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Quantum relaxation dynamics of magnetic moments in a radiative reservoir
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A quantum Langevin equation is derived to describe the relaxation dynamics of a magnetic moment in a
static magnetic field and radiative reservoir. The damping and fluctuation forces are derived from the radiative
interaction between magnetic moment and surrounding reservoir. Through the use of a symmetrized interaction
Hamiltonian, the damping force is identified due to the combination of radiation self-reaction and reservoir
fluctuations. The radiation self-reaction is a quantum version of its classical counterpart, whereas the reservoir
fluctuations are solely a quantum effect resulting from the quantization of the electromagnetic field. The
relative magnitude between these two effects changes during the relaxation process. This equation shows that
the relative magnitude of the quantum correction to the classical Landau-Lifshitz description is inversely
proportional to the system angular momentum quantum number.
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I. INTRODUCTION ticular, the thermally activated magnetization reversal in fer-

With the recent advance in magnetic nanoparticleromagnet'c particles. As the size of the magnetic particle in

experimentsand the continuing increase in magnetic record ?helgvctlzei(szz:::(zlllogIeusat(lz(())r?t;aneuceosmtgsdicégﬁjﬁa;r;e application of
ing density, where magnetic grain is also on the nanometer d 4

scale, the dynamics of magnetic particles will soon be in th In the quantum regime, this equation needs to be revised.

varsion beween cassca and auantm regmes. When 1115 ¢ s e e e eaueton resoiee o
magnetic particle is placed in an uniform static magnetic P ponding

field, the magnetic momem precesses about the magnetic pEys!cal _mer?nlngs. ;he BI?Ch eqfuaﬂénn quanturrll m?'
field direction. At the same time, it also moves toward theC anics is the one that could be found to most closely re-
field direction because of the damping effect from the inter- emk(;le thde fLandaul L'fSh'th equation. dTh'S eqléatlon \lllvas If'rSt
action with the reservoir. Depending on the type of reservowbn;:lzléjgfe d a(_)rd;:rl:]C gzrn']r; l:gt'i:nnfé%gmlt ;:cs)blearﬂcaané/ :aiobe
the relaxation mechanism can be due to radiative interaction d db tﬁ d gt t P YeFhe Bloch
phonon interaction, spin-spin interaction, and/or random col- erived by using the density operator appro € bloc

lisions in fluid environment, etc. The internal degrees of free- equation is expressed as

dom of the magnetic moment, e.g., the exchange coupling (<M Y=Mo)Z  (MYX+ (MY
between constituent spins, is assumed to be not affected by —(M)= M) X B,Z £ -— Y
the externally applied field. This assumption basically states T T2
that the magnitude of magnetic moment or the angular mo- (2

mentum quantum number is constant, which is normally true

under most conditions. In the classical regime, this relaxatio''€7€X, ¥, andz are the unit vectorsl, is the steady state

dynamics is described by the Landau-Lifshitz equétion magnetization, and, andT, are the longitudinal and trans-
verse relaxation time constants. The longitudinal relaxation

dM Y | Y - describes the change of magnetization along the applied field
ot = (M X B) - —=M X (M X B), (1)  direction. The transverse relaxation describes the loss of co-
M herence of transverse magnetic moment due to random res-

where y is the gyromagnetic constant. The first term on theervoir fluctuationg?® It is interesting to see that this descrip-

right-hand side of Eq(l) describes the familiar precession. tion of relaxation dynamics is very different from that in the

The second term describes the phenomenological damplrléiass'cal Landau-Lifshitz Eq1). A quantum equation is ex-
force with damping constank. Based on the fluctuation- ected to be able to reduce to its classical counterpart under

dissipation theorer? a zero-mean random fluctuation noise certain approximations, e.g., the relevant quantum numbers

become very large. It is important to derive an equation to
Sf
B'(t) is added to the magnetic field to describe the ﬂucwaresolve this discrepancy.

tions associated with the damping processThe random This paper presents a fully quantum-mechanical deriva-
noise Bi(t) satisfies the correlation relatio(B()B](t'))  tion for such an equation. The analysis considers only the
=20kgT/(yM)&;8(t-t')°> wherei and j are Cartesian indi- radiative system-reservoir interaction, i.e., damping due to
ces. This relation is essential to ensure that the magneti@adiative energy decay. The system is defined as the mag-
moments has a Boltzman distribution at thermal equilibriumnetic moment in a dc magnetic field. The reservoir is the
This Langevin form of the Landau-Lifshitz equation, also surrounding thermal radiation. This damping mechanism is
referred to as the Landau-Lifshitz-Gilbert equation, has beeshosen because the interaction Hamiltonian is well defined
widely used to study various magnetic dynanfic$,in par-  and depends only on fundamental parameters. Even though
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the radiative damping is not the primary contributing factorfor notational simplicity. The creation and annihilation op-

to the overall damping effect in a real system, the form of theeratorsél and 3, satisfy the commutation relatiorﬁén,é,ﬁj

interaction Hamiltonian is, in fact, rather general and can be- g, and [én,ém]:[éx,é;]:o, where different polarization

applied to other damping mechanisms except with differenstates are included in the the operator subfix. In this quanti-

interaction coefficients. The derived equation, therefore, prozation formalism, a discrete summation over wave vector

vides general insights to the relaxation dynamics. component is used for mathematical simplicity. This does
The analysis focuses on the dynamics of angular momenyot compromise any important physics of interest in this

tum operatord because the magnetic moment is simply re-paper.

lated to angular momentum by the gyromagnetic consfant

This derivation leads to an angular momentum operator rate

equation in the Langevin equation format, which includes a

damping term and random fluctuation noise. Part of the

damping term is in a form similar to the phenomenological  The Hamiltonian for a magnetic moment placed in a static

damping force in the Landau-Lifshitz equation. It is contrib- magnetic fieldB,. and radiative reservoir is

uted by the interaction of the magnetic moment with its own

field (self-reaction. The other part of the damping term is ata 1 A A

more similar to that in the Bloch equation. It is contributed H=2 fioy LY W -Byge— W B, (5)

by the zero point vacuum fluctuations and thermal fluctua- k

tions of the surrounding reservoireservoir fluctuations \ here the first term is the radiation field Hamiltonian of the

The equation not only provides a detailed physical picturgesengir, the second term is the system Hamiltonian of the
for the relaxation dynamics, it also quantitatively descr'besmagnetic moment in static magnetic fiely,, and the last

.. . . R o

the transition of the relaxation dynamics between classicalgyy, js the radiative interaction Hamiltonian between mag-
and quantum regimes. The rest of the paper is organized g%.ic moment and reservoir field. This interaction term as-
follows. The notation for the quantized electromagnetic fieldg ,mes that the physical size of magnetic moment is much
is briefly introduced in Sec. II. The derivation for the quan- gaijer than the wavelength of the electromagnetic field that
tum Langevin equation is detailed in Sec. lll, where the ., gignificantly contribute to the interaction. The magnetic

analysis is done in the Heisenberg picture. Finally, the physiyament, therefore, sees a spatially uniform electromagnetic

cgl meanin_gs of the derived equation and itg implications ar@. 4 for all frequency components of interest. For wave-
discussed in Sec. IV, followed by a conclusion. lengths shorter than the physical size of magnetic moment,
the interaction term has to take into account the spacial av-
erage of the field seen by magnetic moment. The short wave-
length components, therefore, contribute little to the interac-
tion term and can be neglected. The angular momentum and
In the conventional quantization formulation, the electro-€lectromagnetic field observables are same-time commut-
magnetic radiation is often expressed in terms of a set okble. The order of these two operators in the interaction term
eigenmodes, where each mode is quantized as a simple hgg‘s-ur)determined, i.e., the interaction term can be written as

monic oscillator. The quantized vector potenti?alin the  B-yJaswell or even an arbitrary linear combination of these
plane wave mode expansion basis has the expression two different ordered expression&yJ:-B+(1-a)B-9J,

R P where O< a=<1. The final derived rate equation fdris in-
_ > A i I\T e 7 . . .
A= ﬁsk{aks exp(ik - X) + &, exp(= ik - )}, dependent of the order of and B in the interaction term.
ke 0%k However, it was pointed out that this interaction term has to
3 be symmetrized in order to rationally identify the respective
effects of radiation fluctuationginteraction of the system
with the quantized radiation fiel&and self-reactioriinterac-
tion of the system with its own fiejdnvolved in the inter-
action proces$’ The total Hamiltonian is thus rewritten as

Ill. THE QUANTUM LANGEVIN EQUATION OF
ANGULAR MOMENTUM J

II. NOTATION FOR THE QUANTIZED
ELECTROMAGNETIC FIELD

wherek is the wave vector of each plane wave modg,s
the corresponding oscillation frequendy,is the volume of
the quantization box, angl (e=1,2) are the two orthogonal
polarization unit vectors associated with each ve&tdFhe
time dependence is implicitly included in amplitude operator

1 1 ~ -
= e, +=)-+3- -z ) .
a,.. Given this quantized vector potentidl| the quantized H _% ﬁwk<aka*‘+ 2) 7B 27(‘] B+B-J).

magnetic field operatdB is 6)
- A o h L 2 From the above Hamiltonian, the equations of motion for
B=V XA=2i k % - explik - X o eq :
% 2epm VvV o3 explik-X) angular momentum and field amplitude operators, in the
. Heisenberg picture, are
- &f, exp(- ik - %)} (4)
The poIarAizationA\{ecto.@k will be implicitly inglqded in thg a - i[j,H] - yj X Bge+ Z(j ¥ B-B X j) 7)
operatorsa, and a, subsequently whenever it is convenient dt i 2
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J=i—=+
V2
whereJ, =J,+iJ, andJ 3X ijy are the conventional raising

B % J),

and lowing angular momentum operators. Using this new
-B

— M H y
basis, with thez vector chosen to be aligned with the dc
(12

>

QUANTUM RELAXATION DYNAMICS OF MAGNETIC
magnetic field direction, Eq.7) becomes
JxB

d~ .~ = .~ F
—J=iQJ,—=-1QJ.—=+-(JI X
v v2 2
where Q=-9|ByJ is the precession frequency along the
axis. In the rest of paper, the gyromagnetic constant is as-

dt
sumed to be negative if not explicitly stated. The formal
(13

solution for each component dfis
t
~(IXB=-B XJ),-zdt’

jZ:jZ(tO) +f
to
! 3 ~ ~ ~ —
J, = J,(tp) et f 23 xB-BxJ), -\ 252%gy
1,
(14)

0

FIG. 1. The spherical coordinate representation for the unit
(IXB-BXJ)y 2
(15

wave vectok,,, wherel and é( are the two orthogonal polarization
=J_(tg)e M) + J
to

states for each wave vectkr
(I X K,) -8 exp—iK - X))
(8)

- i(‘)kéks
—IQt -t’) dt/

da, 1_.

= — ,H

at i et

where gy=7v\/(/ 260 V)K is the coupling coefficient be-
tween angular momentum operatbiand the radiation field
amplitude operatod,, k, is the unit vector ok as shown in

Since the main interest is in the dynamics of the systen©On the right-hand side of each of the last three equatlons the
angular momentum and no observation of the reservoir fielgst term describes the free evolutigorecessionpart of J,

identified asJf, and the second term describes the source

grlven part of] by the reservoir f|eIcB identified asJs. The
fundamental quantum operatolsand a,, is of the order of

» U
Fig. 1, andx; is the position coordinate of the system
O(gy) compared to the free evolution pa]f The formal

X IZ ) _é’ke—iwk(t t')-ik Xadt!
ke(1),

is made except knowing that it is at temperatliy¢he goal is
to derive a simplified equation . From Eqgs(7) and (8),
the angular momentum and field operators are cross couple
solution of Eq.(8) is
By, (1) = By, (to)e Ko K f (")
)ik (16)
(17

The field operatod,, in addition to its own free evolution, is Magnitude of the source terd, when expressed in terms of
t

driven by the angular momenturh(magnetrc momenM)

source. Similarly, the angular momentum operaloin ad-

dition to its own precession due to the dc megnetic fild
=8, (1) + &

.(t) is the free evolution andg,(t) is the contribu-

tion from the radiation sourcé Slmllarly, the total reservoir

is driven by reservoir magnetic field opera®r(a,). When
field B consists of a free evolutioB' and a source driven

the coupling constardy is small, which is the case since the
size of the reservoi¥ is very large by definition, a second
order perturbative calculation is sufficient. The simplification
is to obtain the formal solutions of Eq&) and(8) and then
substitute these solutions into the interaction terms of(Eq.
and keep the calculation up to the second ordegin
In order to further facilitate the derivation, the unit vector where
(9) partBs. The magnitude of the source tedj), (BS) is also of
the order ofO(g,) compared to the free evolution paii
(Bf). The above formal solutions fal, Egs.(13)<15), and
a,, Eq.(16), will be used to calculate the interaction terms in
the angular momentum rate E{) up to the order oD(g?

basis(+,-,7) is introduced where
1. .
= —=(X+1iy),
The first interaction ternd X B will be calculated first. The

(10)
simply reversing the order of the operators therein

- 1
=—=(X—-i
\2( iy).

The angular momentum in this coordinate system is exsecond interaction ternB X J can be readily obtained by
224435-3
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Using the free evolution and source driven terms of field

operatoré, the first interaction term in Eq7) is separated
into two parts

3.(t) =i(t)eim, (29

. s e J_(t) = J_(t)e ™, (25)

¥Y(J X B) = y(J X BY) + J X BY) (18)
wherel(t) andj_(t) are slowly time varying functions due

=R(t) + S(1). (19 to the system-reservoir interaction. First, let us examingthe

The partR(t) describes the change rate of angular momenSOmponent ofS(t) in Eq. (23),

tum due to its interaction with the free evolution of reservoir 1t ® A A
field Bf. This contribution is often called reservoir fluctua- S(t)=- —f dt'f dKG(Jyy J_p € Pt
tions. The parS(t) describes the change rate of angular mo- 0
mentum due to the interaction with its self-generated field

1 ! to the _ _ _3. T e i@t _ T (@t
BS. This contribution is often called self-reaction. Using the Tt et
Ao : . .
result fora., in Eq. (16), S(t) is £33, e i) 26
2 t
S(t)=J x >, %|f {Ky X [I(t") X K JeToxtt) —H cldt, SinceGy is a slow function ofk and is modulated by sinu-
k ! soidal functionse®(@W(tt") the integral ovek is signifi-

(200  cant only fort’—t and becomes negligible fdr-t'>1/A,

whereA is the spectral width 06,. As a result, the mtegral
where H.c. stands for Hermitian conjugate. This self-reaction

term is of the order of(g?). The summation is taken over OVert’ can be approximated by the SUbStltUtlﬂJ(m )=J(t)

thosek values satisfying the periodic boundary condition of and replacing, by —. 1920

the quantization box, i.elk|=2mn/L, wherei=x,y,z nis a To better illustrate this approximation, the integral of the
positive integer and. is the length of the quantization box. first term in the parenthesis is rewritten as

In Kk space representation, thekevalues sit on the cubic ¢ A

lattice points where the cubic volume isr§L3. Therefore, f dt'h(Q,t—t)J,()I_(t), (27)
the quantization mode density js(k)=V/(87°), where V t

0
=L3. The summation over quantization mode comporient

can be mathematically approximated by an integralkin Whereh(Q,t-t')=[5dkGe @ ¥t). The functionGy has a
spacé® k® dependence. This is derived for radiation wavelengths sig-
nificantly greater than the physical size of magnetic moment.
_ 2 As mentioned earlier, the interaction Hamiltonian becomes
2 = J_ J L_Op(k)k sin gdoddk, (21) negligible for wavelengths much smaller than the physical
size of magnetic moment. This implies thag is a decreas-
where ¢ and 6 are the polar coordinates in tHevector ing function ofk whenk is very large. The spectrum @,
space. After carrying out the integral ovérand 6, the self-  therefore, has a finite widthh. The time constant,=1/A
reaction term is reduced to can be regarded as the reservoir correlation time bedagse
describes the spectrum of the reservoir field components that
can significantly interact with magnetic moment. When
-t'>1/A, the product 0fG, and €@t s 3 fast oscil-
lation function ofk and the integral ovek, i.e.,h(Q,t—t’), is
negligible. Whent—t’ =0, it is clear that the integral is sig-
nificant. This property oh({),t—t’) means that the integral

L L X 2
:_EJ dt'f dKG(Jsy Iy = I Jup) (€7 —¢c.c)Z in Eq. (27) is mostly contributed by those values &f(t’)
t 0 z

. " . whent’ is very close tot. If 3_(t) varies very little over a
+J dt,f qu(jzt j_t/ _ j_t :]Zt,)(e—iwk(t—t’) _ c.c.); time interval of the order of,, the integral in Eq(27) can be
0 V2 > <

approximated by replacing.(t") by J_(t) andt, by —. This
z approximation basically says that the system relaxation time
J dt’f deK(Jthw —JﬂJ ) (€ lo(tt') _ ¢ c)—=, is much longer than the reservoir correlation time. This con-
V2 dition is satisfied under most circumstances because the res-
(23 ervoir, by definition, consists of a very large number of de-
grees of freedom and therefore has a very short correlation
WhereGk—(gﬁ/h)p(k)37'rk2 and c.c. stands for complex con- time .. Phy5|cally, this approximation implies that the

jugate. To evaluate the integral, the precession frequencyhange rate o depends only on its present state and has no
components oﬂ are factored out by expressions memory of its past history. This is in fact the so-called

S(H)=J(t) X | J dt’ f dk— (k)gwkzjt,(e-iwk“-t’)—c.c.)

(22)
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Markoffian approximation in the context of stochastic pro- The self-radiation reaction, however, only accounts for
cesses. part of the energy dissipation processes experienced by the
With the above approximation, the integral in E86) can  magnetic moment. The other part of energy dissipation

be readily carried out by first integrating ovér which re-  mechanism is due to the reservoir fluctuation teRit) in

sults in 8(Q2+ wy) functions, and then integrating overThe g4 (19). To evaluate the reservoir fluctuatiom(t)=J
overall integral is mainly contributed by the first and fourth
terms in the parenthesis for a negative gyromagnetic consta
and the self radiation reactidg(t) is reduced to

ﬁiéf, substituteJ by its free evolution and source driven
parts obtained from Eq$13)—(15),

1o o R(t) = y(t) x Bf(t) (34)
S(t) =~ EEGKQ[L(I)J-(I) +J.(1)J3.(0], (28)
=431(t) X B(t) + y3%(t) x Bf(t 35
where the subscrigt,=Q/c. (For a positive gyromagnetic W )+ ® 39
constant, the above equation changes sign because the inte- —R'(t) + RE(1). (36)

gral is instead contributed by the second and third terins.

addition to the above result, there is actually also an imagiThe reservoir average of the first tefi=1Jf(t) x B (t) is

nary part in the integral calculation. This is in fact very much G is i ot

like the Lamb shift! in the atomic energy level due to the Zero bepause free 9\:(_)"“'“ IS |n.der.;)endent 0B’ and the
atom-field interaction. Because this shift is usually rathef€Servoir average d' is zero. ThisR" term corresponds to
small and is not the main interest of this paper, it is neglectedhe zero-mean random fluctuation noise in the Langevin
here. Applying similar calculations, the other two compo-€duation context. The reservoir average of the second term

nents ofS(t) are reduced to RB=ij(t) X I%f(t) is not zero becaus@z‘s(t) is driven by the
. reservoir fieldB. This second term partially contributes to
S_(t):—GkQ\]Z(t)\]_(t), (29 the damping and is proportional to the fluctuation noise
c

power, which will be calculated shortly. The zero-mean ran-
dom fluctuation forceR' is of orderO(g,), and the nonzero
mean reservoir fluctuation induced dampiR§ is of order
O(gﬁ). This is a general characteristic of Langevin equation.

. . . AS .
(The above two equations also change sign for a positivgo carry the calculation further, the field operaégrin J% is

. ¥ . approximated by its free evolution paf. Since the reser-
gyromagnetic constantThe above self-reaction results are voir field, by definition, is insignificantly perturbed by a

carried out from the interaction expressigfhx BS. Itis clear small system, the difference betwegranda is rather small
fthat& and S, are not Hermlt_lan operators, thergfore, itis and is only of orderO(g,). This approximation leads to a
improper to associate them with a physical meaning. In ordegqiation of ordeiO(g?) for the calculatedR® and is, there-

to obtain a Hermitian expression, the symmetrized interacfOre justified because we calcula®4) andR(t) only up to

tion Hamiltonian needs to be used. The self-reaction fromorderO(gﬁ). After expanding the cross products and applying

¥B*XJ can be readily obtained by simply reversing the or-yhe similar Markoffian approximation used to calculate the
der of the operators in the above results. The Hermitian selfgg|f_reaction terns(t) in Eq. (26), the symmetrized Hermit-
reaction termS,(t) becomes ian reservoir fluctuationRy(t) become(see Appendix A for

S0 = G L0, (30

Yo Al oA a detailg
SH(t) =Z(I X BS-B°X J) (3D . .
’ Ru(t) = 3'() X B(t) - ~G ﬁ(j 7+ ii+£;>
) H Y c kQ z 2 \s”2 2 \J’E
B L N R & )
== EEGKQ(»LJ- +J.3,)Z+ EEGKQ(JZJ- + J-Jz)E X (1 + 20g) (37)
J . =R! +RB
+ 276, (3.+3.3) = (32) R 39
2¢c V2 whereR!, stands for the zero-mean random fluctuation force
andRE stands for the reservoir fluctuation induced dissipa-
1 tion. From the above result, we see that the reservoir fluc-

=5 CGkﬂ[J X (X2 - x2 xJ]. (33 tuations contribute to the decay of all three angular momen-
tum components. The magnitude of this decay rate is
(The above equation changes sign for a positive gyromagproportional to 1+8, where the unity is a result of the
netic constany. The last expression shows that the effect ofelectromagnetic field quantization and stands for the zero
the self radiation reaction always moves the magnetic mopoint vacuum fluctuations an, is the thermal photon num-
ment toward the applied dc magnetic field direction. Thisber operator. The reservoir average of thermal photon num-
description exactly matches to the phenomenological dampberﬁkn at temperaturd is <ﬁk“>=1/[exp(h9/kBT)—1]. Due
ing term in the classical Landau-Lifshitz E(.). to the existence of the zero point vacuum fluctuations, the

224435-5
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reservoir fluctuation induced dissipation is inescapable even
at zero temperature.

Given the results of the self-reactid@y, Eg. (33), and
radiation fluctuation®Ry Eq. (38), we are now ready to re- .
write the angular momentum rate equation in a quantunand verify that the rate Eq39) for J indeed satisfies the
Langevin format above relation. This proof is provided in Appendix B.

From statistical mechanics, when a system reaches ther-
mal equilibrium with its surrounding reservoir at temperature

A o~ d]
XJ+IX —=ih— 41
ol (41)

Ej = 93 X By + Sy(t) + RE(t) + R (1), (39) T, it will be in a Boltzmann statistical mixture of its energy
dt eigenstates. It is straightforward to verify that the angular
momentum operator ratg9) indeed reaches thermal equi-
where the dissipation forc8y(t)+RE(t) is librium at this state, i.e., Tos)}=0, where the density op-
erator
1 A oa R -
Sy(t) + Rﬁ(t) =+ —EGKQ[J X (IX2) - %2 xJ] M ms
2¢ ge= > 13,my(m,J], (42)

[
|

— 'l
1 A .. 7 R m=-J 2 e
- E—Gkﬂﬁ(l +MN)| 232+ =+,
¢ V2 \ and B=rQ/kgT. The quantum magnetic moment rate equa-
(40) tion can be easily obtained byl = yJ. The damping con-
stant due to radiative decay becomes =G, M/ (cyQ)). It

and the zero-mean random fluctuation force RE,(t)  can also be shown that the precessing magnetic moment sees
=J1(t) X B(t). The = signs are for negative and positive & zero-mean random fluctuation figdd(t) with the statistical

gyromagnetic constants, respectively. The dissipation proProperty
cess is identified as partly due to the interaction of the mag-
netic moment with its self-generated figlself-reaction S

and partly due to its interaction with the fluctuating reservoir
field (reservoir quctuatiorysRE. The self-reaction term is in

a form similar to the classical damping term in the Landau-
Lifshitz equation. Physically, this damping force is the result 5 kLT<1 N 170
of the radiative energy loss due to magnetic moment preces- o ayM 2ksT
sion and can be viewed as a quantum version of its classical

counterpart. Th_e reservoir fluctu.ations are similar to th_e\/vherei and | are Cartesian indices and the approximation
damping terms in the Blpch equation. This .damplng effect |s<ﬁkﬂ>:kBT/(ﬁQ) for #Q <kgT is used in the second equal-
the result of the magnetic moment dephasing due to the SUfy, “he |ast expression is identical to the classical expression
rounding reservoir random fluctuations. They include Cont”'except for the additional second term in the parenthesis
butions from random thermal photon fluctuations and zerQypich represents the contribution from zero point vacuum
point vacuum fluctuations. One further interesting aspect oy ,ctuations. One final note. even though the rate (86) is

this damping force is that the derived longitudinal decay rai§yeriveq specifically for the relaxation of a magnetic moment,
is twice that of the transverse decay rate. This stands in cORyg resylt is also applicable to the electric dipole radiation of
trast to the tlwo independent decay rates in the_conve.nnong collective 2 two level systems. This is the so-called su-
Bloch equation. The zero-mean random fluctuation nBige perradiance, where the system state can be modeled as an
describes the fluctuation force underlying the dissipation PrOoangular momentum stafd, m).22

cess and completes the full description of the relaxation dy- ’

namics.

The zero-mean random field fluctuatioB(t) are not IV. DISCUSSION

only important from the view point of fluctuation-dissipation

theorem, it is also essential to assure that the derived equa- Let us cons_lo!e_zr a system with a negative gyromagnetic
constant and initially in an angular momentum stgten

tion is self consistent, i.e., to preserve the angular momentum

commutation relation. In order to demonstrate the quantu 7)) The reservoir is assumed to be at temperali#®, i.e.,

. L e €q Thermal photon numbeti,)=0. Physically, the magnetic
self consistency, it is necessary to verify if the derived angu- tis at its hiahest at d wil duall
lar momentum equation still satisfies the fundamental comMmoment is at 1ts nighest-energy staté and will gradually

move toward the lowest energy state. From the derived rate

mutation relatior{J;, J;]= €iifJ, wheree; is the permuta-  oqation, the initial system energy decay rate is

tion constant, or in a vector formatx J=iAJ. Instead of

solving for the rate equation and check if the solution satis- <
Q

P hQ) 1
BlBlt)) = 2ay—M(<ﬁku> + 5)6” At-t) (43

)5.;5(t—t’), (44)

fies the above commutation relation, an alternative approach

djz 17 PN o~ ~
X ) L . X =0\ - ——GKQ(J»]— +J.J, +20J,) (45)
is to take time derivative of the commutation relation 2c¢ i

dt i
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T T T Sir?
=——OG, % - —QOG, #?, 46 =—G ﬁz(—'zsinza—'(l— ))z
& Gk 7] = 0GR (46) < Cka i ] 5
A a A R m (2 1) g i
where J,J_+J_J, and 2J, are due to self-reaction and * CGknﬁ (J z)e smacose\&

vacuum fluctuations, respectively. These two effects equally
contribute to the initial system energy decay rate. The T ol o 0\ g - 7 2
vacuum reservoir fluctuations play a very crucial role in +EGkQﬁ =5 e"f’smacosaﬁ—szQh
starting the relaxation process because it not only introduces

an initial tipping force toJ but also provides a path for the
self-reaction decay to start. After the decay process is com-
pleted, the angular momentum eventually reaches the lowest-
energy statej,—j). The energy decay rate at this state is

>

. I
><](1+2n9)<cosaz+—S|n0<e""’?+e"/’?>),
2 V2 V2

(52)

where, in the last equality, the first three terms are due to the
self-reaction effect and the last one is due to the reservoir

dJ 1 Ana .
Q<d—tz> = Q<— Eq—CTGkQ(JJ,J_ +J.J, + 2ﬁJZ)> fluctuation effect. The above expression shows how the mag-

i nitudes of self-reaction and reservoir fluctuation effects
(47)  change for different coherent angular momentum gt3ie).
It also shows how the dynamics transits from quantum to
classical regimes as angular momentum nunjkiacreases.
_m 5. T . The magnitudes of self-reaction and vacuum fluctuation
- EGth ]+ EGkQﬁ J (48) contributions to magnetic moment relaxation are determined
by the Z components in Eq(52). The magnitudes of these
two effects are comparable whens close to zero otr. As
-0 (49) 6 approachesr/ 2, the self-reaction effect becomes dominant
' over the vacuum fluctuation effect. In fact, the self-reaction
effect is always greater or equal to the vacuum fluctuation
The vacuum fluctuations play a crucial role here, again. Theffect with equality a®=0 or 7 and the reservoir fluctuation
energy loss due to self-reaction is exactly balanced out by theffect makes no contribution to system energy decay at
energy gained from vacuum fluctuations. This ensures the(. The transition of relaxation dynamics from quantum to
stability of the ground state. classical regimes is determined by thelependence in Eq.
Another interesting point to check is the relative magnl-(52) When the angu|ar momentum number becomes very
tude between the self-reaction and vacuum fluctuation effectgrge, the energy decay is mainly determined by the self-
during the relaxation process. Since it is rather difficult toreaction terms withj2 dependence and E¢52) can be re-
obtain the detail evolution of angular momentum operatorduced to
for illustrative purpose, one can instead evaluate the relative
magnitudes for different coherent Bloch staté$!

) +
(Sy+RE) = %Gkﬂh2j2<— Sir? 6Z+ €7'* sin @ cos6—=

j ; 12 _j+m
_ (2))! ) 7 . -
|01¢>_ 2 (( (l+|7"2)]|1,m>, )

=
/

V2

2\ Grmrei-j-m! +e*singcoso— (53
(50)
T > >
wherer=e"%/tan(6/2). This state is chosen because the ex- =EGkﬂﬁZJ X (J X 2). (54

pectation value of angular momentum for this state closely

resembles a classical angular momentum vector with magniFhe reservoir averaged angular momentum rate equation for
tude #j and polar coordinatd®, ), i.e., (3),,=#j. The @ coherent state,$) is then simplified to

Qamping force experienced by this angular momentum state d . . L

is g1 = Y X Baox G X (%2, (55

for j>1. The = signs of damping term are for negative and
positive gyromagnetic constants. Sinces assumed to be a

very large quantum numbefj can be considered as a clas-

(S +RE =376, (3% (% 2= (%2 X Iy

—}sz h 2322+3_;+f]+;_ sical angular momentum vectdr After explicitly spelling
2c @ \2 V2 ’

0.6 out theGkQ coefficient defined earlier, the rate equation for
(51) angular momentund becomes
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- - scribing the existence of the random fluctuations underlying
IX(IX2), (56)  the dissipation process. This fluctuation noise also plays a
very important role in preserving the conventional angular
or for magnetic momerﬁh) with nega‘[ive gyromagnetic con- momentum Commutation relation. The derived Opel’ator rate
stant equation quantitatively describes the transition of the relax-
ation dynamics between classical and quantum regimes.

[QF

d- - -
—J=YIX Byt ——=
at de 6eC®

d- - - B - -
—M=9yM X By~ Y | dC|5 M X (M X Bdc) (57) ACKNOWLEDGMENTS
dt 67T€0C

. , . o The author would like to thank Professor A. E. Siegman at
This equation matches in form to the Landau-Lifshitz Eq.the Electrical Engineering Department of Stanford Univer-
(D). The'last term b:_:13|cally describes the radlatlvg decay of ity for introducing him to the interesting quantum noise
precessing magnetic moméﬁt_Be_cause the damping effect g pject that eventually inspires this work. The author would
f_rom je-dependent terms is S|m|I_ar to the classical _descrlp-a|so like to thank Professor Y. Yamamoto at the Applied
tion as demonstrated, all the othedependent terms in EQ. ppysics Department of Stanford University for many of his

(52) can be viewed as quantum correction. It is important t0gpjightening lectures that provided the guidance to this study.
note that the relative magnitude of quantum correction to

classicald x (J x B) damping description is of the order of ~APPENDIXA: RESERVOIR FLUCTUATION INDUCED
14j. DAMPING

_The Landau-Lifshitz damping cs;onstaatdue to this ra- The detailed calculation for the reservoir fluctuation in-
diative decay Isa.= 73|§>ch/(_677€00 ). For a magnetic mo- - dyced dissipation terrRyj(t) is carried out in this appendix.
mentM=4X10""A m* [equivalent to d10 nm* magnetic  For the convenience of referend®f(t) is rewritten here
grain with 400emu/cn¥], By=0.4T, and y=1.76
X 101 s 771, the damping constant is=8.6x 107% The
order of magnitude does not change much even with the
thermal photor{i,) taken into account. This is much smaller - . .
than the often quoted values~0.01-1 in literatures for WhereJXt) is the integral part of Eq¥13)~(15). The inter-
magnetic recording material. It is clear that the decay mechaaction termRB=JSx B is first calculated and then the re-
nism for the quoted material system is mostly contributed bysult is symmetrized to obtaiRE_
other damping mechanisms, e.g., phonon and spin-spin inter- To facilitate the calculation, the coordinate system as
actions, rather than radiative decay. Nevertheless, the studfyown in Fig. 1 is used, wher&,=cos67+sin6cos¢x
of radiative decay mechanism at the quantum level provides sin ¢ sin ¢y is the unit vector of the quantized plane wave
useful insights for other damping mechanisms. In generalmoOle and *,’L:sinHi—cosecos@?—cosasin 4y and 2
the system-reservoir interaction Hamiltonidty,, for o_ther =sin ¢Xx—cosgy are the unit vectors of the two orthogonal
types of damping mechanisms can, at least to the first order, , .~ . e

> o - _ polarization states for each mode veckorFor the conve-

be expressed aWl-Z;R;, whereZ;R includes all reservoir . . > 2 .

. ) > > o nience of calculation, land 3 are expressed in the vector
variables and can be obtained BYR,=dH;,/JM. This is basis(+ - )
similar to the radiative interaction Hamiltoniat,=M -B. t
The derived self-reaction and reservoir-fluctuation relaxation R o 1 -z
dynamics is therefore a rather general result. Equaiid@s 1,=sin6z- cosd e_"ﬁ? + el¢’_5 , (A2)
and(40) can be applied to other damping mechanisms except Y v
that the interaction coefficien®, varies depending on the
damping mechanism. - ¥ o=

ping 3 =gt = — gt (A3)
V2 V2

RE(t) = %{js(t) x BI() - B(t) x 30}, (A1)

-

V. CONCLUSION In this vector basis, the three components of the source

Starting from the Hamiltonian with symmetrized radiative driven angular momentum operatal(t)=J%+J%(+/2)
interaction terms, a quantum Langevin equation is derived tq_jS(_*/\Q) are
describe the relaxation dynamics of a magnetic moment in "

static magnetic field. This analysis results in an angular mo- s ot - 6% e i
mentum operator rate equation, which includes a dissipation i=2 5| {ELe™?-Je9Aq+i(se

force and a zero-mean random fluctuation noise along with k o

the familiar precession motion. The derived dissipation force _ 3_ei¢)coseAk2}t/dt’, (A4)

is contributed by both self-reaction and reservoir fluctua-

tions. The reservoir fluctuation induced dissipation is ¢

uniquely obtained from the quantized electromagnetic field. ji => igkf {jzei¢Ak1+ i(:lz cospe?

The self-reaction induced dissipation, on the other hand, is a k t

quantum version of its classical counterpart. The zero mean R o

random noise force in the rate equation is essential for de- +J, Sin O) Ak et (A5)
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t . ™ > -
* =g, f (3,67*Aq - (3, cospeTi? ZKES IgiIAL) X (ky X 1A (A8)
k
+J_sin ) Agh et (A6) =S g J0) X (2ehq - LA (A9)
ke

where the shorthand notation for the quantized field operator

is A,=al e-alTd“d, Using these notationsR® be-

comes

>

B34 PB4 BB
=R;(1)Z+ RZ(t) =+ Ri(H)—=. (A10)
V2 V2

. R After carrying out the cross product and collecting all the
RE(t) = yJ%(t) x Bf(t) (A7) 7 componentsRE is

E gk2 {J Ao A + (3,€0806? + 3, SiN 6),, c0S B A At X dt + E g f {30 Aor A + (3, cOS 671

+J_sin 6)y coS 08¢ A A e gt = —f deJ dt' 3, (AfTale o) 4 afalfdat) (@2 1 c )  (AL1)
to

T TN afoa vtz
== G DB A + & &), (AL2) =- f dkG, Jt dt'#J_ (Bf e ot t)

+élf<élf< j w(t-t ))(1 +e|Q(t t’) ) -iOt (A15)
where Eq.(21) is used to approximate the discrete summa-
tion overk by an integral ink space in the second equality.
Because of the sinusoidal modulatiefi“<t*) in the inte- - i
gral, J,(t') makes significant contribution to the integral with == EGkQﬁJ—(t)éLLéLQ- (A16)
respect tok only for t" —t. Therefore, similar Markoffian
approximation used to calculate the self-reaction term is used To properly apply the Markofﬂan approximation to the
again to obtain the last equality. Applying the similar calcu-

Qt -t)
lation, the *+component is tA)ove two calculatlons,J+(t )—J+(t A and J_(t)

=J_(t")e '~V are used in the third equality to calculate the
integral. A concern might be raised here regarding the com-

RE=> gkf (J cosfei® mutability problem between operatoflét’) and éf(t) [éL(t)]
in the above integral calculation. Strictly speakihgs only
. , . A A~ Af .
+3_sin ﬁ)v sin HAklt’Aklte_IQ(t_t )dt’ same time commuFabIe WItlB (ak). anda, and.ak are differ-
R ent by a source driven ter@. This problem is resolved by
J. i 6| s , the following two reasons. First, because the above integral
* E gk * —e' t/e Azt At is significant only for operators at—t, the different time

commutability problem betweei(t ) and3 (t) is reduced to

2 ‘ ( :L i J i ) i , a same time commutability problem after applying the

+2 g"f - Ee ¢+ Ee¢ " cos’ 6" *Ar At Markoffian approximation. Secondly, the difference between
(A13) & andal is of the order 0fO(gy) from Eq.(16). J anda! can
be treated as commutable up to the orderQgf,). This
approximation introduces a correction term of ordlégﬁ) to

. the above final expression and is, therefore, justified because
__J de"f dt’ﬁ:]_t (ak afeiont- t') our calculation is only up to the order @f(g?). The ~com-
ponent is simply the Hermitian conjugate Rf.
A Tont-1) (@ 100-1) Finally, the symmetrized Hermitian reservoir-fluctuation
+aaleo ) (e '+1) (A14)  induced damping terrR? is reduced to
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wherea, a, +a& a =1+2 is used.

APPENDIX B: CONSERVATION OF THE ANGULAR
MOMENTUM COMMUTATION RELATION

This appendix is to show that the angular momentum op-

erator in the derived operator ratg9) satisfies the conven-

tional angular momentum commutation relation, i.e., it satis-
fies Eq.(41). The proof is done for a negative gyromagnetic
constant and can be easily applied to a positive value. For the

convenience of calculation, the dissipation term Ef) is
further reduced to

o ~ oA A L T ~a
SH(D) + RA() = = Gy, (I + 20dfy )7+ Gy, (-
B

- ﬁ\]_nkQ)E + EGKQ(J*'JZ - h\]_,_nkQ)E .

(B1)

Also, the shorthand notation for time derivatidé/dt:j, is

use interchangeably. Since the derived angular momentum

rate equation is calculated up to the orde$?), the proof
is also carried out up to the same order.

The cross product ol x J+J % J is carried out first term
by term and then verified if it is equal tiJ. From the

precession term,@J X Z in J, we have

(X I+IXDpe=(-QIX )X J+IX (-QIX J)
(B2)

=—in0J X Z. (B3)

From the damping terms due to the self-reaction and vacuum

fluctuations (w/c)Gy Q[—3+3_Z+ jz:]_(¥ I\2)+ 3+jz(: /\2)] in

J, we have

v V2
- fa aa
X J+JI X =Gy (—J+J_Z+JZJ_?
V2
+3+32%> (B4)
V2

PHYSICAL REVIEW B70, 224435(2004)

(BS)

photon induced damping terms

From the thermal
~(m10)Gy [2h3,7+hI_(¥1\2)+1hJ.(~1\2)]fy in J, we have

Ao A A T “ S ~
IXI+IXNp=——G, | 21,7+ —=+J,— |f X J
( )th c Koy ( z \/’E +\,2) Koy

>

ixTa ﬁ(z:r 3T a:)A
- — Z+J_—=+J,—=/n
c kQ 2z \3’2 +\¢"2 kﬂ

(B6)

T S
_IhCGkﬂ —ZﬁJannz—3ﬁJ_nk“VE—3ﬁJ+nkn ’E .

\
(B7)

From the zero mean fluctuation tery&f x B in :1, we have

(j X j +j X j)noise: y(jf X éf) X (jf +js) + (jf +:]5')
X y(:]f X BY) (B8)

:iﬁy(jf X éf) + y(jf X éf) X IS+ % ,y(jf < éf)'
(B9)

whereJ is explicitly expressed by its free evolutiah and

source drivenJ® parts.

To calculate the cross product terms involviﬁ@in the
above equation, we use the coordinate system introduced in
Appendix A and carry out the computation in bagig,

7). The three components off X Bf=(yJ" x BY),z+(1J
X BN (F/42)+(y3"x BN ,(~/12) are

»I % B),=3 i%“{(— Feio- oAl +i(Gle®
k

-J'&%)cosAl, (B10)

y(3" x BY), = > igfJdle?Al +i(Jf cosoe? + It sin )AL},
k

(B11)

(3" x BN).= > igddle Al - (3 cosoe ¢
K

+J' sing)AL}. (B12)

Using these equations and the E¢&4) and(A5) of Js, one
can calculate each vector component fBrx y(Jfx Bf)
+y(J"x Bf) X J5. TheZ component is
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{33 % 9I" % BY) + (3 x BN x I%,7={[3, 93" x B)_] proach can be used to calculate therd —components
A 5 - . oa A . %
- [‘Ji')’(\]f X Bf)+]}i§, (B13) {J% % ’)/(Jf X Bf) + 'y(Jf X Bf) X JS}_TE
N

¢ ={[3%, »3" x Bf),] - [3, 93" x éfu}ii (B16)
={-2 J Jt)3I0)(1 + cod OIAR),A()]e 2 dt V2
k to

t T e
- J sin 613, (t)A®"), I (HA"(©) &2 dt =i Gl 2+ 20N 5 (B0
k to
t Z
+> 00 J J(t)3N(1 + cog LA, A(H)]e " dt {35 % ¢(3" x Bf) + y3" x Bf) x 35}*5
k to |
t = Z
*2 0 ft sir? e[m'>A<t’>,Ji(t)Af(t)]e-m“-”dt'}i; = X BN+ [ X BN
. ,
(B14) (B18)
L, T ~o L T ~ A - :
:mzekﬁ(— 2397, (B15) :mzekﬂ(— 23,3, + 2hJ+nkQ)E. (B19)

where the integral approximation E¢R1) for the discrete Combining the results from EqgB3), (B5), (B7), (B9),
summation overk and the Markoffian approximation are (B15), (B17), and(B19), we obtain

used to lead to the final equality. The approximatiaﬁs:] dJ . . dI a3

andA'= A are used to calculate the commutation tefms o XJI+IX —=ih—. (B20)
...] in the above last second equality because they only in- t
troduce correction terms of ordél(gﬁ) and the analysis in  Thus, it is shown that the angular momentum réa®) in-

this paper is done up to the order @f(gﬁ). The same ap- deed preserves the angular momentum commutation relation.
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