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We study alloy systems subjected to sustained particle irradiation, where short-ranged thermally assisted
diffusion competes with the finite-ranged random atomic exchanges forced by irradiation. For the case of
binary alloys undergoing phase separation, we introduce a kinetic continuum description of the evolution of the
composition field under irradiation, with a self-consistent treatment of the composition fluctuations. We derive
an analytical formula for the structure factor at steady state. In the limiting case of short-ranged ballistic jumps,
this formula indicates that the effective temperature criterion originally derived by G. Martin[Phys. Rev. B30,
1424 (1984)] applies not only to the driving force but to the fluctuations as well. In the case of finite-ranged
ballistic jumps, however, the formula indicates that the concept of an effective temperature breaks down, but
that one can make use of a more general approach involving effective atomic interactions. In particular, under
appropriate irradiation conditions, finite-ranged ballistic jumps lead to finite-ranged effective interactions,
which translate into the dynamical stabilization of finite-scale composition patterns.
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I. INTRODUCTION

The sustained irradiation of materials by energetic par-
ticles leads to continuous production of disorder.1 This dis-
order can be structural, e.g., in the form of point defects and
dislocation loops, or chemical, e.g., in the form of forced
atomic mixing. The continuous production of such disorder,
which may also result in nonzero net fluxes of defects and
chemical species, tends to drive the irradiated material into
nonequilibrium states.2,3 At finite irradiation temperatures,
however, thermally activated dynamics, driven by thermody-
namic forces, promotes annealing of this nonequilibrium dis-
order. An important practical question is to determine the
evolution of the irradiated material under the influence of
these competing dynamics, since changes in the microstruc-
ture often translate into significant modifications of the prop-
erties of use. This question is also of fundamental interest
since it pertains to the more general theme of the dynamical
stability of dissipative systems.4,5 We note that alloys under
irradiation offer an ideal test bed for theoretical develop-
ments in this field. Indeed, the relevant atomistic mecha-
nisms are well identified and their frequency and length
scales can be varied experimentally in a controlled manner,
thus allowing for direct confrontation of theoretical predic-
tions with experiments.

Dynamical systems often reach some steady state or
quasi-steady-state, as is the case for alloys under particle
irradiation, and one appealing approach is to develop an ef-
fective thermodynamics framework for addressing the stabil-
ity of these steady states. By analogy with equilibrium ther-
modynamics, such a framework should lead to the
construction of nonequilibrium potentials with the following
properties: the steady states that can be stabilized for a given
set of irradiation conditions correspond to the extrema of
these potentials, and, when several locally stable extrema
coexist, the relative heights of these extrema determine the

respective stabilities of the corresponding steady states. This
second property is particularly demanding, since it requires
that the description takes into account the fluctuations pro-
duced by the various dynamics, to predict correctly the tran-
sition rates from one steady state to another.6

In the simple case of an alloy fully characterized by its
composition field, Martin introduced two decades ago a con-
tinuum mean-field kinetic model with two dynamics: the first
one is thermally activated and assisted by point-defect mi-
gration, while the second one accounts for the forced atomic
relocations resulting from nuclear collisions.7 In the case of
alloys that display two-phase fields at equilibrium, at tem-
peratures and compositions within such two-phase fields, the
two dynamics are competing since thermally activated diffu-
sion promotes phase separation, while the forced, ballistic
mixing promotes homogenization of the composition field.
When the forced mixing is short range, in particular when
nearly all atoms are relocated to first-nearest-neighbor sites,
the forced mixing is equivalent to a random diffusion, with a
ballistic diffusion coefficient proportional to the ballistic
jump frequency. Within this model, Martin derived a rule of
corresponding states: the steady state reached under irradia-
tion at a temperatureT corresponds to the equilibrium state
of the alloy at a higher effective temperatureTeff=Ts1+Dd,
whereD=Db/ D̃ is the ratio of the ballistic diffusion coeffi-
cient to the chemical diffusion coefficient.

The forced mixing produced by energetic heavy ions,
however, produces atomic relocations extending beyond
first-nearest-neighbor sites, and molecular dynamics(MD)
simulations indicate that the distribution of relocation dis-
tances can be well approximated by an exponential decay.8

We have shown analytically9 that this finite relocation range
introduces a nonlocal term in the evolution equation of the
composition field. As a result, when the decay lengthR ex-
ceeds a critical valueRc, and under appropriate irradiation
temperature and flux, an irradiated alloy spontaneously
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forms stable compositional patterns, with a maximum scale
of 4pR. This analytical prediction, which is supported by our
atomistic kinetic Monte Carlo(KMC) simulations,8,10 and by
our preliminary experimental results on Ag-Cu multilayers
irradiated with 1 MeV Kr+ ions,11 is not predicted by the
effective temperature criterion. Indeed, within the mean-field
approximation used to derive this criterion, a microstructure
with compositional patterns of finite scale should be seen as
a macroscopically homogeneous state with strong and long-
lived composition fluctuations. Although fluctuations are not
explicitly considered in Martin’s model, if one assumes that
the effective temperature possesses the properties of a ther-
modynamic temperature, the composition fluctuations ob-
served under irradiation must be identical to those found at
equilibrium, at the corresponding effective temperature. At
equilibrium, however, for the class of alloys considered here,
i.e., with short-range atomic interactions leading to phase
separation, there are no composition fluctuations that would
be equivalent to the compositional patterns stabilized by
finite-range ballistic jumps. The main objective of this article
is to address this limitation by constructing an analytical
model that includes a self-consistent treatment of fluctua-
tions. In particular, it would help us to understand whether,
within Martin’s approximation of short-range ballistic jumps,
the effective temperature criterion applies to fluctuations as
well, and how fluctuations are rescaled in the more complex
case of a finite ballistic range.

A possible approach to include fluctuations in a kinetic
model is to start from a probabilistic description. The most
common one is the so-called master equation(ME), which
can be approximated by a Fokker-Planck equation, or, even
better, by Kubo’s ansatz, in order to take properly into ac-
count the extensive nature of the effective potential that gov-
erns the steady-state probability distribution.12 This approach
has been successfully implemented for spatially homoge-
neous nonequilibrium systems,6,12–15leading to the analytical
construction of nonequilibrium effective potentials, from
which one can construct dynamical phase diagrams. The ap-
plication to inhomogeneous nonequilibrium systems, how-
ever, has remained elusive because of the large dimensional-
ity of the corresponding phase space and of the lack of
detailed balance.16 Nevertheless, Vaks and Kamyshenko
have shown that mean-field approximations to their lattice
model can be obtained in such cases.17 These authors have
derived an effective Krivoglaz-Clapp-Moss(KCM)
formula,18,19 which allowed them to generalize Martin’s ef-
fective temperature rule. These results will be further dis-
cussed, and compared to our present results in Sec. III.

An alternative approach to incorporate fluctuations is to
start from a deterministic description and transform it into a
Langevin-type description by adding a noise term.20 This
noise term can be constructed by making use of a
fluctuation-dissipation relationship, or by using the ME to
derive kinetic equations for the relevant moments of the
probability distribution. In the case of an alloy simply de-
scribed by its composition field, as discussed in this paper,
Cook21 using a Langevin equation and Langeret al.22 start-
ing from the ME derived an identical expression for the ther-
mal fluctuation term that has to be added to the classical
deterministic Cahn-Hilliard diffusion equation. This addi-

tional term allows studying the effect of fluctuations on the
early stages of spinodal decomposition.

In this article, we extend Cook’s approach to the case of
driven alloys with competing dynamics. We show that, for
short-range ballistic jumps, Martin’s effective temperature
criterion applies both to the effective driving force and to the
fluctuations, whereas in the presence of finite-range ballistic
jumps, the concept of an effective temperature breaks down
and should be replaced by the more generic concept of ef-
fective atomic interactions.

II. CONTINUUM MODELING

A. Deterministic model with competing dynamics

We recall the one-dimensional kinetic model that we
introduced9 to study the effect of the forced atomic reloca-
tion range on the stability of the composition field in a binary
alloy A1−c̄Bc̄ under irradiation. The temporal evolution of the
local deviation from the nominal composition,csxd=csxd
− c̄, is comprised of two terms:

] c

] t
= M¹2SdVF

dc
D − Gbsc − kclRd. s1d

The first term corresponds to the thermal dynamics for the
conserved order parameterc. M is the thermal atomic mo-
bility and is related to the chemical diffusion coefficient

throughM =cs1−cdD̃ /kBT, V is the atomic volume, andF is
the free energy of the alloy, which we express using the
Cahn-Hilliard form:

F =
1

V
E ffscd + Cu¹cu2gdV, s2d

where f is the free energy density of a homogeneous alloy
andC the gradient energy term.

The second term in Eq.(1) expresses the forced mixing
induced by ballistic jumps, which occur at a frequencyGb,
with relocation distances distributed according to a normal-
ized weight functionwR. We showed that the ballistic rate of
change of the order parameter is proportional to the differ-
ence between the local composition and nonlocal average,
denoted by angular brackets and defined as

kclR =E wRsx − x8dcsx8ddx8. s3d

B. Langevin equation with thermal dynamics only

We briefly recall the procedure introduced by Cook.21 In
the absence of particle irradiation, the deterministic Eq.(1) is
transformed into a Langevin equation by adding a random
noise termjthsx,td, with suitably defined statistical properties
(to be defined below)

S ] c

] t
D

th

= M¹2SdVF

dc
D + ¹2jth. s4d

For small fluctuations aroundcsxd= c̄, i.e., csxd=0 every-
where, we can linearize Eq.(4). Now transforming to Fourier
space, denoted by the carets, we obtain
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Sdĉ

dt
D

th
= − athskdĉ − k2ĵth. s5d

The amplification factor is given byathskd=Mk2ff9sc̄d
+2Ck2g, where f9 is the second derivative of the homoge-
neous free-energy density with respect to composition.
Within a regular solution model,f9=u9+kBT/ fc̄s1−c̄dg,
whereu is the internal energy term inf. The noise term is
assumed to be uncorrelated in time, and has a spatial struc-
ture given by the quantityQthskd:

kĵthsk,tdĵth
* sk,t8dl = Qthskddst − t8d. s6d

The statistical quantityQthskd can be obtained by calculating

the equilibrium structure factorSeqskd=kuĉsk,t→`du2l. Fol-
lowing a standard procedure to solve Eq.(5), Cook obtains

Seqskd =
k4Qthskd
2athskd

. s7d

This structure factor can also be evaluated through a
fluctuation-dissipation relationship:18,23

Seqskd =
kBT

f9sc̄d + 2Ck2 . s8d

Therefore the functional dependence ofQthskd that repro-
duces properly the structure factor is

Qthskd =
2kBTM

k2 . s9d

C. Langevin equation with ballistic dynamics only

Following a similar strategy, we can write an equation
including fluctuations for the irradiation-induced mixing dy-
namics:

S ] c

] t
D

b

= − GbSc −E wRsx − x8dcsx8ddx8D + ¹2jb,

s10d

where the subscriptb stands for ballistic. This is already a
linear equation, so we can transform it into an ordinary dif-
ferential equation in Fourier space:

Sdĉ

dt
D

b
= − abskdĉ − k2ĵb, s11d

where the ballistic amplification factor is given by

abskd = Gbf1 − ŵRskdg. s12d

Now the steady-state structure factorSbskd that we expect
from the ballistic dynamics alone is the one of a random
solid solution, i.e.,Sbskd= c̄s1−c̄d. Applying Cook’s solution
to this case, we find that the spatial correlations of the bal-
listic fluctuations must be given by

Qbskd =
2c̄s1 − c̄dab

k4 . s13d

D. Langevin equation with two dynamics in parallel

For the model with competing dynamics with fluctuations,
we add the terms describing the deterministic evolution of
the composition, as in Eq.(1), as well as the noise terms. The
a terms are additive since we assume the two deterministic
dynamics to be acting in parallel and independently. Within
this assumption, the corresponding fluctuations are uncorre-
lated and therefore additive as well:

dĉ

dt
= − fathskd + abskdgĉ − k2sĵth + ĵbd. s14d

Equation (14) yields the following expression for the
steady-state structure factor:

Sskd = k4 Qthskd + Qbskd
2fathskd + abskdg

. s15d

After simple algebraic manipulations we obtain

Sskd =

kBTS1 +
ab

D̃k2D
2Ck2 + u9sc̄d +

kBT

c̄s1 − c̄dS1 +
ab

D̃k2D
. s16d

Equation(16) is the central result of Sec. II. We now con-
sider specifically two cases for the ballistic dynamics.

E. Case 1: Short-range ballistic jumps

In this case, the dynamics can be approximated by a dif-
fusional process with a diffusion coefficientDb,

7 and thus
abskd=Dbk

2. The equation for the structure factor now be-
comes

S1skd =

kBTS1 +
Db

D̃
D

2Ck2 + u9sc̄d +
kBT

c̄s1 − c̄dS1 +
Db

D̃
D . s17d

This equation admits a straightforward interpretation in
terms of Martin’s effective temperature criterion: the effec-

tive temperatureTef f=Ts1+Db/ D̃d describesboth the effec-
tive driving forceand the effective fluctuations of the alloy
under irradiation at steady state. We should also notice that in
Martin’s derivation of the effective temperature criterion, the

ratioDb/ D̃ is assumed to be composition independent. It thus
implies that the fluctuations are also composition indepen-
dent. Therefore, for short-range ballistic jumps, Martin’s
nonequilibrium potential has the two desired properties of a
nonequilibrium potential discussed in the second paragraph
of the Introduction, and the common tangent rule, as used in
Ref. 7, is a valid construction to determine the globally
stable steady states.

F. Case 2: Finite-range ballistic jumps

Following the MD results,8 we choosewR to be an expo-
nential decay with decay lengthR. Its Fourier transform is
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then given by ŵRskd=1/s1+k2R2d, and thus abskd
=Gbk

2R2/ s1+k2R2d.24 The equation for the structure factor
now becomes

S2skd =

kBTS1 +
R2Gb

D̃

1

1 + k2R2D
2Ck2 + u9sc̄d +

kBT

c̄s1 − c̄dS1 +
R2Gb

D̃

1

1 + k2R2D .

s18d

Again, one notes that the same rescaling applies to the tem-
perature in the numerator, which corresponds to the ampli-
tude of the fluctuations, and in the denominator, which cor-
responds to the second derivative of the nonequilibrium
potential. The concept of effective temperature, however, is
no longer appropriate since the effective temperature would
be a function of the wave vectork. A better approach is to
divide both the numerator and the denominator in Eq.(18)
by the rescaling factor of the temperature. Before doing so,
we note thatC and u9 in Eq. (18) are both related to the
physical interactions betweenA and B species. This point
becomes very clear if we use a Bragg-Williams approxima-
tion with a pairwise interaction energy between nearest
neighbors,v, so that the internal energy term becomesusc̄d
= c̄s1−c̄dv /2. Note thatv,0 for alloy systems with a ten-
dency toward phase separation. Simple algebra shows that in
Eq. (18) u9= v̂sk=0d and 2C= v̂9sk=0d /2.23 Sincev̂skd is an
even function ofk by symmetry, the first two terms in the
denominator in Eq.(18) correspond to the first two terms of
the expansion of the interaction energy aroundk=0. We can
therefore reinterpret Eq.(18) as the structure factor, evalu-
ated at the physical temperatureT, of an alloy system with
effective pairwise interactions defined as

v̂ef fskd =
v̂skd

1 +
R2Gb

D̃

1

1 + k2R2

. s19d

A similar equation was originally derived by Vaks and Ka-
myshenko[see Eq.(15) in Ref. 17], albeit from a discrete
description. The implications of such equations for effective
interactions are discussed in the next section.

III. DISCUSSION

We first discuss the case of short-range ballistic dynamics.
The present approach and the effective KCM formula de-
rived by Vaks and Kamyshenko17 provide self-consistent re-
sults establishing the existence of an effective temperature
for both the driving force and the fluctuations under irradia-
tion. It is interesting to note, however, that, if one assumes
the existence of an effective temperature, its expression can
be very simply deduced by making use of Einstein’s relation.
This relation links the atomic mobility to the chemical diffu-

sion coefficient throughkBT=cs1−cdD̃ /M. As we have as-
sumed that the ballistic and thermal dynamics are uncorre-
lated, the total diffusion coefficient under irradiation is the
sum of the thermal and ballistic diffusion coefficients.25

Similarly, the thermal and ballistic mobilities are additive.
The ballistic dynamics, however, has a zero mobility since it
corresponds to an “infinite-temperature” dynamics7 with a
finite ballistic diffusion coefficient. Now, if an effective tem-
perature exists, it must obey Einstein’s relation, and it should
therefore satisfykBTef f=cs1−cdsD̃+Dbd /M. After eliminat-
ing the mobility through the use of the equilibrium Einstein
relation, we find thatTef f=Ts1+Db/ D̃d, i.e., we recover Mar-
tin’s effective temperature.

The concept of an effective temperature is identical to a
uniform rescaling of the physical interactions that exist be-
tween chemical species,v̂ef fskd= v̂skd / s1+Db/ D̃d, as seen
from taking the limitR→0 in Eq.(19). Effective interactions
can be directly measured in kinetic Monte Carlo simulations
by inverting the steady-state probability of selected
configurations:26 for the case of short-range ballistic, the ef-
fective interactions indeed follow the rescaling predicted
from the effective temperature.27

It is interesting to note that the concept of an effective
temperature has recently received much attention in the con-
text of jammed granular systems,28 sheared fluids,29 and
glassy systems.30 Ono et al.29 consider a jammed foam at
zero temperature driven by shearing. They demonstrate that
five independent definitions of an effective temperature, re-
lying on linear response theory and generalized fluctuation-
dissipation(GFD) relationships, yield consistent values and
consistent dependence on the shear rate. Similarly, Berthier
and Barrat28 showed that an effective temperature can be
used to account for several GFD relationships for a sheared
two-component fluid at finite temperature.

One remarkable feature of the effective temperature de-
rived by Martin is that it becomes infinite in the limitT
→0. This is simply a consequence of the randomness of the
mixing forced by irradiation. Recently, however, Lund and
Schuh have reported the stabilization of nonrandom struc-
tures in Lennard-Jones binary alloys forced at 0 K by irra-
diation or shearing:31 such a behavior appears to be specific
to systems that do not exist on a lattice, fluids or amorphous
solids, or possibly to alloy systems on a lattice but with very
large size mismatch. In such systems, even though attempts
at ballistic mixing are randomly chosen, the net effect may
not be equivalent to a randomizing force, in the sense that
large local stresses may prevent a ballistic switch of atoms
from yielding a locally stable configuration in the potential
energy landscape. As a result, athermal relaxation can undo
the forced mixing attempted by the ballistic switch of two
neighboring atoms. More work is needed to elucidate this
point fully. We note, however, that our results are not in
contradiction with Lund and Schuh’s results, since the
present model is restricted to an alloy on a lattice in the
absence of stress effects.

We now turn to the case of finite-range ballistic mixing.
As seen from Eq.(18), the concept of an effective tempera-
ture loses its relevance sinceTef f would be a function of the
wave vectork. A better approach is to use the concept of
effective interactions:16,17 the alloy reaches under irradiation
a steady state that is identical to the equilibrium state reached
at temperatureT in a modified alloy, where atoms interact
through effective interactions. Starting from a discrete micro-
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scopic master equation, and using a mean-field approxima-
tion of its steady-state solution, Vaks and Kamyshenko de-
rived an analytical expression for effective pair interactions.
Their result[see Eq.(15) in Ref. 17], is in fact the discrete
counterpart of the continuum expression derived here in Eq.
(19). As discussed and exemplified in a previous paper,26

effective interactions characteristic of a steady state can be
systematically evaluated numerically through appropriate
KMC simulations. One remarkable feature of Eq.(19) is that
the range of the effective interactions introduced by the bal-
listic mixing scales with the range of that ballistic dynamics.
It is also interesting to compare Eq.(19) to the analytical
expression obtained if one ignores the fluctuations, i.e., using
Eq. (1) instead of Eq.(14): the effective interactions intro-
duced by the ballistic dynamics then appear as additive cor-
rections to the physical interactions[see Eqs.(6) and (7) in
Ref. 9 or Eq.(3) in Ref. 10]. This additivity of the effective
interactions is however problematic since, as discussed in
Ref. 10, it gives rise to inconsistencies, in particular in the
limits Gb→0 and R→0. These inconsistencies are com-
pletely absent from Eq.(19), and it is therefore concluded
that a correct derivation of effective interactions require a
model that includes a self-consistent treatment of the fluctua-
tions, as is done in this article.

The derivation of a nonequilibrium steady-state structure
factor points to an experimental route to explore the phenom-
enology we study in this work. Small-angle scattering ex-
periments can be used to measure structure factors of thin
films subjected to ion-beam mixing, in particular by taking
advantage of the high brightness of synchrotron x-ray
sources. This article provides a theoretical background that
can be confronted with experimental results. Equation(18)
suggests that under heavy-ion irradiation we must expect the
structure factor to evidence finite-range correlations in the
form of a peak at a finite wave vectork, as opposed to the
Lorentzian tail of the classic KCM formula[ Eq. (17)]. An-
other approach for testing experimentally the present theoret-
ical results is to take advantage of the recent advances in
three-dimensional atom probe microscopy.32–35 Three-
dimensional atomic maps can be constructed with a subna-
nometer resolution. The presence of patterning could there-
fore be directly assessed from these maps. Furthermore,
structure factors can be calculated as Fourier transforms of
atomic maps,10 thus allowing for a quantitative comparison
with the present predictions. If confirmed by experiments,
the current modeling suggests that one can take advantage of
the spontaneous formation of nanoscale compositional pat-
terns during ion-beam processing to synthesize nanocompos-
ites with characteristic length scales that can be tuned by
varying the irradiation parameters, so as to optimize their
optical, magnetic, or electric properties.

As a final comment, we note that the present approach to
derive effective temperature and effective interactions should

be applicable to alloy systems with an ordering tendency as
well, for instance by extending the kinetic model introduced
by Cooket al. to describe ordering kinetics.36 The study of
this different class of alloy systems would be important to
assess the general validity of the concepts of effective tem-
perature and effective interactions, in particular since the
analytical results obtained by Vaks and Beiden37 for this
class of alloys suggest that irradiation may stabilize chemi-
cally ordered but spatially frustrated states. These peculiar
states could correspond to the patterns identified in KMC
simulations, where both decomposition and chemical order-
ing take place at a finite scale.38

IV. CONCLUSION

We have introduced a kinetic model for the evolution of
the composition field in an irradiated alloy, where short-
ranged thermally assisted diffusion competes with the finite-
ranged random atomic exchanges forced by irradiation. For
the case of binary alloys undergoing phase separation, we
have extended Cook’s approach21 to build a self-consistent
expression for the nonequilibrium fluctuations of composi-
tion in such alloys. This model made it possible to derive an
analytical expression for the steady-state structure factor.
This expression is the continuum counterpart of the discrete
one derived by Vaks and Kamyshenko.17 In the limiting case
of short-ranged ballistic jumps, this structure factor yields a
simple interpretation: both the driving force and the fluctua-
tions under irradiation follow their equilibrium expression,
albeit evaluated at a higher, effective temperature. This is a
direct generalization of the effective temperature criterion
originally derived by Martin7 for the driving force. In the
more general case of finite-ranged ballistic jumps, the con-
cept of an effective temperature is no longer correct, since
this effective temperature would be a function of the wave
vector of the composition modulations. It is nevertheless
possible to interpret the structure factor equation as that of an
equilibrium system at the true temperatureT, but with effec-
tive, rescaled atomic interactions. These effective interac-
tions are finite ranged, and they offer a direct explanation for
the dynamical stabilization of compositional patterns under
irradiation predicted analytically9 and observed in atomistic
KMC simulations.8,10
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