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Interstitial hydrogen in bcc Nb and Ta is studied theoretically, using first-principles density-functional
calculations. The effect of self-trapping is investigated in some detail, and our calculated energies, forces, and
displacements for hydrogen at tetrahedral sites are all found to be in good agreement with experiments. The
local motion of H and D is treated quantum mechanically by mapping out potential energy surfaces and solving
a Schrödinger equation for the ground state and vibrationally excited states. Diffusion between sites is dis-
cussed in both the classical and the quantum regimes. At low temperatures, the small-polaron theory of phonon
assisted tunneling is applied, and we find excellent agreement with experiments for both the calculated coin-
cidence energy and bare tunneling matrix elements. At higher temperatures our results indicate that hydrogen
migration should best be described in terms of overbarrier motion, rather than tunneling from excited states.
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I. INTRODUCTION

The properties of hydrogen-metal systems have attracted
a lot of attention.1 From an applied point of view, they are
relevant for understanding the mechanisms at work in impor-
tant technical areas such as hydrogen storage, fuel cells, and
hydrogen embrittlement. From a more fundamental point of
view, hydrogen in metals might serve as a model problem for
theoretical investigations of more complicated systems. In
particular, the small mass of the hydrogen isotopes allows for
the study of quantum nucleus phenomena in condensed mat-
ter. For example, zero-point motion effects, discrete vibra-
tional energy levels, and the possibility of tunneling have all
been observed for H in metals.2

The properties of H–group-V bcc transition metals(V, Nb,
Ta) have been studied extensively, both experimentally and
theoretically. In the dilutea phase, dissolved hydrogen has
been found to preferably occupy tetrahedral sites in the lat-
tice. Hydrogen diffuses rapidly in these materials and retains
a high mobility even down to very low temperatures where
quantum effects should dominate. Indeed, experimentally
one has found a change of the activation energy around
250 K for hydrogen diffusion in Nb and Ta, using both the
Gorsky effect3 and nuclear magnetic resonance(NMR)
measurements.4 This has been explained in terms of incoher-
ent tunneling between hydrogen ground states localized on
neighboring sites.5,6

Hydrogen in bcc hosts has previously been investigated
theoretically by several different approaches. The use of vari-
ous model potentials has provided valuable insight regarding
the properties of self-trapped hydrogen states, their coupling
to the lattice, and their rate of migration.7–11 The application
of empirical potentials is, however, severely limited by the
requirement of accurate estimates of some relevant quantities
describing the H-metal interaction. Methods based onab ini-
tio simulations12,13 are unbiased in this respect, but normally
require a classical description of the nuclei in the system of
consideration. Thus it is difficult to access properties related
to the light interstitials being quantum mechanically delocal-
ized. Such examples are activation energies and transfer in-
tegrals for phonon-assisted tunneling.

In a previous Letter14 we demonstrated the validity of the
Flynn-Stoneham model5 for H diffusion in Nb and Ta in the
temperature range 100 K,T,200 K, solely based on first-
principles density-functional theory(DFT) calculations. This
was done using a straightforward scheme to represent a de-
localized hydrogen nucleus in the tunneling configuration. In
this paper a more detailed investigation is made regarding
the hydrogen-lattice coupling. We have calculated total ener-
gies and the induced forces and resulting displacements of
surrounding metal atoms for hydrogen occupying different
interstitial sites at varying concentrations. The discussion
about hydrogen diffusion is also extended to include the
high-temperature regime. This allows for a direct comparison
between lattice-assisted quantum tunneling and classical
overbarrier migration.

II. METHODOLOGY

A. Hydrogen–host-lattice coupling

Our starting point is to consider a system consisting of a
hydrogen interstitial and a metal host. If the electronic de-
grees of freedom are eliminated with the usual Born-
Oppenheimer approximation, the interaction potential is de-
termined by solving an electronic structure problem. This
can be done accurately and efficiently using DFT. We also
assume the light hydrogen atom to be adiabatically decou-
pled from the motion of the much heavier metal atoms, and
the latter are treated as classical particles.

To lower the total energy of the system, a hydrogen lo-
cated at some stable site in the lattice will distort the posi-
tions of the surrounding metal atoms. The gain is the so-
called self-trapping energy. As a consequence, the
translational symmetry of the crystal is destroyed so that if a
hydrogen is moved from its initial sitei to a neighboring site
f, without allowing the lattice to readjust, the energy will be
higher. At low temperatures, this prohibits tunneling between
the sites. Thermal fluctuations of atomic positions might,
however, create a lattice configuration where levels ofi and
f become equivalent and tunneling can take place. The mini-
mum energy required to establish this configuration is the
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so-calledcoincidenceenergy. This quantity gives the activa-
tion energy for phonon-assisted tunneling diffusion at low
temperatures.5,6 It is also an important measure of the cou-
pling of a moving impurity to the host lattice vibrations.1 At
higher temperatures, classical overbarrier motion is instead
expected to be the dominating diffusion mechanism. The cor-
respondingclassical migrationbarrier is calculated as the
energy required to move the hydrogen, by an adiabatic de-
formation of the lattice, over the saddle point separating sites
i and f.

In principle, these distortions of the lattice should be cal-
culated by optimizing atomic positions in the presence of a
hydrogen density corresponding to the localized vibrational
ground states. However, since only a small isotope effect in
the volume expansion of hydrogen loaded crystals have been
observed,15 this should be a minor effect. Also, in Ref. 16 it
was found, using a pair-potential description for the HuPd
system, that inclusion of the finite extension of the hydrogen
wave function only changed the energy of the self-trapped
state by a few percent, compared with treating the interstitial
as a pointlike classical particle.

When relaxing the lattice to the self-trapped and classical
saddle-point configurations, the hydrogen is therefore treated
as a pointlike particle. For a tunneling interstitial in the co-
incidence configuration, one obviously has to relax this as-
sumption. In the spirit of the other calculations we treat the
delocalized hydrogen as a superposition of two point par-
ticles with equal weight and placed at neighboring sitesi and
f, respectively. The average force on a surrounding metal
atom from these localized parts is then given by a weighted
sum of Hellmann-Feynman forces that is evaluated using
symmetry considerations.

B. Localized hydrogen vibrations

Vibrational states of the interstitial are determined by ex-
ploiting the fact that the hydrogen mass is much smaller than
the mass of the host metal atoms. If a hydrogen nucleus can
be assumed to respond adiabatically to any motion of the
host lattice, the impurity will be moving in a potential field
generated by the the instantaneous positions of the surround-
ing metal atoms. We have considered two different sets of
equilibrium ionic positions, which correspond to hydrogen in
the self-trapped and coincidence states. For these energy re-
laxed lattice configurations we map out three-dimensional
potential energy surfaces(PES’s). The hydrogen motion is

treated quantum mechanically, so that vibrational states are
calculated by solving a Schrödinger equation where the wave
functions are required to vanish on the boundaries of a suf-
ficiently large “box” enclosing the stable interstitial sites. For
the self-trapped state, the resulting wave functions can be
characterized by the irreducible representations of the point
symmetry group of the occupied site. From the calculated
energy levels, vibrational excitation energies are extracted.
For the coincidence configuration, tunneling matrix elements
are estimated from the splitting of odd and even states in the
symmetric potential.

C. Computational details

Our calculations are based on DFT within the plane-wave
pseudopotential method. To solve the Kohn-Sham equations
we use the Viennaab initio simulation package17,18 (VASP).
The electron-ion interaction is described by the projector
augmented-wave method.19 For the exchange-correlation
part we use a generalized gradient approximation(GGA) due
to Perdew and Wang.20 The Brillouin zone sampling was
performed using the Monkhurst-Pack method.21 For the cal-
culation of the fractional occupancies, a Methfessel-Paxton
smearing technique22 was employed withN=1 and s
=0.2 eV. All calculations were performed non-spin-polarized
with a plane-wave cutoff of 250 eV. Using this setup an
equilibrium lattice constant of 3.32 Å was found for both
metals in their bcc structure, in good agreement with experi-
ments. Atomic hydrogen was introduced in primitive super-
cells containingN3 metal atoms and conventional cubic su-
percells containing 23N3 metal atoms forN=1, 2, and 3 to
estimate the effect of finite hydrogen concentrations in the
materials.33

The PES’s for hydrogen vibrational motion are mapped
out on regular grids by repeating the calculations for several
different positions of the hydrogen atom within the supercell.
Interpolation with piecewise cubic Hermite polynomials is
used to map the PES on to a finer grid where the vibrational
Schrödinger equation is discretized with finite differences.
The resulting eigenvalue problem is solved using the Lanc-
zos algorithm with selective reorthogonalization.34

III. RESULTS AND DISCUSSION

A. H-Nb and H-Ta lattice energies, forces,
and displacements

We first consider the problem of site occupation. In Table
I the calculated energies for hydrogen occupying different

TABLE I. Calculated energies(in eV/atom) for a hydrogen impurity at different interstitial sites in bcc Nb
and Ta in the low-concentration limit. The energies are given relative to the pure host metal and an isolated
hydrogen dimer asE=EH-metal−Emetal−

1
2EH2

.

Location

Niobium Tantalum

Fixed Relaxed Fixed Relaxed

T site −0.201 −0.389 −0.228 −0.413

M point +0.110 −0.240 +0.083 −0.227

S point +0.103 −0.241 +0.078 −0.233

O site +0.465 −0.096 +0.480 −0.077
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interstitial sites in a fixed and a relaxed host lattice at low
hydrogen concentrationss1/54d are given. In particular, we
have investigated the tetrahedralsTd and octahedralsOd sites,
as well as the midsMd and saddlesSd points separating two
neighboring tetrahedral sites in Nb and Ta. For both metals,
T sites are found to be the most stable. The energy differ-
ences of around 0.7 eV betweenT sites andO sites and
around 0.3 eV betweenT sites andM points in the fixed
lattice agree well with the results of Elsässeret al.12 Further,
our calculated energies for hydrogen occupying relaxedT
sites are consistent with with the experimental heat of solu-
tion −0.35 eV/atom for Nb and −0.39 eV/atom for Ta.23

We next consider the interaction of hydrogen atoms with
the host lattice in some detail. The directions of the forces
exerted by a hydrogen impurity on surrounding metal atoms
are given by the local symmetry of the occupied interstitial
site. In Table II the magnitude of the calculated forces ex-
erted by a hydrogen atT and O sites on the nearest- and
second-nearest-neighbor metal atoms are given. The magni-
tude F of the induced force field decays quite rapidly with
distanced from the nearest defect in the host crystal. An
exponential fitFsdd~expf−d/d0g gives for both H-Nb and
H-Ta a mean extensiond0=0.2a for hydrogen at theT site
andd0=0.1a for hydrogen at anO site. Direct measurements
of these forces are difficult, but the components of the force-
dipole tensorP, defined as

Pij = o
m

Fi
mRj

m, s1d

are accessible from experiments. HereFm is the Kanzaki
force24 on metal atomm located at a positionRm from the
defect. For hydrogen occupying tetrahedral or octahedral
sites in a bcc lattice, this rank-2 tensor is diagonal with
TrP;2A+B proportional to the isotropic volume expansion
of a hydrogen loaded crystal. Similarly, the quantityuA−Bu
can be taken as a measure of the anisotropy of the induced
force field. As pointed out previously,13 evaluating the force-
dipole tensor from first principles presents a number of dif-
ficulties. When approximatingFm by the Hellmann-Feynman
forces calculated within a plane-wave pseudopotential ap-
proach, care must be taken to use sufficiently large supercells
so that the force field close to any given interstitial is similar
to that of an isolated hydrogen. Alternatively, symmetrization

TABLE II. Calculated forces and lattice distortion for hydrogen occupyingT andO sites in Nb and Ta.
The forces exerted by a hydrogen impurity on nearest-neighbor and second-nearest-neighbor metal atoms in
an unrelaxed lattice are denoted byF1 and F2, respectively. From these, the derived quantities of the
force-dipole tensor are evaluated. Also given is the displacementu1 of the nearest-neighbor metal atoms upon
self-trapping.

Niobium Tantalum

T site O site T site O site

F1 (eV/Å) 1.2 3.2 1.2 3.3

F2 (eV/Å) 0.2 0.3 0.2 0.4

2A+B (eV) 11.0 13.2 11.7 14.4

uA−Bu (eV) 0.3 9.3 0.1 9.2

u1 (Å) 0.08 0.19 0.07 0.18

FIG. 1. Characteristic energies for quantum and classical diffu-
sion of hydrogen between neighboringT sites in Nb and Ta, calcu-
lated for different sizes of supercells. Left panels show the conver-
gence of quantities describing lattice-assisted quantum tunneling:
the self-trapping energyVst, the nearest-neighbor shiftVnn, and the
coincidence energyVc. Right panels show the convergence of the
classical migration barrier:Vm is the energy required to transfer the
hydrogen over the saddle point via an adiabatic distortion of the
host lattice. Lines are a guide to the eye only.
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can be used to correct for the spurious forces arising due to
the imposed periodicity. Still, the summation in Eq.(1) must
be restricted in order to prevent the random noise of the
vanishingly small forces acting on remote metal atoms from
being weighted by the large distance. Therefore, when calcu-
lating P only metal atoms in the first two neighbor shells
(corresponding tod1=Î5a/4 andd2=Î13a/4 for aT site and
d1=a/2 andd2=Î2a/2 for an O site) were included in the
summation. The results, as given in Table II, agree well with
those obtained by Elsässeret al.13 using the same approxi-
mations. In particular, TrP=11 eV and only a small aniso-
tropy for hydrogen atT sites in both Nb and Ta is in good
agreement with experimental data from both Gorsky effect25

and x-ray scattering15,26 measurements. The calculated dis-
placements of nearest-neighbor metal atoms upon relaxation
are also given in Table II. The resultu1=0.08 Å for atoms
surrounding an occupiedT site is only slightly smaller than
the experimental value 0.1 Å obtained from x-ray
scattering.27,28

With hydrogen at the stableT site, we show the most
important lattice energies for NbnH and TanH as a function
of hydrogen concentrationc=1/n in Fig. 1. Relaxation of
metal atoms surrounding the impurity results in a stabiliza-
tion of the system by the self-trapping energyVst=189
s185d meV for H-Nb sH-Tad at low concentrations(cf.
Table I). This configuration will be denoted by 1T. If the
hydrogen is moved to a nearest-neighborT site in the dis-
torted lattice, the energy increases byVnn=80 s78d meV. By
instead relaxing the host lattice with the hydrogen extending
over two neighboringT sites, a symmetric 2T configuration
is obtained. We find a coincidence energyVc=V2T−V1T
=19 meV for hydrogen in both metals. Our calculated ratio
Vc/Vnn is thus close to 1/4 as expected from harmonic lattice
theory.1 For comparison we also show the classical migration
barrier, which equals the extra energy required to bring the
hydrogen to the relaxed saddle pointS. We obtainVm=VS
−V1T=148 s180d meV for H-Nb sH-Tad at low concentra-
tions (cf. Table I).

B. Hydrogen vibrational states

For computational reasons, PES’s for the hydrogen mo-
tion were mapped out using smaller supercells. By examin-

ing the convergence of the displacement fields of the self-
trap and coincidence configuration, a hydrogen concentration
of 1/16 was found to be sufficiently small for reproducing
most of the local relaxation effects(cf. also Fig. 1). At this
concentration PES’s for the hydrogen vibrational motion
were mapped out. With the host lattice relaxed to 1T con-
figuration the grid extenda/23a/23a/2 around the occu-
pied site, and with the host lattice relaxed to the 2T configu-
ration we used a twice as large grid rotated to enclose the
coinciding sites. The grid spacing of first-principles data
points wasa/8 in both cases. Our calculated kinetic energies
for the ground and lowest excited states of hydrogen isotopes
in both metals can be found in Table III.

We start by considering hydrogen vibrating in the 1T con-
figuration. In Fig. 2 the calculated wave functions for the
ground and lowest vibrationally excited states of H are
shown. The local symmetry of a relaxedT site is that of the
D2d point group. The ground state is therefore a fully sym-
metric A1 state. For H we find excitation energies close to
120 meV for the first-excitedB2 state, 180 meV for the
second-excited twofold-degeneratedE state, and 210 meV
for the third-excitedA1 state in both Nb and Ta. For D, these
values are reduced by approximately a factor 0.93Î2. Our
calculated excitation energies are only slightly larger than the
values reported from inelastic neutron scattering experiments
at low hydrogen concentrations.29,30

We next consider hydrogen in the 2T configuration. The
change in zero-point energy compared to the self-trapped
state was found to be small, only a few percent. The calcu-
lated ground-state tunneling matrix elements areJ0
=0.8s0.1d meV for H (D) in both Nb and Ta. Higher vibra-
tional states have significantly larger overlaps. Tunneling
matrix elements can, however, be expected to depend sensi-
tively on the shape of the potential. For example, we have
determined the PES’s for a hydrogen concentrationc=1/16.
At lower concentrations the migration barriers were found to
be reduced by nearly 20% in Nb and around 10% in Ta. This
should increase the hop rate in the low-temperature regime.
To investigate the sensitivity of the calculated tunneling ma-
trix elements on the barrier height, we have scaled the PES’s
by a factor of 1.0±0.2 and compared with the results thus

TABLE III. Vibrational states for hydrogen isotopes in Nb and Ta. The zero-point energyE0 and the
excitation energies"vn are calculated in the self-trapped 1T configuration, whereas the corresponding bare
tunneling matrix elementsJn are determined in the symmetric 2T configuration. All results in meV.

Niobium Tantalum

H D H D

E0 274 197 279 200

"v1 122 93 121 93

"v2 176 134 178 136

"v3 208 170 206 170

J0 0.80 0.10 0.82 0.10

J1 2.30 0.34 2.25 0.36

J2 6.69a 1.42a 7.05a 1.52a

0.15a 0.04a 0.15a 0.04a

J3 16.1 7.77 17.1 8.32

aThe second-excited state is twofold degenerated.
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obtained. With the modified potential we get the estimates
0.6,J0,1.1 meV s0.06,J0,0.2 meVd for H (D) in both
Nb and Ta.

C. Activation energies for diffusion

We finally consider hydrogen migration between the
stableT sites in different temperature regimes. This is illus-
trated in Fig. 3. At low temperatures hydrogen diffusion is
dominated by incoherent tunneling between ground states
localized on neighboring interstitial sites. For multiphonon-
assisted jumps Flynn and Stoneham5 showed that the tunnel-
ing raten then is given by

n =
p1/2uJ0u2

2"sEckBTd1/2e−Ec/kBT, s2d

whereEc=E2T−E1T is the total energy required to create the
ground-state coincidence configuration. The activation en-
ergy Ec is dominated by the potential partVc, but there is
also a kinetic contributionKc that equals the change in zero-
point energy(ZPE) between the 1T and 2T lattice configu-
rations. These energies are given in the first part of Table IV.

Our calculatedEc is in very good agreement with NMR
measurements of spin-lattice relaxation rates by Messeret
al.4 By fitting the parameters of Eq.(2) they obtain Ec
=27±2 meV s32±8 meVd and J0=0.9−0.2

+0.1 meV
s0.7±0.2 meVd for H-Nb sH-Tad. The agreement with the
Gorsky effect measurements by Qiet al.3 is not quite as
good. It has, however, been argued that the NMR data are
more reliable since they give information on the characteris-
tic times for the elementary jump processes, while the mea-

surements based on the Gorsky effect are more macroscopic
in nature and may be affected by defects in the material.

At higher temperatures transitions between vibrationally
excited states for the hydrogen motion start to contribute.
This has been treated by Eminet al.6 using the so-called
occurrence probability approach. If the tunneling matrix ele-
ments are sufficiently large, an adiabatic picture becomes
valid. The rate then takes the formn=nD expf−Eeff /kBTg,
wherenD is the Debye frequency and the effective activation
energyEeff often is assumed to be given by the vibrational
excitation energy"v1. A similar expression is obtained as-
suming the quantum-mechanically modified classical rate
theory.31 That approach predicts a raten=skBT/hd
expf−DF‡/kBTg, whereDF‡ is the free energy difference be-
tween the transition state and the stable site configurations.
For motion of hydrogen in three dimensions, with the two

FIG. 3. Potential energy profiles when hydrogen is moved in a
frozen host lattice configuration along a line connecting two adja-
cent T sites (separated by a distanced=a/Î8), mapped out for a
hydrogen concentration of 1/16 in Nb and Ta. The host lattice has
been held fixed at the relaxed atomic positions corresponding to the
self-trapped 1T (solid lines), the coincidence 2T (dashed lines) or
the classical saddle-pointS (dash-dotted lines) configurations. The
activation energies for lattice-assisted quantum tunnelingsVcd and
classical overbarrier migrationsVmd have been indicated in the
figures.

FIG. 2. Ground and vibrationally excited states for H self-
trapped in the 1T configuration in Nb. Contours are drawn in a
(001) plane through the stable site. Solid and dashed lines indicate
different signs for the wave functions. The side length of each box
is a/2, wherea=3.32 Å is the lattice parameter.
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bound degrees of freedom treated quantum mechanically
skBT!"v1d, one obtainsn=skBT/hdexpf−Em/kBTg.35 Here
Em=ES−E1T is the total energy required to bring the hydro-
gen from the self-trapped state to the classical saddle point.
The activation energyEm is dominated by the migration bar-
rier Vm, but to fully account for the three-dimensional char-
acter of the problem, the ZPE for the perpendicular degrees
of freedom along the reaction coordinate should also be in-
cluded. This kinetic correction is estimated by solving for
two-dimensional vibrational states at the dividing surface
separating neighboringT sites in the coincidence configura-
tion and subtracting the ground-state energy from the self-
trapped configuration. The resulting effective barriers for H
and D migration in Nb and Ta are summarized in the second
part of Table IV.

Messeret al.4 have also determined the the transition rate
at higher temperaturesT.250 K. They obtain an activation
energy 119 meVs147 meVd and a prefactor 8.031012 s−1

s4.531012 s−1d for the H-NbsH-Tad system. These experi-
mental results can be interpreted in terms of either adiabatic
tunneling transitions between excited states or classical over
barrier motion, as the experimental activation energy is simi-
lar in magnitude to both the vibrational excitation energy
"v1 (cf. Table III) and the classical migration energyEm (cf.
Table IV). However, the experimental trend with higher ac-
tivation energy for H-Ta compared with H-Nb is only re-
produced by the migration energyEm. The experimental
prefactor is consistent with both adiabatic transitions within
the occurrence probability approach(the Debye frequency is
nD=5.731012 s−1 andnD=4.731012 s−1 for Nb and Ta, re-
spectively) and with the quantum-mechanically modified
classical rate theory(kBT/h=6.331012 s−1 at T=300 K).

IV. CONCLUSIONS AND OUTLOOKS

In conclusion, we have presented a first-principles
density-functional study of hydrogen in Nb and Ta. The cal-

culated energies, forces, and displacements for hydrogen
self-trapped at tetrahedral sites in the lattice were all found to
be in good agreement with experimental data. Motivated by
their small mass, we have treated the motion of hydrogen
atoms quantum mechanically. By mapping out three-
dimensional PES’s and solving a Schrödinger equation,
ground and excited vibrational states for H and D were cal-
culated for the 1T and 2T configurations. The resulting exci-
tation energies are consistent with experiments. For hydro-
gen diffusion in the temperature range 100 K,T,200 K
the small-polaron theory of Flynn and Stoneham5 was ap-
plied, and we found excellent agreement with NMR results
for both the calculated coincidence energy and bare tunnel-
ing matrix elements. At higher temperatures our results indi-
cate that hydrogen migration should best be described in
terms of overbarrier motion, rather than tunneling from ex-
cited states.

It would be interesting to apply our approach to investi-
gate diffusion in other H-metal systems. Recently, Wolverton
et al.32 published a systematic study of the structure and
thermodynamics of H-Al. Another technologically relevant
system is H-Fe, where an accurate description of hydrogen
migration might result in a better understanding for the im-
portant problem of hydrogen embrittlement. The shorter lat-
tice parameter of Fes2.87 Åd compared to Nb and Ta in the
present studys3.32 Åd suggests that tunneling phenomena
might dominate the diffusion process at even higher tempera-
tures.
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TABLE IV. Hydrogen diffusion in the classical and quantum regimes. Activation energies for phonon assisted ground-state tunneling and
classical overbarrier motion calculated for hydrogen migration betweenT sites. Potential energies are calculated forc=1/54, kinetic energies
for c=1/16. All results in meV.

Niobium Tantalum

H D H D

Quantum tunneling

Potential Vc 19.3 19.2

Kinetic Kc +4.6 +3.8 +9.4 +7.1

Total Ec 23.9 23.1 28.6 26.3

Classical migration

Potential Vm 147.8 179.7

Kinetic Km −21.6 −16.9 −14.6 −11.8

Total Em 126.2 130.9 165.1 167.9
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