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Recent results on the nature of the quantum critical point between Néel and valence bond solid(VBS)
ordered phases of two-dimensional quantum magnets are examined by an attack from the VBS side. This
approach leads to an appealingly simple physical description, and further insight into the properties of the
transition.

DOI: 10.1103/PhysRevB.70.220403 PACS number(s): 75.10.Jm

Recent theoretical work1,2 on quantum phase transitions in
two dimensional spin-1/2 quantum antiferromagnets has un-
earthed some interesting phenomena dubbed “deconfined
quantum criticality.” The theory of such deconfined quantum
critical points is described in terms of excitations that carry
fractionalized quantum numbers which interact through an
emergent gauge field. A precise characterization of the de-
confinement is provided by the emergence of an extra global
topological Us1d symmetry not present at a microscopic
level. This symmetry leads to an extra conservation law at
the critical fixed point that is conveniently interpreted as the
conservation of a gauge flux.

The most prominent example of such a deconfined quan-
tum critical point arises at the transition between Néel-and
valence bond solid(VBS) ordered phases of spin-1/2 mag-
nets on a square lattice. A direct second-order transition is
possible between these two phases despite their very differ-
ent broken symmetries, and in contrast to naive expectations
based on the Landau paradigm for phase transitions. Previ-
ous results1,2 on this transition have been based primarily on
an attack starting from the Néel ordered side. Here we will
take the alternate approach of attacking from the VBS side.
This approach provides for an appealingly simple physical
description of the transition.

The Néel ordered state is described by anOs3d vector
order parameter. The VBS state, on the other hand, is de-
scribed by aZ4 clock order parameter. The four degenerate
ground states associated with theZ4 order parameter are il-
lustrated in Fig. 1 for a specific VBS state in which the
valence bonds have lined up in columns.3 A naive approach
to the transition from the Néel side would associate the criti-
cal fixed point with the usualOs3d fixed point in D=2+1
dimensions. This expectation is incorrect. Similarly a naive
approach to the transition from the VBS side would lead one
to expect a critical fixed point in theZ4 universality class in
D=2+1. This expectation is again incorrect. As is well
known, theclassical Z4 transition in three dimensions is ac-
tually in theD=3 XY universality class as the fourfold clock
anisotropy is irrelevant at the latter fixed point(for instance,
see Ref. 4). The critical theory discussed in Refs. 1 and 2 is
emphatically not in the three-dimensional(3D) XY universal-
ity class.

Why do these naive expectations fail? The answer is
rooted in the observation that the topological defects in either
order parameter carry nontrivial quantum numbers. When the

defects in one order parameter, say the Néel vector, prolifer-
ate and condense they kill long-range Néel order. At the
same time, the quantum numbers they carry induce a differ-
ent broken symmetry. The nontrivial structure of the defects
is inherently quantum mechanical and is not captured in na-
ive macroscopic treatments of the broken symmetry state.
For the Néel ordered states, the structure of the defects
(known as hedgehogs),5 and their role in producing the VBS
ordered paramagnet6 was elaborated many years ago. This
provided the basis for the theory of the transition developed
in Refs. 1 and 2. Here we will expose this physics starting
from the VBS side.

As the VBS order is described by a discreteZ4 clock order
parameter, the natural topological defects are domain walls.7

Various kinds of walls between the four different broken
symmetry states are possible. It is convenient to consider an
“elementary” domain wall across which the clock angle
shifts byp /2, and to assign an orientation to such a wall. An
example is shown in Fig. 2. All other walls, where the clock
angle shifts by higher multiples ofp /2, may be built up from
the elementary wall.

A key point is that four such elementary walls can come

FIG. 1. (Color online) Schematic picture of the four degenerate
ground states associated with the columnar VBS state. The en-
circled lines represent the bonds across which the spins are paired
into a valence bond. The four ground states are associated with four
different orientations of aZ4 clock order parameter.
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together and terminate at a point. It is clear that such termi-
nation points may be associated withZ4 vortices—the clock
angle winds by 2p upon encircling such a termination point
(see Fig. 3). Z4 antivortices may be similarly defined.

What do suchZ4 vortices correspond to in terms of the
underlying VBS configurations? An example is illustrated in
Fig. 4. A remarkable property of this cartoon is that at the
core of such a vortex there is a site with an unpaired spin—
i.e., a spin that is not part of any valence bond. It is easy to
see that this is a general property of any such vortex pattern
of the VBS order parameter. Furthermore, translating the en-
tire valence bond pattern by one lattice spacing reverses the
direction of the winding—thus theZ4 vortices are associated
with one sublattice, say theA sublattice, and theZ4 antivor-
tices with theB sublattice.

Thus in this particular quantum problem, theZ4 vortices
(and antivortices) carry an uncompensated spin-1/2 moment.
They may therefore be identified with “spinons.” In the
VBS-ordered phase, the energy required to separate a vortex
from an antivortex increases linearly with distance, since
such a pair is necessarily accompanied by four domain walls
connecting the two defects(see Fig. 3). This means that the
spinons areconfinedand do not exist as free excitations in
this phase.

It is the nontrivial structure of theZ4 vortex in this prob-
lem that distinguishes the VBS state from a more ordinary
state with aZ4 order parameter. Such an ordinary state ob-
tains for instance in a simple lattice quantumOs2d rotor
model with a fourfold anisotropy. In this case theZ4 vortices
in the ordered state have featureless cores. The disordering
transition in this simple model may be described by the usual
three-dimensional classicalZ4 model and is hence in the 3D
XY universality class(since the clock anisotropy is irrel-
evant). In contrast, disordering transitions out of the VBS
phase must necessarily take into account the presence of the
spin-1/2 moment in the cores of theZ4 vortices. Any map-
ping to a classical 3DZ4 model is then complicated by the
need to incorporate this vortex structure.

Consider moving out of the VBS phase by proliferating
and condensing theZ4 vortices. Clearly once the vortices
proliferate, long-rangedZ4 order cannot be sustained. Fur-
thermore, as these vortices carry spin, the resulting state will
break spin symmetry, and as argued below may be identified
as the Néel state.

These simple considerations, therefore, provide a mecha-
nism for a direct second-order transition between the VBS
and Néel phases. As for the usualZ4 model, it is reasonable
to expect that the clock anisotropy will be irrelevant at this
transition as well. Indeed, as we will argue later, this is
strongly supported by the evidence from Refs. 1 and 2. For
the present, let us explore the consequences of the expected
irrelevance of the clock anisotropy.

The critical theory will then be that of a(quantum) XY
model inD=2+1 butwith vortices that carry spin-1/2(See
Fig. 5). The spinon nature of these vortices will change the
universality class fromD=3 XY to something different.
Clearly to expose this difference and to obtain a description
of the resulting new universality class, it will be most con-
venient to go to a dual basis in terms of the vortices and their
interactions(analogous to the familiar Coulomb gas descrip-
tion of classical 2DXY models).

FIG. 2. (Color online) An example of an elementary domain
wall in the VBS state across which the clock angle shifts byp /2.

FIG. 3. (Color online) Macroscopic picture of aZ4 vortex as a
point where four oriented elementary domain walls meet and end.

FIG. 4. (Color online) TheZ4 vortex in the columnar VBS state.
The blue lines represent the four elementary domain walls. At the
core of the vortex there is an unpaired site with a free spin-1/2
moment.
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The structure of such a dual vortex reformulation is well
known. The basic idea is to regard the phase mode of theXY
model as the photon associated with a fictitious noncompact
Us1d gauge field. The vortices then correspond to gauge
charges that are minimally coupled to this photon field. At
the critical point, the vortices are gapless: the critical theory
may be constructed as a theory of gapless vortex fields mini-
mally coupled to a fluctuating noncompactUs1d gauge field.
For the problem at hand, the spinon nature of the vortices is
readily incorporated by introducing a two-component spinor
field, za, to represent the vortices(a=1,2 is thespin index).
The transition out of the VBS phase to the Néel phase will
then be described by a theory of gapless spinon vortices
coupled minimally to a fluctuating noncompactUs1d gauge
field (which is the dual of theXY phase mode).

The critical theory is readily written down. The most gen-
eral theory consistent with theUs1d gauge structure,SUs2d
symmetry, and vortex/antivortex exchange symmetry of the
microscopic model(the latter required by the symmetry un-
der sublattice exchangeA↔B), is described by the action
Sz=ed2rdtLz, with

Lz = o
a=1

2

us]m − iamdzau2 + suzu2 + usuzu2d2 + ksemnk]nakd2.

s1d

The transition occurs as the parameters is tuned. Theam

represent the components of a fluctuating gauge field.
Remarkably this is exactly the same field theory as the

one proposed in Refs. 1 and 2 for the Néel-VBS transition

based on an approach that attacked from the Néel side. We
have thus shown how to recover that field theory in an ap-
proach from the VBS side.

These considerations may be formalized as follows. First
we note thatza represents aZ4 spinon vortex, and hence must
transform as a spinor under physical SU(2) spin rotations.
The antivortex must also transform as a spinor; we must
therefore represent antivortices by −isab

y zb
* , wheresy is the

usual Pauli matrix. As discussed pictorially above, elemen-
tary lattice translations take vortices to antivortices so that

za→−isab
y zb

* . It follows that the vectorNW =za
*sW abzb changes

sign under an elementary lattice translation. We may there-
fore identify it with the Néel order parameter. Thus for in-
stance a uniform condensate ofza corresponds to the Néel
state.

We may formally justify the critical theory in Eq.(1)
above as follows. The arguments developed above show that
the critical theory is that of anXY model where the vortices
are spinons. Consider the conserved currentJm of this XY
model. In the ordered phase this may be expressed in terms
of the XY phase fieldx through

Jm = K]mx, s2d

whereK is the stiffness of theXY model. To access theXY
disordered phase, it is necessary to include vortex configura-
tions and account for the periodicity of the phasex. The
vortex currentjm is given by

jm =
1

2p
emnl]n]lx. s3d

Note thatjm must be invariant under physical spin rotations
even though it is carried by spinons. The conservation con-
dition on Jm may be implemented by expressing it as

Jm =
1

2p
emnl]nal. s4d

This equation defines the fieldam, which may be interpreted
as a noncompactUs1d gauge field. Clearly it is defined only
up to a gauge transformationam→am+]mu. The vortex cur-
rent may now be reexpressed in terms ofam,

jm =
1

4p2K
emnl]nbl, s5d

wherebl=elab]aab is the gauge-invariant field strength as-
sociated with theam field. This equation now takes the form
of the familiar Ampere law. The duality is completed by
requiring a continuum field theory of the spinon vorticesza
whose equations of motion reduce to this Ampere law equa-
tion. The action in Eq.(1) above has precisely this property
as is readily checked.

Note that as usual the conserved densityJ0 of the XY
model is simply the magnetic flux density in the dual de-
scription. As the phasex is the conjugate operator, the op-
eratore4ix simply increases the total gauge flux by 8p. We
may therefore identify it with a quadrupled monopole opera-
tor of the dual gauge theory. Thus the quartic anisotropy in
theXY model corresponds precisely to the quadrupled mono-
pole operator. Strong evidence for the irrelevancy of this

FIG. 5. (Color online) The structure of theZ4 vortex close to the
transition. As one approaches the critical point, the domain walls
(depicted as a blue-shaded region) become thicker. At the same
time, the vortex core where the spin-1/2 moment resides(depicted
as a gray circular region) becomes larger. The domain wall thick-
nessjVBS and the vortex core sizej both diverge at the transition
but because the clock anistropy is irrelevant, the former diverges
faster. Therefore, at intermediate length scales(larger thanj but
smaller thanjVBS) the clock angle winds smoothly as in a regular
XY vortex.
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operator at the critical fixed point of Eq.(1) was presented in
Ref. 2.

Is it possible for quantum fluctuations to destroy the
VBS order without inducing Néel order? Clearly the answer
is yes. One possibility is a transition to a topologically
ordered Z2 spin-liquid state. To obtain a topologically
ordered state from the VBS state, it is as usual necessary
to condensepaired vortices8 in the VBS order parameter—
but here these vortices are spinons. To get a spin singlet state
it is necessary to form a singlet pair of these spinons.9

As discussed above, vortices live on one sublattice and
antivortices on another. Consequently we need to condense
a spin-singlet pair of spinons living on the same sublattice
to obtain theZ2 spin liquid. All of this is completely consis-

tent with existing gauge theoretic descriptions ofZ2 spin
liquids.10

To conclude, we have examined the nature of the Néel-
VBS transition by an attack from the VBS side. This ap-
proach leads to a simple physical description of the transition
and is completely consistent with the alternate approach of
attacking from the Néel side. All of the physics associated
with the transitions out of the VBS phase may be fruitfully
understood from the perspective of this paper.
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