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A linear analysis of thermal diffusion and Maxwell equations is applied to study the thermomagnetic
instability in a type-II superconducting slab. It is shown that the instability can lead to formation of spatially
nonuniform distributions of magnetic field and temperature. The distributions acquire a finger structure with
fingers perpendicular to the screening current direction. We derive the criterion for the instability, and estimate
its build-up time and characteristic finger width. The fingering instability emerges when the background
electric field is larger than a threshold field,E.Ec, and the applied magnetic field exceeds a valueHfing

~1/ÎE. Numerical simulations support the analytical results, and allow us to follow the development of the
fingering instability beyond the linear regime. The fingering instability may be responsible for the nucleation of
dendritic flux patterns observed in superconducting films using magneto-optical imaging.

DOI: 10.1103/PhysRevB.70.224502 PACS number(s): 74.25.Qt, 74.25.Ha, 68.60.Dv

I. INTRODUCTION

The thermomagnetic instability or flux jumping is com-
monly observed at low temperatures in type-II superconduct-
ors with strong pinning.1–4 The instability arises because of
two fundamental reasons:(i) motion of magnetic flux re-
leases energy, and hence increases the local temperature;(ii )
the temperature rise decreases flux pinning, and hence facili-
tates the flux motion. This positive feedback can result in
thermal runaways and global flux redistributions jeopardiz-
ing superconducting devices. This mechanism was under-
stood in early works,5,6 and later on the thermomagnetic in-
stability was studied thoroughly(see Refs. 1–4 for a review).
In particular, the threshold magnetic field for the instability
was calculated and its experimentally found dependence on
temperature, sample dimensions, and the applied field ramp-
ing rate were explained.

The conventional theory of the thermomagnetic
instability1,2 predicts “uniform” flux jumps, where the flux
front is essentially flat. In other words, the spatial extension
of the instability region tends to be maximal since small-
scale perturbations are stabilized by thermal diffusion. This
picture is true for many experimental conditions, however,
not for all. Numerous magneto-optical studies have revealed
that the thermomagnetic instability in thin superconducting
samples results in dendritic flux patterns.7–18 In the course of
the dendritic instability the flux forms narrow “fingers” of
typical width 20–50mm and length up to the size of the
sample. Such a behavior clearly contradicts the conventional
theoretical concepts and needs elucidation.

Few attempts to describe a nonuniform development of
the thermomagnetic instability have been made. Among
them is a numerical solution of thermal diffusion and Max-
well equations that can result in a rather nonuniform tem-
perature distribution for a bulk superconductor.19 Molecular
dynamics simulations of flux quanta motion in superconduct-
ing film13 can model dendritic flux and temperature patterns
similar to those found experimentally. However, these nu-

merical results still lack analytical support. In particular, it is
still unclear what kind of spatial structure can be formed
during a flux jump, and under what conditions. A similar
problem was analyzed in a recent work20 where the propa-
gating flux front was shown to acquire a nonuniform spatial
structure if its speed is higher than some critical value, and
the conductivity is a strong function of flux density. In the
present study it is shown that these assumptions are not nec-
essary requirements for a superconductor to develop nonuni-
form flux jumps.

In the present paper the spatial pattern of the instability in
a bulk superconductor is studied using the conventional
approach1,2,5—linear analysis of a set of differential equa-
tions describing small perturbations in the electric fieldE and
temperatureT. In contrast to the previous investigations, we
allow the perturbations to vary in any direction, i.e., both
parallel and perpendicular to the direction of the background
currentj and fieldE. In this way we determine the stability
criteria and also estimate the instability build-up time. As a
main result we find that the most unstable perturbations are
in the form of narrow fingers perpendicular to the back-
ground fieldE and occur ifE is larger than some threshold
value. This shape prevents current adjustment across the
perturbed region and, hence, yields the fastest perturbation
growth. Too narrow fingers are, however, suppressed by
the thermal diffusion. Thus, the typical finger size,
Îks] jc/]Td−1/E, wherek is the thermal conductivity andjc
is the critical current density, is determined by the competi-
tion between the Joule heatjE and thermal diffusion,k¹2T.

II. BASIC EQUATIONS

We shall study the instability in the simplest geometry,
i.e., in a superconducting slab placed in a parallel magnetic
field (see Fig. 1). The slab fills the semispacex.0, and the
external magnetic fieldH is parallel to thez-axis so that the
screening currentj flows along they-axis. The current and
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magnetic field distributions in the sample are determined by
the Maxwell equation, with a proper boundary condition

curl B = m0j , uBux=0 = m0H . s1d

Here the local magnetic field in the flux penetrated part of
the slab is assumed larger than the first critical field, and,
hence, to a good approximationBsx,yd=m0Hsx,yd. To find
the temperature and electric field in a superconductor the
corresponding thermal and the second Maxwell equations
should be used:

Cs]T/]td = k¹2T + jE , s2d

curl E = − ]B/]t, s3d

whereC is the specific heat.
These equations should be supplemented by a current-

voltage curvej = jsE,B,Td. In type-II superconductors the
jsEd dependence is strongly nonlinear. As a result, a quasi-
static critical state withj < jcsB,Td is formed. This will be
the initial state from which the instability evolves. For sim-
plicity we use the Bean model, i.e., we neglect anyB depen-
dence of the critical current densityjc. The exact form of the
current-voltage curve,

j = jsT,EdsE/Ed. s4d

is not crucially important. The only important point is that
the Es jd curve is very steep, and therefore its logarithmic
derivative is large:

nsEd ;
] ln E

] ln j
<

jc
sE

@ 1. s5d

Heres is the differential conductivity,

ssEd ; ] j /]E. s6d

At low electric fields, theEs jd curve is often approximated
by a power law, i.e.,n is assumed independent ofE, andE
~ jn. Our approach is applicable also to the flux flow regime
at high electric fields. In that regimessEd=s f is the flux-
flow Ohmic conductivity andnsEd= jc/s fE~1/E.

The key dimensionless parameter of the model is the ratio
of thermal and magnetic diffusion coefficients:

t ; m0sk/C. s7d

The smallert is, the slower heat diffuses from the perturba-
tion region into the surrounding areas. Hence, one can expect
that for smallert, (i) the superconductor is more unstable,
and (ii ) the formation of instability-induced nonuniform
structures is more favorable.

III. PERTURBATION ANALYSIS

A. Linearization of the problem

We seek solutions of the equations presented above in the
form,

T + dTsx,y,td, E + dEsx,y,td, s8d

whereT andE are the background values. The background
field E may be created by ramping the external magnetic
field H, or by other sources as discussed in Sec. VI. In prac-
tice E is nonuniform, but for simplicity we disregard its co-
ordinate dependence. For a weak nonuniformity, that can be
justified using the method of Ref. 21, based on Wentzel–
Kramers–Brillouin approximation. In this approximation the
nonuniformity results only in replacement some of local
quantities by the ones averaged overx. Hence, we get only
insignificant numerical corrections. Numerical simulations in
Sec. V show that this conclusion also holds in the realistic
situation when the nonuniformity ofE is induced by ramping
the external magnetic fieldH. Similarly, we ignore any co-
ordinate dependence of the background temperature. This

can be done if it satisfies the inequalityTsx,yd−T̄!Tc−T̄,
where Tc is the critical temperature of the superconductor,

and T̄ is the sample-averaged temperature before the insta-
bility build-up.

From the symmetry of the problemEx=0, while for the
perturbationd E both dEx anddEy in general do not vanish.
The linearization of theEs jd in (4) yields

dj = S ] jc
]T

dT + sdEDE

E
+ jcSd E

E
− dE

E

E2D . s9d

Since the vectorE is parallel to they-axis, one has in the
linear approximation thatdE=dEy, and as a result one finds

dj = S ] jc
]T

dT + sdEyDE

E
+ jc

d Ex

E
. s10d

We shall seek perturbations in the usual form:

dT = T * u expslt/t0 + ikyh + ikxjd, s11d

dEx,y = E«x,y expslt/t0 + ikyh + ikxjd, s12d

wherej=x/w, h=y/w, and

1

T*
= −

1

jc

] jc
]T

, t0 =
sCT*

jc
2 = m0sw2, w2 =

CT*

m0jc
2 .

Here u and «x,y are the Fourier amplitudes, Rel is the di-
mensionless instability increment,t0 is the characteristic time

FIG. 1. Superconductor geometry.
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of adiabatic heating, which coincides with the magnetic dif-
fusion time for the lengthw, andw is the characteristic scale
for the adiabatic instability.1 The wave numbersky and kx
characterize the scale of the perturbation along they and x
axes, respectively. Since the sample is assumed infinite in the
y direction, theky is arbitrary, whilekx is determined by the
width of the flux penetrated region and the corresponding
boundary conditions.

Let us define the Fourier amplitude of the dimensionless
current perturbationdj / jc as i. Using Eqs.(10)–(12) one
finds the components of the vectori in the form

ix = «x, iy = − u + «y/n. s13d

Using Eq.(2) one obtains the equation for the temperature
perturbationu as

lu = − tsky
2 + kx

2du + siy + «yd/n. s14d

We find from Eq.(14)

u =
s1 + 1/nd«y

nl + ntsky
2 + kx

2d + 1
. s15d

Then, using Eqs.(1) and(3), we can rewrite the Maxwell
equation for the perturbation as

k 3 fk 3 «Wg = lni . s16d

Using the relations(13) we cast Eq.(16) into the equation set
for dimensionless components of the electric field perturba-
tion

«x =
kykx

ky
2 + ln

«y, s17d

− kx
2«y + kykx«x = lns− u + «y/nd. s18d

Note that these equations together with Eqs.(13) and (15)
provide continuity of the current perturbation, i.e., divdj =0,
as required. Substituting Eqs.(15) and (17) in Eq. (18) one
finds the following dispersion equation providing nontrivial
solutions for«y:

1 − l − tsky
2 + kx

2d
nl + ntsky

2 + kx
2d + 1

=
kx

2

ky
2 + nl

. s19d

The corresponding quadratic equation forlskx,kyd has the
form

l2 + Pl + Q = 0, s20d

where

P = kx
2 + ky

2/n − 1 +tsky
2 + kx

2d,

Q =
kx

2 − ky
2

n
+ tSkx

4 +
n + 1

n
kx

2ky
2 +

1

n
ky

4D . s21d

The system is unstable if Relskx,kyd.0.

B. Qualitative analysis

The dispersion equation becomes more transparent when
the heat conductivity can be neglected, i.e.,t=0. Then,

l2 + lskx
2 + ky

2/n − 1d + skx
2 − ky

2d/n = 0. s22d

First, we notice that atkx=0 the system is always unstable.
This is not surprising since such solutions correspond to the
case of a sample with fixed transport current,iy=0, heated by
the electric fieldE under adiabatic conditions. In this casedE
and dT grow with the maximal possible rate,l=1, and the
characteristic time of the instability build-up ist0.

For a finite sample thekx is not arbitrary because of the
boundary conditions at the edges of the flux penetrated re-
gion. Only some particularkx satisfy the boundary condi-
tions, which makes the system more stable. For example, for
perturbations uniform in they-direction sky=0d the instabil-
ity develops only ifkx,1. However, if we setky→`, then
the system becomes unstable for anykx, and we again arrive
at the maximal growth rate,l=1. This result can be under-
stood physically, if we take into account that infiniteky cor-
respond to a perturbation in the form of a narrow finger
directed along they-axis, i.e., perpendicular to the current
flow. The current flow remains unperturbed by an infinitesi-
mally narrow finger i.e., the conditioniy=0 least favorable
for the stability holds, like for the casekx=0. In the case of
wider fingers, the current adjusts itself to the temperature
fluctuation, which slows down the instability growth. So, if
one neglects the thermal diffusion, the narrowest possible
fingers are the most favorablesky→`d, and the supercon-
ducting state is utterly unstable.

The thermal diffusion evidently suppresses the instability
growth. The suppression is most effective for largeky. As a
result, we obtain some optimal value ofky, for which the
instability incrementl is maximal. The existence of such an
optimalky is evident from the contour plot of Rel calculated
for t=0.01 (see Fig. 2, left). The dashed line showsky pro-
viding the maximal Rel for a given kx. However, if t is
larger, then the heat diffusion fully dominates the instability
development. In that case the maximall corresponds toky
=0 (see Fig. 2, right).

IV. RESULTS

In this section we solve the problem more accurately, and
start by establishing the proper boundary conditions.

A. Boundary conditions

From the above analysis it is clear that a finger structure
may appear only fort,1. Consequently, we focus only on
this case. Since the thermal diffusion is then slower than the
magnetic diffusion, we can impose only the electrodynamic
boundary conditions. This is equivalent to neglecting the
heat flux in thex direction, i.e., the termtkx

2 in Eq. (14) can
be omitted.

The magnetic field at the slab surface is equal to the ap-
plied field, hence the perturbation at the surface is zero,
dhz=0 at x=0. The magnetic field has onlyz-component,
thus from Eqs.(3) and (17) one obtainsdEy8~dhz, and the
first boundary condition is

dEy8 = 0, x = 0. s23d

This condition also means that the current does not flow
across the sample surface,d jx~dEx=0 at x=0.
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Let us specify the boundary conditions at the flux front,
x= l. In the flux-free region,x. l, the electric field decays on
the scale of the London penetration depth, which is much
smaller than any spatial scale of the problem. Therefore, the
continuity of the tangential component of the electric field
requires

dEy = 0, x = l . s24d

These boundary conditions together with Eqs.(13), (14), and
(16) are satisfied whendEy~cosskxx/wd with

kx = sp/2dsw/ld.

Now we can search for solutions of Eq.(20) with this kx,
and, as before, when Rel.0 the system is unstable.

B. Instability criterion and increment

Let first consider the spatially uniform case where there
exists a well-known criterion for the thermomagnetic
stability.1–6 With ky=0 and usingt!1, i.e., for very slow
thermal diffusion, we find from Eq.(20) that the system is
unstable ifkx,1. For the Bean model, wherel =H / jc, this is
expressed as

H . Hadiab= sp/2dÎCT* /m0, s25d

which is the commonly used adiabatic criterion for flux
jumps.

Let us next consider cases of nonzeroky, and analyze the
behavior of Relskyd. Shown in Fig. 3(top) are plots fort
=1. For small applied magnetic fields the system is stable
(see the curve forkx=1.1). As the field increases, the flux
penetration depth grows, and hencekx goes down. Forkx
=0.7 the system becomes unstable, i.e., solutions with
Rel.0 arise. Note that the instability appears first atky
=0. For higher fieldsskx=0.2d, the instability range extends
to largeky, too, but the maximal Rel always corresponds to
ky=0.22 Therefore, for relatively larget the instability devel-
ops in a uniform mode.

However, for smallert the Relskyd behaves differently
[see Fig. 3(bottom)]. The maximal Rel can here occur for a
nonzeroky. Moreover, it is possible that the system is stable

with respect to uniform perturbations, while unstable for per-
turbations with finiteky (see the curve forkx=1.5). This
means that a nonuniform structure along they-direction will
be formed.

When the applied magnetic field gradually increases from
zero, the instability first starts for some particularkx=kx

*

when Rel=0 only for one single value ofky=ky
* . This is the

FIG. 2. The contour plots for the instability
increment Relskx,kyd obtained from Eq.(20) for
n=10. The brightest areas correspond to the fast-
est growth of instability. For lowt perturbations
with a finite ky have the maximal increment,
while for larget (strong heat diffusion), uniform
perturbations withky=0 would grow fastest.

FIG. 3. The instability increment Relskyd found from Eq.(20)
for n=10 and differentkx. Top: fast heat diffusion, the maximal
increment corresponds to uniform perturbationssky=0d. Bottom:
slow heat diffusion, the maximal Rel is found at a finiteky.
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case forkx=kx
* =2.1 in Fig. 3(bottom). To find theseky

* and
kx

* one needs two conditions. The first one is

Qskx
* ,ky

*d = 0, s26d

which is a quadratic equation with respect tosky
*d2, and the

second one is that the discriminant of this equation is zero.
Using Eq.(21) and the fact thatn@1, we find

ky
* = S2

n
D1/4 1

Ît
, kx

* =
1

Înt
. s27d

The instability occurs atkx,kx
* , and for largen this insta-

bility criterion can be written as

E . sp2/4dskT * / jcl
2d. s28d

One can see from Fig. 3(bottom) that the value ofky where
Rel has the maximum depends only weakly onkx. There-
fore, a good estimate for the finger widthdy in they direction
is w/ky

* . Thus

dy < S k

E] jc/]T
D1/2 1

s2nd1/4. s29d

Once we go from the instability threshold towards lowerkx,
the increment Rel quickly becomes of the order of unity.
Thus, the characteristic time of the instability development is
of the order of the adiabatic time,t0.

The aspect ratio of the perturbed region is

ky
* /kx

* < s2nd1/4. s30d

Note that it is independent of the thermal parameters,C, k,
andT*, and determined only by the shape of theEs jd curve.

As was seen from Fig. 3, the instability will develop uni-
formly for t=1 and nonuniformly fort=0.01. It follows di-
rectly that the border between the uniform and nonuniform
regimes is given by the criterion Relskx

* ,ky=0d=0. Using
Eqs. (20) and (27) one can rewrite the criterion ast=1/n.
Rewriting this in dimensional form we conclude that for

E . Ec = m0k jc/C s31d

the instability will evolve nonuniformly.

V. SIMULATIONS

In order to visually illustrate the formation of nonuniform
structures, and to verify the validity of the above analytical
results, numerical simulations based on the Maxwell and
thermal diffusion equations(1)–(3) were carried out. In the
simulations we went beyond the linear approximation and
considered the full nonlinearEs jd curve, which was chosen
to be

E =
j

s f + s jc/ jdñ−1jc0/E0

, s32d

where jc0 and E0 are constants. This is one of possible
smooth interpolations between the flux creep regime at small
currents with E~ j ñ, and the Ohmic flux flow regimeE
= j /s f at high j . Here the flux flow resistivity is much higher

than the characteristic resistivity in the flux creep regime,
s f

−1=104E0/ jc0. The temperature dependence of the critical
current density is assumed to be linear,jc= jc0f1−sT
−T0d /T* g. The electrodynamic boundary conditions are
dEy/dxsx=0d=0 (constant external magnetic field), Eysx= ld
=0, Exsx=0,ld=0, with l =2w, and the periodic boundary
conditions in they direction. Since the thermal boundary
conditions are not of crucial importance att!1, we used the
simplest ones,Tsx=0d=T0 (ideal heat removal at the surface)
anddT/dxsx= ld=0 (the symmetry condition in the middle of
the slab).

Our analytical results predict that the instability will form
a finger structure if a sufficiently large uniform background
electric field is present. Therefore, for initial conditions we
assume a uniform electric field,Eys0øx, l ,t=0d=E0. To
introduce some nonuniformity into the system small random
values dTR!T* were added to the initial temperature for
every discrete node. The initial temperature is then given as
Tsx,t=0d=T0+dTR. The key parameterst=0.001 andn< ñ
=30 are specified atE=E0. Their dependences on the elec-
trical field are given by Eqs.(5), (6), and (32). Since now
E0=Ec/ sntd@Ec, the condition(31) is fulfilled, and the in-
stability is expected to develop in a nonuniform fashion. This
is indeed confirmed by the calculated evolution ofEy andT
distributions presented in Fig. 4. The numerical solution was
performed on a grid of 140370 nodes using a simple-step
integration method.

One can see from Fig. 4(a) that at small times the distri-
butions ofE andT are essentially uniform along they-axis.
Then, a finger structure is emerging(b) with protrusions per-
pendicular to the electric field direction, as predicted by our
previous linear analysis. The simulations also show how this
finger structure is evolving beyond the linear regime. We can
see that the electrical field in some fingers grows faster so
that relative difference between the fingers increases(c).
Eventually, the most intense finger takes over and dominates

FIG. 4. Evolution of the temperatureT and electric fieldEy

distributions produced by simulations that illustrate the formation of
a finger structure. The instability was triggered by a uniform electric
field, Ey=E0, switched on att=0. The images(a)–(d) correspond to
the timest / t0=1.6, 3.0, 3.2, and 3.3, respectively.
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the entireE distribution (d). We believe that the reason for
such behavior is the increase of the differential resistivity as
E grows, Eq.(32). The growth ofE is significant: the aver-
age valueĒy=1.7E0 for (a), and 21E0 for (d). Note that this
growth cannot be traced from the presented images only be-
cause the gray scale was optimized for each individual image
to provide the best contrast. More detailed simulations
showed that the instability growth slows down only when the
increasingE reaches the inflection point on theEs jd curve
before entering the flux flow regime.

Next, we carry out simulations with different initial and
boundary conditions. We start from zero electric field,Est
=0d=0, and assume that a linearly increasing magnetic field
is applied to the slab so that −dEy/dx=dH/dt=0.03wjc/ t0 at
x=0. The other parameters are the same except that now the
slab halfwidth is 6w. The right edge of the distributions
shown in Fig. 5 corresponds to the middle of the slab. One
can see from Fig. 5(a) that for smallH the flux penetrates in
the conventional way, and a Bean-like profile of flux density
is gradually advancing into the slab. WhenH and corre-
spondinglyE increase further, an instability sets in and leads
to the formation of fingers(b–d). The finger structure is ap-
parent in both theB and T distributions, especially on the
later stages when only few intense fingers remain. Remark-
ably, the fingers tend to propagate into the flux free region,
strongly distorting the flux front(d). One can speculate
that these growing fingers eventually will develop into a
complex dendritic flux pattern observed by magneto-optical
imaging.7–18

The instability criteria and its growth rate found from the
simulations are in a good agreement with our analytical re-
sults. Moreover, the simulations demonstrate that the finger
instability arises even if some assumptions made in the deri-
vation are relaxed. In particular, one does not necessarily
need strictly uniform backgroundE and T distributions as
assumed in the derivation. Furthermore, the backgroundE
and T distributions can also be nonstationary, which is al-

ways the case in a real experiment. In fact, in the simulations
relevant to Fig. 5, where the instability was triggered by
increasing the applied magnetic field, theE and T distribu-
tions were nonuniform and nonstationary. The formation of
finger structure also turned out to be rather insensitive to the
boundary conditions. We have also carried out simulations
assuming thatjc in Eq. (32) depends on the localB according
to the Kim model,23 jcsBd~ sB0+ uBud−1. With B0=3m0wjcs0d
we found similar distributions, thus proving that the finger
instability can arise also in cases with aB dependentEs jd.

The simulations presented here have some similarities
with those by Aransonet al.19 The main differences are that
Aransonet al.started from a fully-penetrated state, the insta-
bility was nucleated by a local heat pulse, andjc was gener-
ally nonuniform. As a result, the obtained patterns ofT dis-
tribution look different from ours. Nevertheless, they also
found that the instability results in a nonuniformT distribu-
tion only at smallt.

VI. DISCUSSION

The results obtained in this work can be graphically sum-
marized by the instability “phase diagram” shown in Fig. 6.
For small electric fields,E,Ec, the conventional uniform
instability is favorable, and the adiabatic instability criterion
Eq. (25) is applicable. ForE.Ec the fingering instability
develops, with the instability criterion given by Eq.(28).
Using the Bean model,H= jcl, we obtain the finger instabil-
ity criterion as

H . Hfing = sp/2dÎkT * jc/E, E . Ec. s33d

Figure 6 also shows the border between the regions of uni-
form jumps and fingering instability forH.Hadiab that
was calculated from Eq.(20) using two conditions,
] Reul /]kyuky=k0

=0, and Relskx,k0d=Relskx,0d.
Strictly speaking our analysis applies to the caset,1,

which is equivalent toE.Ec/n. For smaller electric fields a

FIG. 5. Evolution of the temperature and flux density distribu-
tions produced by simulations. The instability is triggered by apply-
ing a magnetic field. The images(a)–(d) correspond to the times
t / t0=45, 46.1, 46.15, and 46.25, respectively. The formation of fin-
gers and their propagation into the flux free area are clearly seen.

FIG. 6. Instability phase diagram in the plane magnetic field–
electric field. The horizontal line corresponds to the adiabatic crite-
rion for uniform jumps, Eq.(25). For E.Ec, the instability has a
finger structure, and the criterion is given by Eq.(33).
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similar stability analysis can be made, taking into account
the heat flux along thex-axis. As expected, we found that for
E,Ec/n the uniform development of instability is always
preferable. The instability criterion is given by the well-
known dynamic criterion, that is highly sensitive to the ex-
ternal cooling conditions.1,2 However, in all cases the flux
jump field decreases monotonously withE, as indicated
schematically in Fig. 6.

The finger instability occurs only at rather large back-
ground electric field. This field can be created by different
sources. For example, if the applied magnetic field increases

with a rateḢ, an electric fieldE, Ḣl , ḢH / jc is generated.
Thus, when increasingH with a constant rate we move in the
phase diagram in Fig. 6 along a straight line starting from the

origin. For smallḢ, one crosses the instability boundary at

E,Ec, resulting in a uniform flux jump. For largeḢ, the
stability is destroyed for smallerH, and results in the forma-
tion of a nonuniform spatial structure. The predicted down-
turn of theHsEd instability line at largeE can be checked
experimentally.

Numerical estimates were made using typical parameters
for low-temperature superconductors at helium temperatures:
jc=1010 A/m2, C=103 J/Km3, T* =10 K, k=10−2 W/Km,
andn=30. We then find the following values for the charac-
teristic fields, Hadiab<0.1 T, and Ec<0.1 V/m, a finger
width of dy<3 mm for E,Ec, and a build-up time of the
instability, t0, in the ms range. These estimates are not far
from those reported in experimental papers, namely dendritic
fingers of width 20–50mm,8,11,14,16 and the instability
build-up time of,0.1 ms.8–10 The criterion for the fingering
instability E.Ec can also be written down ass,sc
=C/nm0k. Using the numbers above we findsc=3
3109V−1m−1, which is a reasonable value for the flux-flow
conductivity. Correspondingly, fors=sc one obtains t
=1/n,1/30.

Note that the electric field,Ec, needed for the finger insta-
bility to occur is not very small. As an estimate, the magnetic

field ramp ratem0Ḣ that induces the electric fieldEc is of the
order of 102 T/s for l =1 mm. Rates of similar magnitude are
conventionally used for pulsed magnetization of supercon-
ducting permanent magnets.24,25In experiments reporting the
fingering instability7–18 the ramp rates were much smaller.
One should keep in mind, however, that the actual electric
field can be much larger than it follows from the simple

estimatem0Ḣl. The reason is a strong nonuniformity of the
flux penetration both in space and in time(see, for review,
Ref. 26). Hence, one can expect rather large local electric
fields that last longer than the inverse instability increment,
*1 ms. Other sources of large electric fields include random
fluctuations of the superconductor parameters due to, e.g.,
relaxation of mechanical stresses. A very large electric field
can be also created on purpose, e.g., by a laser pulse, which
nucleates highly nonuniform flux distributions.8–10

In any case, it is rather difficult to meet the fingering
instability criterion,E.Ec. This might be the reason why
fingering is hardly observed in bulk samples. We are aware
of only one experimental work7 where an indication of the

discussed fingering instability in relatively thick samples
(with thickness up to 2 mm) was obtained. Another possible
reason for why such observations are few is that flux jumps
in bulk superconductors are often complete, or almost com-
plete. This means that the temperature rises close toTc in the
entire sample, leading to a uniform flux distribution which
erases any trace of a possible nonuniformity in the first
stages of the flux jump. That contrasts the behavior in thin
film samples, where the jumps are usually much smaller and
far from being complete.27 This makes nonuniform jumps
more observable in films.8–18 Moreover, huge stresses usu-
ally exist between a superconducting film and substrate.
Abrupt relaxation of these stresses can lead to fluctuations in
E, especially for Nb3Sn or MgB2 where the superconducting
properties depend strongly on the strain.2,29 Note also that in
films it is much more probable that any perturbation of elec-
tric field will influence the whole thickness, whereas it will
affect only a small part of a bulk sample. Although our equa-
tions for a slab cannot be directly applied to the case of a thin
film, we expect that essentially the same physics describes
the formation of finger structures in the films, too.28 More-
over, nonlocality of the current-field relations in films can
make formation of nonuniform structures there even more
favorable, and possibly account for the branching flux pat-
terns observed experimentally.

The presence of a background electric fieldE, and hence
moving magnetic flux, implies that the background state it-
self is not stationary. In a typical experiment, the applied
magnetic field is increasing,H=Hstd, the flux front is mov-
ing into the sample,l = lstd, and hence the electric field is
nonstationary within the flux-penetrated region. Obviously,
our analytical results are valid only if all these quantities
change in time slower than the perturbationsd E ,dT grow,

i.e., whenĖ/E,Ḣ /H , l̇ / l !l. If the electric field is created by

ramping the external magnetic field,Esx,td.m0Ḣflstd−xg,
then Ė/E< Ḣ /H< l̇ / l. Using thatl,1/t0, we can rewrite
the above inequality asH@Hadiab/În. Sincen@1 this con-
dition is satisfied in the major part of the phase diagram in
Fig. 6.

In conclusion, a linear analysis of heat diffusion and Max-
well equations shows that a thermomagnetic instability may
result in finger-like distributions ofT, E andB. The fingering
instability arises if the background electric field is so high
that the magnetic flux diffusion proceeds much faster than
the heat diffusion. Numerical simulations have shown that
upon further development of the instability one finger starts
growing much faster than the others, and propagates into the
flux-free region.
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