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Reentrant behavior in the nearest-neighbor Ising antiferromagnet in a magnetic field
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Motived by theH-T phase diagram in the bcc Ising antiferromagnetic with nearest-neighbor interactions
obtained by Monte Carlo simulatigibandau, Phys. Rev. B6, 4164(1977] that shows a reentrant behavior
at low temperature, with two critical temperatures in magnetic field about 2% greater than the critical value
H.=8J, we apply the effective field renormalization groygFRG approach in this model on three-
dimensional latticegsimple cubic-sc and body centered cubicjpdtle find that the critical curvdy(H)
exhibits a maximum point around &f=H_ only in the bcc lattice case. We also discuss the critical behavior
by the effective field theory in clusters with oiEFT-1) and two(EFT-2) spins, and a reentrant behavior is
observed for the sc and bcc lattices. We have compared our results of EFRG in the bcc lattice with Monte Carlo
and series expansion, and we observe a good accordance between the methods.
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The antiferromagnetic Ising model, with its simple ver- (MFA)2 effective-field theoryEFT),® mean field renormal-
sion of two-state variables, is among the simplest conceivization group(MFRG),'° Monte Carlo simulation(MC),*!
able classes of models in statistical mechanics to describend high-temperature series expansiiE).'? For the case
ordered materials strongly anisotropic with localized mag-of three-dimensional3d) lattice, the theoretical calculations
netic moments(insulating, for example, the Fegland show disagreement between different methods. The results
FeBr, antiferromagnet$:* This class shows an overwhelm- obtained by the MFA, EFT, and MC methods showean-
ing richness in phase structure and critical behavior with aptrant behaviorin the phase diagram in low-temperature, i.e.,
plication of a magnetic field. A field along the easy axis will if H is just aboveH,, then these are two phase transitions as
destroy the magnetic order in the ferromagnetic case, but th&€ temperature is increased. In contradiction, SE suggests a
antiferromagnetic model has an ordered ph@g®) with de-  Phase diagram like the two-dimensional results, i.e., have no
creasing transition temperatufig(H) as the field intensity ~e-entrance at low-temperature. The MFRG approach fails at
increases. The magnetic fieltd) versus temperaturéT) low temperature, where only solution for low fields are
phase diagram display an AF phase being of first order at |0v(pund forTN_(H). ) ) ) .
temperatures and of second order at higher temperatures andANother interesting result in the nearest-neighbor Ising
lower fields. In FeGj, the two kinds of transitions meet at a antiferromagnet in a magnetic field is the slope of the phase

tricritical point. For FeBs, a possible decomposition of the Poundary atT=0, i.e., H=H+ac-T, that for the two-
tricritical point into a critical end point and a bicritical end d'menS'On?ﬂ lattice is negativ@, < 0) -and the simple cubic
point has been observédThese multicritical points have lattice (3d) is nearly zero(a.=0). This model at low tem-
been attributed to two crucial ingredients: the ferromagneti@eratures is equivalent to hard-core lattice gases, that use the

intraplanar interaction and antiferromagnetic interplanaiigh-density series for the order parameter of the lattice gas
interactions’ so-calledmetamagnet up to 24 terms? We can estimate values for the slope of the

On the other hand, the nearest-neighbor Ising antiferroPhase boundarg(square lattice-96--0.67<0 and a;=0
magnet in a magnetic field presents only second order phag@c(simple cubic lattice-9¢=0 and a(body-centered cubic
transition for all values of fielcH in the interval between lattice-bcg=0.13," indicating that the critical curv@y(H)
H=0 to the critical valueH=H.=zJ (Ty=0-ground state, z  for the bcc lattice shows a reentrant behavior in accordance
is the coordination numbgrSince the nature of the symme- with Monte Carlo simulatioht (a,=0.16. Results of the
try breaking is not affected by the magnetic field, one ex-renormalization-grou}§ and high-temperature sertésio not
pects that the transition at finite field is of second order andeproduce this feature of the phase diagram for the bcc lattice
belongs to the same universality class as the zero-field Ising.e., a.>0). The critical magnetizatiom., which is the lim-
model. The phase diagram at low temperatyssund the iting value of the magnetization as tiie0 andH=H_ point
critical field H=H_;) show some qualitative differences be- is approached along the critical lifig(H), is also a quantity
tween two- and three-dimensional lattices. Exact results of af interest. For the sc and bcc lattices, Radmve estimated
decorated Ising model on a square latti2d) (Ref. 6 show m.=0.57 andm.=0.645(m.=0.644 for Monte Carl8), re-
that the critical temperaturd@y(H) decreases with an in- spectively, while the MFARef. § and EFT(Ref. 9 methods
crease oH, going to zero aH=H,. The phase diagram of found m;=1.0. When the number of nearest-neighbGrs
the quasi-two-dimensional Ising antiferromagnetic CfZs  increase, we expected that the valuesspnd m. tend to-
(Ref. 7) agree with these theoretical results. Various approxiwards their MFA valuesa,=% [H=H.~TIn(T)/2] and
mative methods have shown this critical behavior of them.=1.0, because MFA becomes exact as the coordination
curve Ty versus H, such as mean field approximation number goes to infinitfz— ). MFA overestimate the or-
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dering tendencies; the results fay are always larger than temperature as the field intensity increases, wher&=i0

the exact SE estimategor Monte Carlo simulation This  (ground statg a second-order transition occurs at critical
analysis shows that for small values of coordination numbefield H,=zJ.

(z<8) we havea,<0 indicating absence of re-entrance in  To treat the mode{1) by the EFRG approach, we con-
the phase diagram, and an increase of zhdope a. also  sider a simple example of renormalization in clusters of sizes
increase, witha.>0 for the bcc lattice. We speculate that a N’=1 andN=2 spins, and the Hamiltonian for these clusters
given approximation applied in this model will reproduce, is given by

qualitatively, the effect of the re-entrance as a function of the

coordination number, while the MFA and EFT approaches do - BH1=aip0ua, 2

not confirm these speculations.

To study the critical properties of spin models, the renor-and
malization group(RG) approaché< have shown to be effi- _ __
cient when compared with more accurate methods, such as BHz= = Koiaozs + Qap0ia+ 8oa028, ®
Monte Carlo simulation. The great advantages .of. yhese RGhere alp=L'—K'S%01g,5 (K'=BY, L'=pH’) and a, =L
methods are the small CPU time and the possibility of Ob'—KEf{lom,s (K=BJ, L=pH, i=1, 2 and\=A, B).

taining good critical values using small systems. Due 10 py sing the Callen—Suzuki relatihand following the
these successes, we decided to use the effective field RGme strategy of the differential operator technique devel-
(EFRG approach’ to obtain the phase diagram of the oped by de Sousa and Aradjdo treat the antiferromagnet
nearest-neighbor Ising annferrqmagnet in a magnetic _f'elq-leisenberg, the average magnetizations in sublatfice
for the sc(z=6) a_nd bcaz=8) lattices. The main _obJectlve_l_s (K L) =(Tr, alAe‘ﬂHi/Trl e‘BHi> and  moa(K,L)

to analyze the influence of the re-entrance in the critical - BT 611, for cl ithN'=1 and
curve Ty versusH as a function of the coordination number =(Tr gia€ Tl 2€ 2 or ¢ usters withN'=1 an

(2), where results of Monte Cafbshow a reentrant behav- N=2 Spins, respectively, are given by

ior for the bcc(z=8) lattice. The EFRG approach is based on 2

the comparison of two clusters of different sizes, each of miA(K' L) = 1T (a,+ o8l ) F(X)|xeon (4)
them simulating an infinite system. For constructing effective 5%1

field equations of state@nagnetizationwe use the Callen—
Suzuki identity® as a starting point. The method treats theand
effects of the surrounding spins of each cluster through a

z-1 z-1
convenient differential operator technigBeavhich, in con- _
trast to the usual mean field approximation procedure, all the moa(K,L) = 5g2(ax+ 7 s85x) sgz(“ﬁ T snBy)
relevant self-spin correlations are taken exactly into account ’ o
(see, for example, Ref. 17 for details and applications of the X g(X,y)lx,y=o, ©)

EFRG method, as well as the potentialitin order to apply )
the RG idea, we have used small clusters. The interaction&ith
within the clusters are exactly treated and the effect of the 2L — x— V) + X i B
remaining lattice spins is replaced by a symmetry breaking g(x,y) = sinh( X=y) sinh(x —y) ,
field (here are used two fields associated to the two sublat- cosh2L - x~y) + e* costx - y)
tice). In the standard effective field theo¢iFT) this field is , .

gwhere a;=coshK’D,, B,=sinhK’D,, a,=coshKD,, B,

identified with the order parameter of the system. In this™" " . . )
scheme, both the magnetization of the clusters and the r&SINNKD.(v=x,y), D,=d/dv is the differential operator,
spective symmetry breaking fields scale in the same way. [(X)=tanf(L’~x) and,z the coordination number. _

The model considered in this work is the nearest-neighbor Equations(4) and (5) are exact, but mathematically in-
(nn) Ising antiferromagnet in a field magnetic divided into tractable. Here we use an approximation which neglects cor-
two equivalent interpenetrating sublattiéeand B, that is relations between different spins but takes relations such as

described by the following Hamiltonian: (0f)=1 exactlyinto account, i.e.,

(6)

H:JE U'ia'j_HE o, (0= +1), (1) <U'iA"'0'IB'0'pB' ) =(oia) * (og) '<0'pB>' - (M

i ! wherei#j#---|#p#---, and we adopb]=(o;,) and b,

whereJ is the nn exchange coupling, j) denoting the sum =(a;\), Which correspond to the symmetry-breaking fields in
over all pairs of nn spingz) on a three-dimensional lattice Clusters with onéN’=1) and two(N=2) spins, respectively,
[here we treat the s@=6) and bcc(z=8) latticed andH is for the sublatticex=A an'd B. Using the approximatioii7),
the strength of the external magnetic field. The competitiorFdS-(4) and(5) are rewritten as

between the antiferromagnetic exchange interaction and the 2

alignment of the local moments with the external field MK L= (Z) 2 (K',L")blp ®)
present interesting properties in the phase diagram. In par- AT o\p/ T TR

ticular, model(1) has an antiferromagnetiordered phase

(AF) in the presence of a field, with the decreasing transitiorand
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z=1z-1 7-1\(z-1 TABLE 1. Values of critical temperaturdy(0), slope of the
mpa(K,L) =2 > ( )( )Agpq(K,L)bﬁbq, (9)  phase boundarg, and critical magnetizatiom,(0) for the Ising
p=0g=0 \ P q antiferromagnet on simple cubisc) and body-centered cubibcc)

. - lattices. Results obtained by the MFRBef. 13, EFRG (present
z — 1Z-pp/p z
with Alp(K,’L,)'“x Bx f(x)|X:0 and 2pq(K’L) work), series expansiolSE) (Ref. 15, and Monte Carlo(MC)

:ai_lﬂﬁgai_l_pﬂs 9%, Y)lxy=o- (Ref. 11) methods are presented.
This system has two distinct sublattice, which in the or-
dered phase(AF) have different magnetizationgand m(0) a Tn(0)
symmetry-breaking fieldsA natural order parameter is half
of the difference in the magnetization of the two sublattice: MFRG sc 4.93

ms=%(mA—mB) (staggered magnetizatipnls also conve-
nient to define the uniform magnetization by:%(mA+ Mg).

The expansion of the right-hand side of E¢3) and (9) in EFRG sc 0.67 -0.44 4.85
powers of the parametets’ =5(by+bg), b.=3(by—bg), b

bcc 6.95

b 0.75 0.07 6.88
=1(by+bg), andbg=1(bs—bg), in first order inb/ andb; are c
given by SE sc 0.57 -0.04 452
my(K',L") = A(K',L",b")b], (10) bce 0.65 0.13 6.35
MC sc 0.59 451
K’,L") = Ai(K',L",b’ 11
My(K7,L7) = Ay(K7LT,b7), (D bee 0.64 0.16 6.36
mZS(KIL) = AZS(KvLab)bsa (12)
a.nd Al(K’Ileb’) :Az(K,L,b). (16)
my(K,L) = Ay(K,L,b), (13) We can simultaneously solve the set of three equations

. (14—16) with L’=L=h/Ty (h=H/J), and obtain the values
with Aj(K’, L', b") =38 opAL (K", L)bP™, A(K',L",b')  of T, andb’ =b for each value of the intensity of the external
=25 ALK, LD, AoK, L, b)=354(p-a)AS,((K, field H on a simple cubic-stz=6) and body-centered cubic-
L)bP*a% and Ap(K, L, b) =SE65 0045 (K, L)bPr. bce (z=8) lattices. Results of the numerical values for the

Solving Egs.(10) and(11) simultaneously, i.e., identify- slope of the phase boundaay=(dH/dT)1_,, critical magne-
ing the symmetry breaking field with the magnetization,tization which is the limiting value of the magnetization as
mys(K, L)=bg, andmy(K,L)=b’, we obtain the critical ttem- the T=0 andH=H_, point is approached along the critical
perature as a function dfi (K=1/Ty(H)) that constitutes |ine m;=m(T=0) and the critical temperature foH=0,
the effective field theory in cluster with one spiBFT-1.°  T,(0), on the sc and bcc lattices, are displayed in Table | and
For cluster with two spins, th@-H phase diagram in the compared with the series expansi¢8E) (Ref. 15 and
EFT-2 scheme is obtained from Eqd2) and (13) with  Monte Carlo(MC) (Ref. 11) values. Our results for the slope
mys(K, L) =bs and my(K,L)=b. EFT scheme of this simple a <0, indicate that the sc cubic lattice does not exhibit the
type gives, for small clusters, generally poor estimates foteentrant behavior, while the bcc lattice shown the presence
the critical temperature. These estimates converge to trugf a small reentrance in tHB-H phase diagrania,> 0). We
values asN— <o, but this convergence is slow. The critical note here that the EFT method has recently been afythed
exponents remain, as for all mean fieldlike theories, classicahe simple cubic lattice Ising antiferromagnet in a magnetic
for all N. The EFRG approach combines EFT ideas with thefield, but in this work the slope values(EFT-1)=0.29 and
renormalization groupRG) ideas, and assumes that the stag-a (EFT-2=0.24 are presented indicating a significant de-
gered magnetization®rder paramet¢and symmetry break- crease inH,=6J (reentrant behavigr The value|a /=0.44
ing fields they scale in the same wagee Ref. 19 i..,  obtained by the EFRG approach is systematically larger than
My:s=&Mys and bg=¢ébs. In the EFRG approach for clusters the SE resultda|=0.04, but present the correct qualitative
of one and two spins, the fixed critical poilt’ =K=K* behavior for the critical curvéa,<O0).
=1/Tn(H) is obtained from Eqs(10) and(12), i.e., In Fig. 1, the critical curvel versusH is presented for the
A(K*,L',b') = Ag(K *, Lb), (14)  sclattice by using the _EFT-g_LEFT-_Z, and EFRG approaches,
where we observe a line of continuous phase transitions be-
where this critical condition now depends on thencritical  tween the antiferromagneticAF) and paramagnetiqP)
variablesh’ andb, and a reasonable choice for the size de-phases. The data obtained by the EFT-1 and EFT-2 methods
pendence of these must be given in order to proceed. A nat¢iearly show a weak and broad maximum, qualitatively simi-
ral choice was proposed by Plascak and Sa Baffetoat  |ar to, but much smaller in magnitude, than predicted by
postulate an identity between the symmetry breaking fieldnean field approximatiotMFA). The effective-field theories

and the uniform magnetization of each cluster, i.e., (EFT and MFA ignores correlations in fluctuations away
= from the ordered state which will tend to destroy the order.
m(T) =b’ =D, (15) . L .
An improved approximation which can account for these
and correlations in fluctuations will show a transition at a lower
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FIG. 1. The dependence of the reduced mag-
netic fieldH/J as a function of the reduced criti-
cal temperaturé&gT/J of the Ising antiferromag-
netic model on a simple cubic lattide=6). We

present the results obtained by the EF{REf.
sc Lattice (z=6) 9), EFT-2 (present work and EFRG(present

EFT-1
e EFT-2 work) methods.

EFRG (Scaling Invariance)

temperature or at a lower external field than in the EFT caseeentrant phenomenon for a certain range of magnetic field
The RG approaches show this general feature, in accordanegound the critical valueH=H.=8J. Meanwhile, similar
with series expansions and Monte Carlo simulations. Of thigghenomenon can also be seen according to the comparison
previous analysis from detailed numerical investigations ofvith MC results. Hence we can infer that the coordination
finite size scaling(small systemg we found a small ten- number(z) strongly affects the thermodynamic properties of
dency for the re-entrance decreasing with an increase of clughe present model. Results of Monte Carlo simuldfievith
ter size, and we speculate that for larger valuetNdhese finite size scaling analysis in bcc lattice show a small in-
re-entrances disappear in accordance with rigorous results ofease inH, with a maximum occurring atl/zJ=1.02 and
series expansiolf. Our results obtained by the EFRG H/zJ=1.04 obtained by the EFRG scheme. The results ob-
scheme indicate absence of reentrant behavior. tained may be attributed to the increase of the valug tifat

In Fig. 2, we show the phase diagram in theT plane for  we expected the MFAor EFT) results become exact as the
the body-centered cubibco) lattice obtained by the EFRG coordination number goes to infinitg— ). We have also
approach and compared with the results of Monte Carlapplied the MFRG approacdfi;}® but for larger values oH
simulationst! The transition line is of second order for all there are no critical temperatures solution in the expected
temperatures and it crosses tHexis atH.=8J. We observe region(H=H; andT=0).

FIG. 2. The dependence of the reduced mag-
netic fieldH/J as a function of the reduced criti-
cal temperaturdgT/J of the Ising antiferromag-
netic model on a body-centered cubic lattiae
=8). We compare our result&EFRG) with Monte
Carlo simulationgRef. 11).

——EFRG
A Monte Carlo A

0.2 1

0.0 . , . . ' . ' ' .
0.0 0.2 0.4 0.6 0.8 1.0 1.2
T (H) / T,(0)
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In summary, we have investigated the three-dimensionahis EFRG method is to treat quantum spin models such as
nearest-neighbor Ising antiferromagnet in a magnetic field byhe spin 1/2 Heisenberg and the spin 1 Heisenberg antifer-
the EFRG approach. Two different types of phase diagraniomagnets in the presence of external magnetic field. A so-
are observed dependent on the value of coordination numbéition to this problen(spin 1/2 has been recently treated by
(2). First, in the simple cubic latticéz=6) case we do not series expansiéﬁ and variational metho# T_he EFRGI ap-
observe reentrant phenomenon, in contradiction with spuriProach was developed for the quantum spin 1/2 Heisenberg
ous results of effective-field theoEFT) (Ref. 9 and in antiferromagnet with null field! A further extension, that
complete accordance with MC simulatidhsand series would increase the size of ;he clusters, will be welcome in
expansior® Analyzing finite-size effects'small clusters order to give more information of the reentrant behavior in
with EFT, we found clear evidence of a change in criticalthe beg lattice.
behavior, i.e., we observe a tendency of change in the signal j. R. S. would like to thank Professors Dr. Jurgen Stlick of
of the slopea.. Second, in the bcc lattice case the reentranthe Universidade Federal Fluminense and Dr. Sergio Legoas
behavior appear with a small increase of critical cufld)  of the Universidade Federal do Amazonas for a critical read-
at low temperature, and our results are in good accordandag of the manuscript. This work was partially supported by
with Monte Carlo simulatiof! An interesting extension of CNPg, FAPEAM, and CAPE®Brazilian agencies
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