
Quantum relaxation dynamics of magnetic moments in a radiative reservoir

Yuh-Jen Cheng*
Onetta Technologies, 4719 Castlewood Drive, San Jose, California 95129, USA

(Received 22 June 2004; published 29 December 2004)

A quantum Langevin equation is derived to describe the relaxation dynamics of a magnetic moment in a
static magnetic field and radiative reservoir. The damping and fluctuation forces are derived from the radiative
interaction between magnetic moment and surrounding reservoir. Through the use of a symmetrized interaction
Hamiltonian, the damping force is identified due to the combination of radiation self-reaction and reservoir
fluctuations. The radiation self-reaction is a quantum version of its classical counterpart, whereas the reservoir
fluctuations are solely a quantum effect resulting from the quantization of the electromagnetic field. The
relative magnitude between these two effects changes during the relaxation process. This equation shows that
the relative magnitude of the quantum correction to the classical Landau-Lifshitz description is inversely
proportional to the system angular momentum quantum number.
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I. INTRODUCTION

With the recent advance in magnetic nanoparticle
experiments1 and the continuing increase in magnetic record-
ing density, where magnetic grain is also on the nanometer
scale, the dynamics of magnetic particles will soon be in the
transition between classical and quantum regimes. When a
magnetic particle is placed in an uniform static magnetic
field, the magnetic momentM precesses about the magnetic
field direction. At the same time, it also moves toward the
field direction because of the damping effect from the inter-
action with the reservoir. Depending on the type of reservoir,
the relaxation mechanism can be due to radiative interaction,
phonon interaction, spin-spin interaction, and/or random col-
lisions in fluid environment, etc. The internal degrees of free-
dom of the magnetic moment, e.g., the exchange coupling
between constituent spins, is assumed to be not affected by
the externally applied field. This assumption basically states
that the magnitude of magnetic moment or the angular mo-
mentum quantum number is constant, which is normally true
under most conditions. In the classical regime, this relaxation
dynamics is described by the Landau-Lifshitz equation2

dMW

dt
= gsMW 3 BW d −

augu

uMW u
MW 3 sMW 3 BW d, s1d

whereg is the gyromagnetic constant. The first term on the
right-hand side of Eq.(1) describes the familiar precession.
The second term describes the phenomenological damping
force with damping constanta. Based on the fluctuation-
dissipation theorem,3,4 a zero-mean random fluctuation noise

BW fstd is added to the magnetic field to describe the fluctua-
tions associated with the damping process.5–7 The random

noise BW fstd satisfies the correlation relationkBi
fstdBj

fst8dl
=2akBT/ sgMddi jdst− t8d5 where i and j are Cartesian indi-
ces. This relation is essential to ensure that the magnetic
moments has a Boltzman distribution at thermal equilibrium.
This Langevin form of the Landau-Lifshitz equation, also
referred to as the Landau-Lifshitz-Gilbert equation, has been
widely used to study various magnetic dynamics,8–14 in par-

ticular, the thermally activated magnetization reversal in fer-
romagnetic particles. As the size of the magnetic particle in
new technologies continues to decrease, the application of
this classical equation becomes questionable.

In the quantum regime, this equation needs to be revised.
It is interesting to see how the revised equation resembles or
differs from its classical counterpart and the corresponding
physical meanings. The Bloch equation15 in quantum me-
chanics is the one that could be found to most closely re-
semble the Landau-Lifshitz equation. This equation was first
introduced for nuclear induction study. It is basically also
considered a damped magnetic moment problem and can be
derived by using the density operator approach.16 The Bloch
equation is expressed as

d

dt
kMW l = gkMW l 3 BzzW −

skMzl − M0dzW
T1

−
kMxlxW + kMylyW

T2
,

s2d

wherexW, yW, andzW are the unit vectors,M0 is the steady state
magnetization, andT1 andT2 are the longitudinal and trans-
verse relaxation time constants. The longitudinal relaxation
describes the change of magnetization along the applied field
direction. The transverse relaxation describes the loss of co-
herence of transverse magnetic moment due to random res-
ervoir fluctuations.15 It is interesting to see that this descrip-
tion of relaxation dynamics is very different from that in the
classical Landau-Lifshitz Eq.(1). A quantum equation is ex-
pected to be able to reduce to its classical counterpart under
certain approximations, e.g., the relevant quantum numbers
become very large. It is important to derive an equation to
resolve this discrepancy.

This paper presents a fully quantum-mechanical deriva-
tion for such an equation. The analysis considers only the
radiative system-reservoir interaction, i.e., damping due to
radiative energy decay. The system is defined as the mag-
netic moment in a dc magnetic field. The reservoir is the
surrounding thermal radiation. This damping mechanism is
chosen because the interaction Hamiltonian is well defined
and depends only on fundamental parameters. Even though
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the radiative damping is not the primary contributing factor
to the overall damping effect in a real system, the form of the
interaction Hamiltonian is, in fact, rather general and can be
applied to other damping mechanisms except with different
interaction coefficients. The derived equation, therefore, pro-
vides general insights to the relaxation dynamics.

The analysis focuses on the dynamics of angular momen-

tum operatorĴ because the magnetic moment is simply re-
lated to angular momentum by the gyromagnetic constantg.
This derivation leads to an angular momentum operator rate
equation in the Langevin equation format, which includes a
damping term and random fluctuation noise. Part of the
damping term is in a form similar to the phenomenological
damping force in the Landau-Lifshitz equation. It is contrib-
uted by the interaction of the magnetic moment with its own
field (self-reaction). The other part of the damping term is
more similar to that in the Bloch equation. It is contributed
by the zero point vacuum fluctuations and thermal fluctua-
tions of the surrounding reservoir(reservoir fluctuations).
The equation not only provides a detailed physical picture
for the relaxation dynamics, it also quantitatively describes
the transition of the relaxation dynamics between classical
and quantum regimes. The rest of the paper is organized as
follows. The notation for the quantized electromagnetic field
is briefly introduced in Sec. II. The derivation for the quan-
tum Langevin equation is detailed in Sec. III, where the
analysis is done in the Heisenberg picture. Finally, the physi-
cal meanings of the derived equation and its implications are
discussed in Sec. IV, followed by a conclusion.

II. NOTATION FOR THE QUANTIZED
ELECTROMAGNETIC FIELD

In the conventional quantization formulation, the electro-
magnetic radiation is often expressed in terms of a set of
eigenmodes, where each mode is quantized as a simple har-

monic oscillator. The quantized vector potentialÂ in the
plane wave mode expansion basis has the expression

Â = o
k,«

Î "

2e0vkV
«Wkhâk« expsikW ·xWd + âk«

† exps− ikW ·xWdj,

s3d

wherekW is the wave vector of each plane wave mode,vk is
the corresponding oscillation frequency,V is the volume of
the quantization box, and«Wk s«=1,2d are the two orthogonal
polarization unit vectors associated with each vectorkW. The
time dependence is implicitly included in amplitude operator

âk«. Given this quantized vector potentialÂ, the quantized

magnetic field operatorB̂ is

B̂ = = 3 Â = o
k,«

iÎ "

2e0vkV
kW 3 «Wkhâk« expsikW ·xWd

− âk«
† exps− ikW ·xWdj. s4d

The polarization vector«Wk will be implicitly included in the
operatorsâk and âk

† subsequently whenever it is convenient

for notational simplicity. The creation and annihilation op-
eratorsâk

† and âk satisfy the commutation relationsfân,âm
† g

=dnm and fân,âmg=fân
†,âm

† g=0, where different polarization
states are included in the the operator subfix. In this quanti-
zation formalism, a discrete summation over wave vector
componentskW is used for mathematical simplicity. This does
not compromise any important physics of interest in this
paper.

III. THE QUANTUM LANGEVIN EQUATION OF

ANGULAR MOMENTUM Ĵ

The Hamiltonian for a magnetic moment placed in a static
magnetic fieldBdc and radiative reservoir is

H = o
k

"vkSâk
†âk +

1

2
D − gĴ ·Bdc − gĴ · B̂, s5d

where the first term is the radiation field Hamiltonian of the
reservoir, the second term is the system Hamiltonian of the
magnetic moment in static magnetic fieldBdc, and the last
term is the radiative interaction Hamiltonian between mag-
netic moment and reservoir field. This interaction term as-
sumes that the physical size of magnetic moment is much
smaller than the wavelength of the electromagnetic field that
can significantly contribute to the interaction. The magnetic
moment, therefore, sees a spatially uniform electromagnetic
field for all frequency components of interest. For wave-
lengths shorter than the physical size of magnetic moment,
the interaction term has to take into account the spacial av-
erage of the field seen by magnetic moment. The short wave-
length components, therefore, contribute little to the interac-
tion term and can be neglected. The angular momentum and
electromagnetic field observables are same-time commut-
able. The order of these two operators in the interaction term
is undetermined, i.e., the interaction term can be written as

B̂ ·gĴ as well or even an arbitrary linear combination of these

two different ordered expressionsagĴ ·B̂+s1−adB̂ ·gĴ,

where 0øaø1. The final derived rate equation forĴ is in-

dependent of the order ofĴ and B̂ in the interaction term.
However, it was pointed out that this interaction term has to
be symmetrized in order to rationally identify the respective
effects of radiation fluctuations(interaction of the system
with the quantized radiation field) and self-reaction(interac-
tion of the system with its own field) involved in the inter-
action process.17 The total Hamiltonian is thus rewritten as

H = o
k

"vkSâk
†âk +

1

2
D − gĴ ·Bdc −

1

2
gsĴ · B̂ + B̂ · Ĵd.

s6d

From the above Hamiltonian, the equations of motion for
angular momentum and field amplitude operators, in the
Heisenberg picture, are

dĴ

dt
=

1

i"
fĴ,Hg = gĴ 3 Bdc +

g

2
sĴ 3 B̂ − B̂ 3 Ĵd s7d
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dâk«

dt
=

1

i"
fâk«,Hg = − ivkâk« +

gk

"
sĴ 3 kWud · «Wk exps− ikW ·xWJd,

s8d

where gk=gÎs" /2e0vkVdk is the coupling coefficient be-

tween angular momentum operatorĴ and the radiation field
amplitude operatorâk, kWu is the unit vector ofkW as shown in
Fig. 1, andxWJ is the position coordinate of the system.

Since the main interest is in the dynamics of the system
angular momentum and no observation of the reservoir field
is made except knowing that it is at temperatureT, the goal is

to derive a simplified equation ofĴ. From Eqs.(7) and (8),
the angular momentum and field operators are cross coupled.
The field operatorâk, in addition to its own free evolution, is

driven by the angular momentumĴ (magnetic momentM̂ )
source. Similarly, the angular momentum operatorĴ, in ad-
dition to its own precession due to the dc magnetic fieldBdc,

is driven by reservoir magnetic field operatorB̂ sâkd. When
the coupling constantgk is small, which is the case since the
size of the reservoirV is very large by definition, a second
order perturbative calculation is sufficient. The simplification
is to obtain the formal solutions of Eqs.(7) and(8) and then
substitute these solutions into the interaction terms of Eq.(7)
and keep the calculation up to the second order ingk.

In order to further facilitate the derivation, the unit vector

basiss+W ,−W ,zWd is introduced where

+W =
1
Î2

sxW + iyWd, s9d

−W =
1
Î2

sxW − iyWd. s10d

The angular momentum in this coordinate system is ex-
pressed as

Ĵ = Ĵ+
−W

Î2
+ Ĵ−

+W

Î2
+ ĴzzW, s11d

whereĴ+= Ĵx+ iĴy andĴ−= Ĵx− iĴy are the conventional raising
and lowing angular momentum operators. Using this new
basis, with thezW vector chosen to be aligned with the dc
magnetic field direction, Eq.(7) becomes

d

dt
Ĵ = iVĴ+

−W

Î2
− iVĴ−

+W

Î2
+

g

2
sĴ 3 B̂ − B̂ 3 Ĵd, s12d

where V;−guBdcu is the precession frequency along thezW
axis. In the rest of paper, the gyromagnetic constant is as-
sumed to be negative if not explicitly stated. The formal

solution for each component ofĴ is

Ĵz = Ĵzst0d +E
t0

t g

2
sĴ 3 B̂ − B̂ 3 Ĵdt8 ·zWdt8, s13d

Ĵ+ = Ĵ+st0deiVst−t0d +E
t0

t g

2
sĴ 3 B̂ − B̂ 3 Ĵdt8 ·Î2+W eiVst−t8ddt8,

s14d

Ĵ− = Ĵ−st0de−iVst−t0d +E
t0

t g

2
sĴ 3 B̂ − B̂ 3 Ĵdt8 ·Î2

−W e−iVst−t8ddt8. s15d

On the right-hand side of each of the last three equations, the

first term describes the free evolution(precession) part of Ĵ,

identified asĴ f, and the second term describes the source

driven part ofĴ by the reservoir fieldB̂, identified asĴs. The

magnitude of the source termĴs, when expressed in terms of

fundamental quantum operatorsĴ and âk, is of the order of

Osgkd compared to the free evolution partĴ f. The formal
solution of Eq.(8) is

âk«std = âk«st0de−ivkst−t0d +
gk

"
E

t0

t

sĴst8d

3 kWud · «Wke
−ivkst−t8d−ikW·xWJdt8 s16d

=âk«
f std + âk«

s std, s17d

whereâk«
f std is the free evolution andâk«

s std is the contribu-

tion from the radiation sourceĴ. Similarly, the total reservoir

field B̂ consists of a free evolutionB̂ f and a source driven

part B̂s. The magnitude of the source termâk«
s sB̂sd is also of

the order ofOsgkd compared to the free evolution partâk«
f

sB̂ fd. The above formal solutions forĴ, Eqs.(13)–(15), and
âk, Eq. (16), will be used to calculate the interaction terms in
the angular momentum rate Eq.(7) up to the order ofOsgk

2d.
The first interaction termĴ3 B̂ will be calculated first. The

second interaction termB̂3 Ĵ can be readily obtained by
simply reversing the order of the operators therein.

FIG. 1. The spherical coordinate representation for the unit

wave vectorkWu, where 1Wk and 2Wk are the two orthogonal polarization
states for each wave vectorkW.
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Using the free evolution and source driven terms of field

operatorB̂, the first interaction term in Eq.(7) is separated
into two parts

gsĴ 3 B̂d = gsĴ 3 B̂ fd + gsĴ 3 B̂sd s18d

=Rstd + Sstd. s19d

The partRstd describes the change rate of angular momen-
tum due to its interaction with the free evolution of reservoir

field B̂ f. This contribution is often called reservoir fluctua-
tions. The partSstd describes the change rate of angular mo-
mentum due to the interaction with its self-generated field

B̂s. This contribution is often called self-reaction. Using the
result for âk«

s in Eq. (16), Sstd is

Sstd = Ĵ 3 o
k

gk
2

"
iE

t0

t

hkWu 3 fĴst8d 3 kWuge−ivkst−t8d − H.c.jdt8,

s20d

where H.c. stands for Hermitian conjugate. This self-reaction
term is of the order ofOsgk

2d. The summation is taken over
thosek values satisfying the periodic boundary condition of
the quantization box, i.e.,ukiu=2pn/L, wherei =x,y,z, n is a
positive integer andL is the length of the quantization box.
In kW space representation, thesekW values sit on the cubic
lattice points where the cubic volume is 8p3/L3. Therefore,
the quantization mode density isrskd=V/ s8p3d, where V
=L3. The summation over quantization mode componentk
can be mathematically approximated by an integral ink
space18

o
k

. E
k=0

` E
f=0

2p E
u=0

p

rskdk2 sinududfdk, s21d

where f and u are the polar coordinates in thekW vector
space. After carrying out the integral overf andu, the self-
reaction term is reduced to

Sstd = Ĵstd 3 iE
t0

t

dt8E
0

`

dk
gk

2

"
rskd

8

3
pk2Ĵt8se

−ivkst−t8d − c.c.d

s22d

=−
1

2
E

t0

t

dt8E
0

`

dkGksĴ+t Ĵ−t8 − Ĵ−t Ĵ+t8dse
−ivkst−t8d − c.c.dzW

+E
t0

t

dt8E
0

`

dkGksĴzt Ĵ−t8 − Ĵ−t Ĵzt8dse
−ivkst−t8d − c.c.d

+W

Î2

−E
t0

t

dt8E
0

`

dkGksĴzt Ĵ+t8 − Ĵ+t Ĵzt8dse
−ivkst−t8d − c.c.d

−W

Î2
,

s23d

whereGk;sgk
2/"drskd 8

3pk2 and c.c. stands for complex con-
jugate. To evaluate the integral, the precession frequency

components ofĴ± are factored out by expressions

Ĵ+std = J̃
ˆ

+stdeiVt, s24d

Ĵ−std = J̃
ˆ

−stde−iVt, s25d

whereJ̃
ˆ

+std and J̃
ˆ

−std are slowly time varying functions due
to the system-reservoir interaction. First, let us examine thezW
component ofSstd in Eq. (23),

Szstd = −
1

2
E

t0

t

dt8E
0

`

dkGksJ̃
ˆ

+t J̃
ˆ

−t8e
isV−vkdst−t8d

− J̃
ˆ

−t J̃
ˆ

+t8e
−isV+vkdst−t8d − J̃

ˆ
+tJ̃

ˆ
−t8e

isV+vkdst−t8d

+ J̃
ˆ

−tJ̃
ˆ

+t8e
−isV−vkdst−t8dd. s26d

SinceGk is a slow function ofk and is modulated by sinu-
soidal functionse±isV±vkdst−t8d, the integral overk is signifi-
cant only for t8→ t and becomes negligible fort− t8@1/D,
whereD is the spectral width ofGk. As a result, the integral

over t8 can be approximated by the substitutionJ̃
ˆst8d. J̃

ˆstd
and replacingt0 by −`.19,20

To better illustrate this approximation, the integral of the
first term in the parenthesis is rewritten as

E
t0

t

dt8hsV,t − t8dJ̃
ˆ

+stdJ̃ˆ−st8d, s27d

wherehsV ,t− t8d=e0
`dkGke

isV−vkdst−t8d. The functionGk has a
k3 dependence. This is derived for radiation wavelengths sig-
nificantly greater than the physical size of magnetic moment.
As mentioned earlier, the interaction Hamiltonian becomes
negligible for wavelengths much smaller than the physical
size of magnetic moment. This implies thatGk is a decreas-
ing function ofk whenk is very large. The spectrum ofGk,
therefore, has a finite widthD. The time constanttc;1/D
can be regarded as the reservoir correlation time becauseGk
describes the spectrum of the reservoir field components that
can significantly interact with magnetic moment. Whent
− t8@1/D, the product ofGk andeisV−vkdst−t8d is a fast oscil-
lation function ofk and the integral overk, i.e.,hsV ,t− t8d, is
negligible. Whent− t8.0, it is clear that the integral is sig-
nificant. This property ofhsV ,t− t8d means that the integral

in Eq. (27) is mostly contributed by those values ofJ̃
ˆ

−st8d

when t8 is very close tot. If J̃
ˆ

−std varies very little over a
time interval of the order oftc, the integral in Eq.(27) can be

approximated by replacingJ̃
ˆ

−st8d by J̃
ˆ

−std andt0 by −`. This
approximation basically says that the system relaxation time
is much longer than the reservoir correlation time. This con-
dition is satisfied under most circumstances because the res-
ervoir, by definition, consists of a very large number of de-
grees of freedom and therefore has a very short correlation
time tc. Physically, this approximation implies that the

change rate ofĴ depends only on its present state and has no
memory of its past history. This is in fact the so-called
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Markoffian approximation in the context of stochastic pro-
cesses.

With the above approximation, the integral in Eq.(26) can
be readily carried out by first integrating overt8, which re-
sults indsV±vkd functions, and then integrating overk. The
overall integral is mainly contributed by the first and fourth
terms in the parenthesis for a negative gyromagnetic constant
and the self radiation reactionSzstd is reduced to

Szstd = −
1

2

p

c
GkV

fĴ+stdĴ−std + Ĵ−stdĴ+stdg, s28d

where the subscriptkV=V /c. (For a positive gyromagnetic
constant, the above equation changes sign because the inte-
gral is instead contributed by the second and third terms.) In
addition to the above result, there is actually also an imagi-
nary part in the integral calculation. This is in fact very much
like the Lamb shift21 in the atomic energy level due to the
atom-field interaction. Because this shift is usually rather
small and is not the main interest of this paper, it is neglected
here. Applying similar calculations, the other two compo-
nents ofSstd are reduced to

S−std =
p

c
GkV

ĴzstdĴ−std, s29d

S+std =
p

c
GkV

ĴzstdĴ+std. s30d

(The above two equations also change sign for a positive
gyromagnetic constant.) The above self-reaction results are

carried out from the interaction expressiongĴ3 B̂s. It is clear
that S− and S+ are not Hermitian operators, therefore, it is
improper to associate them with a physical meaning. In order
to obtain a Hermitian expression, the symmetrized interac-
tion Hamiltonian needs to be used. The self-reaction from

gB̂s3 Ĵ can be readily obtained by simply reversing the or-
der of the operators in the above results. The Hermitian self-
reaction termSHstd becomes

SHstd =
g

2
sĴ 3 B̂s − B̂s 3 Ĵd s31d

=−
1

2

p

c
GkV

sĴ+Ĵ− + Ĵ−Ĵ+dzW +
1

2

p

c
GkV

sĴzĴ− + Ĵ−Ĵzd
+W

Î2

+
1

2

p

c
GkV

sĴzĴ+ + Ĵ+Ĵzd
−W

Î2
s32d

=
1

2

p

c
GkV

fĴ 3 sĴ 3 zWd − sĴ 3 zWd 3 Ĵg. s33d

(The above equation changes sign for a positive gyromag-
netic constant.) The last expression shows that the effect of
the self radiation reaction always moves the magnetic mo-
ment toward the applied dc magnetic field direction. This
description exactly matches to the phenomenological damp-
ing term in the classical Landau-Lifshitz Eq.(1).

The self-radiation reaction, however, only accounts for
part of the energy dissipation processes experienced by the
magnetic moment. The other part of energy dissipation
mechanism is due to the reservoir fluctuation termRstd in

Eq. (19). To evaluate the reservoir fluctuationsRstd=gĴ

3 B̂ f, substituteĴ by its free evolution and source driven
parts obtained from Eqs.(13)–(15),

Rstd = gĴstd 3 B̂ fstd s34d

=gĴ fstd 3 B̂ fstd + gĴsstd 3 B̂ fstd s35d

=R fstd + RBstd. s36d

The reservoir average of the first termR f =gĴ fstd3 B̂ fstd is

zero because free evolutionĴ f is independent ofB̂ f and the

reservoir average ofB̂ f is zero. ThisR f term corresponds to
the zero-mean random fluctuation noise in the Langevin
equation context. The reservoir average of the second term

RB=gĴsstd3 B̂ fstd is not zero becauseĴsstd is driven by the

reservoir fieldB̂. This second term partially contributes to
the damping and is proportional to the fluctuation noise
power, which will be calculated shortly. The zero-mean ran-
dom fluctuation forceR f is of orderOsgkd, and the nonzero
mean reservoir fluctuation induced dampingRB is of order
Osgk

2d. This is a general characteristic of Langevin equation.

To carry the calculation further, the field operatorâk in Ĵs is
approximated by its free evolution partâk

f . Since the reser-
voir field, by definition, is insignificantly perturbed by a
small system, the difference betweenâk andâk

f is rather small
and is only of orderOsgkd. This approximation leads to a
deviation of orderOsgk

3d for the calculatedRB and is, there-
fore, justified because we calculateSstd andRstd only up to
orderOsgk

2d. After expanding the cross products and applying
the similar Markoffian approximation used to calculate the
self-reaction termSstd in Eq. (26), the symmetrized Hermit-
ian reservoir fluctuationsRHstd become(see Appendix A for
details)

RHstd = gĴ fstd 3 B̂ fstd −
p

c
GkV

"SĴzzW +
Ĵ−

2

+W

Î2
+

Ĵ+

2

−W

Î2
D

3s1 + 2n̂Vd s37d

=RH
f + RH

B , s38d

whereRH
f stands for the zero-mean random fluctuation force

andRH
B stands for the reservoir fluctuation induced dissipa-

tion. From the above result, we see that the reservoir fluc-
tuations contribute to the decay of all three angular momen-
tum components. The magnitude of this decay rate is
proportional to 1+2n̂V, where the unity is a result of the
electromagnetic field quantization and stands for the zero
point vacuum fluctuations andn̂V is the thermal photon num-
ber operator. The reservoir average of thermal photon num-
ber n̂kV

at temperatureT is kn̂kV
l=1/fexps"V /kBTd−1g. Due

to the existence of the zero point vacuum fluctuations, the
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reservoir fluctuation induced dissipation is inescapable even
at zero temperature.

Given the results of the self-reactionSH, Eq. (33), and
radiation fluctuationsRH Eq. (38), we are now ready to re-
write the angular momentum rate equation in a quantum
Langevin format

d

dt
Ĵ = gĴ 3 BdczW + SHstd + RH

Bstd + RH
f std, s39d

where the dissipation forceSHstd+RH
Bstd is

SHstd + RH
Bstd = ±

1

2

p

c
GkV

fĴ 3 sĴ 3 zWd − sĴ 3 zWd 3 Ĵg

−
1

2

p

c
GkV

"s1 + 2n̂VdS2ĴzzW + Ĵ−
+W

Î2
+ Ĵ+

−W

Î2
D

s40d

and the zero-mean random fluctuation force isRH
f std

=gĴ fstd3 B̂ fstd. The 6 signs are for negative and positive
gyromagnetic constants, respectively. The dissipation pro-
cess is identified as partly due to the interaction of the mag-
netic moment with its self-generated field(self-reaction) SH
and partly due to its interaction with the fluctuating reservoir
field (reservoir fluctuations) RH

B. The self-reaction term is in
a form similar to the classical damping term in the Landau-
Lifshitz equation. Physically, this damping force is the result
of the radiative energy loss due to magnetic moment preces-
sion and can be viewed as a quantum version of its classical
counterpart. The reservoir fluctuations are similar to the
damping terms in the Bloch equation. This damping effect is
the result of the magnetic moment dephasing due to the sur-
rounding reservoir random fluctuations. They include contri-
butions from random thermal photon fluctuations and zero
point vacuum fluctuations. One further interesting aspect of
this damping force is that the derived longitudinal decay rate
is twice that of the transverse decay rate. This stands in con-
trast to the two independent decay rates in the conventional
Bloch equation. The zero-mean random fluctuation noiseRH

f

describes the fluctuation force underlying the dissipation pro-
cess and completes the full description of the relaxation dy-
namics.

The zero-mean random field fluctuationsB̂ fstd are not
only important from the view point of fluctuation-dissipation
theorem, it is also essential to assure that the derived equa-
tion is self consistent, i.e., to preserve the angular momentum
commutation relation. In order to demonstrate the quantum
self consistency, it is necessary to verify if the derived angu-
lar momentum equation still satisfies the fundamental com-

mutation relationfĴi , Ĵjg=ei jki"Ĵk, whereei jk is the permuta-

tion constant, or in a vector formatĴ3 Ĵ= i"Ĵ. Instead of
solving for the rate equation and check if the solution satis-
fies the above commutation relation, an alternative approach
is to take time derivative of the commutation relation

dĴ

dt
3 Ĵ + Ĵ 3

dĴ

dt
= i"

dĴ

dt
s41d

and verify that the rate Eq.(39) for Ĵ indeed satisfies the
above relation. This proof is provided in Appendix B.

From statistical mechanics, when a system reaches ther-
mal equilibrium with its surrounding reservoir at temperature
T, it will be in a Boltzmann statistical mixture of its energy
eigenstates. It is straightforward to verify that the angular
momentum operator rate(39) indeed reaches thermal equi-

librium at this state, i.e., TrhsSĴ
˙ j=0, where the density op-

erator

sS= o
m=−J

m=J
e−mb

o e−mb
uJ,mlkm,Ju, s42d

andb="V /kBT. The quantum magnetic moment rate equa-

tion can be easily obtained byM̂ ;gĴ. The damping con-
stant due to radiative decay becomesa=pGkV

M / scgVd. It
can also be shown that the precessing magnetic moment sees

a zero-mean random fluctuation fieldB̂ fstd with the statistical
property

kB̂i
fstdB̂j

fst8dl = 2a
"V

gM
Skn̂kV

l +
1

2
Ddi jdst − t8d s43d

.2a
kBT

gM
S1 +

1

2

"V

kBT
Ddi jdst − t8d, s44d

where i and j are Cartesian indices and the approximation
kn̂kV

l.kBT/ s"Vd for "V!kBT is used in the second equal-
ity. The last expression is identical to the classical expression
except for the additional second term in the parenthesis,
which represents the contribution from zero point vacuum
fluctuations. One final note, even though the rate Eq.(39) is
derived specifically for the relaxation of a magnetic moment,
this result is also applicable to the electric dipole radiation of
a collective 2J two level systems. This is the so-called su-
perradiance, where the system state can be modeled as an
angular momentum stateuJ,ml.22

IV. DISCUSSION

Let us consider a system with a negative gyromagnetic
constant and initially in an angular momentum stateu j ,m
= jl. The reservoir is assumed to be at temperatureT=0, i.e.,
thermal photon numberkn̂Vl=0. Physically, the magnetic
moment is at its highest-energy state and will gradually
move toward the lowest energy state. From the derived rate
equation, the initial system energy decay rate is

VKdĴz

dt
L = VK−

1

2

p

c
GkV

sĴ+Ĵ− + Ĵ−Ĵ+ + 2"ĴzdL
j ,j

s45d
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=−
p

c
VGkV

"2j −
p

c
VGkV

"2j , s46d

where Ĵ+Ĵ−+ Ĵ−Ĵ+ and 2"Ĵz are due to self-reaction and
vacuum fluctuations, respectively. These two effects equally
contribute to the initial system energy decay rate. The
vacuum reservoir fluctuations play a very crucial role in
starting the relaxation process because it not only introduces

an initial tipping force toJW but also provides a path for the
self-reaction decay to start. After the decay process is com-
pleted, the angular momentum eventually reaches the lowest-
energy stateu j ,−jl. The energy decay rate at this state is

VKdĴz

dt
L = VK−

1

2

p

c
GkV

sĴ+Ĵ− + Ĵ−Ĵ+ + 2"ĴzdL
j ,−j

s47d

=−
p

c
GkV

"2j +
p

c
GkV

"2j s48d

=0. s49d

The vacuum fluctuations play a crucial role here, again. The
energy loss due to self-reaction is exactly balanced out by the
energy gained from vacuum fluctuations. This ensures the
stability of the ground state.

Another interesting point to check is the relative magni-
tude between the self-reaction and vacuum fluctuation effects
during the relaxation process. Since it is rather difficult to
obtain the detail evolution of angular momentum operator,
for illustrative purpose, one can instead evaluate the relative
magnitudes for different coherent Bloch states,23,24

uu,fl = o
m=−j

j S s2jd!
s j + md ! s2j − j − md! D

1/2 t j+m

s1 + utu2d j u j ,ml,

s50d

wheret=e−if / tansu /2d. This state is chosen because the ex-
pectation value of angular momentum for this state closely
resembles a classical angular momentum vector with magni-

tude " j and polar coordinatesu ,fd, i.e., kĴlu,f=" jW. The
damping force experienced by this angular momentum state
is

kSH + RH
Bl =

1

2

p

c
GkV

kĴ 3 sĴ 3 zWd − sĴ 3 zWd 3 Ĵlu,f

−
1

2

p

c
GkV

"K2ĴzzW + Ĵ−
+W

Î2
+ Ĵ+

−W

Î2
L

u,f

,

s51d

=
p

c
GkV

"2S− j2 sin2 u − jS1 −
sin2 u

2
DDzW

+
p

c
GkV

"2S j2 −
j

2
De−if sinu cosu

+W

Î2

+
p

c
GkV

"2S j2 −
j

2
Deif sinu cosu

−W

Î2
−

p

c
GkV

"2

3 js1 + 2n̂VdScosuzW +
1

2
sinuSe−if +W

Î2
+ eif −W

Î2
DD ,

s52d

where, in the last equality, the first three terms are due to the
self-reaction effect and the last one is due to the reservoir
fluctuation effect. The above expression shows how the mag-
nitudes of self-reaction and reservoir fluctuation effects
change for different coherent angular momentum stateuu ,fl.
It also shows how the dynamics transits from quantum to
classical regimes as angular momentum numberj increases.

The magnitudes of self-reaction and vacuum fluctuation
contributions to magnetic moment relaxation are determined
by the zW components in Eq.(52). The magnitudes of these
two effects are comparable whenu is close to zero orp. As
u approachesp /2, the self-reaction effect becomes dominant
over the vacuum fluctuation effect. In fact, the self-reaction
effect is always greater or equal to the vacuum fluctuation
effect with equality atu=0 or p and the reservoir fluctuation
effect makes no contribution to system energy decay atu
=0. The transition of relaxation dynamics from quantum to
classical regimes is determined by thej dependence in Eq.
(52). When the angular momentum number becomes very
large, the energy decay is mainly determined by the self-
reaction terms withj2 dependence and Eq.(52) can be re-
duced to

kSH + RH
Bl .

p

c
GkV

"2j2S− sin2 uzW + e−if sinu cosu
+W

Î2

+ eif sinu cosu
−W

Î2
D s53d

=
p

c
GkV

"2jW 3 s jW 3 zWd. s54d

The reservoir averaged angular momentum rate equation for
a coherent stateuu ,fl is then simplified to

d

dt
" jW . g" jW 3 BW dc ±

p

c
GkV

"2jW 3 s jW 3 zWd, s55d

for j @1. The6 signs of damping term are for negative and
positive gyromagnetic constants. Sincej is assumed to be a
very large quantum number," jW can be considered as a clas-

sical angular momentum vectorJW. After explicitly spelling
out theGkV

coefficient defined earlier, the rate equation for

angular momentumJW becomes
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d

dt
JW = gJW 3 BW dc ±

uVu3g2

6pe0c
5JW 3 sJW 3 zWd, s56d

or for magnetic momentMW with negative gyromagnetic con-
stant

d

dt
MW = gMW 3 BW dc −

g4uBW dcu2

6pe0c
5 MW 3 sMW 3 BW dcd. s57d

This equation matches in form to the Landau-Lifshitz Eq.
(1). The last term basically describes the radiative decay of a
precessing magnetic moment.25 Because the damping effect
from j2-dependent terms is similar to the classical descrip-
tion as demonstrated, all the otherj-dependent terms in Eq.
(52) can be viewed as quantum correction. It is important to
note that the relative magnitude of quantum correction to

classicalĴ3 sĴ3BW d damping description is of the order of
1/ j .

The Landau-Lifshitz damping constanta due to this ra-
diative decay isa=g3Bdc

2 M / s6pe0c
5d. For a magnetic mo-

ment M =4310−19A m2 [equivalent to as10 nmd3 magnetic
grain with 400emu/cm3], Bdc=0.4T, and g=1.76
31011 s−1 T−1, the damping constant isa.8.6310−19. The
order of magnitude does not change much even with the
thermal photonkn̂Vl taken into account. This is much smaller
than the often quoted valuesa,0.01−1 in literatures for
magnetic recording material. It is clear that the decay mecha-
nism for the quoted material system is mostly contributed by
other damping mechanisms, e.g., phonon and spin-spin inter-
actions, rather than radiative decay. Nevertheless, the study
of radiative decay mechanism at the quantum level provides
useful insights for other damping mechanisms. In general,
the system-reservoir interaction HamiltonianHint for other
types of damping mechanisms can, at least to the first order,

be expressed asMW ·oiRW i, whereoiRW i includes all reservoir

variables and can be obtained byoiRW i =]Hint /]MW . This is

similar to the radiative interaction HamiltonianHint=MW ·BW .
The derived self-reaction and reservoir-fluctuation relaxation
dynamics is therefore a rather general result. Equations(39)
and(40) can be applied to other damping mechanisms except
that the interaction coefficientGk varies depending on the
damping mechanism.

V. CONCLUSION

Starting from the Hamiltonian with symmetrized radiative
interaction terms, a quantum Langevin equation is derived to
describe the relaxation dynamics of a magnetic moment in
static magnetic field. This analysis results in an angular mo-
mentum operator rate equation, which includes a dissipation
force and a zero-mean random fluctuation noise along with
the familiar precession motion. The derived dissipation force
is contributed by both self-reaction and reservoir fluctua-
tions. The reservoir fluctuation induced dissipation is
uniquely obtained from the quantized electromagnetic field.
The self-reaction induced dissipation, on the other hand, is a
quantum version of its classical counterpart. The zero mean
random noise force in the rate equation is essential for de-

scribing the existence of the random fluctuations underlying
the dissipation process. This fluctuation noise also plays a
very important role in preserving the conventional angular
momentum commutation relation. The derived operator rate
equation quantitatively describes the transition of the relax-
ation dynamics between classical and quantum regimes.
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APPENDIX A: RESERVOIR FLUCTUATION INDUCED
DAMPING

The detailed calculation for the reservoir fluctuation in-
duced dissipation termRH

Bstd is carried out in this appendix.
For the convenience of reference,RH

Bstd is rewritten here

RH
Bstd =

g

2
hĴsstd 3 B̂ fstd − B̂ fstd 3 Ĵsstdj, sA1d

whereĴsstd is the integral part of Eqs.(13)–(15). The inter-

action termRB=gĴs3 B̂ f is first calculated and then the re-
sult is symmetrized to obtainRH

B.
To facilitate the calculation, the coordinate system as

shown in Fig. 1 is used, wherekWu=cosuzW+sinu cosfxW
+sinu sinfyW is the unit vector of the quantized plane wave

mode and 1W
k=sinuzW−cosu cosfxW −cosu sinfyW and 2Wk

=sinfxW −cosfyW are the unit vectors of the two orthogonal
polarization states for each mode vectorkW. For the conve-

nience of calculation, 1W
k and 2Wk are expressed in the vector

basiss+W ,−W ,zWd

1Wk = sinuzW − cosuSe−if +W

Î2
+ eif −W

Î2
D , sA2d

2Wk = ie−if +W

Î2
− ieif −W

Î2
. sA3d

In this vector basis, the three components of the source

driven angular momentum operatorĴsstd= Ĵz
szW+ Ĵ−

ss+W /Î2d
+ Ĵ+

ss−W /Î2d are

Ĵz
s = o

k

i
gk

2
E

t0

t

hs− Ĵ+e−if − Ĵ−eifdAk1 + isĴ+e−if

− Ĵ−eifdcosuAk2jt8dt8, sA4d

Ĵ+
s = o

k

igkE
t0

t

hĴze
ifAk1 + isĴz cosueif

+ Ĵ+ sinudAk2jt8e
iVst−t8ddt8, sA5d
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Ĵ−
s = o

k

igkE
t0

t

hĴze
−ifAk1 − isĴz cosue−if

+ Ĵ− sinudAk2jt8e
−iVst−t8ddt8, sA6d

where the shorthand notation for the quantized field operator
is Ak«; âk«

f e−ivkt− âk«
f†eivkt. Using these notations,RB be-

comes

RBstd = gĴsstd 3 B̂ fstd sA7d

=o
k«

igkĴ
sstd 3 skWu 3 «WkdAk« sA8d

=o
k«

igkĴ
sstd 3 s2WkAk1 − 1WkAk2d sA9d

=Rz
BstdzW + R−

Bstd
+W

Î2
+ R+

Bstd
−W

Î2
. sA10d

After carrying out the cross product and collecting all the
zW components,Rz

B is

Rz
B = o

k

gk
21

2
E

t0

t

hĴzt8Ak2t8Ak2t + sĴz cosueif + Ĵ+ sinudt8 cosue−ifAk1t8Ak1tjeiVst−t8ddt8 + o
k

gk
21

2
E

t0

t

hĴzt8Ak2t8Ak2t + sĴz cosue−if

+ Ĵ− sinudt8 cosueifAk1t8Ak1tje−iVst−t8ddt8 = −E dkGkE
t0

t

dt8"Ĵzt8sâk
f†âk

fe−ivkst−t8d + âk
f âk

f†eivkst−t8ddseiVst−t8d + c.c.d sA11d

=−
p

c
GkV

"ĴzstdsâkV

f† âkV

f + âkV

f âkV

f† d, sA12d

where Eq.(21) is used to approximate the discrete summa-
tion overkW by an integral inkW space in the second equality.
Because of the sinusoidal modulatione±ivkst−t8d in the inte-

gral, Ĵzst8d makes significant contribution to the integral with
respect tok only for t8→ t. Therefore, similar Markoffian
approximation used to calculate the self-reaction term is used
again to obtain the last equality. Applying the similar calcu-
lation, the +W component is

R−
B = o

k

gk
2E

t0

t

sĴz cosue−if

+ Ĵ− sinudt8 sinuAk1t8Ak1te
−iVst−t8ddt8

+ o
k

gk
2E

t0

t S Ĵ+

2
e−if +

Ĵ−

2
eifD

t8
e−ifAk2t8Ak2tdt8

+ o
k

gk
2E

t0

t S−
Ĵ+

2
e−if +

Ĵ−

2
eifD

t8
cos2 ue−ifAk1t8Ak1tdt8

sA13d

=−E dkGkE
t0

t

dt8"Ĵ−t8sâk
f†âk

fe−ivkst−t8d

+ âk
f âk

f†eivkst−t8ddse−iVst−t8d + 1d sA14d

=−E dkGkE
t0

t

dt8"J̃
ˆ

−t8sâk
f†âk

fe−ivkst−t8d

+ âk
f âk

f†eivkst−t8dds1 + eiVst−t8dde−iVt sA15d

=−
p

c
GkV

"Ĵ−stdâkV

f† âkV

f . sA16d

To properly apply the Markoffian approximation to the

above two calculations,Ĵ+st8d= J̃
ˆ

+st8deiVst8−td and Ĵ−st8d

= J̃
ˆ

−st8de−iVst8−td are used in the third equality to calculate the
integral. A concern might be raised here regarding the com-

mutability problem between operatorsĴst8d andB̂ fstd fâk
fstdg

in the above integral calculation. Strictly speakingĴ is only

same time commutable withB̂ sâkd and âk and âk
f are differ-

ent by a source driven termâk
s. This problem is resolved by

the following two reasons. First, because the above integral
is significant only for operators att8→ t, the different time

commutability problem betweenĴst8d andâk
fstd is reduced to

a same time commutability problem after applying the
Markoffian approximation. Secondly, the difference between

âk andâk
f is of the order ofOsgkd from Eq.(16). Ĵ andâk

f can
be treated as commutable up to the order ofOsgkd. This
approximation introduces a correction term of orderOsgk

3d to
the above final expression and is, therefore, justified because

our calculation is only up to the order ofOsgk
2d. The −W com-

ponent is simply the Hermitian conjugate ofR−
B.

Finally, the symmetrized Hermitian reservoir-fluctuation
induced damping termRH

B is reduced to
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RH
B = −

p

c
GkV

"SĴzzW +
Ĵ−

2

+W

Î2
+

Ĵ+

2

−W

Î2
Ds1 + 2n̂Vd,

sA17d

whereâkV

f† âkV

f + âkV

f âkV

f† =1+2n̂V is used.

APPENDIX B: CONSERVATION OF THE ANGULAR
MOMENTUM COMMUTATION RELATION

This appendix is to show that the angular momentum op-
erator in the derived operator rate(39) satisfies the conven-
tional angular momentum commutation relation, i.e., it satis-
fies Eq.(41). The proof is done for a negative gyromagnetic
constant and can be easily applied to a positive value. For the
convenience of calculation, the dissipation term Eq.(40) is
further reduced to

SHstd + RH
Bstd = −

p

c
GkV

sĴ+Ĵ− + 2"Ĵzn̂kV
dzW +

p

c
GkV

sĴzĴ−

− "Ĵ−n̂kV
d

+W

Î2
+

p

c
GkV

sĴ+Ĵz − "Ĵ+n̂kV
d

−W

Î2
.

sB1d

Also, the shorthand notation for time derivativedĴ /dt= Ĵ
˙
, is

use interchangeably. Since the derived angular momentum
rate equation is calculated up to the order ofOsgk

2d, the proof
is also carried out up to the same order.

The cross product ofĴ
˙

3 Ĵ+ Ĵ3 Ĵ
˙

is carried out first term

by term and then verified if it is equal toi"Ĵ
˙
. From the

precession term, −VĴ3zW in Ĵ
˙
, we have

sĴ˙ 3 Ĵ + Ĵ 3 Ĵ
˙ dpre= s− VĴ 3 zWd 3 Ĵ + Ĵ 3 s− VĴ 3 zWd

sB2d

=− i"VĴ 3 zW. sB3d

From the damping terms due to the self-reaction and vacuum

fluctuations sp /cdGkV
f−Ĵ+Ĵ−zW+ ĴzĴ−s+W /Î2d+ Ĵ+Ĵzs−W /Î2dg in

Ĵ
˙
, we have

sĴ˙ 3 Ĵ + Ĵ 3 Ĵ
˙ dSR-VF =

p

c
GkV

S− Ĵ+Ĵ−zW + ĴzĴ−
+W

Î2
+ Ĵ+Ĵz

−W

Î2
D

3 Ĵ + Ĵ 3
p

c
GkV

S− Ĵ+Ĵ−zW + ĴzĴ−
+W

Î2

+ Ĵ+Ĵz
−W

Î2
D sB4d

=i"
p

c
GkV
Hs− Ĵ+Ĵ− + 2Ĵz

2dzW + 3ĴzĴ−
+W

Î2
+ 3Ĵ+Ĵz

−W

Î2
J .

sB5d

From the thermal photon induced damping terms

−sp /cdGkV
f2"ĴzzW+"Ĵ−s+W /Î2d+"Ĵ+s−W /Î2dgn̂kV

in Ĵ
˙
, we have

sĴ˙ 3 Ĵ + Ĵ 3 Ĵ
˙ dth = −

p

c
GkV

"S2ĴzzW + Ĵ−
+W

Î2
+ Ĵ+

−W

Î2
Dn̂kV

3 Ĵ

− Ĵ 3
p

c
GkV

"S2ĴzzW + Ĵ−
+W

Î2
+ Ĵ+

−W

Î2
Dn̂kV

sB6d

=i"
p

c
GkV
H− 2"Ĵz

2n̂kV
zW − 3"Ĵ−n̂kV

+W

Î2
− 3"Ĵ+n̂kV

−W

Î2
J .

sB7d

From the zero mean fluctuation termgĴ f 3 B̂ f in Ĵ
˙
, we have

sĴ˙ 3 Ĵ + Ĵ 3 Ĵ
˙ dnoise= gsĴ f 3 B̂ fd 3 sĴ f + Ĵsd + sĴ f + Ĵsd

3 gsĴ f 3 B̂ fd sB8d

=i"gsĴ f 3 B̂ fd + gsĴ f 3 B̂ fd 3 Ĵs + Ĵs 3 gsĴ f 3 B̂ fd,

sB9d

where Ĵ is explicitly expressed by its free evolutionĴ f and

source drivenĴs parts.

To calculate the cross product terms involvingĴs in the
above equation, we use the coordinate system introduced in
Appendix A and carry out the computation in basiss+W ,

−W ,zWd. The three components ofgĴ f 3 B̂ f =sgĴ f 3 B̂ fdzzW+sgĴ f

3 B̂ fd−s+W /Î2d+sgĴ f 3 B̂ fd+s−W /Î2d are

gsĴ f 3 B̂ fdz = o
k

i
gk

2
hs− Ĵ+

f e−if − Ĵ−
f eifdAk1

f + isĴ+
f e−if

− Ĵ−
f eifdcosuAk2

f j, sB10d

gsĴ f 3 B̂ fd+ = o
k

igkhĴz
feifAk1

f + isĴz
f cosueif + Ĵ+

f sinudAk2
f j,

sB11d

gsĴ f 3 B̂ fd− = o
k

igkhĴz
fe−ifAk1

f − isĴz
f cosue−if

+ Ĵ−
f sinudAk2

f j. sB12d

Using these equations and the Eqs.(A4) and(A5) of Ĵs, one

can calculate each vector component forĴs3gsĴ f 3 B̂ fd
+gsĴ f 3 B̂ fd3 Ĵs. ThezW component is
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hĴs 3 gsĴ f 3 B̂ fd + gsĴ f 3 B̂ fd 3 ĴsjzzW = hfĴ+
s,gsĴ f 3 B̂ fd−g

− fĴ−
s,gsĴ f 3 B̂ fd+gji

zW

2
, sB13d

=H− o
k

gk
2E

t0

t

Ĵzst8dĴz
fstds1 + cos2 udfAst8d,AfstdgeiVst−t8ddt8

− o
k

gk
2E

t0

t

sin2 ufĴ+st8dAst8d,Ĵ−
f stdAfstdgeiVst−t8ddt8

+ o
k

gk
2E

t0

t

Ĵzst8dĴz
fstds1 + cos2 udfAst8d,Afstdge−iVst−t8ddt8

+ o
k

gk
2E

t0

t

sin2 ufĴ−st8dAst8d,Ĵ+
f stdAfstdge−iVst−t8ddt8Ji

zW

2
,

sB14d

=i"
p

c
GkV

s− 2Ĵz
2dzW, sB15d

where the integral approximation Eq.(21) for the discrete
summation overkW and the Markoffian approximation are

used to lead to the final equality. The approximationsĴ f < Ĵ
andAf <A are used to calculate the commutation terms[…,
…] in the above last second equality because they only in-
troduce correction terms of orderO sgk

3d and the analysis in
this paper is done up to the order ofO sgk

2d. The same ap-

proach can be used to calculate the +W and −W components

hĴs 3 gsĴ f 3 B̂ fd + gsĴ f 3 B̂ fd 3 Ĵsj−
+W

Î2

= hfĴ−
s,gsĴ f 3 B̂ fdzg − fĴz

s,gsĴ f 3 B̂ fd−gji
+W

Î2
sB16d

=i"
p

c
GkV

s− 2ĴzĴ− + 2"Ĵ−n̂kV
d

+W

Î2
, sB17d

hĴs 3 gsĴ f 3 B̂ fd + gsĴ f 3 B̂ fd 3 Ĵsj+
−W

Î2

= h− fĴ+
s,gsĴ f 3 B̂ fdzg + fĴz

s,gsĴ f 3 B̂ fd+gji
−W

Î2

sB18d

=i"
p

c
GkV

s− 2Ĵ+Ĵz + 2"Ĵ+n̂kV
d

−W

Î2
. sB19d

Combining the results from Eqs.(B3), (B5), (B7), (B9),
(B15), (B17), and(B19), we obtain

dĴ

dt
3 Ĵ + Ĵ 3

dĴ

dt
= i"

dĴ

dt
. sB20d

Thus, it is shown that the angular momentum rate(39) in-
deed preserves the angular momentum commutation relation.
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