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Finger patterns produced by thermomagnetic instability in superconductors
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A linear analysis of thermal diffusion and Maxwell equations is applied to study the thermomagnetic
instability in a type-Il superconducting slab. It is shown that the instability can lead to formation of spatially
nonuniform distributions of magnetic field and temperature. The distributions acquire a finger structure with
fingers perpendicular to the screening current direction. We derive the criterion for the instability, and estimate
its build-up time and characteristic finger width. The fingering instability emerges when the background
electric field is larger than a threshold field>E;, and the applied magnetic field exceeds a vatig,

«1/+E. Numerical simulations support the analytical results, and allow us to follow the development of the
fingering instability beyond the linear regime. The fingering instability may be responsible for the nucleation of
dendritic flux patterns observed in superconducting films using magneto-optical imaging.
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I. INTRODUCTION merical results still lack analytical support. In particular, it is

The thermomagnetic instability or flux jumping is com- still unclear what kind of spatial structure can be formed
monly observed at low temperatures in type-II superconductduring a flux jump, and under what conditions. A similar
ors with strong pinning—* The instability arises because of Problem was analyzed in a recent witkvhere the propa-
two fundamental reasongt) motion of magnetic flux re- gating flux front was shown to acquire a nonuniform spatial
leases energy, and hence increases the local temperg@iture; structure if its speed is higher than some critical value, and
the temperature rise decreases flux pinning, and hence facilihe conductivity is a strong function of flux density. In the
tates the flux motion. This positive feedback can result inpresent study it is shown that these assumptions are not nec-
thermal runaways and global flux redistributions jeopardiz-essary requirements for a superconductor to develop nonuni-
ing superconducting devices. This mechanism was undeform flux jumps.
stood in early works$;® and later on the thermomagnetic in-  In the present paper the spatial pattern of the instability in
stability was studied thoroughlgee Refs. 1-4 for arevigw a bulk superconductor is studied using the conventional
In particular, the threshold magnetic field for the instability approach?>—linear analysis of a set of differential equa-
was calculated and its experimentally found dependence otions describing small perturbations in the electric figldnd
temperature, sample dimensions, and the applied field rampemperaturel. In contrast to the previous investigations, we
ing rate were explained. allow the perturbations to vary in any direction, i.e., both

The conventional theory of the thermomagneticparallel and perpendicular to the direction of the background
instability? predicts “uniform” flux jumps, where the flux currentj and fieldE. In this way we determine the stability
front is essentially flat. In other words, the spatial extensiorcriteria and also estimate the instability build-up time. As a
of the instability region tends to be maximal since small-main result we find that the most unstable perturbations are
scale perturbations are stabilized by thermal diffusion. Thign the form of narrow fingers perpendicular to the back-
picture is true for many experimental conditions, howeverground fieldE and occur ifE is larger than some threshold
not for all. Numerous magneto-optical studies have revealedalue. This shape prevents current adjustment across the
that the thermomagnetic instability in thin superconductingperturbed region and, hence, yields the fastest perturbation
samples results in dendritic flux patterii&€In the course of growth. Too narrow fingers are, however, suppressed by
the dendritic instability the flux forms narrow “fingers” of the thermal diffusion. Thus, the typical finger size,
typical width 20—50um and length up to the size of the \x(dj./dT)"*/E, wherex is the thermal conductivity anf}
sample. Such a behavior clearly contradicts the conventionas the critical current density, is determined by the competi-

theoretical concepts and needs elucidation. tion between the Joule hef and thermal diffusionxV?2T.
Few attempts to describe a nonuniform development of
the thermomagnetic instability have been made. Among Il. BASIC EQUATIONS

them is a numerical solution of thermal diffusion and Max-

well equations that can result in a rather nonuniform tem- We shall study the instability in the simplest geometry,
perature distribution for a bulk superconductbMolecular i.e., in a superconducting slab placed in a parallel magnetic
dynamics simulations of flux quanta motion in superconductfield (see Fig. 1. The slab fills the semispace>0, and the

ing film*3 can model dendritic flux and temperature patternsexternal magnetic fielti is parallel to thez-axis so that the
similar to those found experimentally. However, these nu-screening curreni flows along they-axis. The current and
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The key dimensionless parameter of the model is the ratio
of thermal and magnetic diffusion coefficients:

7= ugoklC. (7)

The smallerr is, the slower heat diffuses from the perturba-
tion region into the surrounding areas. Hence, one can expect
that for smallerr, (i) the superconductor is more unstable,

H and (ii) the formation of instability-induced nonuniform
0 structures is more favorable.
l IIl. PERTURBATION ANALYSIS
penetrated no flux A. Linearization of the problem
by flux
We seek solutions of the equations presented above in the
form,
FIG. 1. Superconductor geometry. T+ 6T(x,y,t), E+E(XY,1), (8)

L o i , whereT andE are the background values. The background
magnetic field distributions in the sample are determined byje|q E may be created by ramping the external magnetic

the Maxwell equation, with a proper boundary condition  fie|d H, or by other sources as discussed in Sec. VI. In prac-

tice E is nonuniform, but for simplicity we disregard its co-
(1) : >

ordinate dependence. For a weak nonuniformity, that can be
Here the local magnetic field in the flux penetrated part ofjustified using the method of Ref. 21, based on Wentzel-
the slab is assumed larger than the first critical field, andiKramers—Brillouin approximation. In this approximation the
hence, to a good approximatid(x,y)=ueH(x,y). To find  nonuniformity results only in replacement some of local
the temperature and electric field in a superconductor thguantities by the ones averaged oxeHence, we get only
corresponding thermal and the second Maxwell equation#significant numerical corrections. Numerical simulations in

curl B = ugj, Bleo=pmoH.

should be used: Sec. V show that this conclusion also holds in the realistic
N situation when the nonuniformity & is induced by ramping
C(dT/dt) = kV-T +]E, ) the external magnetic fieldl. Similarly, we ignore any co-
ordinate dependence of the background temperature. This
curl E=—dB/ét, (3 can be done if it satisfies the inequalifyx,y)-T<T.-T,
whereC is the specific heat. where T, is the critical temperature of the superconductor,

These equations should be supplemented by a curren@nd T is the sample-averaged temperature before the insta-
voltage curvej=j(E,B,T). In type-ll superconductors the bility build-up.
j(E) dependence is strongly nonlinear. As a result, a quasi- From the symmetry of the problef,=0, while for the
static critical state withj = j.(B,T) is formed. This will be  perturbationsE both 5E, and 5E, in general do not vanish.
the initial state from which the instability evolves. For sim- The linearization of thé(j) in (4) yields

plicity we use the Bean model, i.e., we neglect &glepen- 3 E SE E
dence of the critical current density. The exact form of the 8= <—°5T+ an)— + jc(— - 5E—2>. (9)
current-voltage curve, aT E E E
P Since the vectoE is parallel to they-axis, one has in the
J=ITENEE). @ linear approximation thadE=JE,, and as a result one finds
is not crucially important. The only important point is that .
the E(j) curve is very steep, and therefore its logarithmic 8§ = (‘1051-4_0515 )E +jc£(- (10)
derivative is large: aTr YJE E

We shall seek perturbations in the usual form:

JINE |,
n(E) dlnj  oE ! ® ST =T* O exp\t/ty+ikyn +iké), (11
Here o is the differential conductivity, OE,, = Ee, , eXpAt/t + ik, + ik, &) (12)
Xy X,y 0 y xS/
o(E) = Jj/E. 6 whereg=x/w, p=y/w, and
At low electric fields, theE(j) curve is often approximated 1 1dj, oCT* CT*

by a power law, i.e.n is assumed independent Bf and E T i th=—3 = uooW, WP = 2

o j". Our approach is applicable also to the flux flow regime e e Holc

at high electric fields. In that regime(E)=o; is the flux- Here 6 and &y are the Fourier amplitudes, Reis the di-
flow Ohmic conductivity anch(E) =j./otE><1/E. mensionless instability incremet,is the characteristic time
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of adiabatic heating, which coincides with the magnetic dif- A2+ )\(k§+ k§/n -1+ (k)f - ki)/n =0. (22)
fusion time for the lengthv, andw is the characteristic scale ) )
for the adiabatic instability. The wave numberk, andk,  First, we notice that a,=0 the system is always unstable.
characterize the scale of the perturbation alongyttamdx ~ 1his is not surprising since such solutions correspond to the
axes, respectively. Since the sample is assumed infinite in tHgSe of a sample with fixed transport curréy,0, heated by
y direction, thek, is arbitrary, whilek, is determined by the the electric fieldE under adiabatic conditions. In this caste
width of the flux penetrated region and the correspondingtnd T grow with the maximal possible rata,=1, and the
boundary conditions. characteristic time of the instability build-up fg

Let us define the Fourier amplitude of the dimensionless For a finite sample thé, is not arbitrary because of the
current perturbationsj/j. asi. Using Egs.(10~12) one boundary conditions at the edges of the flux penetrated re-

finds the components of the vectoin the form gion. Only some particulak, satisfy the boundary condi-
tions, which makes the system more stable. For example, for
ix=&x Iy=—0+sg/n. (13)  perturbations uniform in thg-direction (k,=0) the instabil-

Using Eq.(2) one obtains the equation for the temperatureity develops only ifk,<1. However, if we Sekyﬂo.o’ the_n
; the system becomes unstable for &gyand we again arrive
perturbationd as . ;
at the maximal growth rate\=1. This result can be under-
NO=— (K +K) O+ (iy+&y)n. (14)  stood physically, if we take into account that infinkgcor-
i respond to a perturbation in the form of a narrow finger
We find from Eq.(14) directed along they-axis, i.e., perpendicular to the current
(1+1h)e, flow. The current flow remains unperturbed by an infinitesi-

(15  mally narrow finger i.e., the conditioi}=0 least favorable

- 2 2 '
A+ 0k +k) + 1 for the stability holds, like for the cadg=0. In the case of
Then, using Eqg1) and(3), we can rewrite the Maxwell wider fingers, the current adjusts itself to the temperature
equation for the perturbation as fluctuation, which slows down the instability growth. So, if
. one neglects the thermal diffusion, the narrowest possible
kX [k X g]=\ni. (16)  fingers are the most favorablé,— o), and the supercon-

Using the relationg13) we cast Eq(16) into the equation set ducting state is utterly unstable. _ 3
for dimensionless components of the electric field perturba- The thermal diffusion evidently suppresses the instability

tion growth. The suppression is most effective for lakgeAs a
result, we obtain some optimal value kf, for which the

. = kyky . (17 instability increment is maximal. The existence of such an
X k§ +an Y optimalk, is evident from the contour plot of Recalculated

for 7=0.01(see Fig. 2, left The dashed line shows, pro-
(18) viding the maximal Re. for a givenk,. However, if 7 is
larger, then the heat diffusion fully dominates the instability
Note that these equations together with Ed) and (15) development. In that case the maximatorresponds td,
provide continuity of the current perturbation, i.e., di=0, =0 (see Fig. 2, right
as required. Substituting Eq€l5) and (17) in Eq. (18) one

—Key + kjkex = An(= 0+ ey/n).

finds the following dispersion equation providing nontrivial IV. RESULTS
solutions fore,: In this section we solve the problem more accurately, and
1-)- r(k§+ K2) 12 start by establishing the proper boundary conditions.
X=X 19
n\ + m{kﬁ + k)z() +1 k§ +n\ (19 A. Boundary conditions
The corresponding quadratic equation #dk,,k,) has the From the above analysis it is clear that a finger structure
form may appear only forr<<1. Consequently, we focus only on
X this case. Since the thermal diffusion is then slower than the
A+ PA+Q=0, (200 magnetic diffusion, we can impose only the electrodynamic

boundary conditions. This is equivalent to neglecting the

where heat flux in thex direction, i.e., the termk)z( in Eq. (14) can
P=IZ+Kn-1+KC+K), be omitted.
The magnetic field at the slab surface is equal to the ap-
K2 — n+1 1 plied field, hence the perturbation at the surface is zero,
Q="+ T<k§+—k§k§+ —k‘yl)- (21)  6h,=0 atx=0. The magnetic field has onlgcomponent,
n n n thus from Eqgs(3) and (17) one obtainséE)',océhz, and the
The system is unstable if Rek, k) >0. first boundary condition is
B. Qualitative analysis 0B, =0, x=0. (23

The dispersion equation becomes more transparent wherhis condition also means that the current does not flow
the heat conductivity can be neglected, i==0. Then, across the sample surfac#, o E,=0 atx=0.
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1=0.01

FIG. 2. The contour plots for the instability
increment Rev(ky, ky) obtained from Eq(20) for
n=10. The brightest areas correspond to the fast-
est growth of instability. For lowr perturbations
with a finite k, have the maximal increment,
while for large 7 (strong heat diffusiop uniform
perturbations wittk,=0 would grow fastest.

(b)

Let us specify the boundary conditions at the flux front,with respect to uniform perturbations, while unstable for per-
x=I. In the flux-free regionx>1, the electric field decays on turbations with finitek, (see the curve fok,=1.5. This
the scale of the London penetration depth, which is muchneans that a nonuniform structure along yheirection will
smaller than any spatial scale of the problem. Therefore, thee formed.

continuity of the tangential component of the electric field When the applied magnetic field gradually increases from
requires zero, the instability first starts for some parhcullgrk

when Rex=0 only for one single value df = ky This is the
oE,=0, x=I. (24

These boundary conditions together with EdS), (14), and
(16) are satisfied whe®dE, > cogkex/w) with

= (w/2)(will).
Now we can search for solutions of EQ0) with this k,, <
and, as before, when Re>0 the system is unstable. &

B. Instability criterion and increment

Let first consider the spatially uniform case where there
exists a well-known criterion for the thermomagnetic
stability~® With k,=0 and usingr<1, i.e., for very slow
thermal diffusion, we find from Eqc20) that the system is
unstable ifk,<1. For the Bean model, wheteH/j, this is
expressed as

H> Hadiab: (77/2) \’CT* /,lLo, (25)

which is the commonly used adiabatic criterion for flux
jumps. 00f------- 7"/"-""""-"““'-"--.:_‘: “““ ‘;j-. “““
Let us next consider cases of nonzéjpand analyze the << Al 1.5
behavior of Rex(k,). Shown in Fig. 3(top) are plots forr . o4 N
=1. For small applied magnetic fields the system is stable | Tl
(see the curve fok,=1.1). As the field increases, the flux 057 .
penetration depth grows, and henlkcggoes down. Foik, sl
=0.7 the system becomes unstable, i.e., solutions witl 1 x ~.
ReNx>0 arise. Note that the instability appears firstkat ™~
=0. For higher fieldgk,=0.2), the instability range extends  1° :
to largek, too, but the maximal R always corresponds to
k,=0.22 Therefore, for relatively large the instability devel-
ops in a uniform mode. FIG. 3. The instability increment Rek,) found from Eq.(20)
However, for smallerr the Re\(k,) behaves differently  for n=10 and differentk,. Top: fast heat diffusion, the maximal
[see Fig. Ibottom)]. The maximal Re. can here occur for a increment corresponds to uniform perturbatidig=0). Bottom:
nonzerok,. Moreover, it is possible that the system is stableslow heat diffusion, the maximal Reis found at a finitek,.

0 3 6 9
ky
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case fork,=k,=2.1 in Fig. 3(bottom). To find thesek; and
K, one needs two conditions. The first one is

Q(K,.k;) =0, (26)

FINGER PATTERNS PRODUCED BY THERMOMAGNETIC. PHYSICAL REVIEW B 70, 224502(2004)
which is a quadratic equation with respect(ké)z, and the
second one is that the discriminant of this equation is zero.

— T(r)
—
Using Eq.(21) and the fact thah>1, we find _—
(a) (b) () (d)
*_(2)1’41 oo L 7 ¥
ky = n) V7 e
The instability occurs at, < k;, and for largen this insta- ,
bility criterion can be written as ”
E> (714)(kT*1jJ?). (29)
x

A

One can see from Fig. @ottom) that the value ok, where 0 3
Re\ has the maximum depends only weakly lgn There- _ o
fore, a good estimate for the finger Wid:l{;lin they direction _ F_IG. _4. Evolution of th_e tem_peraturfé_and electric fleIdE_y
is W/k;. Thus dlgtrlbutlons produced .by smglatlons that illustrate the. formation qf
a finger structure. The instability was triggered by a uniform electric
K vz 1 field, E,=Eo, switched on at=0. The imagesa)—(d) correspond to
y ~ Edj T (2n)1’4' (29 the timest/ty=1.6, 3.0, 3.2, and 3.3, respectively.

Once we go from the instability threshold towards lokgr  than the characteristic resistivity in the flux creep regime,

the increment Ra quickly becomes of the order of unity. 41=10€y/j,. The temperature dependence of the critical
Thus, the characteristic time of the instability development issyrrent density is assumed to be linegg=j[1-(T

of the order of the adiabatic time,. o -To)/T*]. The electrodynamic boundary conditions are
The aspect ratio of the perturbed region is dE,/dx(x=0)=0 (constant external magnetic figJdE,(x=1)
k;/k;z (2n)Y4. 30 =0 E,(x=0,1)=0, with I=2w, and the periodic boundary

o conditions in they direction. Since the thermal boundary
Note that it is independent of the thermal paramet€lss,  conditions are not of crucial importance=& 1, we used the
andT*, and determined only by the shape of #§) curve.  simplest onesT(x=0)=T, (ideal heat removal at the surface

As was seen from Fig. 3, the instability will develop uni- anddT/dx(x=1)=0 (the symmetry condition in the middle of
formly for =1 and nonuniformly forr=0.01. It follows di-  the s|ap.

rectly that the border between the uniform and nonuniform  our analytical results predict that the instability will form

regimes is given by the criterion Rek,,k,=0)=0. Using 3 finger structure if a sufficiently large uniform background
Egs. (20) and (27) one can rewrite the criterion as=1/n.  electric field is present. Therefore, for initial conditions we
Rewriting this in dimensional form we conclude that for assume a uniform electric fieI<Ey(0sx<I,t:0):Eo. To
(31) introduce some nonuniformity into the system small random
values STR<T* were added to the initial temperature for
the instability will evolve nonuniformly. every discrete node. The initial temperature is then given as
T(x,t=0)=Ty+ 6Tr. The key parameters=0.001 andn=1n
=30 are specified d&E=E,. Their dependences on the elec-
V. SIMULATIONS trical field are given by Egs5), (6), and(32). Since now
E,=E./(n7)>E,, the condition(31) is fulfilled, and the in-
structures, and to verify the validity of the above analyticalfs't"’.‘b”ity is exp(_acted to develop in a nonuniform fashion. This
results, numerical simulations based on the Maxwell and® m_dee_d confirmed by _the _calculated evolu_ﬂorngan_dT
thermal diffusion equationgl)~(3) were carried out. In the distributions presented in Fig. 4. The numerical solution was

simulations we went beyond the linear approximation anqoerformed on a grid of 14870 nodes using a simple-step

considered the full nonlined(j) curve, which was chosen integration method. . . L
to be One can see from Fig.(d) that at small times the distri-

butions ofE and T are essentially uniform along theaxis.
j Then, a finger structure is emergifiy with protrusions per-
= o1+ ()Y o/Eo (32) pend_icula_r to the eIecFric field Qirecti_on, as predicted by our
previous linear analysis. The simulations also show how this
where jo and E, are constants. This is one of possible finger structure is evolving beyond the linear regime. We can
smooth interpolations between the flux creep regime at smaflee that the electrical field in some fingers grows faster so
currents withEoj", and the Ohmic flux flow regimé&  that relative difference between the fingers increasgs
=j/ oy at highj. Here the flux flow resistivity is much higher Eventually, the most intense finger takes over and dominates

E> EczllLonC/C

In order to visually illustrate the formation of nonuniform
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(a) (b) (c) (d)
B(r)
E

FIG. 5. Evolution of the temperature and flux density distribu- ~ FIG. 6. Instability phase diagram in the plane magnetic field—
tions produced by simulations. The instability is triggered by app|y_e|eCtriC field. The horizontal line corresponds to the adiabatic crite-
ing a magnetic field. The images)—(d) correspond to the times rion for uniform jumps, Eq(25). For E>E,, the instability has a
t/ty=45, 46.1, 46.15, and 46.25, respectively. The formation of fin-finger structure, and the criterion is given by E§3).
gers and their propagation into the flux free area are clearly seen.
ways the case in a real experiment. In fact, in the simulations
gelevant to Fig. 5, where the instability was triggered by
Increasing the applied magnetic field, tBeand T distribu-

Uniform
jumps

the entireE distribution (d). We believe that the reason for
such behavior is the increase of the differential resistivity a

E grows, Eq.(32). The growth ofE is significant: the aver- . ! . .
= . tions were nonuniform and nonstationary. The formation of
age valueg,=1.7E, for (a), and 2, for (d). Note that this finger structure also turned out to be rather insensitive to the

growth cannot be traced from the presented images only bGf)'oundary conditions. We have also carried out simulations

cause the gray scale was optimized for each individual imagSssuming that. in Eq.(32) depends on the loc& according

to provide the best contrast. More detailed simula’tionst . : 1 \ar _ .

. o o the Kim modeFf? j(B) « (By+|B|) L. With By=3uwj.(0)
showed that the instability growth slows down only when the oo Jevm e 0 07 DP0TIch
increasingE reaches the inflection point on tHj) curve we found similar distributions, thus proving that the finger

. . instability can arise also in cases wittBadependent(j).
before entering the flux flow regime. The simulations presented here have some similarities
Next, we carry out simulations with different initial and P

L I with those by Aransomt all® The main differences are that
boundary conditions. We start from zero electric fiefs Aransonet al. started from a fully-penetrated state, the insta-

=0)=0, and assume that a linearly increasing magnetic fiel%.. .
. . _ ~ . ility was nucleated by a local heat pulse, gpavas gener-
is applied to the slab so thatiy/dx=dH/dt=0.03wj,/t, at ally nonuniform. As a result, the obtained patternsTadis-

x=0. The other parameters are the same except that now ﬂ?ffbution look different from ours. Nevertheless, the
. . . P . , y also
slab halfwidth is 8. The right edge of the distributions found that the instability results in a nonuniforfndistribu-

shown in Fig. 5 corresponds to the middle of the slab. One.
can see from Fig.(®) that for smallH the flux penetrates in fion only at small
the conventional way, and a Bean-like profile of flux density

is gradually advancing into the slab. Whéh and corre- VI. DISCUSSION
spondinglyE increase further, an instability sets in and leads
to the formation of fingergb—d). The finger structure is ap-
parent in both theB and T distributions, especially on the
later stages when only few intense fingers remain. Remar
ably, the fingers tend to propagate into the flux free region
strongly distorting the flux front(d). One can speculate
that these growing fingers eventually will develop into a
complex dendritic flux pattern observed by magneto-optica
imaging/~18

~ The instability criteria and its growth rate found from the H > Hing = (/2) \KT*—JC/E E>E.. (33)
simulations are in a good agreement with our analytical re-
sults. Moreover, the simulations demonstrate that the fingefrigure 6 also shows the border between the regions of uni-
instability arises even if some assumptions made in the derform jumps and fingering instability foH>H,ga, that
vation are relaxed. In particular, one does not necessarilwas calculated from Eq.(20) using two conditions,
need strictly uniform backgroung and T distributions as JRe K/ﬁky|ky:ko:0, and Re\(k,,ko)=Re\(k,,0).
assumed in the derivation. Furthermore, the backgrdand  Strictly speaking our analysis applies to the casel,
and T distributions can also be nonstationary, which is al-which is equivalent td= > E./n. For smaller electric fields a

The results obtained in this work can be graphically sum-
marized by the instability “phase diagram” shown in Fig. 6.
Joor small electric fieldsE<E,, the conventional uniform
instability is favorable, and the adiabatic instability criterion
Eqg. (25 is applicable. FolE>E_ the fingering instability
develops, with the instability criterion given by E¢R8).

sing the Bean modeH =jl, we obtain the finger instabil-
ity criterion as
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similar stability analysis can be made, taking into accountdiscussed fingering instability in relatively thick samples
the heat flux along the-axis. As expected, we found that for (with thickness up to 2 mijnwas obtained. Another possible
E<E./n the uniform development of instability is always reason for why such observations are few is that flux jumps
preferable. The instability criterion is given by the well- in bulk superconductors are often complete, or almost com-
known dynamic criterion, that is highly sensitive to the ex-plete. This means that the temperature rises clodg i the
ternal cooling conditiond? However, in all cases the flux entire sample, leading to a uniform flux distribution which
jump field decreases monotonously with as indicated grases any trace of a possible nonuniformity in the first
schematically in Fig. 6. stages of the flux jump. That contrasts the behavior in thin
The finger instability occurs only at rather large back-fjm samples, where the jumps are usually much smaller and
ground electric field. This field can be created by differentty; from being completé’ This makes nonuniform jumps
sources. For example, if the appl?ed magnetic field increasegore observable in film&:18 Moreover, huge stresses usu-
with a rateH, an electric fieldE~HI~HH/]. is generated. ally exist between a superconducting film and substrate.
Thus, when increasing with a constant rate we move in the Abrupt relaxation of these stresses can lead to fluctuations in
phase diagram in Fig. 6 along a straight line starting from thee, especially for NgSn or MgB, where the superconducting

origin. For smallH, one crosses the instability boundary at Properties depend strongly on the stréffi Note also that in
E<E,, resulting in a uniform flux jump. For largkl, the I'I.m?. Itlclis nd:u_:hﬂmore ptrr(])babrl]e rh?:].arlly perturlr)]atlon o_t{ele_zli:-
stability is destroyed for smallét, and results in the forma- r;: Ite IWI n uincet ]?V\l') ?ke IC InesAsl,ihw eLeaS| wi
tion of a nonuniform spatial structure. The predicted down-aftect only a sSmall part of a bulk sample. ough our equa-

turn of the H(E) instability line at largeE can be checked tions for a slab cannot be directly applied to the case of a thin

: film, we expect that essentially the same physics describes
experimentally. : \ . i
. . : . the formation of finger structures in the films, t&oMore-
Numerical estimates were made using typical parameters : ! . S
; gver, nonlocality of the current-field relations in films can
for low-temperature superconductors at helium temperature:;;ﬁake formation of nonuniform structures there even more
je=101°A/m?, C=10° J/Km?, T*=10 K, x=102 W/Km,

andn=30. We then find the following values for the charac- favorable, and possibly account for the branching flux pat-

o ' terns observed experimentally.
teristic fields, H,giay=0.1 T, and E;=0.1 V/m, a finger L
width of d,~3 um for E~E,, and a build-up time of the The presence of a background electric fieldand hence

instability, to, in the us range. These estimates are not farmoving magnetic flux, implies that the background state it-

from those reported in experimental papers, nhamely dendritigeIf Is not stationary. In a typical experiment, the applied

fingers of width 20—5Qum #1146 and the instability _mag_netic field is incrciasingi:H(t), the flux front_is mov-
build-up time of~0.1 us&°The criterion for the fingering ing into the sampl_el—l(t), and hence the el_ectrlc f|e_|d IS
instability E>E, can also be written down a® <o, nonstationary within the flux-penetrat_ed region. ObV|01_J_st,
=C/nuex. Using the numbers above we find,=3 our anal.yt|c_al results are valid only if aII_ these quantities
x 10°Q-1m™%, which is a reasonable value for the flux-flow change in time slower than the perturbatiafis, 5T grow,
conductivity. Correspondingly, foro=c, one obtainsr  i.€., whenE/E,H/H,I/I<\. If the electric field is.created by
=1/n~1/30. ramping the external magnetic fiel&(x,t) = uoH[I(t)—x],
_Note that the electric fields., needed fgr the finger insta- then E/E~H/H~1/I. Using that\ ~1/t,, we can rewrite
bility to occur is not very small. As an estimate, the magnetico ahove inequality al > H,./ Vn. Sincens 1 this con-
field ramp rateuoH that induces the electric fielfi. is of the  dition is satisfied in the major part of the phase diagram in
order of 16 T/s forl=1 mm. Rates of similar magnitude are Fig. 6.
conventionally used for pulsed magnetization of supercon- |n conclusion, a linear analysis of heat diffusion and Max-
ducting permanent magnets? In experiments reporting the - well equations shows that a thermomagnetic instability may
fingering instability~'® the ramp rates were much smaller. result in finger-like distributions 6f, E andB. The fingering
One should keep in mind, however, that the actual electrignstability arises if the background electric field is so high
field can be much larger than it follows from the simple that the magnetic flux diffusion proceeds much faster than
estimateugHIl. The reason is a strong nonuniformity of the the heat diffusion. Numerical simulations have shown that
flux penetration both in space and in tintgee, for review, upon further development of the instability one finger starts
Ref. 26. Hence, one can expect rather large local electrigrowing much faster than the others, and propagates into the
fields that last longer than the inverse instability incrementflux-free region.
=1 us. Other sources of large electric fields include random
fluctuations of the superconductor parameters due to, e.g., ACKNOWLEDGMENTS
relaxation of mechanical stresses. A very large electric field This work is supported by INTAS Grant No. 01-2282,
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