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The dynamics of the moving vortex lattice is considered in the framework of the time-dependent Ginzburg-
Landau equation neglecting the effects of pinning. At high flux velocities the pinning dominated dynamics is
expected to crossover into the interactions dominated dynamics for very clean materials recently studied
experimentally. The stationary lattice structure and orientation depend on the flux flow velocity. For relatively
velocities V<V,.=y8mB/®y/y, where y is the inverse diffusion constant in the time-dependent Ginzburg-
Landau equation, and the vortex lattice has a different orientation thafn>fdr.. The two orientations can be
desribed as motion “in channels” and motion of “lines of vortices perpendicular to the direction of motion.”
Although we start from the lowest Landau level approximation, corrections to conductivity and the vortex
lattice energy dissipation from higher Landau levels are systematically calculated and compared to a recent

experiment.
DOI: 10.1103/PhysRevB.70.214529 PACS nuntber74.404k, 74.25.Ha, 74.25.Dw
[. INTRODUCTION effect of pinning cannot be ignored and plays an important

The static Abrikosov flux lattice has been experimentallerIe in the orientation of the vortex Iattlpe. However, the.
observed since the 1960s by a great variety of techniques arfost recent small-angle neutron scattering and muon spin
lateral correlations have been clearly observed recently up to
tens of thousands of lattice spacifg$he remarkable ad- y
vances in decoration, small-angle neutron scattering, and
muon spin rotation techniques allowed a recently direct
glimpse into the structure of the moving Abrikosov vortex
systemg-® It shows that at small flux flow velocities vortices D"
move in channels as predicted in Ref. 7. When the flux flow >
velocity increases beyond the one corresponding to the criti- X
cal current, one observes a relatively well correlated hexago-
nal lattice. The channels and the plastic flow at relatively low
velocities are explained by the influence of pinning on the
basis of theoretical argumeftand confirmed by numerous
simulations®~12 At high velocity of the moving latticécor-
responding to the high electric figldhe influence of disor-
der is expected to diminish and a “moving Bragg glass”
appears:’® Indeed Bragg peaks roughly at positions of the y
hexagonal lattice were observecently.

Since the theoretical prediction of the moving Bragg glass
exhibiting the transverse peak effé&tnuch effort has been
put into the simulation of the high driving force phase of the 9=3
moving vortex systemi®'2In particular it was fountf that . >
as the driving force increaseésr disorder decreasgthe vor-
tex lattice suddenly changes orientation for a period of time
and then returns to a “regular” drift mode. The main empha-
sis in these studies mentioned above is still the effects of
pinning on the moving lattice.

Experiments at a lowbelow 100 G magnetic field and
slow flux moving velocity(of order um/s) showed that the FIG. 1. Two possible orientations of tHapproximately hex-
orientation of the moving vortex lattice is tied to the direc- agonal vortex lattice(a) The direction of the flux lines is the same
tion of motion, namely, when a nearly hexagonal lattice isas the nearest neighbors lattice orientati@m.The direction of the
observed, one always observes the orientation depicted ffux lines is perpendicular to the nearest neighbors lattice
Fig. 1(a), never the “rotated” one of Fig.().* Here the orientation.

Direction of flux flow b

Direction of flux flow =—————p
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rotation experiment can probe the moving lattice at muchributes to physical quantities of interest. The LLL approxi-
higher velocities of order cm/s or even higher. The resultsnation is valid forH>H(T)/13 in the static limit> Al-
about the orientation of the moving lattice obtained in Ref. 5though most of the experiments concerning a moving lattice
seem to be different from the case at a low magnetic fieldvere performed at a field far below the staitlg,(T), it has
and slow flux moving velocity. been shown a long time atfo’ that in the presence of elec-
The effect of pinning is expected to be smaller at highertric field E the effective He(T,E) =H(T) - Y2V2d/ (87)
velocities. Alternatively one can ask what happens in verywhereV=cE/B is the velocity of fluxons ang is the inverse
clean materials. A recent experiment in Pn-In seems to bediffusion constant setting the time scale in the TDGL ap-
long to this category.As the pinning influence diminishes proach. This fieldH(T,E) could be much smaller at not
with increasing flux velocity, it is natural to ask what would very small fluxon Ve|ocitie$e|ectric field suppresses super-
happen in the limit of the highest possible flux veloditf  conductivity even more effectively than the magnetic field
course, eventually the electric field destroys SUperCOﬂdUCtinherefore effective|y one can move into the region of valid-
|ty, so that the mathematical limit of the infinite driVing force |ty of the LLL approximation at Sufficientiy |arge currents.
is unphysical disregarding pinning altogether. Moreover, one expects that, even beyond the region of va-
The question of the orientation of the vortex lattice usu-jidity of the LLL approximation, physics is qualitatively the
ally does not arise in the static case. Without an externafgme.
electric field Singling out a particular direction one has a We solve TDGL equations for a moving vortex solid with-
complete degeneracy of possible orientations of the hexag@ut disorder and find the vortex structure to which the mov-
nal vortex lattice. This is not surprising for a sufficiently ing lattice relaxes irrespective of initial conditiotfs2® It
symmetric materiallike NbSe frequently used in experi- tyrns out that the preferred lattice is rhombic. The distortion
ments belongs to this categgryhe rotational symmetry en- s velocity dependent. Remarkably the orientation is the
sures that the free energy is independent of the hexagonghme as in Fig.(&); namely, it agrees with experiments only
lattice orientation. The rotational Symmetry is broken by theat velocities exceeding the critical omf order of cm/s for
motion of fluxons as was confirmed eXperimenté'ﬁy.\latU' Superconducting type 1 |OVTC metais_ Below it the orien-
rally one could ask whether the particular lattice orientationtation is rotated by 30°.
observed for example in Ref. 4 is necessanly tied to pinning The paper is Organized as follows. The model is de-
or might appear in clean superconductors as well. Furtherscriped, symmetries analyzed, and the perturbative mean
more, the lattice also can be deformed though the deformage|d solution developed in Sec. II. The general formalism is
tion apparently is very smalbee Figs. ) and Xd) in Ref.  developed to treat the non-Hermitian part of the equation.
4]. Is there a deformation even before pinning centers disorthe shape and the orientation of the vortex lattice and the
der the lattice? reorientation transition are described in Sec. Ill. Then in Sec.
It would be difficult to address the question of the moving v we calculate corrections due to higher Landau levels and

vortex lattice structure using phenomenological models likejerive a general expression for conductivity. It is compared
the elastic mediullf:?) (ln which individual vortices are Slmply with a recent experiment_ Section V is a summary.
not “seen’) or approximating vortices in the London ap-
proximation by interacting lines or points in two dimen-
sions (2D).*?> To give an example of the problems in the Il. MODEL AND ITS PERTURBATIVE FLUX FLOW
London limit, let us consider equations of motion for vorti- SOLUTION
ces. The driving forcé& is the Lorentz force and the dynam- A. Time-dependent GL model
ics is assumed overdamped:
Our starting point is the TDGL equatidf,
dr,
—=-2 VU({I-r)+F, 1 .
77dt E (ri ]) () ﬁ(ﬂ_i_ﬂ
Zmab ot f

@)z//:—&j*F. (2
where U(ri—r;) is the intervortex repulsive potential. The
s_olution of these equations in the absence of pinning_ is fJbThe static GL free energy is
vious: the “boosted” hexagonal lattice of any orientation ir-
respective of the direction df. Thus the orientation of the 2 -
lattice depends solely on initial conditions, at least in the F:J d3x< h (6 +EA)¢
clean case. Therefore the approximations made in the above 2myp fic
phenomenological approaches are too strong. b’

In this paper we use the time-dependent Ginzburg-Landau X |¢{? + —|1//|4>, (3)
(TDGL) model to study the vortex motion and structure. The 2
TDGL approach has been remarkably successful in describ- _ )
ing various thermodynamical and transport propeftfes. Wherea andb’ are phenomenological parameteysis the
Progress in obtaining the theoretical results from the modepverse diffusion constant which controls the scale of dy-
can be achieved only when certain additional assumptiong@mical processes via dissipation. As usual the magnetic in-
are made. One of the often made additional assumption iduction isB=V XA and electric fieldE=-Vd—(d/t)A. It
that only the lowest Landau leveéLLL) significantly con-  should be supplemented by Ampere’s 1&#?

2

K2 5
+ EWM —a(T=T)

214529-2



STRUCTURE AND ORIENTATION OF THE MOVING.. PHYSICAL REVIEW B 70, 214529(2004)

VXB=aE+J, (4) tuations are included one cannot ignore theoordinate as
the configuration of disorder can destroy the translational
where the first term is the contribution of the normal liquid in symmetry along the directior.
the framework of the two liquid model and the second term
is the supercurrent

ihe*
2m

B. Expansion of a nontrivial solution around dynamical phase
transition point

y* §+ie—*,5\ Y+ c.c. (5)
hc

j=-
s The line in parameter spada,v), which separates the
Tensoro, is the normal state conductivity. We assume thatormal region in which the only solution g=0 from the

the coefficient of the covariant time derivative tegnin Eq.  1uX flow nontri\7/ial solution region, has been found by Hu
(2) is real although a small imaginatyall) part is always and Thompsoﬁ._We will construct a perturbative solution of
present® The general case will be discussed in Sec. V. the TDGL equations near the mixed state—normal phase tran-

We make several approximatiotidentical to those made sition Iin_e_ analogous_ to the one in stat?ésThe range of
in Ref. 20 and major parts of Ref. L%o that the problem appllcab!llty and precision of the LLL approximation at I_arge
becomes manageable. The physical conditions aIIowingjIn statics was explored recent§.The main difficulty in
those approximations are the following. Temperatures and'® dy”am_'ca' case is that _the_ Im_ear part of the equaticn
magnetic fields are close “enough” t8.,(T). Under this Ot Hermitian due to the dissipation tey. . .
assumption the order parameteis suppressed compared to Agengral idea of t.he expansion around a bifurcation point
its Meissner value. In this paper we will also assume strongl;f’!c a nonlln_ear equation Is as follows. O.ne looks for a set of
type Il superconductivitye=x/ &> 1 [2=h2/ (2maT,), A2 eigenfunctions of the linear part of E):
=c’m* b’ /4me?aT,]. The magnetic field is very homoge- -0
neous since the vortices overlap. The characteristic length Lvpo® = Onpo Prpo- (@)
describing the inhomogeneity of the electric field was iden-T
tified in Ref. 17:£2=(4mo,/ y)A\? and since typicallyr,= v,

thus {>¢ and the electric field is assumed homogeneousthe anti-Hermitian covariant time derivative,. The com-

Therefore the Maxwell type equations for the electromag- lete set of eigenfunctions with “quantum” numbedsand
netic field are not considered. The time-independent vectd? 9 q

- =pis
potential will be taken in Landau gauge=(By,0,0 and =P

he operatorL consists of two parts: the usual Hermitian
Hamiltonian of a particle in magnetic field3fD3+#] and

describes a nonfluctuating magnetic field in the directian - 1
The scalar potential is also independent of tifgeEy and Ppw = W
describes the electric field oriented along the negatiagis. Ve
The vortices are therefore moving along thdirection. We Xexdi(px— wt) JHy(y - p+iv)
neglect thermal fluctuations and disorder on the mesoscopic
| 1 )2
scale. _ ' xexp — =(y—-p+iv)“|,
Throughout most of the paper we will use the following 2
physical units. The unit of length is the coherence lergth (8)
the unit of the magnetic field isH,=®y/27&, \ & = 1 v
=(c/e* )\myb' /4maT,, and the unit of energgtemperaturg Npo = "@+N+ 2+ = —i(w-vp),

is T.. In these units the magnetic field is denoted Iby

=B/H,. The asymmetry of masses between 2tdirection  whereH, are Hermitian polynomials. Unlike the usual case
and thex-y plane can be removed by rescaling coordi-of a Hermitian operator, eigenfunctions and eigenvalues of
nates and timex— &/\b, y— &/b, z— &/\bm./m,, the Hermitian conjugate of the operatot are different:

t— (y&2/2b)t. The TDGL equations, after the order param-

eter field is rescaled as well— v2aTh/b’y, are L' Bnipe = OnpoPripe:
0=Ly+yly?,
112 > © ngm = #— exp - i(px— wt) [Hy(y - p+iv)
L=D,-3[Di+ %+ %] -a, V2NN
where a=(1-T/T./2b), v=(cyE/2B)\Ac/e*B is scaled 1 .
vortex velocity(in units of 2/27B/®,/ y), and covariant de- xexp = J(y=p+iv)7|,
rivatives are defined byD,=d/dx—iy and D,=d/dt+ivy. 9)
Sinced? commutes withL, the equations are invariant under _ 1 2
the z translations, thez dependence of the solutions de- Onpo =—a+ N+ > + > +i(w-vp).

couples and is generally a plane wave. It is easy to see that

the relevant solution does not break this symmetry and is —

therefore constant with respect zo Consequently we con- Note that¢ is not a complex conjugate af. The orthogo-
sider the problem as a 2+ 1-dimensional ¢nete, however, Nality relations in the dynamical case involve bag,, and
that if the three-dimension&BD) disorder or thermal fluc-  dnpe:
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f ngw(xiyvt) d)N/p’w'(vavt)
X,y,t

=(2m)25uwdp-p’)

X w-w'), (10)

<$N pa)(xv Y, t) d)N pw(xv Y, t) >x,y,t =1 ’

where the averaging over space and time is denoted by

<' : '>x,y,t-

The bifurcation(in this case the dynamical transitijooc-
curs when there exists a set of eigenfunctionk’ofvith zero
eigenvalue®yp,,=0:

2

1
abif(U):N"'E"'U_,

5 (11

w =VP. (12)

It is clear that solutions witiN>0 are unstable as in the
static casé? Equation(11) with N=0 gives the phase tran-
sition line of Ref. 17, while Eq(12) selects the “zero mani-
fold” in the space of functions. We define the “distance”
from the transition line

UZ

ah(U)Ea_abif(U):a_%_E- (13

Whenay,(v) >0, the nonlinear TDGL equation,

L+ plyf? = Loy — an(0) ¢+ Yl9f? =0, (14)

Len=L +ay(v),

is solved perturbatively i, with a nonanalytic prefactor, as
in the static case:

® =[an(v) V]P0 + adt + -+ . (15)
To order[a,]*?, the equation linearizes
Ly®°=0. (16)

Therefored belongs to the “zero manifold” and thereby can
be expanded,
q)O = E Cp¢N:0,p,m:vp = 2 de’pv (17)
p P
with coefficientsc, determined by the next order equation.

As a result, since all they,(x,y,t) depend only on the com-
bination px—wt=p(x—vt) rather than separately onandt,

vortices move in the direction perpendicular to both the elec-

tric and the magnetic field with constant velocityTo order
[a,]%%, one obtains

Ly = 00— DY D92,

Multiplying this equation bygp and integrating ovefx,y,t)
using the orthogonality relation, E@10), one obtains the
following infinite set of nonlinear algebraic equations:

PHYSICAL REVIEW B 70, 214529(2004)

d1 X-vt

FIG. 2. The flux lattice geometrd®, d@ are the translational
symmetry vectors which determines the primitive cell of the flux
lattice. The angle between these two vectors.is

2 Cp Co,Cr{ o bo Doy = Cp- (19

P1,P2,"
We will study the solution of this set in the next section.

Ill. SHAPE AND ORIENTATION OF THE MOVING
LATTICE

A. Symmetry and energetics considerations

It is well known in the static case that there is a solution
of GL equations for any lattice symmetry. The same is true in
the dynamical case as well, but the symmetries should take
into account the motion of vortices. We define the covariant
derivatives in a matrix 2+ 1-dimensional forfa summation
over repeated indices assumed

A,=b,x, D,=d,—iA,, (19)
and the Landau gauge
0|1 |0
by =100 |0 (20
0]—v|0

is used in our paper. All indices run over spacel(x), 2(y),
and 3t). The electromagnetic translation operators satisfying
[T4,D,]=0 are

d

Td:e‘d'P:ex;{—i< » M)]eid'p, (21)

where generators ar,=-i(d,—ib,,x,) (note a transpose in
the matrixb,,). Operatorsp,=-id, are usualnot “electro-
magnetic’) translation operators. The following commutation
relations:

1
—d,b

2 n ,quV+XVb

[PuP.]=i(b,,~b,,), (22)

can be verified. Thus we will haveid,-P,id,-P]
=-idy,dyp(b,s—0g,). Using the Haussdorf formula one
checks that the electromagnetic translation operators obey
gd1Pgld2P = gd2PgdiPdidiP. id2P] (See Fig. 2.1f d; andd,

are the lattice vectors which preserve the symmetry of the
system(when one translates the system 8y or d,, the
system will be unchanged one shall require€% Py
=€%Py and it will lead to
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gd1PgldaPy, = gd2PeidyPelidy P, idyP]y) = lidy P, idaPTyy — ) In the static case a solution which has minimal free en-
ergy is physically realized. The free energy is proportional to
Therefore we should demand —[a,(0)T2/[2B4(0)] which therefore should be minimized.
[id,-P, id,-P]=i2m X integer. This means that one should minimizz(0). The minimal

Ba(0)=1.16 is obtained for the hexagonal lattice. Similar

1_'h|s requirement is satisfied by the following basic trans""j"reasoning cannot be applied to the moving lattice solution of
tion symmetry vectors:

the TDGL equation since the friction force is honconserva-

1 _ 1 1 tive. Under these circumstances Ketterson and Sarajcu-
d=a, 5*0’_5 ' lated the work made by the friction force:
d
r r = —S=2¢(|Dif)yy- (28)
d<2>:aA(§,r',—5), (23) dt o
The preferred lattice structure in the steady state corresponds
d©=7(v,0,1). to a state with largess. For the lattice solution of the TDGL

. . . N : equation one obtains to leading orderd
Herea, is the lattice spacing along the direction of motian, q 9 R

is arbitrary (a continuous translational symmetryrhe flux - Olap(v)| Jd . .
quantization(one flux quantum per unit cell assumetbter- S« Balv) ; ot +ivy Jexplil[g(x—vt)
minesr’: r'a3=27. Thed® translation symmetry leads to ,
i 1

the discrete parameter (1 + 1)]}exp[— “(y-gl- iv)z]

2’7T 2 X

Y%
p=—l=dl >

a _v |a'h(U)|eU2 (29)
in Eq. (17), and the set of equations, E€L.8), will take a 2Ba)
form

We therefore shall minimizg, as function ofr anda,. This

1 . is consistent with the static case.
Ch=\/ =G>, Cp.+nCisnC
n 2 I+l o+t ++n . . . .
(PP B. The stationary orientation of the flux lattice. The
1 reorientation transition at high flux flow velocity
i)\2 i,)2 2 ..
xexp) ~ LGl +iv)"+ (gl +iv)"-v] (. (24) We found that the minimum of3,(v) always appears
' ' whenr=1/2, namely for rhombic lattices. Therefore from
It can be solved as in the static case by an Ansatz now on we consider these lattices only. As a function of an
g _ angle of the rhombic lattice tam:47-r/a§ (see Fig. 1 for a
= 3 /’_—e"ﬂ'('ﬂ), definition of 6) it generally has two minima; see Fig. 3. In
VTBA) the static case the two minima are degenerate Witi60°,

30° corresponding to perpendicular orientations of the hex-
agonal lattice, while for nonzero velocity the degeneracy is
Ba(v) = L—E lifted. Note that originally®’it was assumed that the lattice
A V27112 is hexagonal also in the dynamical case. Generally the shape
] is not strongly distorted for physically realizable velocities.
Xexp{2airl 415} For velocities smaller than,=0.95 angled close to 607the
1 orientation of Fig. 1b)] is preferred over the one close to 30°
X expy - 5[(g|1+ iv)2+ (gl +iv)? - v . [the orientation of Fig. ®)]; see Fig. &). The dependence
of the anglef on velocity can be very well fitted in the whole
(25  rangev<0.5 by

Consequently, 6=30-0.4 - 24°. (30)

with the Abrikosov function

1 . . . . .
DO(x,y,2) = ’ o(x.y), (26) The Adb_rlkosov function also depends on velocity increasing
VBa) according to

where Ba) = BA(0)(1 + 1.25?), (31

9 where 8,(0)=1.1596 is the static value for a hexagonal lat-
oY) = \/ =2 explil[g(x~vt) = r (I + 1) ]} tice. As the critical velocity is approached the two minima
N coincide; see Fig.@®). Beyond that point the preferred struc-
1 ture is just the opposite; Fig(&®. The transition is first order
Xexp{— E(y— gl- iv)z]

(27) and the coexistence region should exist.
We now make a few comments about the orientation of
is normalized by(|¢|?)y,=1. the lattice. The reader might have noticed that the orientation
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3.8
s |B =1.1 -y |-=9 i[g(x = ot) -
sa 17 v N\ Ty 2 EXRIg0- vt — ar (1 + 1)

3.2
1
2:' ¢ XHN(y—gI—iv)exp{—i(y—Gl—iv)z].
"o 10 20 80 4 50 60 o

28 Multiplying Eq. (14) b for N>0, one obtains

. B. v=0.95 plying Eq. (14) by ¢y -

26 NCy =~ B X ene* ¢9). (33

25 9 To find C§ we need in addition also the orda;’i‘,’2 equation:

24 T T T T T \ Ly @2 = Dt - (20Y P2 + T DOPO). (39
0 10 20 30 40 50 60

1.54 The inner product withp gives

152- B, v=0.5 .

15 _ — — J—

148 - \/\/ P NG = - 8222 [2one* o) (0o * ong) +(one* ¢* @)

K N=1

1.46 T T T T T 1 — %
10 20 30 40 5 60 70 X{pone )] (35

FIG. 3. The dependence of the Abrikosgvparameter on ori- Note that for the hexagonal lattic&ye* @) # 0 only when
entation and shape of the vortex lattice moving with scaled velociN=6j, wherej is an integer. This is due to hexagonal sym-
tiesv=0.5,0.95,1.1. The angleis defined as an angle between the metry of the vortex lattic! In statics By={(ene* @¢) de-
direction of motion and a crystallographic axis in the direction of o agges very fast witl: 36:_0-2781#}12:0-0249%5 Be-
the symmetry transformatiod,. The minimum favors the smaller 5 ;se of this the coefficient of the next to leading order is

angle close to 30° corresponding to the structure of Fg) r oy gmali(also an additional factor of 6 in the denominator
v <v., While the other local minimum corresponding to Figb)l helps the convergengy

(angles close to 60s preferred for >uv,.

B. The LLL scaling in nonlinear conductivity
of the lattice is not completely arbitrary since the direction of

the vectord,; coincides with the direction of the vortex mo- In the flux flow regime, in addition to the normal state

conductivity, there is a large contribution from the Cooper

tion. The most generaBa(v) is given by Eq.(25) with arbi- . . .

trary r. We mini?nize dar’;ﬁ(m)ericglly theib?ilfo? o8 function pairs represented by the order parameter field. It was noted in
' . . ..~ . Refs. 18, 20, and 23 that the LLL contribution to nonlinear

and found that the solution with the largest dissipation is

always of the more symmetric type=1/2. One can argue conductivity,

that despite the fact that the electric field breaks the continu- ine' - je* -
ous rotational symmetry, it still preserves a discrete transfor- - 2me* (V + he )(ﬁ,
mationy—-y, ¢— ¢*. The solutionr=1/2 preserves this

discrete symmetry. This symmetry is unlikely to be spontads proportional to the superfluid density. The scaled dimen-
neously broken. Indeed the symmetry was observed in theionless conductivity is defined ag., o= (47«%/c?y)o and
experimentgfor example, in Ref. % Oscalegin the LLL approximation is

(36)

i * *
o = (YL — Y d, V) = (Y.
IV. NONLINEAR CONDUCTIVITY AND BREAKDOWN OF 2v
THE LLL SCALING IN TRANSPORT (37

In this section we first calculate the leading higher Landaurhe last equality is due to the general property of the LLL
level corrections to the solution of the TDGL equation, Eq.functions; see Eq8). It follows the naive expectation of a
(6). Then we use it to derive the correction to the LLL scal-“Drude™-like formula® with |¥,,|? playing a role of
ing of conductivity!820.23 “charge carriers” densitymeaning here Cooper paijrs

To leading order iray, using the results of Sec. Il one gets

A. Higher orders in &, correction to the moving lattice _ ian(v) % %\ — an(v) 2
: = - ¢d = e, (38
<olution oL 2,8A(v)v<(P VP~ @dyp* ) 8,(0) (39)
Using the same symmetry arguments as for the leadingiherea (v)=(1-tg ~b-v2)/(2b). At finite v there is an ex-
order, the second term in E(L5) can be expanded as ponential factor coming from the nonorthogonality of eigen-
o= cl functions of a non-Hermitian operator and, in addition, simi-
B o NN lar dependence i, and quadratic ira,. In the limitv —0

one recovers the Ohmic expressieee Ref. 18returning to

(32) standard units,
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(39

while the leading nonlineagcubic) correction is, using Eq.
(3D),

(3) _ tGL+b_5 2

O =09 805,(0) ve, (40)

wherev=(cyE/2B)\Ac/e* B.

C. Leading correction to the LLL scaling

Generally to all orders

=2\Cn(an) en,

ina, one can write ¥

i * * *
o= 0'02_2 Cn(@n) Cu(@n){endyem = emdyen)
U Nm
= 002 Cn(@n)Cu(an o (42)
NM
For N>M andN-M even integer,

[2N-MMm1 - _
ONM =~ NI (= Uz)(N M>/2[U2L'r:l/|—'\f+l(‘ 202)

+M+1L
2

N-M-1
M+1

(- 202)}@2, (42)

whereL(y) are Laguerre polynomials. This contribution is
always sub-Ohmiaryy~v"™ at smallv. If N-M is odd,

PHYSICAL REVIEW B 70, 214529(2004)

£t .
§0.4— .
;" o,
- L
* % ksomT
02 - ¢ ¢ ¢100mT
® @ @10
0 v T T T T T T 1
0 04 0.8 12 16
J (106 A/cm2)

FIG. 4. Current-voltage curves at high flux flow velocities. The
data of Ref. 24 on Nb films &t=7.8 K (symbols represent different
magnetic fields are compared with theory combining the linear
(Ohmiog) contribution Eq.(46), and the cubic correction, E¢40).
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where all the quantities are taken in the limit>0. The sum
rapidly converges in the staticor low velocity) case:
Sn(B4/N)=0.0131.

(46)

D. Comparison with experiment

In Fig. 4 we compare the results with recent experiments
at high currentgelectric fieldg of Ref. 24 on Nb in which

the contribution vanishes. The diagonal contributions are,ortex velocities are as high as®em/s. We used the same

simpler,
2
oun=[L-a(- 207) + Ly(- 209)Je”, (43
and have an Ohmic part,
ONN= 2N+ 1.
The first term, proportional to Landau orbital numidéris

responsible for the breaking of the naive Drude-like expec
tation that conductivity is proportional tp¥[21° One ob-

values of the Ginzburg-Landau parameter9.4 and the
inverse diffusion constanty=1.17 s/crm to fit all three
curves corresponding to magnetic fields 80 mT, 100 mT,
and 120 mT for a “cold” sample withT.=8.6 K. We
used the measuredinset in Fig. 2 of Ref. 24 H,
=T.[dH(T)/dT]|r=r =4.4 T. The temperature was
=7.8 K close enough td, so that thea? correction was
always below 10%. The value of parametgris in good
agreement the measured normal state resistivity of
9.9 uQ) cm. The results agree well with the flux flow Ohmic

serves that higher Landau levels contribute to conductivigfonductivity data at relatively low currengstill well above

more than to|¥|%. One can interpret this as an
charge movers density.”
Thus the Ohmic conductivity has two contributions,

oV =0p2, (2N+1)|Cy(an)= a1+ 03, (44)
N

o= o[ ¥?),  0,=2002 N|Cy(ay)?, (45)
N=1

“increased the critical currentexhibiting the 1H behavior presented in

Fig. 2 of Ref. 24.

One observes that the full expressigolid lineg is closer
to the experiment at very high electric fields. Several curves
for the magnetic field are given. The smallest is clearly off
the LLL approach range.

V. CONCLUSION

To summarize, we have considered the dynamics of the
vortex lattice, neglecting the effects of pinning. We studied

the first proportional to the superfluid density, while the secthe time-dependent Ginzburg-Landau equation in the lowest

ond, the HLL part, is not and is of ordeﬁ only. Substituting
expressions foC, from the previous section, we obtain for
the Ohmic conductivity to ordea?,

Landau level approximation. For the validity region of the
LLL approximation, as in the static case, we requage
=(1/2B)[H(T)-B-(c?y?*®E?/47B?)]<6, the factor 6

214529-7
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coming from cancellations of the higher Landau level effectsexperiments. However other techniques like SANS and
due to hexagonal symmetfgven the hexagonal symmetry is muon spin rotatiohand possibly Lorentz microscopyare
approximate in the moving lattigeWe systematically calcu- able to detect the lattice structure even at such relatively high
lated higher Landau level corrections to conductivity and thevelocities. At very high velocities the results for nonlinear
vortex lattice energy dissipation. The stationary lattice strucconductivity agree with recent experimetits

ture depends on the flux flow velocity. While for small ve-

locities V<2vc\«"‘27rB/d>0/y, the v;=0.95 vortex lattice is ACKNOWLEDGMENTS

oriented as in Fig. (b), while beyond this velocity orients as
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