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The magnetic relaxation has been investigated in type-II superconductors when the initial magnetic state is
realized with entrapped and shielded flux contemporarily. This flux state is produced by an inversion in the
magnetic field ramp rate due to, for example, a magnetic field overshoot or undershoot. The investigation has
been faced both numerically and by measuring the magnetic relaxation in BSCCO tapes. Numerical compu-
tations have been performed in the case of an infinite thick strip and of an infinite slab, showing a quickly
relaxing magnetization in the first seconds. As verified experimentally, the effects of the overshoot(or the
undershoot) cannot be neglected simply by cutting the first 10–100 s in the magnetic relaxation. On the other
hand, at very long times, the magnetic states relax toward those corresponding to field profiles with only
shielded flux or only entrapped flux, depending on the amplitude of the field change with respect to the full
penetration field of the considered superconducting samples. In addition, we have performed numerical simu-
lations in order to reproduce the relaxation curves measured on the BSCCO(2223) tapes; this allowed us to
interpret correctly also the first seconds of theMstd curves.
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I. INTRODUCTION

In type-II superconductors, at temperaturesTÞ0, the
magnetization relaxes approximately logarithmically with
time std because of the thermally activated motion of vortices
(flux creep). This behavior can be understood, at first sight,
within the Anderson-Kim model1–4 (AKM ). In conventional
superconductors the experimental results are well reproduced
in the framework of the AKM, whereas in high-temperature
superconductors(HTS’s), deviations from the logarithmic
decay are observed, especially in Bi-based materials.5–8 Sev-
eral models have been proposed in order to explain the non-
logarithmic relaxation.9–13The theory of collective creep, ex-
tensively reviewed by Blatteret al.,9 predicts that the current
densitysJd relaxes according to the so-called “interpolation
formula.” As in the case of the Bean fully penetrated critical
state, the magnetization can be assumed proportional to the
persistent current, leading to

Mst,Td =
Mi

F1 +
mkBT

U0
lnS t

t0
DG1/m

, s1d

whereMi is the initial value of the magnetization,kB is the
Boltzmann constant, andU0 is the pinning activation energy.
The exponentm is a parameter and its value depends on the
different creep regimes;t0 is a characteristic time depending
on temperature, magnetic field, sample geometry, and the
fluxon attempt frequency for jumping out the pinning cen-
ters. By defining the normalized creep ratesSd

S=
1

M

dM

d ln t
, s2d

Eq. (1) immediately leads to

S=
− kBT

fU0 + mkBT lnst/t0dg
. s3d

Equation(3) is employed to evaluate experimentally the pin-
ning activation energy and the exponentm. For this reason,
magnetic relaxation measurements are extensively used to
investigate the flux creep in superconductors(for a review,
see Ref. 13 and references therein).

Usually, in magnetic relaxation measurementsfMstdg, an
external magnetic fieldHa ramps up to a fixed valueH0 with
finite sweep ratedHa/dt; then, the magnetization is mea-
sured as a function of time(typically for about 103 s), keep-
ing the external field at the fixed value. Ramping the external
field up toH0, which is chosen higher than the full penetra-
tion field Hp of the superconductor, screening persistent cur-
rents (clockwise with respect to the external field versus)
flow everywhere in the superconductor. If the magnetic field
is first increased and then slightly reduced, both clockwise
and counterclockwise persistent currents flow in the sample.
In this case, the measured magnetization results from a re-
gion with entrapped flux close to the surface and a region
with shielded flux in the inner part of the superconductor
[entrapped and shielded flux(ESF) state].

This complicated state can be easily generated when the
external field ramp is stopped and a magnetic field overshoot
occurs. This means that, at the nominal stop of the external
field ramp, the field exceeds the target valueH0, reaching it
usually after a few seconds. This overshoot can produce an
entrapped flux zone close to the surface, which can apprecia-
bly affect the relaxation process. In particular, Jirsa and
co-workers14,15 showed that, for a superconducting slab of
thickness 10−4 m in a parallel fieldH0=0.5 T, an overshoot
of only 1.5 mT leads to an initial magnetizationMi

ov, whose
value is about one-third of the one computed in the absence
of the overshoot. However, the depressed magnetization
Movstd relaxes with time, converging to the idealMidstd curve
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computed in the absence of overshoot. Therefore, the initial
value of the magnetization, occurring in the absence of the
overshoot, is determined approximately by extrapolating it
from the long timeMstd curve.

However, starting from the ESF state, the field profile
evolution that leads to the joining of the two curves is still
unclear. On the other hand, it is not possible to determine
experimentally when theMstd curve approaches the ideal
relaxation and, thus, the experimental procedure of cutting
the first 10–100 s in the experimentalMstd is usually
adopted.

In order to justify this experimental procedure, we can
consider a slab of thickness 2d and critical current densityJc
analyzed in the framework of the Bean model. If an over-
shoot occurs after the application of an external field higher
than the full penetration fieldsHp=Jcdd, the magnetization of
the slab is16,17

M = Men+ Msh, s4d

Men= s1/2dsHov
2 /Hpd, s5d

Msh= − s1/2dfsHp
2 − Hov

2 d/Hpg, s6d

where Men is the magnetization due to the entrapped flux,
Msh is the magnetization due to the shielded flux, andHov is
the amplitude of the field overshoot. Equations(5) and (6)
can be rewritten by introducing the magnetic reversing field
Hr defined as the field amount(in absolute value), Ha has to
be decreased(increased) with, for fully reversing the flux in
the superconductor, if initially there was a full shielded state
(entrapped state):27

Men= sHov
2 /Hrd, s7d

Msh= − s1/2dhfsHr/2d2 − Hov
2 g/Hrj. s8d

If Hov!Hp or equivalentlyHov!Hr, the magnetization due
to the entrapped flux is small and thus it can be considered
negligible after a long enough time. In a lowTc supercon-
ducting slab, withd=0.1 mm andJc=1010 A/m2, the full
penetration field isHp=0.63 T and the usual characteristic
time t0 is about 10 s. Therefore, for a few mT overshoot, it is
commonly believed that the experimentalMstd measured
100 s after the nominal stop of the external magnetic field
resembles the relaxation from a fully shielded state(or a
fully entrapped state). Nevertheless, depending on the tem-
perature and applied magnetic field,Hp can become compa-
rable withHov, drastically affecting also the long-time mag-
netic relaxation.

If we take into account the dependence of the critical
current density on the magnetic field, for example, by con-
sidering the Kim dependence,

JcsBd =
Jc0

1 + suBu/Bkd
, s9d

we cannot anymore write simple expressions similar to Eqs.
(5) and(6).18,19 In Eq. (9) Jc0 andBk are two parameters and,
in particular,Jc0 is the critical current density at zero field
and Bk is the magnetic field value whereJc is half of Jc0.

However, our discussion can be simplified if we consider
that the Kim full penetration fieldsHpKd and the Kim revers-
ing field sHrKd are given by19

m0HpK = BksÎ1 + b − 1d, s10d

m0HrK = BksÎ1 + 2b − 1d, s11d

where

b = 2m0Jc0d/Bk. s12d

In particular, if we compareHpK andHrK with HpB=Jc0d and
HrB=2Jc0d—i.e., the Bean full penetration field and the Bean
reversing field calculated for a current density field
independent—we can observe thatHpK and HrK are always
lower thanHpB andHrB. Therefore, aJcsBd leads to the over-
shoot(undershoot) effects on the initial magnetic state, even
larger than the Bean case.

To extend the relaxation analysis to the time window af-
fected by the overshoot, Jirsa and co-workers14,15 have
shown that it is possible to use magnetic hysteresis loop data
measured at different field sweep rates. They have shown
how the magnetization measured at different sweep rates can
be converted into magnetic relaxation data, substantially ex-
tending the time window to the short times, typically down
to 10−2 s.

Other complications in the analysis of relaxation measure-
ments can also arise from the sample geometry and the an-
isotropic properties of the material. In fact, in HTS samples,
magnetic relaxations are usually measured with the field ori-
entation perpendicular to the largest face of the sample. In
this geometry, the demagnetization effects could be ne-
glected only for measurements performed at fields much
higher thanHp. Since an overshoot changes the direction of
the current and the magnetic field value on the edge of a flat
superconductor, geometry effects are supposed to be signifi-
catively altered in the magnetic relaxation measurement.

In this work we have investigated the magnetic relaxation
starting from a state with entrapped and shielded flux.

In the next section, we will discuss the integro-differential
equation employed in the numerical computation of theMstd
curves. In Sec. III, we show the numerical simulations of the
magnetic relaxation and the time evolution of the field pro-
files for samples in the shape of the slab and thick strip.

The magnetic relaxations in BSCCO(2223) have been ex-
perimentally investigated when the effects of a magnetic
field overshoot in theMstd are not negligible. Finally, in Sec.
IV, the experimental measurements are analyzed and com-
pared with the numerically computed results.

II. NUMERICAL COMPUTATIONS

In order to analyze the magnetic relaxation of a supercon-
ductor in an external magnetic fieldH0, we numerically
solved an integro-differential equation for the current density
J in a slab in a parallel field and in a thick strip in a perpen-
dicular field.20 As developed by Brandt in a series of
works,20–24 in a long strip of width 2a (along they axis) and
thickness 2d (along thez axis) placed into a homogeneous
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magnetic field, perpendicular to the largest face of the strip,
the applied field induces surface and bulk currents. The cur-
rent flows along the sample length(i.e., x axis) due to the
symmetry of the strip. The induced current density
J=Jsy,zdi generates a magnetic fieldH which hasy and z
components. In this model it is assumed thatB=m0H and,
thus, Hc1 and the reversible magnetizationsMrevd are ne-
glected. SinceB= ¹ 3A, whereA is the vector potential, it
is possible to write for this geometry a two-dimensional(2D)
Poisson equation in the Coulomb gauge:

m0J = − ¹2A. s13d

The current density flows only in the strip and thus the vector
potential could be written as a sum of two termsA=Aa+AJ,
whereAa is the vector potential related to the applied mag-
netic fieldsAa=fr 3Bgx=yBad andAJ is related to the current
induced in the strip. SinceBa is constant in the specimen, the
general solution of Eq.(13) is

Asr d = − m0E
S

d2r8Qsr ,r 8dJsr 8,td − yBa, s14d

wherer =sx,yd, r 8=sx8 ,y8d, andQsr ,r 8d is the integral ker-
nel defined as

Qsr ,r 8d =
1

2p
lnU r − r 8

r0
U , s15d

in which r0 is an arbitrary constant length that can be chosen
equal to 1. The integration is performed on the cross section
of the stripS. The current density is obtained formally from20

Jsr ,td = −
1

m0
E

S8
d2r8Q−1sr ,r 8dfAsr 8,td + y8Bag. s16d

HereQ−1sr ,r 8d is the inverse kernel defined by

E
S

d2r8Q−1sr ,r 8dQsr 8,r 9d = dsr − r 9d. s17d

By using the relationE=−¹xf−Ȧ where f is the scalar
potential, we obtain

J̇sr ,td =
1

m0
E

S8
d2r8Q−1sr ,r 8dfEsJd − y8Ḃastdg. s18d

In the limit d@a (slab geometry), the previous equation be-
comes a one-dimensional equation

J̇sr ,td =
1

m0
E

0

a

dy8Qslab
−1 sy,y8dfEsJd − y8Ḃastdg. s19d

Taking into account the symmetry of the strip and slab ge-
ometries, the kernel in the case of the strips is given by

Qstrip =
1

4p
ln

sy−
2 + z−

2dsy−
2 + z+

2d
sy+

2 + z−
2dsy+

2 + z+
2d

, s20d

wherey±=y±y8 andz±=z±z8. For the slab it results in

Qslab=
1

2
suy − y8u − uy + y8ud = − minsy,y8d. s21d

In our simulations, we do not consider a transport current but
only an external magnetic field and for this reason the term
¹xf has been dropped out. To solve the integral equation for

J̇ we choose the widely used relation25

E = EcS J

Jc
Dn

, s22d

whereJc is the critical current density. However, the Brandt
method can be used with a differentE-J relationship.20

The current density profiles in the strip have been ob-
tained by integrating Eq.(18), whereas for the slab Eq.(19)
has been solved. For the strip, the functionsJ and E have
been tabulated on a 2D grid with equidistant points
yk=sk−1/2da/Ny sk=−Ny+1, . . . ,0 , . . . ,Nyd and zl =sl
−1/2dd/Nz sl =−Nz+1, . . . ,0 , . . . ,Nzd, where Nz=d/aNy is
chosen. Labeling the pointssyk,zld by an index i, with
i =1,2, . . . ,N and N=NyNz, the functionJsy,z,td becomes
the time-dependent vectorJistd with N coordinates and
Esy,z,td=EcsJ/Jcdn becomes a vector withN coordinates.
Moreover, the integral kernelQsy,z,y8 ,z8d becomes an
N3N matrix Qi,j.

The numerical form of Eq.(16) is

Jist + Dtd = Jistd +
Dt

m0DyDz
o

j

N

Qi,j
−1fEjstd − yJḂag

for i = 1, . . . ,N, s23d

whereDy=a/Ny andDz=d/Nz are, respectively, the steps in
the 2D grid used to tabulate the cross section of the thick
strip. The numerical integration of the 1D equation for a slab
follows similar rules.

The time integration of this system of nonlinear differen-
tial equations forJistd has to follow some prescriptions. First
of all, the integration starts with the initial conditionJis0d
=0; in addition, the time stepDt is chosen inversely propor-
tional to the maximum value of the resistivityri =Ei /Ji.
Brandt20 uses the following relation in his computations:
Dt=c1/ fmaxsristdd+c2g with c1=0.3/sNy

2nd, n is the expo-
nent in theE-J law, andc2=0.01. In our computations we do
not use a normalized quantity and we have observed that this
choice depends on the value ofJc and the time derivative of
the external magnetic field. In our computations we used
different values forc1 and c2 in order to make stable the

numerical algorithmc1=0.003/fsNx
2ndÎḂa

2 whereḂa
2 is the

temporal mean value ofḂa andc2=1.
Finally, Qi,j =lnur i −r ju has a logarithm divergence whenr i

approachesr j. In order to avoid this singularity fori = j the
expression for the kernel is changed withs1/2dlnfsr i −r jd2

+e2g where22
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e2 = expFlnsDy2 + Dz2d − lns4d − 3 +
Dy

Dz
arctanSDz

Dy
D

+ SDz

Dy
DarctanSDy

Dz
DG .

In our computations, the magnetization is calculated by

M = 4E
0

a

dyE
0

d

dzJsy,zdy for a strip, s24d

M = 2E
0

a

dyJsydy for a slab. s25d

Since the magnetic relaxation is simulated at 105–106 s, we
reduce the number of computed points calculating thesti ,Mid
data according to the relation

ti = ti−1 + expflnstRd/NRg, s26d

Mi = Mstid, s27d

wheretR is the total time of the computed relaxation andNR
is the total number of the computed data.

III. NUMERICAL RESULTS

In this section we discuss the numerical results obtained
for the slab and thick strip. In our computations we have
used a strip with aspect ratiosa/dd equal to 10 and
2a=10−3 m and a slab with 2a=10−4 m, with the critical
current densitysJcd ranging from 106 A/m2 to 109 A/m2.
The current-voltage characteristic is the usual power law
given by E=EcsJ/Jcdn, whereEc=10−4 V/m and the expo-
nent employed,n, is chosen equal to 15 for the large creep
case andn=105 in the Bean limit case.

In order to study the relaxation from a ESF state, different
magnetic field ramps have been taken into account. For each
ramp, the external magnetic fieldHa increases linearly on

time, with a sweep ratesḢad of 1 mT/s, up to a nominal
fixed valueH0. The time whenHa has nominally reachedH0
is taken as time origin of the magnetic relaxation. As the
external magnetic field reachesH0, different situations are
taken into account: (a) Ha is stopped immediately(ideal
case), (b) Ha has a triangle overshoot(triangle overshoot),
and(c) Ha has an overshoot with a smoothed field stop(ex-
ponential overshoot).

In case(b), the magnetic field increases intovm seconds by
an amplitudeHov; then, it decreases by the same quantity in
the subsequenttov seconds(triangle overshoot). After this,
the external field is immediately stopped and the magnetic
relaxation starts. In case(c), the overshoot has been simu-
lated by means of the functionFovstd=Hovst / tovmdc expfcs1
− t / tovmdg; for t= tovm, the overshoot reaches the maximum
value. The two different functions employed to simulate an
overshoot are shown in Fig. 1. For the triangular overshoot,
we setHov=1 mT, tovm=1 s, andtov=5 s. In the case of ex-
ponential overshoot, we usedHov=1 mT, tovm=1 s, and
c=2. In the inset of the same figure, the time derivative of

the overshoot functions are plotted, since the field ramp de-
rivative is actually used in the integration of the diffusion
equation.

We have initially computed the magnetic relaxations for a
strip in a perpendicular magnetic field(perpendicular geom-
etry) by simulating a case analogous to the one discussed in
the work of Jirsaet al.14 In our computationJc=109 A/m2

and the critical exponent isn=15. We are considering a su-
perconductor with large critical current density but with large
creep. The external field ramps with a sweep rate of 1 mT/s
up to 0.2 T, which is a value well above the full penetration
field of the strip. Indeed, looking at the field profile we have
verified that the strip is fully penetrated for fields higher than
0.10 T. As shown in Fig. 2, also if the overshoot does not
occur in the field ramp, the magnetization decays nonloga-
rithmically, especially at short timesø10 sd. This result is
expected due to the power law in theE-J relationship which
involves a logarithmic dependence of the pinning energy on
the current density. In the same figure, a magnetic relaxation
curve is shown as computed for a field ramp which has a
triangular overshoot. In this case, the external magnetic field
ramps up to 0.2 T. After this, the field overshoot occurs with
an amplitude ofHov=1 mT. The field overshoot reaches its

FIG. 1. Time dependence of the external magnetic field during
the field overshoot. The time origin corresponds to the nominal field
stop. A triangular overshoot(dash-dotted line) and an overshoot
given by the functionDHov=Hovst / tovmd2 expf2s1−t / tovmdg (dotted
line) are shown. In the inset, the time derivatives of the two over-
shoot functions are shown.

FIG. 2. Magnetic relaxation curves computed for different mag-
netic field ramps in a thick strip.
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maximum 1 s after the external field should have been
stopped at the nominal target value. The external field goes
down to the nominal value of 0.2 T after 5 s. Also in this
case, when the magnetic field is stopped at the fixed value of
0.2 T the time derivative ofHa is instantaneously zero.
A more realistic situation has been considered by computing
the magnetic relaxation for case(c) where Hov=1 mT,
tovm=1 s, andc=2. Case(c) is effectively realized in experi-
ments, where the field cannot be stopped instantaneously and
the overshoot shape is rounded.

As shown in Fig. 2, the magnetization curves in cases(b)
and(c) have an initial valueMi larger than in the ideal case.
In fact, when the overshoot occurs, the magnetization does
not relax during the first seconds, since the magnetic field
continues to increase. The largest value of the initial magne-
tization is obtained in the case of an exponential overshoot;
indeed, the electrical field induced in the superconductor in
the first seconds is larger than in the other cases(see also
Fig. 1). When the external magnetic field rate reverses, the
magnetization quickly decreases, because of the flux coming
out from the surface, and after 5 sM has lost 12% of the
initial value. The decay during the first 5 s depends on the
shape of the field overshoot as a function of time. In the
triangular case, the magnetization curve shows a convex con-
cavity, whereas in case(c) the curvature is concave. After
5 s, the external field is practically constant and the magnetic
relaxation effectively starts; fort larger than 100 s the three
curves join together. These computations confirm also in per-
pendicular geometry the results found for parallel geometry
in Ref. 14. However, in this case the field overshoot ampli-
tude is 1% of the full penetration field. In the next section we
will consider situations where the induced ESF state strongly
affects the magnetic relaxation.

A. ESF state in a slab

Here, we discuss the magnetic relaxation starting from an
ESF state in the case of a slab in parallel field. In Fig. 3, two
computedMstd curves are shown; the initial magnetic state is

obtained by ramping the external field both in the ideal way
(without overshoot) and with an overshoot of 1 mT(dashed
curve). In the same figure is shown the magnetic relaxation
(dotted line) for a superconducting slab, according to the
relation given in Ref. 13, where it is assumed that the pin-
ning energy depends logarithmically on the current density:

Mstd = Ms0dexpF−
1

n
lnS t

t0
DG . s28d

The dimension of the slab used for the computations is
2a=10−4 m, the critical current densityJc=108 A/m2, and
the exponentn=15. In this case the full penetration field of
the slab isHp=6.3 mT and thus it is of the same order of
magnitude with respect to the overshoots1 mTd. As shown
in Fig. 3, the computed ideal curve is approximated quite
well by the analytical relation in the time range from
10 to 104 s, whereas it wanders off at very short and very
long times. On the other hand, we observe that the overshoot
has effects at a long time up to 105 s (dashed curve). In the
first 5 s, the magnetization loses 60% of the initial value due
to the inversion of the flux profile close to the slab surface. In
the subsequent 104 s the magnetization practically does not
relax, and after this time the relaxation rate increases. After
106 s the magnetization computed with an ideal ramp and the
curve computed with a field overshoot take the same value.

At this point, it is necessary to investigate if the magne-
tization computed for time larger than 3.03105 s in both the
cases corresponds to the same magnetic state. In order to
answer this question, we have computed the magnetic field
profiles as a function of time. In Figs. 4 and 5, the field
profiles computed for both the cases are shown. In particular,
in Fig. 4, the profiles of the relaxation in a slab are shown,
reproducing the usual Bean results. On the other hand, the
profiles computed in the case of a relaxation from an ESF
state, obtained by using the exponential overshoot change
during the first 5 s(dashed line) as a consequence of the field
decreasing. The evolution of the profiles during the first 5 s
has some difference in comparison with the classic Bean
profile, whereJc is constant and independent of the applied
electrical field. In our case, while the flux is expelled on the
surface, in the inner part of the slab the profile relaxes. This
occurs because of the finite exponentn which leads to a large

FIG. 3. Magnetic relaxation curves computed for different
magnetic field ramps in a slab. The functionFovstd
=Hovst / tovmdc expfcs1−t / tovmdg with Hov=1 mT, tovm=1 s, and
c=2 has been employed to simulate the field overshoot in the curve
shown as the solid line. The dotted line is the relaxation given by
the analytical formula reported in the text.

FIG. 4. Time evolution of the magnetic field profiles in a slab;
the initial field profile is achieved without field overshoot.
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creep. On the contrary, for the Bean model, the field profile,
in the inner part of the slab, remains frozen during the field
decreasing.

Starting from the fifth second the field profile relaxes
overall in the slab and after 105 s the magnetic profile be-
comes the ideal one. In Fig. 5 the field profiles which re-
semble the ideal ones are shown by dotted lines. By means
of our numerical simulations we have shown that the same
magnetization value found in the twoMstd curves corre-
sponds to the same magnetic state. In Fig. 5, we observe also
that the maximum of the field profile, due to the field ramp
rate reversing, moves towards the slab edges during the re-
laxation. At the same time, the entrapped magnetization is
reduced down to zero. Therefore the ESF state has relaxed
towards a fully shielded state.

Increasing the amplitude of the overshoot, we expect that
the ideal relaxation and the relaxation from an ESF state will
coincide at longer times. Nevertheless, as the region with
entrapped flux prevails on the shielded region, the flux pro-
file relaxes towards a fully entrapped state.

B. ESF state in a strip

In order to analyze the effect of the sample geometry on
the relaxation, we considered the case of a strip in a perpen-
dicular field for which the main effect of the overshoot arises
on the surface, where the demagnetizing field is more in-
tense. In Fig. 6 the magnetic field profiles for a thick strip
(2a=1 mm, 2d=0.1 mm) are reported; a critical current den-
sity of 108 A/m2 and anE-J exponentn=15 are set. In the
upper part of the figure we can see the field profile relax-
ations in the ideal case. We can observe that the demagnetiz-
ing field relaxes towards lower magnetic fields on the sur-
face. At the same time, the field increases in the inner region
and there is a boundary, known as the neutral line, where the
field remains constant; it divides the region with entrapped
flux from the one with shielded flux. If an overshoot of a

1 mT occurs, the flux, as expected, is strongly reduced on the
strip edge and the field maximum is located inside the strip.
In Fig. 7 (right side), we can observe that in the next 106 s
the maximum relaxes and moves towards the strip edge
where, at the same time, the field increases. On the contrary,
in the ideal case the field on the border always decreases
during the relaxation as shown in the left side of Fig. 7.
When the maximum reaches the edge, the field profile in the
strip fully resembles the profile computed in the ideal case
and the relaxation continues as in the ideal case. Also in this
case, as shown in the magnetization curves in Fig. 8, the
Mstd with and without overshoot join together at long times.
Also in the perpendicular geometry the evolution of the mag-
netic state is directed to rebuild a shielded state. Except for
the time evolution of the magnetic field on the border of the
strip, in the perpendicular geometry there are not substantial
differences with respect to the parallel geometry. In fact, our
computations have shown that in the perpendicular geometry,
for Ha.Hp, the demagnetizing effects do not affect the time
evolution of the magnetic relaxation.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

Magnetic relaxation measurements have been performed
by means of a vibrating sample magnetometer(VSM)
equipped with a 16-T magnet. The external magnetic field
can be ramped with a maximum sweep rate of 7 mT/s.

FIG. 5. Time evolution of the magnetic field profiles in a slab,
when a field overshoot occurs. The dotted lines represent the flux
profiles which fully resemble the ideal profiles. The dashed lines
represent the profile during field ramp rate reversing. Solid lines
show the field profiles in the time windows where the magnetization
is nearly constant. In the inset a detail of the profile close to the slab
surface is shown.

FIG. 6. Evolution field on time for a thick strip. The field pro-
files computed in the ideal case are shown on the upper frame. The
field profiles computed when an overshoot occurs in the field ramp
are shown on the lower frame.
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When the field is nominally stopped the magnetic field has
an overshoot of around 1–5 mT depending on the sweep rate
used for ramping the field and this unwanted feature has
been used to induce an ESF state in our samples. We used a
Hall probe to measure the time dependence of the external
field and in Fig. 9 the measured undershoot for our magnet is
shown when the external magnetic field ramps down to 1 T
starting from 2 T with a sweep rate of 3.3 mT/s. This is the
effective magnetic undershoot experienced by our samples
during the experimental measurements which are discussed
in the following paragraphs.

In order to check the validity of our numerical results, we
have measured the magnetic relaxation on monofilamentary
BSCCO(2223)/Ag tapes prepared by the standard PIT tech-

nique. We have chosen this kind of sample because they
allow us to study bulk rectangular samples with full penetra-
tion fields which can be of the order of 10 mT even at the
lowest temperature–i.e., 4.2 K. The dimensions of the super-
conducting region in the measured sample are 3.0230.14
34.6 mm3 and the estimated critical current density ranges
from 107 to 109 A/m2, depending on the temperature. In this
way we can study experimentally the overshoot effects asHp
decreases.

Mstd measurements have been performed with the field
perpendicular to the sample surface(H iz axis) in the
4.2–45 K temperature range, cooling the sample in zero field
(ZFC) for each temperature. The initial magnetic state is ob-
tained by increasingHa with a sweep rate of 3.3 mT/s, up to
2 T. After this, the field is decreased with the same sweep
rate down to a measuring fieldm0H0=1 T. The field varia-
tion of 1 T is chosen to be, for any measuring temperature,
well aboveHp, which is evaluated by taking the value of the
field corresponding to the maximum(in absolute value) in
the virgin magnetization curves at 4.2 K. In the absence of a
field undershoot, a full critical state, with entrapped flux, is
realized in the superconductors.13 As the final field H0 is
nominally achieved, theMstd data are acquired each second
for 5000 s.

The experimental procedure differs by the procedure em-
ployed in the numerical computations discussed in the pre-
vious sections. In the numerical simulations, we have a time
saving if the initial magnetic state is achieved ramping the
magnetic field from zero toH0 because, in this way, the
initial magnetic state is achieved with a lesser number of
computations. On the other hand, the measured magnetiza-
tion has contributions from the reversible magnetization of
superconductors and also from the sample holder and, in our
case, from the silver of the metallic sheet, whereas the irre-
versible magnetization is the only component which relaxes.
Our experimental procedure enables us to measure the nega-
tive and positive branches of the magnetization curve before
starting the relaxation and in this way the irreversiblesMirr d
and reversiblesMrevd components of the magnetization can
be evaluated13 by using

Mirr = sMdw − Mupd/2, s29d

FIG. 7. Zoom-in of the previous figures, in the region close to
the strip edge.

FIG. 8. Magnetic relaxation curves computed from different
magnetic field ramps in a thick strip.

FIG. 9. Magnetic field ramp with a sweep rate of 3.3 mT/s in
the time window where a field overshoot occurs, as measured by a
Hall probe(squares and solid line) andHastd employed in our com-
putation(dotted line).
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Mrev = sMdw + Mupd/2, s30d

whereMdw andMup are the magnetization, respectively, mea-
sured in the descending and ascending branches of the hys-
teresis loop. In our experimental measurements we have al-
ways subtracted the measuredMrev and in the text we useM
for the irreversible component only if not differently speci-
fied. TheMstd, normalized at the initial magnetization value
Ms0d, measured at different temperatures, are shown in Fig.
10. In all the curves, a large drop in the magnetization occurs
during the first 11 s and this time corresponds to the time
interval during which the external field has an undershoot.
The behavior of the magnetization in the subsequent 5000 s
depends on the value of the temperature. At 4.2 K the mag-
netization decreases slightly, but the relaxation after 5000 s
does not exhibit the behavior expected for a fully entrapped
state. At 15 K and 25 K, the magnetization remains nearly
constant, whereas at 35 K and 45 K the magnetization first
takes negative values and then increases in time. The effect
of the undershoot increases as the full penetration field de-
creases with the temperature. These measurements show that
the magnetic relaxation can still be affected by the field un-
dershoot after at list 100 s. The negative values measured in
the Mstd at 45 K mean that the shielded flux region in the
sample is larger than the entrapped one, although the initial
condition was a fully entrapped state.

In order to reproduce our experimental results, we have
computed the magnetic relaxation for a superconducting strip
with the cross section of our sample. In the computations, the
field ramp reproduces exactly the experimental field ramp,
with a sweep rate of 3.3 mT/s. The undershoot has been
simulated by using the exponential function discussed in Sec.
III. As shown in Fig. 9, this function reproduces quite well
the experimental undershoot withHov=0.029 mT, tovm
=1.7 s, andc=1.3. In our computation we have to set bothn
andJc. The exponentn has been evaluated by measuring the
hysteresis loop at different sweep rates and in Fig. 11 the
MsHd curves measured at 4.2 K for different sweep rates are
shown. Since, at first approximation, the electrical field

E~m0Ḣa whereasJ~Mirr , we can evaluaten by taking the

Mirr values measured at 1 T for different sweep ratessm0Ḣad

and fitting lnsḢad as a function of lnsMirr d by means of a
linear fit. The experimental data and the fits for different
temperatures are shown in the inset of Fig. 11. Then values
reported in Table I have been rounded to the nearest integer
and employed in the computations. As expected, then values
decrease for increasing temperature becausen is linked to the
relaxation rate26 S.1/sn−1d which increases(in the inves-
tigated temperature range) as the temperature worms up due
to a larger thermally activated process.

The critical current density is a free parameter chosen in
order to obtain the best fit. From our computations, it results
in Jc=2.43108 A/m2 at 4.2 K and 4.03107 A/m2 at 45 K.
As shown in Fig. 10, the numerical computations reproduce
well the experimental behavior. In Fig. 12, the profiles com-
puted atT=45 K are shown. In particular, att=10 s, when
Ha is practically constant, it results that the magnetic state in
the superconductor has both the regions with entrapped and
shielded flux. In the next 5000 s, the profile relaxes toward a
shielded state, which is practically fulfilled att=5000 s,
when the simulation is stopped.

Our work shows that the first seconds of the relaxation
have to be analyzed very carefully in order to estimate cor-
rectly the creep rate and, thus, extract information about the
pinning properties of the sample. In fact, our results show
that it is not appropriate just to cut the first seconds of the
relaxation curves and extract information from the remanent
data if the presence of an overshoot in the magnet has not
been previously considered.

FIG. 10. Magnetic relaxations measured at different tempera-
tures for a magnetic fieldH0=1 T (points) and computed curves
(solid lines).

FIG. 11. Hysteresis loop measured at 4.2 K with different field

sweep ratesm0Ḣad. In the inset, them0Ḣa rate versus irreversible
magnetizationMirr is reported in a log-log scale for different tem-
peratures as evaluated from the experimental hysteresis loop. The
dotted lines are the linear fits employed to evaluaten in the E-J
power law.

TABLE I. Critical current densities and exponentn used for the
fit of the experimental curves.

T (K) Jc sA/m2d n

4.2 2.40 108 20

15 1.15 108 19

25 9.70 107 13

35 8.70 107 9

45 4.00 107 8
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V. CONCLUSION

In this work, we have studied the magnetic relaxation
from a state with shielded and entrapped flux, generated by a

field overshoot after the nominal stop of the external field.
The magnetic relaxations have been computed in parallel and
perpendicular geometries. The computed magnetization
shows a large drop in the first seconds due to the flux expul-
sion from the sample boundary. After a long time, theMstd
curves computed with and without field overshoot(having,
thus, as initial condition an ESF and a full shielded or en-
trapped flux state, respectively) join together. Moreover, our
simulations show that, during the relaxation, the same value
of the magnetization corresponds to the same magnetic state.
In addition, the experimental relaxation curves, measured on
BSCCO(2223) tapes, are well reproduced by our numerical
computations, allowing us to correctly analyze theMstd from
the instant when the external field is nominally stopped.
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