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Motived by theH-T phase diagram in the bcc Ising antiferromagnetic with nearest-neighbor interactions
obtained by Monte Carlo simulation[Landau, Phys. Rev. B16, 4164(1977)] that shows a reentrant behavior
at low temperature, with two critical temperatures in magnetic field about 2% greater than the critical value
Hc=8J, we apply the effective field renormalization group(EFRG) approach in this model on three-
dimensional lattices(simple cubic-sc and body centered cubic-bcc). We find that the critical curveTNsHd
exhibits a maximum point around ofH.Hc only in the bcc lattice case. We also discuss the critical behavior
by the effective field theory in clusters with one(EFT-1) and two(EFT-2) spins, and a reentrant behavior is
observed for the sc and bcc lattices. We have compared our results of EFRG in the bcc lattice with Monte Carlo
and series expansion, and we observe a good accordance between the methods.
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The antiferromagnetic Ising model, with its simple ver-
sion of two-state variables, is among the simplest conceiv-
able classes of models in statistical mechanics to describe
ordered materials strongly anisotropic with localized mag-
netic moments(insulating), for example, the FeCl2 and
FeBr2 antiferromagnets.1–4 This class shows an overwhelm-
ing richness in phase structure and critical behavior with ap-
plication of a magnetic field. A field along the easy axis will
destroy the magnetic order in the ferromagnetic case, but the
antiferromagnetic model has an ordered phase(AF) with de-
creasing transition temperatureTNsHd as the field intensity
increases. The magnetic fieldsHd versus temperaturesTd
phase diagram display an AF phase being of first order at low
temperatures and of second order at higher temperatures and
lower fields. In FeCl2, the two kinds of transitions meet at a
tricritical point. For FeBr2, a possible decomposition of the
tricritical point into a critical end point and a bicritical end
point has been observed.1 These multicritical points have
been attributed to two crucial ingredients: the ferromagnetic
intraplanar interaction and antiferromagnetic interplanar
interactions,5 so-calledmetamagnet.

On the other hand, the nearest-neighbor Ising antiferro-
magnet in a magnetic field presents only second order phase
transition for all values of fieldH in the interval between
H=0 to the critical valueH=Hc=zJ (TN=0-ground state, z
is the coordination number). Since the nature of the symme-
try breaking is not affected by the magnetic field, one ex-
pects that the transition at finite field is of second order and
belongs to the same universality class as the zero-field Ising
model. The phase diagram at low temperatures(around the
critical field H.Hc) show some qualitative differences be-
tween two- and three-dimensional lattices. Exact results of a
decorated Ising model on a square lattices2dd (Ref. 6) show
that the critical temperatureTNsHd decreases with an in-
crease ofH, going to zero atH=Hc. The phase diagram of
the quasi-two-dimensional Ising antiferromagnetic CoCs3Br5
(Ref. 7) agree with these theoretical results. Various approxi-
mative methods have shown this critical behavior of the
curve TN versus H, such as mean field approximation

(MFA),8 effective-field theory(EFT),9 mean field renormal-
ization group(MFRG),10 Monte Carlo simulation(MC),11

and high-temperature series expansion(SE).12 For the case
of three-dimensionals3dd lattice, the theoretical calculations
show disagreement between different methods. The results
obtained by the MFA, EFT, and MC methods show areen-
trant behaviorin the phase diagram in low-temperature, i.e.,
if H is just aboveHc, then these are two phase transitions as
the temperature is increased. In contradiction, SE suggests a
phase diagram like the two-dimensional results, i.e., have no
re-entrance at low-temperature. The MFRG approach fails at
low temperature, where only solution for low fields are
found for TNsHd.

Another interesting result in the nearest-neighbor Ising
antiferromagnet in a magnetic field is the slope of the phase
boundary at T=0, i.e., H.Hc+acT, that for the two-
dimensional lattice is negativesac,0d and the simple cubic
lattice s3dd is nearly zerosac.0d. This model at low tem-
peratures is equivalent to hard-core lattice gases, that use the
high-density series for the order parameter of the lattice gas
up to 24 terms.14 We can estimate values for the slope of the
phase boundaryacssquare lattice-sqd=−0.67,0 and acù0
[acssimple cubic lattice-scd=0 and acsbody-centered cubic
lattice-bccd=0.13],15 indicating that the critical curveTNsHd
for the bcc lattice shows a reentrant behavior in accordance
with Monte Carlo simulation11 sac=0.16d. Results of the
renormalization-group16 and high-temperature series12 do not
reproduce this feature of the phase diagram for the bcc lattice
(i.e., ac.0). The critical magnetizationmc, which is the lim-
iting value of the magnetization as theT=0 andH=Hc point
is approached along the critical lineTNsHd, is also a quantity
of interest. For the sc and bcc lattices, Racz15 have estimated
mc=0.57 andmc=0.645 (mc=0.644 for Monte Carlo11), re-
spectively, while the MFA(Ref. 8) and EFT(Ref. 9) methods
found mc=1.0. When the number of nearest-neighborsszd
increase, we expected that the values ofac and mc tend to-
wards their MFA valuesac=` fH.Hc−T lnsTd /2g and
mc=1.0, because MFA becomes exact as the coordination
number goes to infinitysz→`d. MFA overestimate the or-
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dering tendencies; the results forac are always larger than
the exact SE estimates(or Monte Carlo simulation). This
analysis shows that for small values of coordination number
sz,8d we haveacø0 indicating absence of re-entrance in
the phase diagram, and an increase of thez slope ac also
increase, withac.0 for the bcc lattice. We speculate that a
given approximation applied in this model will reproduce,
qualitatively, the effect of the re-entrance as a function of the
coordination number, while the MFA and EFT approaches do
not confirm these speculations.

To study the critical properties of spin models, the renor-
malization group(RG) approaches17 have shown to be effi-
cient when compared with more accurate methods, such as
Monte Carlo simulation. The great advantages of these RG
methods are the small CPU time and the possibility of ob-
taining good critical values using small systems. Due to
these successes, we decided to use the effective field RG
(EFRG) approach18 to obtain the phase diagram of the
nearest-neighbor Ising antiferromagnet in a magnetic field
for the scsz=6d and bccsz=8d lattices. The main objective is
to analyze the influence of the re-entrance in the critical
curveTN versusH as a function of the coordination number
szd, where results of Monte Carlo11 show a reentrant behav-
ior for the bccsz=8d lattice. The EFRG approach is based on
the comparison of two clusters of different sizes, each of
them simulating an infinite system. For constructing effective
field equations of states(magnetization) we use the Callen–
Suzuki identity19 as a starting point. The method treats the
effects of the surrounding spins of each cluster through a
convenient differential operator technique20 which, in con-
trast to the usual mean field approximation procedure, all the
relevant self-spin correlations are taken exactly into account
(see, for example, Ref. 17 for details and applications of the
EFRG method, as well as the potentiality). In order to apply
the RG idea, we have used small clusters. The interactions
within the clusters are exactly treated and the effect of the
remaining lattice spins is replaced by a symmetry breaking
field (here are used two fields associated to the two sublat-
tice). In the standard effective field theory(EFT) this field is
identified with the order parameter of the system. In this
scheme, both the magnetization of the clusters and the re-
spective symmetry breaking fields scale in the same way.

The model considered in this work is the nearest-neighbor
(nn) Ising antiferromagnet in a field magnetic divided into
two equivalent interpenetrating sublatticeA and B, that is
described by the following Hamiltonian:

H = J o
kki,jll

sis j − Ho
i

si,ssi = ± 1d, s1d

whereJ is the nn exchange coupling,ki , jl denoting the sum
over all pairs of nn spinsszd on a three-dimensional lattice
[here we treat the scsz=6d and bccsz=8d lattices] andH is
the strength of the external magnetic field. The competition
between the antiferromagnetic exchange interaction and the
alignment of the local moments with the external field
present interesting properties in the phase diagram. In par-
ticular, model(1) has an antiferromagnetic(ordered) phase
(AF) in the presence of a field, with the decreasing transition

temperature as the field intensity increases, where inT=0
(ground state) a second-order transition occurs at critical
field Hc=zJ.

To treat the model(1) by the EFRG approach, we con-
sider a simple example of renormalization in clusters of sizes
N8=1 andN=2 spins, and the Hamiltonian for these clusters
is given by

− bH18 = a1B8 s1A, s2d

and

− bH12 = − Ks1As2B + a1Bs1A + a2As2B, s3d

where a1B8 =L8−K8od
zs1B+d (K8=bJ8, L8=bH8) and ail=L

−Kod
z−1sil+d (K=bJ, L=bH, i =1, 2 andl=A,B).

By using the Callen–Suzuki relation19 and following the
same strategy of the differential operator technique devel-
oped by de Sousa and Araújo21 to treat the antiferromagnet
Heisenberg, the average magnetizations in sublatticeA,

m1A8 sK8 ,L8d=kTr1 s1Ae−bH18 /Tr1 e−bH18l and m2AsK ,Ld
=kTr1,2 siAe−bH1,2/Tr1,2 e−bH1,2l for clusters withN8=1 and
N=2 spins, respectively, are given by

m1A8 sK8,L8d =Kp
dÞ1

z

sax8 + sdBbx8dLufsxdux=0, s4d

and

m2AsK,Ld =K p
dÞ1,2

z−1

sax + sdBbxd p
dÞ1,2

z−1

say + sdAbydL
3ugsx,ydux,y=0, s5d

with

gsx,yd =
sinhs2L − x − yd + e2K sinhsx − yd
coshs2L − x − yd + e2K coshsx − yd

, s6d

where ax8=coshK8Dx, bx8=sinhK8Dx, an=coshKDn, bn

=sinhKDnsn=x,yd, Dn=] /]n is the differential operator,
fsxd=tanhsL8−xd and,z the coordination number.

Equations(4) and (5) are exact, but mathematically in-
tractable. Here we use an approximation which neglects cor-
relations between different spins but takes relations such as
ksil

2 l=1 exactlyinto account, i.e.,

ksiA ¯ slB · spB · ·l . ksiAl · ·kslBl · kspBl · · , s7d

where i Þ j Þ ¯ l ÞpÞ¯, and we adoptbl8=ksill and bl

=ksill, which correspond to the symmetry-breaking fields in
clusters with onesN8=1d and twosN=2d spins, respectively,
for the sublatticel=A andB. Using the approximation(7),
Eqs.(4) and (5) are rewritten as

m1A8 sK8,L8d = o
p=0

z Sz

p
DA1p

z sK8,L8dbB8
p, s8d

and
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m2AsK,Ld = o
p=0

z−1

o
q=0

z−1 Sz− 1

p
DSz− 1

q
DA2pq

z sK,LdbA
pbB

q , s9d

with A1p
z sK8 ,L8d=ax8

z−pbx8
pufsxdux=0 and A2pq

z sK ,Ld
=ax

z−1−qbx
qay

z−1−pby
pugsx,ydux,y=0.

This system has two distinct sublattice, which in the or-
dered phase(AF) have different magnetizations(and
symmetry-breaking fields). A natural order parameter is half
of the difference in the magnetization of the two sublattice:
ms=

1
2smA−mBd (staggered magnetization). Is also conve-

nient to define the uniform magnetization bym= 1
2smA+mBd.

The expansion of the right-hand side of Eqs.(8) and (9) in
powers of the parametersb8= 1

2sbA8 +bB8d, bs8= 1
2sbA8 −bB8d, b

= 1
2sbA+bBd, andbs=

1
2sbA−bBd, in first order inbs8 andbs are

given by

m1ssK8,L8d . A1ssK8,L8,b8dbs8, s10d

m1sK8,L8d . A1sK8,L8,b8d, s11d

m2ssK,Ld . A2ssK,L,bdbs, s12d

and

m2sK,Ld . A2sK,L,bd, s13d

with A1ssK8 ,L8 ,b8d=op=0
z pA1p

z sK8 ,L8db8p−1, A1sK8 ,L8 ,b8d
=op=0

z A1p
z sK8 ,L8db8p, A2ssK ,L ,bd=op=0

z−1sp−qdA2pq
z sK ,

Ldbp+q−1, andA2sK ,L ,bd=op=0
z−1oq=0

z−1A2pq
z sK ,Ldbp+q.

Solving Eqs.(10) and (11) simultaneously, i.e., identify-
ing the symmetry breaking field with the magnetization,
m1ssK ,Ld=bs8, andm1sK ,Ld=b8, we obtain the critical tem-
perature as a function ofH sK;1/TNsHdd that constitutes
the effective field theory in cluster with one spin(EFT-1).9

For cluster with two spins, theT-H phase diagram in the
EFT-2 scheme is obtained from Eqs.(12) and (13) with
m2ssK ,Ld=bs and m2sK ,Ld=b. EFT scheme of this simple
type gives, for small clusters, generally poor estimates for
the critical temperature. These estimates converge to true
values asN→`, but this convergence is slow. The critical
exponents remain, as for all mean fieldlike theories, classical
for all N. The EFRG approach combines EFT ideas with the
renormalization group(RG) ideas, and assumes that the stag-
gered magnetizations(order parameter) and symmetry break-
ing fields they scale in the same way(see Ref. 19), i.e.,
mN8s=jmNs and bs8=jbs. In the EFRG approach for clusters
of one and two spins, the fixed critical pointK8=K=K*
=1/TNsHd is obtained from Eqs.(10) and (12), i.e.,

A1ssK * , L8,b8d = A2ssK * , L,bd, s14d

where this critical condition now depends on thenoncritical
variablesb8 andb, and a reasonable choice for the size de-
pendence of these must be given in order to proceed. A natu-
ral choice was proposed by Plascak and Sá Barreto,22 that
postulate an identity between the symmetry breaking field
and the uniform magnetization of each cluster, i.e.,

msTd = b8 = b, s15d

and

A1sK8,L8,b8d = A2sK,L,bd. s16d

We can simultaneously solve the set of three equations
(14)–(16) with L8=L;h/TN sh=H /Jd, and obtain the values
of TN andb8=b for each value of the intensity of the external
field H on a simple cubic-scsz=6d and body-centered cubic-
bcc sz=8d lattices. Results of the numerical values for the
slope of the phase boundaryac=sdH/dTdT=0, critical magne-
tization which is the limiting value of the magnetization as
the T=0 andH=Hc point is approached along the critical
line mc=msT=0d and the critical temperature forH=0,
TNs0d, on the sc and bcc lattices, are displayed in Table I and
compared with the series expansion(SE) (Ref. 15) and
Monte Carlo(MC) (Ref. 11) values. Our results for the slope
ac,0, indicate that the sc cubic lattice does not exhibit the
reentrant behavior, while the bcc lattice shown the presence
of a small reentrance in theT-H phase diagramsac.0d. We
note here that the EFT method has recently been applied9 to
the simple cubic lattice Ising antiferromagnet in a magnetic
field, but in this work the slope valuesacsEFT-1d=0.29 and
acsEFT-2d=0.24 are presented indicating a significant de-
crease inHc=6J (reentrant behavior). The valueuacu=0.44
obtained by the EFRG approach is systematically larger than
the SE resultsuacu=0.04, but present the correct qualitative
behavior for the critical curvesac,0d.

In Fig. 1, the critical curveT versusH is presented for the
sc lattice by using the EFT-1,9 EFT-2, and EFRG approaches,
where we observe a line of continuous phase transitions be-
tween the antiferromagnetic(AF) and paramagnetic(P)
phases. The data obtained by the EFT-1 and EFT-2 methods
clearly show a weak and broad maximum, qualitatively simi-
lar to, but much smaller in magnitude, than predicted by
mean field approximation(MFA). The effective-field theories
(EFT and MFA) ignores correlations in fluctuations away
from the ordered state which will tend to destroy the order.
An improved approximation which can account for these
correlations in fluctuations will show a transition at a lower

TABLE I. Values of critical temperatureTNs0d, slope of the
phase boundaryac, and critical magnetizationmcs0d for the Ising
antiferromagnet on simple cubic(sc) and body-centered cubic(bcc)
lattices. Results obtained by the MFRG(Ref. 13), EFRG (present
work), series expansion(SE) (Ref. 15), and Monte Carlo(MC)
(Ref. 11) methods are presented.

mcs0d ac TNs0d

MFRG sc 4.93

bcc 6.95

EFRG sc 0.67 −0.44 4.85

bcc 0.75 0.07 6.88

SE sc 0.57 −0.04 4.52

bcc 0.65 0.13 6.35

MC sc 0.59 4.51

bcc 0.64 0.16 6.36
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temperature or at a lower external field than in the EFT case.
The RG approaches show this general feature, in accordance
with series expansions and Monte Carlo simulations. Of this
previous analysis from detailed numerical investigations of
finite size scaling(small systems), we found a small ten-
dency for the re-entrance decreasing with an increase of clus-
ter size, and we speculate that for larger values ofN these
re-entrances disappear in accordance with rigorous results of
series expansion.15 Our results obtained by the EFRG
scheme indicate absence of reentrant behavior.

In Fig. 2, we show the phase diagram in theH-T plane for
the body-centered cubic(bcc) lattice obtained by the EFRG
approach and compared with the results of Monte Carlo
simulations.11 The transition line is of second order for all
temperatures and it crosses theH axis atHc=8J. We observe

reentrant phenomenon for a certain range of magnetic field
around the critical valueH.Hc=8J. Meanwhile, similar
phenomenon can also be seen according to the comparison
with MC results. Hence we can infer that the coordination
numberszd strongly affects the thermodynamic properties of
the present model. Results of Monte Carlo simulation11 with
finite size scaling analysis in bcc lattice show a small in-
crease inHc with a maximum occurring atH /zJ.1.02 and
H /zJ.1.04 obtained by the EFRG scheme. The results ob-
tained may be attributed to the increase of the value ofz, that
we expected the MFA(or EFT) results become exact as the
coordination number goes to infinitysz→`d. We have also
applied the MFRG approach,10,13 but for larger values ofH
there are no critical temperatures solution in the expected
region (H.Hc andT.0).

FIG. 1. The dependence of the reduced mag-
netic fieldH /J as a function of the reduced criti-
cal temperaturekBT/J of the Ising antiferromag-
netic model on a simple cubic latticesz=6d. We
present the results obtained by the EFT-1(Ref.
9), EFT-2 (present work), and EFRG(present
work) methods.

FIG. 2. The dependence of the reduced mag-
netic fieldH /J as a function of the reduced criti-
cal temperaturekBT/J of the Ising antiferromag-
netic model on a body-centered cubic latticesz
=8d. We compare our results(EFRG) with Monte
Carlo simulations(Ref. 11).
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In summary, we have investigated the three-dimensional
nearest-neighbor Ising antiferromagnet in a magnetic field by
the EFRG approach. Two different types of phase diagram
are observed dependent on the value of coordination number
szd. First, in the simple cubic latticesz=6d case we do not
observe reentrant phenomenon, in contradiction with spuri-
ous results of effective-field theory(EFT) (Ref. 9) and in
complete accordance with MC simulations11 and series
expansion.15 Analyzing finite-size effects(small clusters)
with EFT, we found clear evidence of a change in critical
behavior, i.e., we observe a tendency of change in the signal
of the slopeac. Second, in the bcc lattice case the reentrant
behavior appear with a small increase of critical curveHsTd
at low temperature, and our results are in good accordance
with Monte Carlo simulation.11 An interesting extension of

this EFRG method is to treat quantum spin models such as
the spin 1/2 Heisenberg and the spin 1 Heisenberg antifer-
romagnets in the presence of external magnetic field. A so-
lution to this problem(spin 1/2) has been recently treated by
series expansion23 and variational method.24 The EFRG ap-
proach was developed for the quantum spin 1/2 Heisenberg
antiferromagnet with null field.21 A further extension, that
would increase the size of the clusters, will be welcome in
order to give more information of the reentrant behavior in
the bcc lattice.
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