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X-ray spectrum of a pinned charge density wave
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We calculate the x-ray diffraction spectrum produced by a pinned charge density@@aV¥). The signa-
ture of the presence of a CDW consists of two satellite peaks, asymmetric as a consequence of disorder. The
shape and the intensity of these peaks are determined in the case of a collective weak pinning using the
variational method. We predict divergent asymmetric peaks, revealing the presence of a Bragg glass phase. We
deal also with the long range Coulomb interactions, concluding that both peak divergence and anisotropy are
enhanced. Finally we discuss how to detect experimentally the Bragg glass phase in the view of the role played
by the finite resolution of measurements.
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I. INTRODUCTION disorder!> The x-ray experimental resolution is in principle
The study of disordered elastic objects sheds light on thguch higher than the one that can be achieved by neutrons

physics of a wide range of systems. A first class of systems i Vortex lattices, consequently CDW systems should be
accurately modeled by elastic manifolds in the presence df'ime candidates for studying the detailed nature of a Bragg

randomness; significant examples include domain walls |r9|ais srt]até. It ShIOU|d in part|CL:1Iar be p053|bkle mnrzptlyd
magnetié or ferroelectrié materials, contact lines of liquid ProPe the power law nature of the Bragg peaks predicted for

menisci on a rough substrateand propagating cracks in & Bragg glass. However, compared to the case of vortex lat-

solids* A second class of disordered elastic systems is givef{C€S the intérpretation of the spectrum is much more com-
by periodic structures such as charge density wave licated for two main reasonsi) the phase of the CDW is

(CDWSs),5 vortex flux lines in type-Il superconductérand e object described by an elastic energy, whereas the x rays

. o probe the displacements of the atoms in the crystal lattice
Wigner crystals. It was recently shown that periodic systems essentially a cosine of the phaséi) since the impurities

have unique proper_tles, qwte_ different f_rom the ones of th ubstitute for some atoms of the crystal, the very presence of
mterfgces. In fact, if topological defec(se., dislocations, i,e impurities changes the x-ray spectrum. This gives rise to
etc) in the crystal are excluded, displacements can grow,qntrivial terms of interference between disorder and atomic
only logarithmically;~° in contrast with the power-law gisplacement®17 It is thus necessary to make a detailed
growth of interfaces. The positional order is only algebra-theoretical analysis of the diffraction due to a pinned CDW.
ically destroyed,** leading to divergent Bragg peaks and a |n the past, the study of the spectrum has been carried out
nearly perfect crystal state. Quite remarkably, it was showrnly either for strong pinning or at high temperatut&s?in
that for weak disorder this solution stableto the prolifera-  this paper we focus on the low temperature limit, where a
tion of topological defects, and thus that a thermodynamiwell formed CDW exists, and on weak disorder, for which
cally stable phase having both glassy properties and quasine expects to be in the Bragg glass regime. Both the short
long-range positional order existsThis phase, nicknamed and long range screening of the Coulomb interactions are
Bragg glass, has prompted many further analytical and exeonsidered. We show that in both cases the diffraction spec-
perimental studiegsee, e.g., Refs. 12 and 13 for reviews andtrum consists of two asymmetric peaks. The peaks are
further references Although its existence can be tested in- power-law divergent, with a stronger anisotropic shape in the
directly by the consequences on the phase diagram of vortecase of unscreened long-range Coulomb interaction. This
flux lines, the most direct proof is to measure the predictedinding is consistent with the Bragg glass behavioThe
algebraic decay of the positional order. Such a measuremeasymmetry divergence follows a subdominant power-law as
can be done by means of diffraction experiments, using eiwell, with an exponent that we determine. A short account of
ther neutrons or x rays. Neutron diffraction experiments havepart of the results of this paper was published in Ref. 20.
recently provided unambiguous evidetttef the existence In Sec. | we derive the model used to describe the inter-
of the Bragg glass phase for vortex lattices. action between the CDW and impurities. Two elastic limits
Another periodic system in which one can expect a Braggre considered: if free electrons are present the elasticity has
glass to occur are CDWswhere the electronic density a simple short-range form, while, in the unscreened case,
shows a sinusoidal modulation. As a consequence of th€oulomb interactions are responsible for a long range
electron—phonon interaction, this modulation generates a pestrongly anisotropic elastic term. In Sec. Il we discuss the
manent distortion of the underlying lattice. This distortion x-ray intensity spectrum behavior in presence of a pinned
can be revealed thanks to x-ray measurements: in fact, th@éDW. In particular, we derive the different contributions to
corresponding x-ray spectrum presents satellite peaks arouttlde satellite peaks and we study their symmetry properties. In
each principal Bragg peak. These satellites contain informaSec. Il we evaluate explicitly the different terms by means
tion concerning the positional order of the CDW. In particu-of the replica techniques. Section IV contains the physical
lar, we are interested in the detection of effects due taliscussion in view of all the results obtained in this paper.

1098-0121/2004/1Q2)/22420412)/$22.50 224204-1 ©2004 The American Physical Society



A. ROSSO AND T. GIAMARCHI PHYSICAL REVIEW B70, 224204(2004

The reader not interested in the details of calculations mapver, we observe that the value of the integ#lis related to
move directly to this section skipping the previous one. Fi-the shortest length scale in the problem. Here we assume that
nally, in Appendix A we evaluate the triplet contribution and this cutoff momentumA, is given by the periodicity of the
in Appendix B we calculate the functidor], used in Sec. IV. CDW (A~Q).%
The form of the Hamiltonian(3) is actually anisotropic
Il. THE MODEL along theQ direction. In fact, a compression alot@ pro-
duces an increase of the electric charge density which yields
The system we have studied is a CDW in a three dimenan increase of the stiffness, whereas all distortions along the

sional space. The electron density has the féfm: other two directions do not involve any change in electro-
Q™ static energy.
p(r) = po+ PV~ V (1) + pi|lcodQr + ¢(r)], (1) We evaluate the contributiqn_ of Coulpmb interactions
™ screened beyond the characteristic lengtkvithout any loss

©of generality we assum@|Ix andy is along one of the other

where a single sinusoidal deformation of modulation vecto ) Aot )
two equivalent directions. The electrostatic energy takes the

Q is considered ang/=|y{e'? is the CDW order parameter
normalized to unity af=0. The first term of Eq(1), po, iS

the average density. The second one corresponds to a density 1 0)p(r)
Uo — f Brddr e InAUA) (5)
2V

averaged at scales larger th@n. This contribution, also Ir=r'|

calledforward scattering encompasses the local changes of

the electron density related to the compression modes. Thene main contribution to the electrostatic energy comes from
last term, also called backward scattering, describes the singe yariations of the electron densjiyexpressed by Eqd).

soidal modulation at a scale of the order @fl- We can  Therefore, we restrict to consider only the forward scattering
neglect all contributions stemming from higher harmonicig m:

terms as they are known to be important only at very low

temperature. The effective Hamiltonian can be obtained by a p2|uf? . _lr_r,lh\axgb(r)axm;/;(r’)
Ginzburg—Landau expansion of the order parameter * 2720V d°rd’r’e r—r'|
1 b 2,112 N)2
H :f d3r5|¢|4—a|¢|2+ 5| v 2, 2) _ pil¥ (gN) 5(g)[2. 6)

7Q? | 1+N\%¢?
wherea=(T,-T)/T, and b is a parameter whose value is oz
defined by the microscopic theory. The configuration at mini-This term introduces g dispersion in the elastic constant
mum energy corresponds f¢|=\a with the phasep equal
to a constant. Around this equilibrium solution, fluctuations HeI:f [cl(q)q§+ Eq2}|¢(Q)|2
involve both the amplitude and the phase of the order param- 2
eter. We remark that while the first ones are more expensive
in terms of energy variations, due to the presence of the
guadratic term, the second ones are massless. Following the
model developed by Fukuyama-Lee-Ri@eLR),1%2223we
take into account only the phase fluctuations., we neglect
amplitude fluctuations The mass of these excitations, called TWO regimes can be identified as a function of the screening
phasons, turns out to be quite large, because it depends #ngthA. (i) In the first one, valid fok not very large, we
the ionic mass via the electron—phonon interaction. For thi§an neglect the dispersion gnand the resulting elasticity is
reason, we can neg|ect in the Hamiltonian the kinetic tern’ﬁhort range. The effect of Coulomb interaction is an enhance-
giving rise to quantum fluctuations. Within these hypothesesment of the elastic constant along thelirection
the elastic Hamiltonian associated to the CDW reads

Bz

2

ci(q) = T+

c He= f dXdzy[%(ﬁxcb)z + g(&y¢)2:| : (7)

He|:fd3r§[v¢(r)]2, ) B -
By redefining the spatial variableg,=x/\c, andy’ =y/\c,

where c=b|#/? is the elastic constant. The thermal fluctua-with c=(c,c??, the Hamiltonian(7) can be finally turned

tions of the phase, denoted &s, are easily evaluated: into an isotropic form(ii) The second regime is character-
22 ized by large values oX. In this case, the electrostatic en-
¢ =2A¢°(¥) ergy takes the form ~ [g2(q2/q?)|4(q)|2, and consequently
1 T a long-range term appears in the elasticity:
= 2f Dopp?e = 2Tf — ~ 7?2_ (4) aang PP g
R o= [ 2 29198 Se gl @
o) 2rem 2@ 29 |1 P

The integral ing extends all over the Brillouin zone. In the
low temperature regime, the fluctuations are thus small At this stage, we briefly discuss the dispersion relation of
enough to guarantee the presence of an ordered phase. Motkfferent elastic regimes. The full FLR Hamiltonian is:
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we will restrict our analysis to the repulsive casgii/
is absorbed inV, and we define the disorder strength
0= 0° D=V, N,.

On one hand, the disorder favors local distortions of the
phase¢, on the other hand these deformations increase the
8 elastic energy. A natural siZ, is defined if we consider the

6=60" - u region where¢ varies by 2r. A simple energetic balance
gives for ad-dimensional CDW:
6-90° E —E<2—77>2—i2 (12)
ot~ 5 R, Rglz'
q

Optimizing the gain in potential energy versus the cost in
FIG. 1. Dispersion relation of the phase mode given by@y.  €lastic energy we geR,=(c?/D)*“¥ (for d=3 R,=c?/D).
The transversal mod@=90°) is acoustic, the longitudinal mode is This length, called Fukuyama-Lee lengtfor Larkin-
gapped #=0°). The gap is reduced by the presence of longitudinalOvchinikov length,'>28 is interpreted as the correlation
componentg§=60°). length of the system. In this scenario the equilibrium state is
always disordered and the long-range coherence in the phase
1 c(q) is lost. Neverthele_ss, in this paper vye_shqw that, as in t_he
HFLR=J ——PPq+ — DqP-q» (9)  case of vortex lattice, the latter prediction is correct only if
2M 2 we consider scales smaller thBy, while it breaks down at
larger distances. In particular, we see that it is the Fukuyama-
whereP is the Fourier transform of the momentum density Lee length to define the crossover between the short distance
andM is the phason mass density. The first term gives theegime and the asymptotic one.
kinetic energy and the second the elastic energy. Using the
standard canonical transformation we derive the correspond-

Bz

ing dispersion relation: Ill. SPECTRUM INTENSITY
c(9) The x-ray diffraction is a powerful tool to detect any
w(q) = YR (100  subtle change of the perfect crystalline structure. The elec-

tron density modulation is accompanied, via the electron—

If we decompose the vectorg in its longitudinal Phonon interaction, by a lattice distortiengiven by

(gx=qcos#) and transversalq, =qsin §) components, it is u

clear that in the short-range cag@beys a linear dispersion u(r) = 2Dy cogQr+ ¢(r)] o Vp(r). (13

law, with a slope equal tQ/[Cl cog6)+csin(6)]/M. The dis- Q

persion for the long-range elastici§) is displayed in Fig. 1:  Thus, the CDW instability produces a permanent sinusoidal

The transversal modes remains acoustic, the longitudinalisplacement of the atoms from their equilibrium position.

ones instead develop a g#p. This deformation is signaled, in the x-ray spectrum, by the
Finally, we consider the effect of a distribution of impu- presence of satellite peaks around each principal Bragg peak.

rities with concentratiom,. The simplest coupling with the The analysis of the shape, the intensity and the symmetry of

electron density is expressed by: such peaks allows to fully characterize the structural proper-
ties of the CDW. In this section, we isolate the different

Hye = iVof drs(r)p(r), (11)  terms which contribute to the satellite peaks, and study their

symmetry properties. This discussion is general and model

independent.

where _E(r) |s.the impurity probability dlstrl_b_utlon. Long The expression for the total diffraction intensity of a crys-
range interactions are neglected ands a positive constant tal is27

which measures the impurity potential. At last the sign

+(-) is related to the repulsivéattractive interaction be- 1 G(R-R)/ T ST
tween the electrons and the local impurity. Above two di- (0 = Vz e R fe ), (14)
mensions we can drop out the forward scattering term in R

the development of(r). In fact, this term leads only to a As shown in Fig. 2,u; is the atom displacement from the
trivial redefinition of the correlation functiord$.If V, is  equilibrium positionR;=ia, with a indicating the lattice con-
small (the opposite case, the effect of a strong impurity,stant.(...) denotes the double average over the disorder and
is discussed in Ref. 38he FLR model for the elasticity is over the thermal fluctuations; represents the total ampli-
justified. In this case, the collective pinning(r) is well  tude scattered by the atom at the positioand depends
described by a Gaussian distribution with zero aver@ge  exclusively on the atom type. We consider the simple case of
can always incorporate the effect of the averaged disordea disordered crystal, made of one kind of atoms, character-
into the bare parametérsnd the correlator is given by ized by the scattering factd, and containing impurities of
2(n2(r")=N,;8r=r"), with N;=n,(1-n,). In the following, scattering factoff,. To understand the role of the scattering
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f fi f f In a pure systeniX(r)=0] we expect that only the first

term can be different from zero. Referring to the case of a
. @ O I ® ' CDW without disorder and neglecting the thermal fluctua-
tions, we can replace in E@l7) the displacement term Eq.
(13) with ¢(r)=const. This gives:

ly(q) = g% 8g Q- K). (18
K

R, uj

FIG. 2. Example of one-dimensional crystal. The position of the
ith atom is given by the equilibrium positidR and the displace- The presence of two satellites around each Bragg peak is one
ment u;. In the figure the black circles are the host atoms withof the most clear experimental evidence of a CDW. In a pure
scattering factorff and the white circle represents an impurity with system these satellites are symmetric and without any broad-
scattering factof. ening. To interpret the experimental findin§s;1° which
reveal the presence of asymmetric peaks, we need to account
factors, let us start by evaluating the case of fixed atoms$or the effect of impurities. In particular, we want to explain

(u;=0). We obtain: not only the measured intensity asymme(tiéy) between the
_ two satellites, but also the profile asymmetBA) of each
1(q) = 22 8(q - K) + AFN, (15)  peak, which is measured in strongly doped samples.
K

The symmetry properties of the termhgand Iy can be
determined by considering the lattice displacements and the

where Af=f, -1 andf is the average scattering factor. The gisorder expressed in terms of their Fourier components:

usual Bragg peaks, corresponding to the reciprocal lattic
vectorsK, arise from the first term in Eq.15), while the | e
second term is responsible for a constant background inten- u(r)= | e™uq
sity, called Laue scattering, due to the disorder. BZ
Now we move back to the general case*0. We are
interested in the behavior of the scattering intenkity near iar
a Bragg peakqg~ K). Since|5g|=|q—K| <K, we can take the 2= f ex,. (19
continuum limiti —r and obtain from Eq(14): BZ

It is easy to obtain:

(@)= f e M, £ e (1)
17'2

o l4(Q) :f_2q2<uaqu—5q>. (20
where [, . =1/Va'[dor;dor, andf,=f+Afa¥23(r). Assum- I(q) = 2ad’2quf_m. (21)
ing that in the elastic approximation the displacements re- =, — .
main small(u;<R)), one can expand Eq16) as a power The two prefactorsf<q® and Affq vary slowly inq and

series ofKu,. Developing up to the second order we get; One can assume they are constant in the neighborhood of the
reciprocal lattice vectoK. Due to the fact that Eq21) is an

(@) =lg+Ta+ lyipl, (17)  imaginary part, we can deduce:
with l4(K+6q) =14(K - 69)
ly= f2q? f e alur)=urly(r ) u(r,)), la(K+89) = - 1K= 4&q). (22)
rury In Fig. 3 we show the following symmetry properties of

different terms:ly generates two satellites symmetric with

. B _ respect to the Bragg peak, whilggives antisymmetric con-
la=—igAf f e MUDNE (r)u(rp) - 2(ryu(ry), tributions. We conclude that the IA is due ftpwhile the PA
rlp is not excluded in both terms, in particular we have a mirror

symmetry forly. Plugging the displacement form E@L3)
|mp| == iquZad f E—iﬁq[u(rl)—u(rz)] given by the FLR model in EqZO), we get
rur (K +Q+k) = ugfK? f e Cy(r), (23
X(Z(ry2(ro)fu(ry) —u(ry)]). r

While the contributionl 4 represents the intensity due to the where [,=1/a’d% and C4(r) is the positional correlation
atomic displacements alone, the contributibpandly, are function

generated by the coupling between the disorder and the dis- Cyr) = @WW) (24)
placements. In the following we consider onlyandl; the d '

term Iy is evaluated in Appendix A where we show that it Examining this equation one is able to connect the symmetry
is smaller than the other two. properties of the satellite peak profile with the symmetry
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—ioq(rq-r )Vrl_ VrZ :
Id, la=Fa g2 TE (Pa(r)pp(r2))ef
r.ro ab
\/ \/ where F4=f2q2u2/Q? and F,=iquoDa?2Aff/QTV,. Replac-
I ing the backward scattering term of the electron density and
a /\ performing an integration by parts we get to the form:
—_—
\/ \/ lq =f_2q2uzoj e 1M QM + ¢.c]Cy(r), (26)
I 1 r
K-Q K K+Q
FIG. 3. Sketch showing the symmetry properties of the two l,= _f_quuo\/Nlade e e — ¢ c]CL(r).
different terms contributing to the satellite intensitigbe Bragg

peak atK is not shown. Top: termly. The intensity is symmetric r

with respect to the Bragg peak. Bottom: tetgx The intensity is
antisymmetric with respect to the Bragg peak. Cr) = }2 (ei[ bo(112) ¢a(_r/2)]>eﬁ
n

properties of the system. In particular, @(r) is an even *
function inr, the Iy term cannot show a PA. On the other
handl4(q) is a real function so the latter condition is equiva-
lent to require the presence of &——¢ symmetry in the
system. We will make use of these observations to interpret
the experimental findings in Sec. IV. are the positional correlation functions controlling the behav-
ior of each contribution. To obtain this result we have applied
the standard decomposition in center of mBRsand relative
r coordinates(r;=R+r/2 andr,=R-r/2). Sinceu varies

In this section we calculate the different terms of the de-_SIOWIy at the scale of th_e lattice spacing, we periormed the
velopment of Eq.(17) using a Gaussian variational integration oveR. We not|f:e that Eq(26) reveals clearly the
approachi28We consider first the isotropic case, to include presence of two peaks &tuatedcthfK andg=K-Q. In .

particular, as expected, the contribution to the two satellites

physical interpretation of these results is presented in mor8f the_d|splace_ment terty is symmetric, while the one df,
detail in Sec. IV IS antisymmetric. The sum of these two terms leads to the IA
We consider a FLR Hamiltoniahi=H,+Hy where the ~€XPerimentally observed.

second term is Eq.11) and the first one is described either h Following thef same th.hOddised to study Ithe qu;]< "r:f:‘ in
by Eq. (3), in case of a short range elasticity, or by KE8) the presence of a weak disoraewe can evaluate the dif-

taking into account the effect of long-range Coulombian in_feren_: ter.ms in_Eq(ZQ. We look for thg bﬁSt triall_ Gaussian
teractions. We first perform the average over the disordeff@miltonianHo=/qG4y(@)¢a(q)¢n(-q) in the replica space

. . _1 . .
using the replica techniques. The replicated Hamiltonian is Which approximates Eq25). The G,,(q) is thenX n varia-
tional matrix. Without loss of generality, this matrix can be

D chosen of thgl- fornG,t=cofd,,— 0a,. The connected part is

Hepr = >, Hgl_f dr =2 cod o,(r) - py(r)], (25  defined asG; =EbG;b. By minimization of the vanauonal

a Tab free energy we derive thdb. is given by the bare elastic
propagator. In the isotropic case we write

n

1 . o

Can) = ﬁE (gl talt2=u(=r12ly
ab

IV. THE REPLICA METHOD

whereT is the temperature and the sum over theeplicas i

has to be considered in the limit—0. We observe that the G, =cef. (27)
system is¢p— —¢ invariant. This means that the FLR model
with a Gaussian disorder cannot generate satellite peaks wi
a PA. Finally, we stress that, moving from the original 2
Hamiltonian to its replicated version we also need to change Gl=¢, % 4 COP. (28

gﬁor a long range elasticity, id dimension, it follows:

. ! - < : d-1
the correlation functions containing explicitly the disorder. In ¢ q
particular, using Eq(13), the termd 4 andl, obtained in Eq. . . )
(17) become Finally, the parameters,, are given by:
D -
Oaup = € P02, (29)

Id:Fdf e MY Vo (p1(r)pa(r2))er
ryro where
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~ 1 27
Ban(1) = ([#a(r) = $(0) )0 = 2T f [G(a) — Gap(@)cosqr]. x(r) = ;[1 g 2T ~ o (37
We can conclude that in the RS scenario the two positional
(30 . . .
correlation functions decay exponentially fast, mored@gr
~ ) . . has a power law extra factor.
G is the diagonal element dB,,. In the Gaussian approxi- Before calculating the stable RSB solution, we evaluate
mation, the positional correlation functions become: the scaling behavior of the same objects in the case of an
- unscreened Coulombian potential. The only change consists
Cqy(r)=eB02 (31)  in taking the connected propagator given in E2g) to de-
termine the physical quantities. It is instructive to discuss
n first the generatl-dimensional case. The displacement takes
C.r) = 1 S g Balr)2 (39 theform
a - 1
Tnap o2

B(r) = f dqda,—— —75[1 - codan]. (39
B i imoll [er05 + e
whereB is the diagonal element @&, In order to simplify X
the notation we write Eq(32) as C4(r)=x(r)Cqy(r). Finally, A similar integral was discussed in Ref. 29. A general remark
using Eq.(30), we get: is that g, scales agf@V’2, The scaling behavior of these
integrals is determined by smails, for this reason we can
neglect theg, dependence ig. The strong anisotropy along

x(r)= TE & TIdG@-Gaplalcosar (33)  xandy can be studied performing the following substitution:
ab

n

. . . = X0, t=
Two general classes of solutions exist for this problem: v =X ay

while the first class preserves the permutation symmetry of
the replicagRS), the second clas&RSB) breaks the replica P A (39)
symmetry. It has been shownthat the stable solution for clydgl'

d>2 corresponds to the RSB class, while the RS solution
remains valid at short distance. In the following we will refer We obtain
directly to thed=3 case.

t2d-2
B(r) =2 T f a1t 5[1 - cost+v)]
A. Replica symmetric solution Ve ‘ ( ) 4 td+1‘

We discuss first the RS solution which gives the correct
evaluation of the correlation functions at a distance smaller -

than R,. Within this Ansatz the matrixG andB are defined = y#Hl(z) (40

by two of their elements: the diagonal vaILés~B, and the ve’ey
off-diagonal onesB=B,.., andG=G,.,,. The simple algebra whereH;(0)=const. andH;(z— ) o« 293D |t js easy to

of symmetric matrix yields, fon=0: check that, ford=3, there are only logarithmic divergences:
- ~ D
G=G(1+Goazp), (34) B(x=0,y) ~ (2)2—3 log(Ay),
G-G=G,, (35) - D
B(x,y=0) ~ —————=log(A,Xx).
Y 2(2m)?/cc, I

where from Egs. (4 and (29, we deduce that
Oazb~DIT exp(—d;?rlz). This result is a clear evidence that, because of the long range
We focus first on the short range elasticity. Replacing thenteractions, the system is more rigid and the critical upper
form of G, given in Eq.(27) we easily calculate the displace- dimension becomed=3, in contrast with the resutt=4 for
ment the short range case. To confirm this statement we evaluate

the Fukuyama-Lee length by imposilﬁr):(Zw)z:

B(I’) 772R (36) - em*ie, c,
R(x=0y)~Ate 1 ,
The first term take into account the thermal fluctuations and Y
2 ; - 22m*c3e, cq
saturates taps at a large distance. The second term, due to R(xy=0 ~Ae 5 . (41)

the disorder, grows with a power law and it is responsible for
the exponential decay of the positional correlation functionsThe exponential law is characteristic of the upper critical
To characterize the spectrum it remains to calculate dimension and is an extrapolation of the power law. The
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equivalent form Eq(B7) has been derived for an isotropic 0.02
short-range elasticity id=43°3%|t remains to determine Eq. b
(37). At low temperature we write
2
_, cosqr =
X(r)~fddqqd L o 001} 1
cygy + ! 2,
5-3d
2 dv  t*?t
= y,— f dd_lt—z— cogt+v)
veey z (2) e N
z 0 5 10 15 20 25
5-3d IR,
_Y 2
- \”a Ha(2), (42) FIG. 4. Ratio between the RSB and RS solutionsytf). At

large distance this ratio tends towards a constant valuwith
where H,(0)=const. andH,(z— o) o 25-3/(@1) |n =3 a  b~0.018. This means that the RSB solution affegs only by a
straightforward calculation confirms this scaling behavior: multiplicative factor.

Y(x,y=0) ~ 1 Starting from the short range case we calculate the dis-
16mcx placement using Eq45), replacing the expressiqiB3) for
Lo
(x=0,y) _ 11 [1-cosqr]
X Y 27\ cey? B(r) ~ ¢+ 4ﬂ2f " #%+ 2 log(Ar).

We observe that the anisotropic scalig y? is always veri- Bz
fied. Since ford=3 the RS solution is unstable, to obtain the (47)
physics at large distance one has to consider the RS

?he logarithmic behavi8r® of Eq. (47) is controlled by
small v(v<uvy). Values ofv above the breaking point
>v.) give the small distance contribution. To fully charac-
B. Replica symmetric breaking solution terize the spectrum it still remains to evalugtg) in the
RSB scenario:

method.

Within this scheme, the off diagonal elements@f,(q)

are parametrized bys(q,v) where O0<v<1. The saddle ’ ! 1
point equation becomes G(q) - G(g,v) ~ _f dt———. 48
@-G@v) ~ 3 [+ WP (48)
D -B(r=0p) vlve
O'(l))z?e 2. (43

where the parameteldsand v, are given by Eq(B4). By
We look for a solution such that(v) is constant above a integrating Eq(48) overq and with some manipulations, we
variational breakpoint.. This can be done in an easy man- get

ner by recasting the equations in terms of a new variable 1 1
dt

X(r) = Ve 1 _f dzexg - BWSJ _e—rt/I ] (49)
[o]w)=vo(v) - f duo(u). (44) T 0 ) t

It is not difficult to show thaf{o]’ (v)=ve’(v). We refer to  The low temperature behaviofl ~R,) of this term is
Appendix B, where we summarize the previous results fosketched in Fig. 4.

[o] and we calculate its form in the case of an unscreened Finally we study the RSB solution for the Coulombian
Coulombian elasticity. As a first step one uses the inversioglasticity. Replacing Eq(B8) in Eq. (45), the diagonal cor-
rules of hierarchical matricé$,Eqgs.(34) and(35) become  relator becomes

~ ~ dv 1
G:Gc<1+fd—l;_l[i), (45) G~Gcf— A
V"G +lo] ’ Gzllosf(—,i”

) + A|rU
VC1CA,

UC _l
6= o ~G§Iog‘1<—& ) (50)
©-6= G;1+E+f Meiioor| “° Voo,

_ o The latter form is characteristic of the upper critical dimen-
whereX=[c](v.) is a variational parameter, whose expres-sion. Inserting Eq(50) in Eq. (30), takingc,=c=1, and em-
sion is determined in Appendix B. ploying the usual substitution E¢39) we get
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4
CE%n = Cy*™ (e 3zr,. (53)
Thermal

As a direct consequence, we expect to find Lorentzian satel-
lites, whose half-width at half-height is of the order Rf".
However, the RS approach is unstable at large distances and
the correct solution is given asymptotically by the RSB.
RS Solution RSB Solution Within this assumption, the correlations decrease following a
power law:

Cq

RSB/ .\ — ~therm _ 4 &1 7
Cyor)=Cy™r)e™ 5,2 i (54)

FIG. 5. Behavior ofC4(r). The thermal contribution saturates to Applying the variational approac, one finds, from Eq.
9xp(—_¢$/2), the RSB solution is valid beyorig,, while the RS one (47), »=1. The corresponding quasi-ordered phH<8,
is valid belowR,. called Bragg glass, is characterized by an infinite correlation
length and the characteristic siZ®, represents now the
~ do td crossover between the RS and RSB solutions. One can give a
B(r) =32f dt? v\2 311 - cost+v)]. simple physical interpretation of the two identified regimes,
(—) +t4 by observing that at the scalg, the phase distortions are of
z the order of the CDW period72 This means that for dis-
This equation leads to the same conclusions discussed for tfi@nces smaller thaR, the development of the Hamiltonian
isotropic upper critical dimension. The asymptotic displace-Ed. (25) is allowed and leads to the RS solution. For dis-

ment is thus given by tances larger tham,, instead, the phase feels its periodic
5 nature and this trivial development of the Hamiltonian is no
B(x) ~ log[log(A,x)]. (51 more valid.

. In order to determine the intensity and the shape of the
It can b.e Showr&NO satellites we need to evaluate all the terms contributing
Symptotic pOWe{, 1he development Eq17). In particular, we consider the
displacement termy, and the asymmetric terrh, arising
from the coupling between disorder and displacement. In the
V. PHYSICAL DISCUSSION literature this Iatt_er term was previo_usly es_timate_d by means
of model3’~*° which describe the pinning imposing a con-
In this section we summarize the results obtained in thtant valueg, on the phase in proximity of each impurity.
previous sections and compare them with the experimentalccording to these approaches, the observed satellite asym-
findings. metry is a clear signature of strong disoréfefhanks to our
We start by evaluating for the short-range elasticity modemore accurate calculation, we found that the tégris non-
the positional correlation functioBy(r), defined in Eq(24).  zero also in case of weak disorder and it gives rise to a
This function is the analog of the correlation function deter-divergent contribution similar to the one stemming frogm
mined for vortex line system4. It is well known that ford  Using Eqs.(37), (47), and(49), our final results read:
> 2 it exists a finite temperatuighe critical temperaturé,)

As in the case of the short-range elasticity,
that the RSB solution does not affect the a
low behavior of(r).

below which thermal fluctuations are prevented from disor- 2 2| ik Ra
dering the system. In fact, the direct calculation of the posi- lf(K+Q+k) = FKup” | ™ T (59
tional correlation function ird=3 yields r
%%
Ctherm(r) — e;[l—S(Ar)IAr], (52) o Na _ R.\7ba
d I(K+Q+Kk) = - 272 fAf —'Kuof e—'kf(—a) —.
with Si (Ar):f{)“dt sint/t. As shown in Fig. 5 the correlation Ra g r r

function saturates after a few lattice parameters to a nonzero
value, which witnesses the presence of long-range order in After computing thed-dimensional Fourier transforms,
the system. we conclude that both terms are divergent: in particular,
However, the quenched noise originated in the impuritied o< 1/q%7 andl o 1/q® 7. This result, summarized in Fig.
is still able to destroy the long range order, evenl#3 (see 6, is a clear sign of the quasi-long range positional ordered
Fig. 5). In this circumstance, the more traditional sché&me phase. In this particular case, the peakkatQ is smaller
describes the system as organized in ordered donmadtied  than theK—Q one, since the specific interaction between the
Fukuyama-Lee-Rice domaipsharacterized by the average impurity and the CDW is repulsivéwve would have the op-
sizeR,. Beyond this characteristic length, the CDW disloca-posite asymmetry in case of an attractive interagtiohle
tions become dominant and any order disappears. This scebserve that for an ideal experiment with infinite resolution
nario is captured by the RS solution. From E86) we ob-  the symmetric term would be dominant, @g(r) decays to
tain: zero less rapidly tha@,(r). However, in a real measurement
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FIG. 7. Dotted line: divergent peaky(q)=q~2 for a perfect
FIG. 6. Intensities of the different contributions to satellite experimental resolution. Full line: peak convolved with a finite
peaks. The more divergent teriy, is symmetricl, is antisymmet-  experimental resolution according to E¢@6). The height of
ric. In this figure we consider a repulsive potential akid>0. the peak i3w§2R§, the half-width half-height-£ 1 is also indicated.
Dashed line: an approximate form for the pdd®"*{q)=15"d(0)

the divergence in Eq55) is always cut by the finite resolu- X(1-¢?¢13).
tion and both terms have to be accounted for, as the prefactor
Kug of the less divergent terrh, is larger. existence of a Bragg glass regime one should vary the

At this stage, following the analysis of the experimentalFukuyama-Lee lengttR,.** In fact, if the peak shape is
data of Ref. 14 concerning neutron diffraction spectra, it iskorentzian, varyingR, produces a change both in the width
interesting to discuss the role played by the experimentaknd the height of the peak, whereas if the peak follows a
resolution in determining the peak shape. With the low resopower law, only its height is changed due to a variation of
lution achieved by means of neutrons to describe a vorteRa, While the width is fixed by the resolution.
lattice, in the above cited experiméHitit is possible to de- In absence of screening, the long range Coulomb interac-
terminate the intensity spectrum only along one directiontions become important: the system is more rigid and the
after performing an integration on the other two directions.upper critical dimension is shifted from=4 to d=3. As a
Instead, the much higher resolution reachable in x-rays exconsequence, the satellite peaks become more divergent. In
periments, is in principle adequate to perform the wholeparticular, we find that the symmetric terip goes asymp-
three-dimensional Fourier transform of the spectrum. Fototically asq™ instead ofg™. Moreover, the strong aniso-
concreteness sake, we assume a Gaussian resolution wiRpy between the longitudinal directi¢r) and the transver-
varianceé?, whereé > R, (the opposite case is not interesting sal onedly) leads to an anisotropic scaling of the correlation
as the resulting peak shape is affected only by the resoludunctions. We verified that id=3 the dependence orandy
tion). We consider first the behavior of the direct teljrin ~ of the correlation functiongas clearly shown in Eq(42)]
case of a RS solution. The peak obtained from @fe(r)  and of the characteristic length scale E4l) respects the
function is essentially independent of the resolution and hagelation f(x,y=0) ~ f(x=0,y?). As a result, in this regime,
the shape of as a squared Lorentzian of heci»ghi and half- we expect more divergent and more anisotropic peak shapes
width «1/R,. The profile drastically change if we consider in comparison to the ones observed in the short-range case.

instead the correct RSB solution. Setting 1 we can find an On the experimental side few detailed diffraction spectra
analytical expression for the experimental peak: are available at the moment. An example of prototype sys-
tems are doped blue bronZ€swhere the disorder is intro-
. 1
I§9K +Q+k) = R, f e
g 1A
R k
= 2mPPE R i L) (5

k V2

where erfi(x)=-i erf(ix) is the imaginary part of the error PA PA

function. This expression gives a nondivergent peak, shown
in Fig. 7, whose height is #f?K2u,’R2¢? and its half-width
~1.5034/. We remark that the peak decays with the char-
acteristic lawg™2 only for R;1<q<§’1, while a wide region
around the maximum height is dominated by the effects re- K.Q K K:Q

lated to the finite resolution. In Fig. 7 we also report the

function I§PP" () =I1§™(0)(1-¢¢?/3). It is possible that, in a FIG. 8. Sketch of the experimental findingRef. 16. The two

real experiment, the signal—noise ratio is low enough to hideatellites present an 1A in agreement with our predictions, but also
the g 2 behavior. In this specific case, to put in evidence thean evident PA.
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also remark the presence of PA of each single satellite. The
mirror symmetry of the shape of the two peaks suggests that APPENDIX A: THE TRIPLET TERM
the PA is originated in the correlation functi@y(r). As we In this appendix we discuss the behavior of the tegm
have previously discussed, the correlation function obtainegf : : :

DN ) . . the intensity developmeritL7). This term was only con-
from the FLR model with Gaussian disorder is real and pro- ty pment.7) y

AP ) )
duces two peaks with profile symmetry. One can Wonde{ectured to be negligiblé®3* before that® a direct calcula:

> ; : . ion of it was performed.
what is the effect of non-Gaussian disorder. To this purpose - ;
X . ) . ; . MY We start analyzing the symmetry propertied gf; show-
we studied a one-dimensional model with a binomial distri- yzing y y prop m'

. ) " . >~ ing it has the same symmetry &f Next we evaluatédy;,
bution of impurities. If we restrict to the forward scattering |, =, : L
. . within the RS scheme. Independently of the elasticity range,
term in the developmentl), the problem is exactly soluble. P y y rang

: . . we find that the difference between the two contributions is
We find two Lorentzian peaks without PA, centered around %jiven by a simple-independent multiplicative factor

vectorKié shifted with respect t&K+Q as a consequence  Applying a Fourier transforng19) we obtain

of the presence of odd moments in the disorder distribution.

It remains to investigate the role possibly played by the am- Lo (K + —_ 2iKAf2adf 3 U Al
plitude fluctuations. The short correlation lengths extracted wipt(K + 50) (oo l-s-gy)- (A
from the experimental data suggest that this particular effect Bz

is most likely to happen in the strong pinning regime, This equation gives a nonzero contribution only if we con-
whereas our calculations concern the weak pinning limitsider higher harmonic terms of the electron density:

The authors of Ref. 16 indeed justify the PA with the pres-p(x) ~ p,[#|codQ[x+ (x) 1} +py|lcogd2Qx+ ¢(x)]}.  The
ence of Friedel oscillations and hence with the presencgyg satellites take the form:

strong fluctuations of the amplitude of the condensate, at ] o g
least in the neighborhood of the impurities. Lipl (K + 69) = = 2K AT A% 5[ Z_25qUsq + = sqU-250)) -

At this stage it is evident that,, has the same symmetry of
I,. Performing the integration over the Gaussian disorder by
VI. CONCLUSIONS means of the standard replica techniques we obtain

Summarizing, we determined the shape and the intensity g2 d i ST 4niOr _ _
of the satellite peaks characterizing the spectrum of a pinned luipt = AT qUONi@™D | €% e C.CJCripi(r).
charge density wave. We analyzed in detail the case of a r
weak and collective disorder, when the Fukuyama—Lee—Ric% ing th | d i -
model is justified. We considered both the short-range elas=> "9 th€ usual decomposi 10y (1) =™ xaipt (1) WE
ticity as well as the long-range elasticity generated by arfV/'t€
unscreened Coulomb interaction. In both these cases, we 1
found divergent peaks displaying intensity asymmetry. Thextip (N = ——
divergent nature of the peaks is, as it was discussed, the
clearest sign of a Bragg glass phase. Moreover, the long- (A2)
range elasticity, when presgnt, is responsible for a larger AMie introduce the replica symmetric Ansatz. It is easy to
isotropy and a stronger divergence. Let us stress that th _

. i i > 2 E?heck that fom=0
calculated sign of the intensity asymmetry is in agreemen
with the experimental data. We discussed the role played by 1 _ _
the finite resolution of the experimental setup, calculating the nz Pabe=Paaa~ 2 (Paant Aava® Apad +2 2 Aave
K A abc azb a#b#c
convolved shape of the peaks, where the divergence is cut.
From these observations, we illustrated possible methods tdsing this relation and E¢35) we can evaluatgyy(r). In
reveal experimentally the presence of the Bragg glass phaserder to simplify the notation we recall th@i?FZZTIBZGC
Concerning the asymmetry of the peak profile, we showednd x(r)=[1-exd-T[g,G.cosqr)]/T. From Eq.(A2) we
that, on general symmetry grounds, it is not expected in thebtain
weak pinning regime. We conjectured that its observation in
a recent experimeHt is likely due to the strong pinning Yui (r):& 1-e%2| 2 sin TJG cosqr | +1
. . ripl c

present in the measured system. Finally, we observe that the T
profile asymmetry may hide the power law behavior of the
satellite peaks. It would thus be highly desirable to dispos@ecause we are interested in the long distance behavior we
of measures in less disordered systems where one can expeemark thatfz,G.cosqr— 0, whenever — . Developing
a Bragg glass behavior, e.g., using isoelectric impurities. up to the first order we get

5 2 [e‘TfBzz[a—Gac]e—TfBz[(é—Gab)HGbc—Gab)]cosqr] '
nT a,b,c

BZ
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FIG. 10. Continuum line: integral overin (B8) as a function of
FIG. 9. Intensities of the antisymmetric contributions to satellitedx- Dotted line: limiting behaviot[d,]— 7/8q,. Finally I[0]=0.5.

peaks. We remark tha> Iy
d% T
=1. B2
o | @mP (G + [o]F (52

1-e972 &7

Xripi (1) ~ x(r) ———— ~ x(I)

T 2T’ &=

Solving the integral for 2d<4 (A—=) and deriving

where the last step is valid at low temperature. In fact, in thisagain, one gets
regimeCip(r) andC,(r) have the same behavior inIf we

take a spherical cutoff =27/a, wherea is the lattice space, [o](v) =2 (/v forv <u,
the integralq&%/(ZT):(C7Ta)‘l is independent of the range of
the elasticity(for a— 0). We can compare the two terrhg,, [6]w)=S forv>uv, (B3)
andl,, by writing the ratio between the two intensities
where §=2-d. The values of the breakpoint and>=cl™
ﬁp_':_£1 /Nia (A4) determine the crossover between a short distance regime
[ o VR (x<1), where[ o] is constant and the RS solution valid, and
. ) the asymptotic regiméx>1), where the physics is deter-
For weak disordeR,>a; it follows thatl,> Iy mined by the small behavior of{o]. Using Egs.(B2) and

The evaluation of this term in a more accurate RSB aP(43), after some manipulation it is foukdfor d=3:
proach is very complicate becaugg(r) involves the sum
over three replicas. However, in analogy wigr) we can 1 )
argue that the RSB solution does not affect the asymptotic I= 8 Chg
power low behavior ofyyy(r). In Fig. 9 we summarize our

result taking the correct RSB behavior Br

We conclude that the triplet term renormalizes the prefac- Vo= l (B4)
tor of I, without changing the power law behavior. In par- 8lc
ticular, whenAf>0, Iy, enhances the asymmetry between
the two satellites, while wheaf <0, Iy, slightly decreases
the antisymmetric contribution.

We observe that the crossover between the two regimes
is | ~ R, in agreement with the dimensional result in ELR).
Ford=4, and more in general at the upper critical dimen-
sion, the integral in Eq(B2) has a logarithmic ultraviolet
APPENDIX B: CALCULATION OF [o] divergence. As discussed in Ref. 30, the behaviof ©f

In this Appendix we determine the variational function yvhenv is small is not described by a pure power law. Start-

[o](v) defined in Eq(44). We start from the saddle point Eq. ing from Eq.(B2) for d=4 we get

(43). From Eq.(30) we know that o T
1200 | Gt
~ 2m)*cq + o
B(r=0,v)=fG(q)—G(q,v). (B1) e
oz _ Sw0(0)Q® f g°dg__ ST (g)
The integral in the momentum space is performed in the c? [q?+1]? 22 %9 [o])’
Brillouin zone. To simplify the analytical form of our inte-

grals the ultraviolet cutoffA, is taken equal to infinity when- (B5)
ever it is possibldi.e., whenever the integrals are ultraviolet

convergent Inserting Eq(46) in the previous equation and Where §=2"97"%2/'(d/2) is the angular integration id
taking the derivative of Eqi43) leads to the equation deter- dimension. DefiningA=2c?/(S,T), we obtain after one more
mining [o]: derivative

224204-11



A. ROSSO AND T. GIAMARCHI PHYSICAL REVIEW B70, 224204(2004

(o] = Av Av (B6) Ay<<A so we can assumé& — o and solve the integral
7" [a] Av JereA[o]
log>—  log®>—;
cA? CcA2 1= To(v)

- A2 [3. f dQXI[qX]
This result is valid up to log-log corrections. From E¢(B5) VC°Cy A
and(43) we can estimate the crossover lengtin the short

distance regime, whefler]=cl™2, it turns out:

| ~ A~1gBmD, (B7)

At this stage we can discuss the case of the Coulombian
long range elasticity. Starting from E@2) and using Eq. The behavior of[q,] is shown in Fig. 10. In conclusion, we

_ g°dg
I[qX]_l(q§+q4+l)2.

(28) for G, we write obtain
Ay A A
sow o 2T o2 2 log? ——= log? ——
0 2m 0 (2m) [Cquch4+(a)} d VeiCA, J VeiCA,
q

where A, =16m\c3c,/T. This equation is equivalent to the
To solve this equation we consider the physical case, wherene found for an isotropic system at the upper critical
Ay~Q, A~2w/a and a is the lattice space. In this limit dimension.
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