled to the atomic continuum. Especially, the en-
ergy difference between the molecular state and the two-
atom continuum, known as the detuningd, can be experi-
mentally tuned by means of a magnetic field. Therefore, by
sweeping the magnetic field from positive to negative detun-
ing through the Feshbach resonance, it is actually possible to
form molecules in the atomic gas.3–5 In fact, recently, it has
been possible to create a Bose-Einstein condensate(BEC) of
molecules in an atomic Fermi gas with a Feshbach
resonance.6–8 This offers the opportunity for observing a
Bardeen-Cooper-Schrieffer(BCS) transition in a dilute
Fermi gas.

In the present paper, we study an analogous situation by
varyingd in an atomic Bose gas with a Feshbach resonance.
Two recent works9,10 have shown that by varyingd there is a
true quantum phase transition(QPT) in an atomic Bose gas,
in contrast to the case of an atomic Fermi gas where a
smooth BEC-BCS crossover exists as one changesd. An
argument to understand this has been given in Ref. 10. We
recapitulate it in the following to fix our notation. The effec-
tive Lagrangian describing a dilute atomic gas with a Fesh-
bach resonance can be written as

L = Ca
†S]t −

¹2

2m
− mDCa + Cm

†S]t −
¹2

2M
− m̃DCm

+ g0sCm
† CaCa + H . c . d + u3Cm

† Ca
†CaCm

+
u1

2
Ca

†Ca
†CaCa +

u2

2
Cm

† Cm
† CmCm, s1d

with m̃=2m−d. HereCa andCm are the annihilation opera-

tors of atoms and molecules, respectively.m and M are the
mass of the atom and that of the molecule, respectively. In
the path integral formula,Cm is an ordinary number. On the
other hand,Ca is an ordinary number for the atomic Bose
gas, while it is a Grassmann number for the atomic Fermi
gas.(For the atomic Fermi gas,Ca contains the indices for
hyperfine spins and should be understood as a spinor.) The
LagrangianL [Eq. (1)] has aUs1d symmetry. That is, it is
invariant against theUs1d transformation

Ca → eiaCa, Cm → e2iaFm. s2d

For an atomic Bose gas, due to theg0 term, a nonzero value
of kCal (atomic BEC) must lead to a nonzero value ofkCml
(molecular BEC). However, the reverse is not true. That is, it
is possible for the gas to contain only a molecular BEC. In
the case with both atomic BEC and molecular BEC, theUs1d
symmetry ofL is completely broken. But for the case with
only molecular BEC there is a residualZ2 symmetry. That is,
the effective Lagrangian in this case is invariant against the
Z2 transformation:Ca→−Ca and Cm→Cm. The earlier
analysis indicates that at low temperature the atomic Bose
gas with a Feshbach resonance has two thermodynamically
distinct phases: the “atomic superfluid”(ASF) phase with
both atomic BEC and molecular BEC, and the “molecular
superfluid” (MSF) phase with molecular BEC only. For an
atomic Fermi gas, due to theg0 term, a nonzero value of
kCaCal must be accompanied with a nonvanishing value of
kCml and vice versa. Therefore, the BCS region has the same
symmetry as the BEC region, and only a crossover occurs.

Based on the earlier observation, the MSF phase is dis-
tinct from the ASF phase by aZ2 symmetry. Thus, the phase
transition between the two phases is characterized by an
Ising sZ2d order parameter. Naively, one may expect that this
QPT is of second order and belongs to the four-dimensional
Ising universality class at zero temperature and the three-
dimensional(3D) Ising universality class at finite tempera-
ture. However, there is a gapless excitation in the MSF
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phase, which is the Goldstone mode associated with the mo-
lecular BEC. An additional gapless excitation may result in
severe infrared divergences and modify the critical behavior.
Therefore, a proper theory describing the QPT should consist
of the Ising order parameter as well as the Goldstone mode.
A renormalization group(RG) analysis indicates that the
coupling between the Ising order parameter and the Gold-
stone mode will drive the zero-temperature phase transition
to become weakly first order11 through the Colemann-
Weinberg mechanism.12 The question in which we are inter-
ested here is the nature of this phase transition at finite tem-
perature. We study this problem in terms of the RG. Our
main results are shown in Fig. 1, which are valid at the
temperature much lower than the amplitude fluctuations in
the molecular BEC. At low temperature where the quantum
fluctuations dominate the low-energy physics, the phase tran-
sition between the MSF and ASF phases is of weakly first
order. When the thermal fluctuations become important, the
effects of the coupling between the Ising order parameter and
the Goldstone mode are suppressed and the transition be-
comes a second-order one belonging to the 3D Ising univer-
sality class. Thus, a tricritical point must exist on the phase
boundary to separate these two kinds of phase transition.

The rest of the paper is organized as follows: We write
down the effective Lagrangian describing the QPT by sym-
metry argument and perform one-loop RG analysis in Sec. II.
The solution of the scaling equations is presented in Sec. III.
In Sec. IV, we calculate the damping rate of the collective
excitation in the MSF phase near the second-order transition
line. The last section is devoted to our conclusion.

II. LANDAU THEORY AND RENORMALIZATION
GROUP ANALYSIS

A. Effective Lagrangian

We start with the “normal phase” for this QPT. The fun-
damental fields of the effective theory describing the QPT

consist of the Ising order parameterf, which can be taken as
the imaginary part ofCa, and the phase ofCm, u. Following
Landau, the corresponding effective Lagrangian can be writ-
ten down through symmetry consideration. The symmetries
involved here are theZ2 symmetry, a subgroup of theUs1d
symmetry[Eq. (2)], under which thef andu fields transform
as

f → − f, u → u + 2p, s3d

and theUs1d symmetry under whichu transforms asusxd
→usxd+a wherea is an arbitrary constant. The most general
local action consistent with theZ2 and Us1d symmetries is
I = If+ Iu+ I int where

If =E dtd3xH1

2
FS 1

c0
]tfD2

+ s¹fd2G +
t0
2

f2 +
u0

4!
f4J ,

s4d

with u0.0,

Iu =
rs

2M
E dtd3xFS 1

v0
]tuD2

+ s¹ud2G , s5d

and

I int =E dtd3xil0]tuf2. s6d

Here t0 measures the(mean-field) distance from the transi-
tion point. (t0.0 in the MSF phase whilet0,0 in the ASF
phase.) rs is the “bare” superfluid density andc0 andv0 are
bare velocities for the order parameterf and the Goldstone
bosonu, respectively. In Eq.(6), only the most relevant(near
the transition point) coupling between the Goldstone mode
and the order parameter is kept. The factori in Eq. (6) is
dictated by the charge conjugation symmetry of the original
LagrangianL [Eq. (1)]. It requires thatL→L† when Ca
→Ca

† andCm→Cm
† , which leads toI → I† whenf→−f and

u→−u. The natural cutoff of this action is provided by the
gap of amplitude fluctuations in the molecular BEC. A simi-
lar action has appeared in other context.11

The action(4)–(6) can also be derived from the Lagrang-
ian L [Eq. (1)] by considering the fluctuations around its
mean-field solution in the MSF phase. By integrating out the
sectors with finite gaps at the transition point, i.e. the real
part of Ca and the amplitude ofCm, in terms of the pertur-
bation theory inu1, u2, u3, andg0/În, to the leading order,
one may obtain

c0 <Îg0

m
s2nd1/4,

t0 = msd0 − dd,

u0 < 12mu1F1 −
1

u1u2
Su3 +Î2

n
g0D2G ,

rs <
n

2
,

FIG. 1. The schematic phase diagram of the dilute Bose gas
with a single Feshbach resonance near the transition line between
the ASF and MSF phases belowTcsdd, whereTcsdd represents the
transition temperature between the normal Bose gas and the super-
fluid phase. The dotted line denotes the crossover from low tem-
perature to high temperature regimes. The solid line is the phase
boundary between the ASF and MSF phases. The pointC is a
tricritical point. On the phase boundary, the portion below the point
C is of first order while the one above the pointC is of second
order.
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v0 <Îu2n

2M
,

l0 <
m

2
F1 −

2

u2
Su3 +Î2

n
g0DG , s7d

near the transition point.(Here we take the real part ofCa as
the gapped sector at the transition point. This amounts to
assumingg0.0.) In Eq. (7), n is the total particle density
andd0 denotes the magnetic field detuning at which the zero-
temperature quantum phase transition occurs at the mean-
field level, which is given byd0<su3−u2/2dn−23/2g0n

1/2.
(This value ofd0 has already been given by Ref. 9.) From
Eq. (7), it is obvious that the value ofu0 may become nega-
tive in some parameter regime. Foru0,0, one should in-
clude the terms with higher powers off like f6 in If to
make it stable, and the QPT between the MSF and ASF
phases will be of first order,13 even in the absence of the
coupling to the Goldstone modeu. In this case, it is of little
interest because the correlation length is always finite and
thus there are no universal behaviors for physical quantities
at both zero and finite temperatures. Therefore, in the follow-
ing, we shall concentrate on the parameter regime which
gives rise to a positive value ofu0. From Eq.(7), this corre-
sponds tosu3+Î2/ng0d2,u1u2.

At T=0, If with u0.0 describes the 4D Ising universality
class. It exhibits a Gaussian behavior with logarithmic cor-
rections due to the presence of the marginally irrelevant cou-
pling u0. Therefore, we may consider the RG transformation

t → t/s, x → x/s,

f → sf, u → su, s8d

while c0, v0, rs, and M remain invariant. Heres.1 is the
rescaling factor. Then, the actionIf+ Iu+ I int with u0=0=l0 is
invariant under the RG transformation[Eq. (8)]. It is
straightforward to see that the coupling constantsu0 andl0
are marginal at the tree level with respect to the Gaussian
fixed point under the RG transformation[Eq. (8)]. Within the
weak-coupling region, one-loop RG equations are needed to
determine their roles on the low-energy physics.

B. One-loop RG equations

To compute the one-loop RG equations, we employ the
momentum-shell RG. Before integrating out the fast modes,
we make a change on the variables

x → L−1x, t → L−1c0
−1t, v = v0/c0,

f → Lc0
1/2f, u → LSc0M

rs
D1/2

u,

r = L−2t0, u = c0u0, b =
Lc0

T
,

l = Sc0
3M

rs
D1/2

l0,

whereL is an ultraviolet(UV) cutoff in momenta andT is
the temperature. Then,v, r, u, l, andb become dimension-
less parameters and our working action is written asI
=e0

bdted3x L where

L =
1

2
fs]tfd2 + s=fd2g +

1

2
rf2 +

1

4!
uf4

+
1

2
FS1

v
]tuD2

+ s=ud2G + il]tuf2. s9d

By integrating out the fast modes, i.e., those modes with
momenta within the momentum shelle−l , uku,1 wheree−l

is the scaling factor, we obtain the one-loop RG equations

dtl
dl

= tl , s10d

dvl

dl
= −

Klvl

4s1 + r ld3/2 f2sÎ1 + r l/tld, s11d

drl

dl
= 2r l +

Ultl
4s1 + r ld

f1sÎ1 + r l/tld +
2Kl

tl
g1sÎ1 + r l/tl,vl/tld,

s12d

dKl

dl
= −

Kl

4
sUl + 2Kld

f2sÎ1 + r l/tld
s1 + r ld3/2

−
2Kl

2

Î1 + r ls1 + r l − vl
2d

g2sÎ1 + r l/tl,vl/tld

+
4Kl

2tl
s1 + r l − vld2 f1svl/tld, s13d

dUl

dl
= − 24Kl

2
Î1 + r l

s1 + r l − vl
2d2g3sÎ1 + r l/tl,vl/tld

+ 24Kl
2 vl

s1 + r l − vl
2d2g4sÎ1 + r l/tl,vl/tld

−
6KlUl

Î1 + r ls1 + r l − vl
2d

g2sÎ1 + r l/tl,vl/tld

+
12KlUltl

s1 + r l − vl
2d2 f1svl/tld −

3Ul
2

8s1 + r ld3/2 f2sÎ1 + r l/tld,

s14d

wheret=1/b, K=slvd2/ s2p2d, U=u/ s2p2d and

f1sxd = x cothS x

2
D ,

f2sxd = cothS x

2
D +

x

2
sinh−2S x

2
D ,
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g1sx,yd =
f1sxd − f1syd

x2 − y2 ,

g2sx,yd =
x2 + y2

x2 − y2cothS x

2
D +

x

2
sinh−2S x

2
D ,

g3sx,yd =
x2 + 3y2

x2 − y2 cothS x

2
D +

x

2
sinh−2S x

2
D ,

g4sx,yd =
3x2 + y2

x2 − y2 cothS y

2
D −

y

2
sinh−2S y

2
D .

Here the rescaled quantities have explicitl dependence indi-
cated, e.g.,tl, while quantities withoutl dependence(e.g.,T)
refer to physical quantities.

Since K.0, we always havedvl /dl,0 from Eq. (11),
and thusvl will flow to zero. Therefore, we may setvl =0 in
Eqs.(12)–(14), yielding

drl

dl
= 2r l −

4Kltl
1 + r l

+
sUl + 8Kldtl

4s1 + r ld
f1SÎ1 + r l

tl
D , s15d

dKl

dl
=

8Kl
2tl

s1 + r ld2 −
Kl

4

Ul + 10Kl

s1 + r ld3/2 f2SÎ1 + r l

tl
D , s16d

dUl

dl
=

24KlUltl
s1 + r ld2 −

3

8

sUl + 8Kld2

s1 + r ld3/2 f2SÎ1 + r l

tl
D . s17d

The solution of Eq.(10) is simply given by

tl = tel . s18d

In the next section, we shall solve Eqs.(15)–(17) approxi-
mately by neglecting the possible logarithmic corrections.

III. SOLUTION OF SCALING EQUATIONS

Scaling stops whenur lu,1. One must distinguish two re-
gimes:tl !1 andtl @1. The former corresponds to the quan-
tum sT=0d regime where the quantum fluctuations dominate
the low-energy physics. Otherwise, it is the continuum high
T regime where the thermal fluctuations become important.

A. Quantum regime

In the quantum regime, the nonlinear dependence of the
RG functions[those terms appearing at the right-hand side of
Eqs. (15)–(17)] on r l will not be important. Thus, we shall
consider the limiting equations, valid forr, K, U!1:

drl

dl
= 2r l − 4Kltl + SUl

4
+ 2KlDtl f1S1

tl
D , s19d

dKl

dl
= 8Kl

2tl −
Kl

4
sUl + 10Kldf2S1

tl
D , s20d

dUl

dl
= 24KlsUl + 4Kldtl −

3

8
sUl + 8Kld2f2S1

tl
D . s21d

To obtain the condition onT for the occurrence of the
quantum regime, one may sett=0 in Eqs.(19)–(21), yielding

drl

dl
= 2r l +

1

6
Xl +

1

12
Ul , s22d

dXl

dl
= −

3

8
Xl

2, s23d

Xl

dYl

dXl
=

1

9
sYl − 4dsYl − 1d. s24d

HereXl =Ul +12Kl andYl =Ul /Xl. The solution of Eqs.(23)
and (24) is written as

Xl =
x0

1 + 3x0l/8
,

Ul =
d0Xl

1/3 − 4

d0Xl
1/3 − 1

Xl , s25d

wherex0=U+12K and the value ofd0 is chosen such that
Ul =U when Xl =x0. [In fact, d0x0

1/3=4+U / s4Kd. Therefore,
d0@1 for K, U!1.]

By solving Eqs.(22)–(24) numerically, we notice that the
value ofKl remains almost unchanged whenr l ø1, as shown
in Fig. 2. However, the behavior ofUl depends on the sign of
the functionGsr ,U ,Kd, roughly given by

Gsr,U,Kd <
16

3x0
FS1 +

U

16K
D3

− 1G − lns1/rd. s26d

[Equation(26) is determined from Eq.(25) by requiring that
Ul* =0 or d0Xl*

1/3=4 where r l* =1. The condition r l* =1
roughly gives rise to 2l* < lns1/rd.] (i) As Gsr ,U ,Kd.0,
Ul .0 and its magnitude does not change much forr l ø1, as
shown in Figs. 2(a) and 2(b). (ii ) As Gsr ,U ,Kd,0, the value
of Ul becomes negative rapidly beforer l =1 as shown in Fig.
2(c).

For givenK andU, we may increase the value ofr start-
ing with r =0. In the beginning,Gsr ,K ,Ud,0 and U be-
comes negative when scaling stops. Thus, af6 term must be
included in the effective action. A mean-field theory in this
case gives rise tokflÞ0. This corresponds to the ASF
phase. On the other hand, for sufficiently larger such that
Gsr ,U ,Kd.0, U is still positive when scaling stops, and
thus a mean-field theory gives rise tokfl=0. This corre-
sponds to the MSF phase. Consequently, there are two
phases at zero temperature separated by a transition point,
denoted byrc0. The value ofrc0 can be estimated by requir-
ing that Gsrc0,U ,Kd=0. A negative value ofU is usually
interpreted as a fluctuation-induced first-order phase
transition.14 Therefore, the QPT atT=0 is of first order. In
the following, we shall focus on case(i), i.e., theZ2 symmet-
ric (MSF) phase.

In case(i), because the values ofKl andUl do not change
significantly when scaling stops, we may setKl =K.0 and
Ul =U.0 in Eq. (22) for simplicity, where K /K<1 and
U /Uø1. Within this approximation, the logarithmic correc-
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tions are neglected.(The approximation we use amounts to
neglecting thel dependence ofXl. Inclusion of it will result
in logarithmic corrections.) Settingr l =1, solving for l, sub-
stituting the result into Eq.(18), and demandingtl !1, one
may obtain the condition for the occurrence of the quantum
regime in the MSF phase

t ! S r + A1

1 + A1
D1/2

, s27d

whereA1=K+U /8.
In terms of Eq.(7), the crossover line between the quan-

tum and continuum highT regimes in the MSF phase, cor-
responding tor . rc0, can be expressed by

S T

c0
D2

< t0 +
c0L2

2p2 Su2l0
2 +

u0

8
D , s28d

as shown in Fig. 1. Here the values ofc0, t0, l0, andu0 near
the transition point is given by Eq.(7). In addition, the mo-
mentum UV cutoff L can be estimated by L
<minh25/4Îmg0n

1/4,Îu2M /2n1/2j, where the former and the
latter arise from the gap of the real part ofCa and that of the
amplitude fluctuations ofFm, respectively. To obtain Eq.
(28), we have neglected 1+A1 in Eq. (27) becauseA1!1.
Further,K andU are replaced byK andU, respectively.

Finally, we determine the correlation length in the quan-
tum regime. To do so, we may setKl =K and Ul =U in Eq.
(19) and performing low-temperature expansion, yielding

drl

dl
= 2r l + 2A1 − 4Ktel . s29d

The solution of Eq.(29) is written as

r l = e2lfr + A1s1 − e−2ld − 4Kts1 − e−ldg . s30d

The correlation length is given byj,el* wherer l* =1. From
Eq. (30), one may obtain

j , sr + A1 − A2td−1/2, s31d

with A2=4K. Therefore,j is always finite for givent satis-
fying the inequality(27), as expected for a first-order phase
transition. To sum up, the phase transition between the MSF
and ASF phases in the quantum(low temperature) regime is
of weakly first order.

B. Continuum high T regime

In this regime, it is convenient to divide the scaling into
two steps:tl !1 andtl @1. This introduces multiplicative er-
rors of order unit coming from the imprecise treatment of the
crossover regimetl ,1. In the first step, we integrate overl

from 0 to l̃, such thattl̃ =1. Next we consider the casetl
@1. In this case, it is more convenient to define the coupling
Vl = tlUl. We would like to show that the RG equations forr l
andVl in the continuum highT regime are identical to those
for the 3D Ising model.

FIG. 2. Typical solutions of Eqs.(22)–(24) with the initial conditions(a) r =0.002,K=0.0003, andU=0.005,(b) r =0.002,K=0.003, and
U=0.005, and(c) r =0.002,K=0.03, andU=0.005. Thex axis is r l and they axis isKl /K or Ul /U.
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We start with Eqs.(15) and (17) and taketl @1. Using
f1s0d=2 and f2sx→0d<4/x, we obtain

drl

dl
= 2r l +

Vl

2s1 + r ld
, s32d

dVl

dl
= Vl −

3Vl
2

2s1 + r ld2 . s33d

Equations(32) and (33) are identical to the one-loop RG
equations for the 3D Ising model. Therefore, we conclude
that the transition between the MSF and ASF phases in the
continuum highT regime is of second order and belongs to
the 3D Ising universality class. Near the transition point, the
solution of Eqs.(32) and (33) is given by

r l − r* < sr̃ − r*del/n3, Vl < V* , s34d

wheren3<0.63 is the correlation length exponent for the 3D
Ising model andr̃ =r l̃, which are determined by the RG equa-
tions in the quantum regime. Herer* and V* are the fixed
points of Eqs.(32) and (33), which within thee expansion
corresponds to the Wilson-Fisher fixed point, wheree=4
−d and d is the spatial dimensions. The exact values ofr*

and V* are nonuniversal, and the determination of them is
beyond the present field-theoretical approach.

To determiner̃, we shall focus on the MSF phase. In this
case, one may neglect the possible logarithmic corrections
and setKl =K.0 and Ul =U.0 whereK /K<1 andU /U
ø1. (Note that bothK andU may not be equal toK andU.)
Then, from Eq.(19), we obtain

r̃ =
r + B1

t2
−

B2

t
+ C, s35d

whereB1=K+U /8, B2=4K, and

C = 3K −
U
8

+ 4B1E
0

1

dyy−3nBsy−1d,

with nBsxd=sex−1d−1.
Scaling stops whenur l* −r* u=1. The correlation length is

given byj,el̃el* = t−1el* . Equation(34) gives rise to

l* < − n3 lnU r + B1

t2
−

B2

t
+ B3U ,

whereB3=C−r* is a nonuniversal constant. As a result, we
get

j , t−1F ur − rcstdu
t2

G−n3

, s36d

wherercstd=−B1+B2t−B3t
2 denotes the transition point be-

tween the MSF and ASF phases for given temperature. Equa-
tion (36) is valid up to logarithmic corrections.

Finally, we consider the RG equation forKl in the con-
tinuum highT regime, which can be written as

Ul
dRl

dUl
=

4

3
Rl

2 −
1

3
Rl , s37d

whereR=K /U. Solving Eq.(37) gives rise to

Kl <
V*

4
e−l , s38d

near the transition line. When scaling stops, we may perform
the perturbation theory inKl and Vl as long asV* , Kl*

=V* / s4jtd!1. Within the spirit of thee expansion, it is in-
deed the case becauseV* =Osed.

IV. DAMPING RATE OF COLLECTIVE
EXCITATIONS IN THE MSF PHASE

The damping in the collective excitations of condensates
will become much more severe near the second-order transi-
tion line due to the coupling to the critical fluctuations.
Therefore, a measurement of the damping in the collective
modes may serve as a signature of the second-order Ising
transition between the MSF and ASF phases. In this section,
we shall use the RG equations to calculate the damping rate
of the collective mode in the MSF phase near the second-
order transition line, arising from the coupling to the critical
fluctuations. Since the identification of the Ising transition is
established within thee expansion, the following RG-
improved perturbative calculation is supposed to be under-
stood within such a context.

The full propagator of theu field can be written as
D−1sivn,kd=D0

−1sivn,kd+Susivn,kd where vn=2np /b, Su

is the self-energy of theu field, and

D0skd =
1

vn
2/v2 + k2

is the free propagator of theu field. The spectrum is deter-
mined by

D−1sivn → v + i0+,kd = 0,

which gives rise tov=ek− igk wheregk denotes the damping
rate andek is the dispersion relation of the collection mode.
In the long wavelength limit,ek=vk wherek= uku andv is the
dimensionless renormalized velocity measured inc. By solv-
ing the equation, one may obtain

gk = −
v2

2ek
ImSusv + i0+,kd, s39d

with the understanding thatv is replaced byek. Near the
second-order transition line,gk=Fsk ,K ,U ,t ,Dd whereD=r
−r* and we have

Fsk,K,U,t,Dd = e−lFselk,Kl,Ul,e
lt,Dld,

because the scaling dimension ofgk is fgkg=1. Scaling stops
at Dl* =1, and we obtain

gk = j−1Fsjk,Kl* ,Ul* ,jtd, s40d

whereFsx1,x2,x3,x4d=Fsx1,x2,x3,x4,1d is the scaling func-
tion.

To the one-loop order, the scaling functionF can be writ-
ten as
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Fsjk,Kl* ,Ul* ,jtd = −
Kl*ejk

8
E d3p

dfejk − Espd + Esjk + pdg
EspdEsjk + pd

3 HnBFEspd
jt

G − nBFEsjk + pd
jt

GJ
+

Kl*ejk

16
E d3p

dfejk − Espd − Esjk + pdg
EspdEsjk + pd

3 HnBFEspd
jt

G − nBF−
Esjk + pd

jt
GJ

−
Kl*ejk

16
E d3p

dfejk + Espd + Esjk + pdg
EspdEsjk + pd

3 HnBFEspd
jt

G − nBF−
Esjk + pd

jt
GJ . s41d

HereEspd=Îp2+1 andnBsxd=sex−1d−1. For smallk, we find
that the damping rate to the lowest order ink is given by15

gk =
pV*v2

16
S k

jt
DFexpS 1

Î1 − v2jt
D − 1G−1

, s42d

where from Eq.(36) jt,fur −rcstdu / t2g−n3. From Eq.(42), we
see that away from the critical region, the damping of the
collective excitations arising from the coupling to the critical
fluctuations is exponentially small. On the other hand,jt
diverges near the transition line, and thus within the critical
region,gk can be approximated as

gk =
pV*

16
v2Î1 − v2k + OS 1

jt
D . s43d

Therefore, the collective mode is heavily damped within the
critical region such that no well-defined collective excita-
tions exist there on account ofgk /ek=Os1d.

Due to the coupling to the amplitude fluctuations, the col-
lective mode in the BEC already acquires a damping rate
which exhibits dramatic temperature dependence as given by
Ref. 16. For example, in the low temperature limit, it is of
the form:gk~T4k.16 Compared with that result, the damping
rate due to the coupling to the critical fluctuations in the
critical region is indeed much stronger than the one arising
from the coupling to the amplitude fluctuations. However, a
careful measurement of the damping rate near the second-
order transition line must be conducted to extract the 3D
Ising correlation length exponentn3. Because within the
critical region the damping is insensitive to the variation of
temperature as shown by Eq.(43).

V. CONCLUSION

We study the QPT between the MSF and ASF phases in
terms of RG. Our calculations suggest that in some param-
eter region this transition is of first order as long as the tem-
perature is below the transition temperature from the normal

Bose gas to the superfluid phase. However, in the other pa-
rameter region, the physics of the QPT is more interesting. It
is of weakly first-order in the low temperature regime where
the inequality given by Eq.(27) is satisfied. As the tempera-
ture is raised to the continuum highT regime where the
inequality given by Eq.(27) is reversed, the transition be-
comes a second-order one, belonging to the 3D Ising univer-
sality class. This second-order transition in the continuum
high T regime is guaranteed by two facts:(i) Those terms
containing the coupling constantK in the one-loop RG equa-
tions exactly cancel each other in the high temperature limit.
(ii ) The coupling constantK becomes an irrelevant operator
around the 3D Ising(Wilson-Fisher) fixed point in the con-
tinuum highT regime and flows to zero. A schematic phase
diagram is shown in Fig. 1, and the crossover line between
the quantum and continuum highT regimes is expressed by
the parameters which are directly related to experimentally
measurable quantities, as given by Eq.(28). We must empha-
sized that all our results are valid only at the temperature
much lower than the gap of amplitude fluctuations in the
molecular BEC.

We also calculate the damping in the collective excitation
in the MSF phase near the second-order transition line. Be-
cause of the coupling to the critical fluctuations, the damping
will be strongly enhanced, which may serve as an experi-
mental signature of the second-order transition. Our calcula-
tion shows that the damping rate of the collective mode in
the MSF phase is insensitive to the variation of temperature
near the second-order transition line, a behavior very differ-
ent from the one in the ordinary BEC where the damping is
much weaker and exhibits dramatic temperature dependence.
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