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The magnetic relaxation has been investigated in type-Il superconductors when the initial magnetic state is
realized with entrapped and shielded flux contemporarily. This flux state is produced by an inversion in the
magnetic field ramp rate due to, for example, a magnetic field overshoot or undershoot. The investigation has
been faced both numerically and by measuring the magnetic relaxation in BSCCO tapes. Numerical compu-
tations have been performed in the case of an infinite thick strip and of an infinite slab, showing a quickly
relaxing magnetization in the first seconds. As verified experimentally, the effects of the ovefmhtus
undershogtcannot be neglected simply by cutting the first 10—100 s in the magnetic relaxation. On the other
hand, at very long times, the magnetic states relax toward those corresponding to field profiles with only
shielded flux or only entrapped flux, depending on the amplitude of the field change with respect to the full
penetration field of the considered superconducting samples. In addition, we have performed numerical simu-
lations in order to reproduce the relaxation curves measured on the B@2Z3ptapes; this allowed us to
interpret correctly also the first seconds of t¢t) curves.
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I. INTRODUCTION —kgT
S= . (3
In type-Il superconductors, at temperaturés-0, the [Uo + uksT In(t/ty)]

magnetization relaxes approximately logarithmically with gq,ation(3) is employed to evaluate experimentally the pin-
time (t) because of the thermally activated motion of vortlcesnmg activation energy and the exponentFor this reason
(flux creep. This behavior can tzte understood, at first sight,nagnetic relaxation measurements are extensively used to
within the Anderson-Kim modét* (AKM). In conventional  jnyestigate the flux creep in superconductd® a review,
superconductors the experimental results are well reproducege Ref. 13 and references theyein

in the framework of the AKM, whereas in high-temperature Usually, in magnetic relaxation measuremeN(t)], an
superconductorgHTS’s), de_watpns_from the Iog_arlthmlc external magnetic fielé, ramps up to a fixed valu, with
decay are observed, especially |n.B|-based mate"'rralSev- finite sweep ratedH,/dt; then, the magnetization is mea-
eral r_nodgls have peerlgproposed in order to .explam the nony,red as a function of timetypically for about 18 s), keep-
logarithmic relaxatio?-**The theogry of collective creep, ex- jnq the external field at the fixed value. Ramping the external
tensn_/ely reviewed by Blat_t&rt al,” predicts that _the current  gia|q up toH,, which is chosen higher than the full penetra-
density (J) relaxes according to the so-called "interpolation i, fie|d H, of the superconductor, screening persistent cur-
formula.” As in the case of the Bean fully penetrated critical g (clockwise with respect to the external field versus
state, the magnetization can be assumed proportional to thg,y everywhere in the superconductor. If the magnetic field

persistent current, leading to is first increased and then slightly reduced, both clockwise
and counterclockwise persistent currents flow in the sample.
M(t,T) = M; 1) In this case, the measured magnetization results from are-
' kg T t) |-’ gion with entrapped flux close to the surface and a region
{1+ Uo In(%)} with shielded flux in the inner part of the superconductor

[entrapped and shielded fl(ESPH statq.

This complicated state can be easily generated when the
external field ramp is stopped and a magnetic field overshoot
occurs. This means that, at the nominal stop of the external
Sield ramp, the field exceeds the target valg reaching it
usually after a few seconds. This overshoot can produce an
gntrapped flux zone close to the surface, which can apprecia-
bly affect the relaxation process. In particular, Jirsa and
co-workers*1> showed that, for a superconducting slab of
thickness 10* m in a parallel fieldHy,=0.5 T, an overshoot

whereM,; is the initial value of the magnetizatiokg is the
Boltzmann constant, and, is the pinning activation energy.
The exponenj is a parameter and its value depends on th
different creep regimegg is a characteristic time depending
on temperature, magnetic field, sample geometry, and th
fluxon attempt frequency for jumping out the pinning cen-
ters. By defining the normalized creep ra&

- 1am ) of only 1.5 mT leads to an initial magnetizatidéh™, whose
MdInt’ value is about one-third of the one computed in the absence
of the overshoot. However, the depressed magnetization
Eq. (1) immediately leads to Mo, (t) relaxes with time, converging to the ided|y(t) curve
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computed in the absence of overshoot. Therefore, the initidHowever, our discussion can be simplified if we consider
value of the magnetization, occurring in the absence of théhat the Kim full penetration fieldH,«) and the Kim revers-
overshoot, is determined approximately by extrapolating iing field (H,) are given by®
from the long timeM(t) curve.

However, starting from the ESF state, the field profile poHpk = B(\V1+8-1), (10)
evolution that leads to the joining of the two curves is still
unclear. On the other hand, it is not possible to determine woHk = Bk(\x’1+2,3— 1), 11

experimentally when theM(t) curve approaches the ideal

relaxation and, thus, the experimental procedure of cuttind"here

the first 10-100 s in the experimentd(t) is usually B=2u0Jod/By. (12)
adopted. . ) )

In order to justify this experimental procedure, we can!n particular, if we comparéi,k andHyc with Hpg=Jcod and
consider a slab of thicknessl2nd critical current density, ~ Hrs=2J0d—i.e., the Bean full penetration field and the Bean
analyzed in the framework of the Bean model. If an over-reversing field calculated for a current density field
shoot occurs after the application of an external field highefdependent—we can observe tif andHyc are always

than the full penetration fieltH,=J.d), the magnetization of lower thanH,s andH,s. Therefore, a.(B) leads to the over-
the slab 4617 shoot(undershoogteffects on the initial magnetic state, even

larger than the Bean case.
M =Men+ Mgp, (4) To extend the relaxation analysis to the time window af-
fected by the overshoot, Jirsa and co-workkts have
Men= (1/2)(H§U/Hp), (5)  shown that it is possible to use magnetic hysteresis loop data
measured at different field sweep rates. They have shown
Mgp=— (1/2)[(H$ - Hgv)/Hp], (6)  how the magnetization measured at different sweep rates can
be converted into magnetic relaxation data, substantially ex-

where Me, is the magnetization due to the entrapped fluX,ianding the time window to the short times, typically down
Msp is the magnetization due to the shielded flux, &hgis {5 1025,

the amplitude of the field overshoot. Equatiaiss and (6) Other complications in the analysis of relaxation measure-
can bg rewritten b)_/ mtroducmg the magnetic reversing fieldyents can also arise from the sample geometry and the an-
H, defined as the field amouin absolute valug Ha has to  isotropic properties of the material. In fact, in HTS samples,
be decreasedncreasegiwith, for fully reversing the flux in  magnetic relaxations are usually measured with the field ori-
the superconductor, if initially there was a full shielded stategpiation perpendicular to the largest face of the sample. In
7 . 2 )
(entrapped staje this geometry, the demagnetization effects could be ne-

Men= (H2 /H,), (7)  9Ylected only for measurements performed at fields much
" higher thanH,,. Since an overshoot changes the direction of
Mq,= — (L/20{[(H,/2)? - Hév]/Hr}. (8) the current and the magnetic field value on the edge of a flat

superconductor, geometry effects are supposed to be signifi-
If Hy, <<H, or equivalentlyH,, <H,, the magnetization due catively altered in the magnetic relaxation measurement.
to the entrapped flux is small and thus it can be considered In this work we have investigated the magnetic relaxation
negligible after a long enough time. In a loW supercon- starting from a state with entrapped and shielded flux.
ducting slab, withd=0.1 mm andJ.=10'** A/m?, the full In the next section, we will discuss the integro-differential
penetration field isH,=0.63 T and the usual characteristic equation employed in the numerical computation of th@)
timet, is about 10 s. Therefore, for a few mT overshoot, it iscurves. In Sec. Ill, we show the numerical simulations of the
commonly believed that the experimentsd(t) measured magnetic relaxation and the time evolution of the field pro-
100 s after the nominal stop of the external magnetic fieldiles for samples in the shape of the slab and thick strip.
resembles the relaxation from a fully shielded stéie a The magnetic relaxations in BSCCZ223 have been ex-
fully entrapped stae Nevertheless, depending on the tem-perimentally investigated when the effects of a magnetic
perature and applied magnetic fietd, can become compa- field overshoot in thé/(t) are not negligible. Finally, in Sec.
rable withH,,, drastically affecting also the long-time mag- |V, the experimental measurements are analyzed and com-

netic relaxation. pared with the numerically computed results.
If we take into account the dependence of the critical

current density on the magnetic field, for example, by con-

sidering the Kim dependence, II. NUMERICAL COMPUTATIONS
Jeo In order to analyze the magnetic relaxation of a supercon-
Je(B) = (9)  ductor in an external magnetic field, we numerically

1+(Bl/By solved an integro-differential equation for the current density
we cannot anymore write simple expressions similar to EqsJ in a slab in a parallel field and in a thick strip in a perpen-
(5) and(6).181%In Eq. (9) J.o andB, are two parameters and, dicular field?® As developed by Brandt in a series of
in particular,Jy, is the critical current density at zero field works2°-24in a long strip of width 2 (along they axis) and
and B, is the magnetic field value whet® is half of J,,.  thickness # (along thez axi9) placed into a homogeneous
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magnetic field, perpendicular to the largest face of the strip, 1 ) ) _ )
the applied field induces surface and bulk currents. The cur- Qslab= E(Iy—y |=ly+y')=-minly,y’). (21
rent flows along the sample lengthe., x axis) due to the
symmetry of the strip. The induced current density
J=J(y,2)i generates a magnetic field which hasy and z
components. In this model it is assumed tBat uoH and,
thus, He; and the reversible magnetizatidiv,.,) are ne- :
glected. Sincd=V X A, whereA is the vector potential, it J We choose the widely used relatfn
is possible to write for this geometry a two-dimensiofi)
Poisson equation in the Coulomb gauge:

In our simulations, we do not consider a transport current but
only an external magnetic field and for this reason the term
V,® has been dropped out. To solve the integral equation for

‘] n
E= Ec<—) , (22)
ol = - V2A. (13) Je

The current density flows only in the strip and thus the vectoiyhereJ. is the critical current density. However, the Brandt
potential could be written as a sum of two terisA,+A;,  method can be used with a differefit relationship?°
whereA, is the vector potential related to the applied mag-  The current density profiles in the strip have been ob-
netic field(A,=[r X B]y=yB,) andA, is related to the current tained by integrating E(18), whereas for the slab E¢19)
induced in the strip. SincB, is constant in the specimen, the has been solved. For the strip, the functighand E have

general solution of Eq(13) is been tabulated on a 2D grid with equidistant points
yi=(k-1/2a/N, (k=-N,+1,...,0,...N,) and z=(l
A(r)=—uof RrOr NI ) -yB, (14  -L/2dIN,(1=-N+1,...,0,...\,), where N,=d/aN, is
s chosen. Labeling the pointéy,,z) by an indexi, with

i=1,2,...N and N=N,N,, the functionJ(y,z,t) becomes
the time-dependent vectad,(t) with N coordinates and
E(y,z,t)=E.(3/J)" becomes a vector wittN coordinates.
Moreover, the integral kerneQ(y,z,y’,z’) becomes an
, (15  NXN matrix Q; ;.

The numerical form of Eq(16) is

wherer =(x,y), r'=(x’,y’), andQ(r,r’) is the integral ker-
nel defined as

r—r’

1
r,r'y=—-1In
Q(r,r’) . o
in whichrg is an arbitrary constant length that can be chosen
equal to 1. The integration is performed on the cross section At

of the stripS. The current density is obtained formally frém Ji(t+ At) = () +
MoAYyAz

N
> QE (M -yJB)
J

1
Jry=-—[ dr'QHr,r)[Arr',H) +y'By]. (16)
Hols fori=1,... N, (23)
HereQ X(r,r’) is the inverse kernel defined by
whereAy=a/N, andAz=d/N, are, respectively, the steps in
A2 QX r O 1" = 8(r — 7). 1 the 2D grid used to tabulate the cross section of the thick
JS Qr.rQl )=& ) 9 strip. The numerical integration of the 1D equation for a slab
. follows similar rules.
By using the relationE=-V,—-A where ¢ is the scalar The time integration of this system of nonlinear differen-
potential, we obtain tial equations fow;(t) has to follow some prescriptions. First
of all, the integration starts with the initial conditiak(0)
: 1 - : =0; in addition, the time steft is chosen inversely propor-
I 201 1 ! ! ’ ’
Iy = o S,d rQEEW) ~y'BO]. - (18 tional to the maximum value of the resistivity,=E;/J;.
Brandf® uses the following relation in his computations:
In the limit d>a (slab geometry the previous equation be- At=c,/[max(p;(t))+c,] with cl:0_3/(N§n), n is the expo-
comes a one-dimensional equation nent in theE-J law, andc,=0.01. In our computations we do
1 (e not use a normalized quantity and we have observed that this
rn=—/1 dyo(y.y)EQ) -yB.1)]. 19 choice depends on the value Hfand the time derivative of
r.0 ,uofo Y QsiayyILE(D) ~y'B(0)] (19 the external magnetic field. In our computations we used

different values forc, andc, in order to make stable the

Taking into account the symmetry of the strip and slab ge- . . _ o [T e
ometries, the kernel in the case of the strips is given by numerical algorlthrrcl—Q.OOS,{(NXn) B,” whereB," is the

temporal mean value @&, andc,=1.

1 (Y+D)(*+2D) Finally, Q; ;=In|r;=r | has a logarithm divergence when
Qstrip = A Inm, (20) approaches;. In order to avoid this singularity for=j the
" * expression for the kernel is changed witt/2)In[(r;~r;)?
wherey,=y+y’ andz,=z+Z'. For the slab it results in +€%] where??
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Ay Az - ' 2
€=e p{InA2+A22—In4—3+—actar<—> [
xp In(ay ) ~In(4) Az ' Ay 1.0F . —_ .
A A Y % £1
z EoioN i
+<—>arctar<—y)}. ~ b E
Ay Az = S AN
= i v %So
In our computations, the magnetization is calculated by > 0_5;5!’ ; N ]
a d -,‘ . ‘\.\ . . .
M = 4J dyf dzdy,2)y for a strip, (24) ] Lo 2 4 68 10
o Jo i AN t(s)
0.0 E L : ey 1 1
a 0 2 4 6 8 10
M = ZJ dyJy)y for a slab. (25) t(s)
0

. . L el FIG. 1. Time dependence of the external magnetic field during
Since the magnetic relaxation is simulated at S: W€ the field overshoot. The time origin corresponds to the nominal field

reduce the n'umber of computed points calculating(thél;) stop. A triangular overshoatdash-dotted lineand an overshoot
data according to the relation given by the functiomHe, =Hg, (t/te,m? exd2(1-t/ts,m] (dotted
line) are shown. In the inset, the time derivatives of the two over-

=1 +
= ti-g *+ expIn(t)/Ng], (26) shoot functions are shown.
M; =M(t), (27)  the overshoot functions are plotted, since the field ramp de-
wheretg is the total time of the computed relaxation axg nvatnt/_e is actually used in the integration of the diffusion
equation.

is the total number of the computed data. o . )
We have initially computed the magnetic relaxations for a

strip in a perpendicular magnetic fielderpendicular geom-
. NUMERICAL RESULTS etry) by simulating a case analogous to the one discussed in

i 14 i — 2
In this section we discuss the numerical results obtainegje work qf.J|rsaet al: In. o_ur computanorﬂc—.l(P.A/m
and the critical exponent is=15. We are considering a su-

for the slab and thick strip. In our computations we have : " . -
used a strip with aspect ratiea/d) equal to 10 and perconductor with Iar_ge critical cur_rentdensny but with large
2a=103m and a slab with =104 m. with the critical ' c€P- The exte_rna_l field ramps with a sweep rate of 1 mT/s
current density(dy) ranging from 16 A/,mz to 1P A/m?2 upto 0.2°T, wh|ch is a value yvell above_ the full penetration
The current—volta:ge characteristic is the usual powe} la field of the strip. Indeed, looking at the field profile we have
. N N et Weerified that the strip is fully penetrated for fields higher than
given byE_EC(‘J/‘,JC) , whereE;=10"" V/m and the expo- 0.10 T. As shown in Fig. 2, also if the overshoot does not
nent employedn, is chosen equal to 15 for the large creep oq i in the field ramp, the magnetization decays nonloga-
case anth=105 in the Bean limit case. __rithmically, especially at short timé<10 . This result is
In or(_jer_to study the relaxation from a ESF state, differen xpected due to the power law in tEeJ relationship which
magnetic field ramps have peen takt_en Into account. For €aGfvolves a logarithmic dependence of the pinning energy on
ramp, the external magnetic fietd, increases linearly on the current density. In the same figure, a magnetic relaxation
time, with a sweep ratéH,) of 1 mT/s, up to a nominal curve is shown as computed for a field ramp which has a
fixed valueH,. The time wherH, has nominally reachel,  triangular overshoot. In this case, the external magnetic field
is taken as time origin of the magnetic relaxation. As theramps up to 0.2 T. After this, the field overshoot occurs with
external magnetic field reachés, different situations are an amplitude oH,,=1 mT. The field overshoot reaches its
taken into account: (a) H, is stopped immediatelyideal

case, (b) H, has a triangle overshodgtriangle overshoot ' ' " '

. . 1.0 fpamsazea —ideal E
and(c) H, has an overshoot with a smoothed field step- : - --- triangle
ponential overshot ook ™ e H (W et

In caseg(b), the magnetic field increasesti,,, seconds by ' . e
an amplitudeH,,; then, it decreases by the same quantity in £
" : : - 08} sTRIP
the subsequent,, seconds(triangle overshoot After this, = el
the external field is immediately stopped and the magnetic = g,£|2= 10, ™
relaxation starts. In casg), the overshoot has been simu- b'_mg'“ )
lated by means of the functioR,,(t)=H,,(t/ty,m°exdc(1 06F Jc_' 10" Afm
~t/to,m]; for t=to,m the overshoot reaches the maximum n=15
value. The two different functions employed to simulate an 10" 160 161 1(')2 1(')3 10¢
overshoot are shown in Fig. 1. For the triangular overshoot, t(s)
we setH,,=1 mT,t,,,=1 s, andt,,=5 s. In the case of ex-
ponential overshoot, we useHg,=1 mT, t,,,=1s, and FIG. 2. Magnetic relaxation curves computed for different mag-

c=2. In the inset of the same figure, the time derivative ofnetic field ramps in a thick strip.
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----ideal E 1.000
overshoot 10°e
...... M(t)=M(0 S1nlingdt) |
e 0.995F 1
S SLAB
-4 . <
= . o 0.990F 3
- \\.
Treeg 0.985F ]
0.3 N %
10" 10" 10" 10* 10° 10 10° 10° 1.0 -0.5 0.0 0.5 1.0

t(s) yia

FIG. 3. Magnetic relaxation curves computed for different FIG. 4. Time evolution of the magnetic field profiles in a slab;
magnetic field ramps in a slab. The functiorr,,(t) the initial field profile is achieved without field overshoot.
=Hg,(t/tgm exdc(1l-t/ty,m)] with Hg,=1 mT, ty,m=1s, and

c=2 has been employed to simulate the field overshoot in the curvgptained by ramping the external field both in the ideal way
shown as_the solid line. The dqtted line is the relaxation given by(Without overshogtand with an overshoot of 1 m{dashed
the analytical formula reported in the text. curve. In the same figure is shown the magnetic relaxation
(dotted ling for a superconducting slab, according to the
maximum 1 s after the external field should have beenelation given in Ref. 13, where it is assumed that the pin-
stopped at the nominal target value. The external field goeging energy depends logarithmically on the current density:
down to the nominal value of 0.2 T after 5 s. Also in this
case, when the magnetic field is stopped at the fixed value of 1 t
0.2 T the time derivative ofH, is instantaneously zero. M(t):M(O)exp[—HII’I(E))} 28
A more realistic situation has been considered by computing
the magnetic relaxation for casg) where Hy,=1 mT, The dimension of the slab used for the computations is
to,m=1 S, andc=2. Case(c) is effectively realized in experi- 2a=10"“*m, the critical current density.=10° A/m2, and
ments, where the field cannot be stopped instantaneously atlge exponenth=15. In this case the full penetration field of
the overshoot shape is rounded. the slab isH,=6.3 mT and thus it is of the same order of
As shown in Fig. 2, the magnetization curves in cag®s magnitude with respect to the oversh@atmT). As shown
and(c) have an initial valueM; larger than in the ideal case. in Fig. 3, the computed ideal curve is approximated quite
In fact, when the overshoot occurs, the magnetization doewell by the analytical relation in the time range from
not relax during the first seconds, since the magnetic fieldO to 1¢ s, whereas it wanders off at very short and very
continues to increase. The largest value of the initial magnelong times. On the other hand, we observe that the overshoot
tization is obtained in the case of an exponential overshootias effects at a long time up to %16 (dashed curve In the
indeed, the electrical field induced in the superconductor ifirst 5 s, the magnetization loses 60% of the initial value due
the first seconds is larger than in the other caseg also to the inversion of the flux profile close to the slab surface. In
Fig. 1). When the external magnetic field rate reverses, thehe subsequent & the magnetization practically does not
magnetization quickly decreases, because of the flux comingelax, and after this time the relaxation rate increases. After
out from the surface, and after 5M has lost 12% of the 10° s the magnetization computed with an ideal ramp and the
initial value. The decay during the first 5 s depends on theurve computed with a field overshoot take the same value.
shape of the field overshoot as a function of time. In the At this point, it is necessary to investigate if the magne-
triangular case, the magnetization curve shows a convex cotization computed for time larger than 30.0° s in both the
cavity, whereas in cas€) the curvature is concave. After cases corresponds to the same magnetic state. In order to
5 s, the external field is practically constant and the magnetianswer this question, we have computed the magnetic field
relaxation effectively starts; farlarger than 100 s the three profiles as a function of time. In Figs. 4 and 5, the field
curves join together. These computations confirm also in perprofiles computed for both the cases are shown. In particular,
pendicular geometry the results found for parallel geometryn Fig. 4, the profiles of the relaxation in a slab are shown,
in Ref. 14. However, in this case the field overshoot ampli-reproducing the usual Bean results. On the other hand, the
tude is 1% of the full penetration field. In the next section weprofiles computed in the case of a relaxation from an ESF
will consider situations where the induced ESF state stronglgtate, obtained by using the exponential overshoot change
affects the magnetic relaxation. during the first 5 §dashed lingas a consequence of the field
decreasing. The evolution of the profiles during the first 5 s
has some difference in comparison with the classic Bean
profile, whereJ; is constant and independent of the applied
Here, we discuss the magnetic relaxation starting from arlectrical field. In our case, while the flux is expelled on the
ESF state in the case of a slab in parallel field. In Fig. 3, twosurface, in the inner part of the slab the profile relaxes. This
computedM (t) curves are shown; the initial magnetic state isoccurs because of the finite exponanthich leads to a large

A. ESF state in a slab
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FIG. 5. Time evolution of the magnetic field profiles in a slab,
when a field overshoot occurs. The dotted lines represent the flux 1.01
profiles which fully resemble the ideal profiles. The dashed lines E
represent the profile during field ramp rate reversing. Solid lines 1.00F
show the field profiles in the time windows where the magnetization o 0.99
is nearly constant. In the inset a detail of the profile close to the slab ;N TR
surface is shown. 098k
creep. On the contrary, for the Bean model, the field profile, 0'97;
in the inner part of the slab, remains frozen during the field 0.96F
decreasing. 1.0 05 0.0 0.5 1.0
Starting from the fifth second the field profile relaxes (b) yia

overall in the slab and after 1@ the magnetic profile be-
comes the ideal one. In Fig. 5 the field profiles which re- FIG. 6. Evolution field on time for a thick strip. The field pro-
semble the ideal ones are shown by dotted lines. By meariles computed in the ideal case are shown on the upper frame. The
of our numerical simulations we have shown that the saméeld profiles computed when an overshoot occurs in the field ramp
magnetization value found in the twil(t) curves corre- are shown on the lower frame.
sponds to the same magnetic state. In Fig. 5, we observe also
that the maximum of the field profile, due to the field ramp1l mT occurs, the flux, as expected, is strongly reduced on the
rate reversing, moves towards the slab edges during the retrip edge and the field maximum is located inside the strip.
laxation. At the same time, the entrapped magnetization itn Fig. 7 (right side, we can observe that in the next®19
reduced down to zero. Therefore the ESF state has relaxdabde maximum relaxes and moves towards the strip edge
towards a fully shielded state. where, at the same time, the field increases. On the contrary,
Increasing the amplitude of the overshoot, we expect thain the ideal case the field on the border always decreases
the ideal relaxation and the relaxation from an ESF state willuring the relaxation as shown in the left side of Fig. 7.
coincide at longer times. Nevertheless, as the region withWhen the maximum reaches the edge, the field profile in the
entrapped flux prevails on the shielded region, the flux prostrip fully resembles the profile computed in the ideal case
file relaxes towards a fully entrapped state. and the relaxation continues as in the ideal case. Also in this
case, as shown in the magnetization curves in Fig. 8, the
M(t) with and without overshoot join together at long times.
Also in the perpendicular geometry the evolution of the mag-
In order to analyze the effect of the sample geometry ometic state is directed to rebuild a shielded state. Except for
the relaxation, we considered the case of a strip in a perpeithe time evolution of the magnetic field on the border of the
dicular field for which the main effect of the overshoot arisesstrip, in the perpendicular geometry there are not substantial
on the surface, where the demagnetizing field is more indifferences with respect to the parallel geometry. In fact, our
tense. In Fig. 6 the magnetic field profiles for a thick stripcomputations have shown that in the perpendicular geometry,
(2a=1 mm, 21=0.1 mm) are reported,; a critical current den- for H,>H,, the demagnetizing effects do not affect the time
sity of 1® A/m? and anE-J exponenin=15 are set. In the evolution of the magnetic relaxation.
upper part of the figure we can see the field profile relax-
ations in the ideal case. We can observe that the demagnetiz-
ing field relaxes towards lower magnetic fields on the sur-
face. At the same time, the field increases in the inner region Magnetic relaxation measurements have been performed
and there is a boundary, known as the neutral line, where they means of a vibrating sample magnetomet®iSM)
field remains constant; it divides the region with entrappecequipped with a 16-T magnet. The external magnetic field
flux from the one with shielded flux. If an overshoot of a can be ramped with a maximum sweep rate of 7 mT/s.

B. ESF state in a strip

IV. EXPERIMENTAL RESULTS AND DISCUSSION
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FIG. 9. Magnetic field ramp with a sweep rate of 3.3 mT/s in
the time window where a field overshoot occurs, as measured by a
Hall probe(squares and solid linendH,(t) employed in our com-
putation(dotted ling.

1.010

nique. We have chosen this kind of sample because they
allow us to study bulk rectangular samples with full penetra-
tion fields which can be of the order of 10 mT even at the
lowest temperature—i.e., 4.2 K. The dimensions of the super-
conducting region in the measured sample are 3.024

(b)

0.5
y/a

X 4.6 mn? and the estimated critical current density ranges
from 10’ to 1 A/m?, depending on the temperature. In this

way we can study experimentally the overshoot effectd as

FIG. 7. Zoom-in of the previous figures, in the region close todecreases. . i
the strip edge. M(t) measurements have been performed with the field

perpendicular to the sample surfagklllz axis) in the

When the field is nominally stopped the magnetic field hagt-2—45 K temperature range, cooling the sample in zero field
an overshoot of around 1-5 mT depending on the sweep rat€FC) for each temperature. The initial magnetic state is ob-
used for ramping the field and this unwanted feature ha&ined by increasingi, with a sweep rate of 3.3 mT/s, up to
been used to induce an ESF state in our samples. We used?al - After this, the field is decreased with the same sweep
Hall probe to measure the time dependence of the extern&@ite down to a measuring fieldyHo=1 T. The field varia-
field and in Fig. 9 the measured undershoot for our magnet i§on of 1 T is chosen to be, for any measuring temperature,
shown when the external magnetic field ramps down to 1 TWell aboveH,, which is evaluated by taking the value of the
starting from 2 T with a sweep rate of 3.3 mT/s. This is thefield corresponding to the maximu@n absolute valugin
effective magnetic undershoot experienced by our sample§€ Vvirgin magnetization curves at 4.2 K. In the absence of a
during the experimental measurements which are discussdtgld undershoot, a full critical state, with entrapped flux, is
in the following paragraphs. realized in the superconductdisAs the final fieldH, is

In order to check the validity of our numerical results, we Nominally achieved, théA(t) data are acquired each second
have measured the magnetic relaxation on monofilamentaif@r 5000 s.
BSCCQ2223/Ag tapes prepared by the standard PIT tech- The experimental procedure differs by the procedure em-

ployed in the numerical computations discussed in the pre-
vious sections. In the numerical simulations, we have a time

1O STRIP ; saving if the initial magnetic state is achieved ramping the

magnetic field from zero tdd, because, in this way, the
08 initial magnetic state is achieved with a lesser number of
: ——ideal 1

computations. On the other hand, the measured magnetiza-

'
'
NG L overshoot

=° . tion has contributions from the reversible magnetization of
s o6t superconductors and also from the sample holder and, in our
case, from the silver of the metallic sheet, whereas the irre-
_________________ versible magnetization is the only component which relaxes.
0.4}

Our experimental procedure enables us to measure the nega-
tive and positive branches of the magnetization curve before
10" 10° 10" 10° 10° 10* 10° 10° starting the relaxation and in this way the irreversitig,,)

t(s) and reversiblgM,,,) components of the magnetization can
be evaluatet by using

Mir = (Mg~ Mup)/zv

FIG. 8. Magnetic relaxation curves computed from different

magnetic field ramps in a thick strip. (29
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FIG. 10. Magnetic relaxations measured at different tempera- FIG. 11. Hysteresis loop measured at 4.2 K with different field
tures for a magnetic fieltHy=1 T (pointy and computed curves sweep rate(ugH,). In the inset, theugH, rate versus irreversible
(solid lines. magnetizatiorM;,, is reported in a log-log scale for different tem-
peratures as evaluated from the experimental hysteresis loop. The
dotted lines are the linear fits employed to evaluate the E-J

Mrey = (Maw+ Myp)/2, power law.

(30)
whereMg,, andM,,, are the magnetization, respectively, mea-
sured in the descending and ascending branches of the h
teresis loop. In our experimental measurements we have
ways subtracted the measunggl,, and in the text we usM

for the irreversible component only if not differently speci- . -
fied. TheM(t), normalized at the initial magnetization value and employed in the computations. As expectedntiialues

) ™= decrease for increasing temperature becausdinked to the
M(0), measured at different temperatures, are shown in Fige|axation raté® S=1/(n-1) which increasesin the inves-

10. In all the curves, a large drop in the magnetization ocCurggated temperature ranges the temperature worms up due
during the first 11 s and this time corresponds to the time&g 3 |arger thermally activated process.
interval during which the external field has an undershoot. The critical current density is a free parameter chosen in
The behavior of the magnetization in the subsequent 5000 grder to obtain the best fit. From our computations, it results
depends on the value of the temperature. At 4.2 K the magn J.=2.4x 108 A/m? at 4.2 K and 4.6< 10’ A/m? at 45 K.
netization decreases S|Ight|y, but the relaxation after 5000 As shown in F|g 10, the numerical Computations reproduce
does not exhibit the behavior expected for a fully entrappegyell the experimental behavior. In Fig. 12, the profiles com-
state. At 15 K and 25 K, the magnetization remains nearljputed atT=45 K are shown. In particular, 410 s, when
constant, whereas at 35 K and 45 K the magnetization firsty_ is practically constant, it results that the magnetic state in
takes negative values and then increases in time. The effegte superconductor has both the regions with entrapped and
of the undershoot increases as the full penetration field deshjelded flux. In the next 5000 s, the profile relaxes toward a
creases with the temperature. These measurements show tftelded state, which is practically fulfilled at5000 s,
the magnetic relaxation can still be affected by the field unwhen the simulation is stopped.
dershoot after at list 100 s. The negative values measured in Our work shows that the first seconds of the relaxation
the M(t) at 45 K mean that the shielded flux region in the have to be analyzed very carefully in order to estimate cor-
sample is larger than the entrapped one, although the initiakctly the creep rate and, thus, extract information about the
condition was a fully entrapped state. pinning properties of the sample. In fact, our results show
In order to reproduce our experimental results, we havehat it is not appropriate just to cut the first seconds of the
computed the magnetic relaxation for a superconducting stripelaxation curves and extract information from the remanent
with the cross section of our sample. In the computations, th@ata if the presence of an overshoot in the magnet has not
field ramp reproduces exactly the experimental field ramppeen previously considered.
with a sweep rate of 3.3 mT/s. The undershoot has been
simulated by using the exponential function discussed in Sec, ,
IIl. As shown in Fig. 9, this function reproduces quite well fit of the experimental curves.
the experimental undershoot witl,,=0.029 mT, ty,,

nd fitting IMH,) as a function of IM;;) by means of a
jinear fit. The experimental data and the fits for different
atemperatures are shown in the inset of Fig. 11. mhalues
reported in Table | have been rounded to the nearest integer

TABLE I. Critical current densities and exponentused for the

=1.7 s, anct=1.3. In our computation we have to set boath TK) Je (A/m?) "
andJ.. The exponenh has been evaluated by measuring the, - 2.40 18 20
hysteresis loop at different sweep rates and in Fig. 11 thg5 1.15 168 19
M(H) curves measured at 4.2 K for different sweep rates ar 9.70 10 13
shown'. Since, at first approximation, the electrical field 8.70 16 9
E puoH, whereaseM;,, we can evaluate by taking the 45 4.00 16 8

M;, values measured at 1 T for different sweep rajes,)
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field overshoot after the nominal stop of the external field.
The magnetic relaxations have been computed in parallel and
perpendicular geometries. The computed magnetization
shows a large drop in the first seconds due to the flux expul-
sion from the sample boundary. After a long time, ¥ét)
curves computed with and without field overshgbéaving,
thus, as initial condition an ESF and a full shielded or en-
trapped flux state, respectivelypin together. Moreover, our
simulations show that, during the relaxation, the same value
of the magnetization corresponds to the same magnetic state.
1.0 05 0.0 0.5 1.0 In addition, the experimental relaxation curves, measured on
yla BSCCQ2223 tapes, are well reproduced by our numerical
computations, allowing us to correctly analyze Mé&) from
FIG. 12. Field profiles computed for the relaxation at 45 K. the instant when the external field is nominally stopped.
The profiles in the direction of the arrow are computed at
t=100, 1000, and 5000 s.

1.00

Q
o 0.98

0.96 | 1
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