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In-phase vortex flow and superradiance in a Josephson superlattice embedded in a waveguide

A. V. Chiginev* and V. V. Kurin
Institute for Physics of Microstructure of the Russian Academy of Science, GSP-105, 603950 Nizhny Novgorod, Russia
(Received 25 December 2003; revised manuscript received 9 April 2004; published 23 December 2004

We study the dynamics of a Josephson vortex lattice in a stack of long Josephson junctions electromagneti-
cally connected with a waveguide in the form of a stripline. The stability of the dense rectangular vortex lattice
is investigated analytically. We show that this regime appears to be stable provided the characteristic velocity
of the symmetric perturbation mode in the system is lowest compared with other modes. We find a range of
velocities at which the rectangular Josephson vortex lattice is stable. We perform a numerical experiment
which shows a spontaneous establishing of the rectangular Josephson vortex lattice as the system parameters
are changed.
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I. INTRODUCTION models, and the existence of instabilities is the intrinsic prop-
. ) erty of isolated Josephson &ta. However, one may expect
The idea of using the Josephson effect for generation ofhat by changing the parameters of an external electromag-
high-frequency electromagnetic oscillations has attracted thgetic environment, for example, a waveguide or a cavity, it is
attention of many researchers since its discovery in 196Z%ossible to control the stability properties of the in-phase
The main advantages of Josephson juncti@ds as oscil- regime and reach stability of the rectangular JVL. It is well
lators are their small dimensions, good tunability, and possiknown that the connection of an external passive load to a
bility of working with frequencies up to several hundred Josephson junction chain essentially influences the condition
GHz! However, the radiation power of a single JJ is veryof synchronization between these junctigsee Ref. 8 and
small and insufficient for most applications. Combining JJ'slater works).
into arrays could significantly increase the radiation power In the present paper we investigate the dynamics of Jo-
and reduce the linewidth of such devices. Multilayer Josephsephson vortices in a stack of long JJ electromagnetically
son structures provide good example of JJ arrays. At presertpupled with a stripline, which is one of the simplest ex-
the existing technology allows growing high-quality mutli- amples of electromagnetic environment. Such a system has
layers such as Nb/AI-AIQNb stacks The interest to several attractive features. First, it can be easily fabricated
multilayer structures has become even greater after the disnd used in an experiment. Second, as we show below, this
covery of intrinsic Josephson effect in highly anisotropicsystem can be described in the framework of a simple
high-temperature superconductér¥his discovery showed model—a set of equations of the sine-Gordon type supple-
that some high-temperature superconductét§SC's), for  mented with terms responsible for the additional “global”
example, BjSrL,CaCuyOg,,, may be treated as JJ stacks coupling via the stripline. We analyze the stability of a rect-
formed on atomic scales. Recent experiments showed thangular JVL by the method used in our previous arti€le.
possibility of using BjSr,CaCyOg,, crystals as bases for Using this approach, we show that the important factor
high-frequency electronic devicés. which affects the stability of a JVL is the relation between
Electromagnetic radiation in multilayer structures can bethe characteristic velocities of perturbation modes in the sys-
produced by moving Josephson vortex latii@d¥L). The ra- tem. In particular, to ensure stability of a rectangular JVL,
diation is generated when a vortex collides with the edge ofhe symmetric perturbation mode must be the slowest one in
the stack. This principle is similar to the one used in thethe system. We show that under this condition the in-phase
Josephson flux-flow oscillatbfFFO) and, in this sense, a regime is stable in a certain range of the external current and,
multilayer structure is essentially an arrangement of severahoreover, the in-phase regime is established spontaneously
Josephson FFQO's, joined together in a stack. The maximait these currents.
radiation power from such a structure is achieved when the The article is organized as follows. In Sec. Il we derive a
vortices form a rectangular JVL, which is also referred to asset of equations describing a JJ stack connected with a strip-
the in-phase regime of vortex flow. In this case, the radiatiorine. Section Ill is devoted to analytical investigation of sta-
power at the main harmonic is proportionalNg, whereN is  bility of the in-phase regime of vortex motion in the system
the number of layers in the stack. There are many publicaunder consideration. The method and results of the numerical
tions devoted to investigations of stability of regular Josephexperiment are described in Sec. IV. Finally, the main results
son vortex structures in layered systems. It was shown if the work are formulated in the summary.
some papers that either the in-phase re§iorethe regime
close to the in phagés reachable in Josephson stacks. How-
ever, these regimes have not been observed in experiments.
Apparently, the rectangular JVL is unstable due to mecha- Let us consider a stacked configuration of JJ's built in an
nisms which have not been taken into account so far in thesexternal waveguide system. For simplicity, we choose a

II. BASIC EQUATIONS: INFLUENCE OF EXTERNAL
WAVEGUIDE SYSTEM
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FIG. 2. To the derivation of the set of Eq46). Top view of the

FIG. 1. View of a Josephson superlattice globally coupled viamultilayer structure connected with a stripline. The coordinate sys-

external stripline.

simple stripline as the waveguide. The configuration of junc-

tions and external stripline is shown in Fig. 1.

The multilayer Josephson structure is usually described
by a set of sine-Gordon-type equations supplemented with
terms responsible for the interlayer coupling. This coupling
is provided by various mechanisms such as magnetic

coupling™12 charge coupling?® quasiparticle imbalanc¥,

etc. To demonstrate our approach, we consider a simple
model with magnetic coupling. For the sake of simplicity we

neglect the in-plane dissipatidn.

Assuming that superconductor superlattice is homoge
neous and, hence, its parameters do not depend on the lay,
index, we write down a set of equations describing a JJ stac

as

N
2 Kmn{o"tZQDm"' YohPm* SNy —j} = ai‘Pn: n=1,...N,
m=1

1

where g, is the Josephson phase difference inntteJJ,d,

tem is shown.
Kiizl—g, i:2,..N_l,
K..= _d"+\ coth(t/N) + N\ coth(te,/N)
7 ONNT 7 sinh(t/n) + 2\[cosht/n) - 1]
Kijz1 =8, (2
where
A
= 3

T d’ sinht/\) + 2\[cosht/\) — 1]

characterizes inductive coupling between the layers in the
perlattice, and,,; is the thickness of the outer supercon-

ucting layer. In the present paper we assume the parameters

of the inner layers to be the same, and the thicknesses of the

outer layerst,,; to be chosen so that the elemeftg, Kyy

are equal to

K11: KNN: 1-s.

(4)

There are two reasons for the choice of makjyx, in the
form (4). First, the solution which describes the in-phase
regime and has the same form in all junctigeee Eq.(17)

are the differentiating operators with respect to time and cotater] exists only provided the conditio@) is fulfilled. Sec-

ordinate, respectivelyy is the damping coefficieni, is the

ond, as shown below, it allows one to easily find the eigen-

density of a current flowing from the external waveguide, thevalues and eigenvectors of mat(i% and, consequently, di-

dimensionless timé and coordinatex are normalized to the
Josephson plasma frequeney, and the Josephson charac-
teristic length\; is defined as

8med |
w§=7Tﬁ—EJC and )\J:VSJ(,L)J,
where
vt d’ sinh(t/\) }1/2
$7 el d’ sinh(t/\) + 2\ (cosht/\) - 1)

is the Swihart velocityc is the light speedd’ andt are

thicknesses of the insulator and inner superconductor layer:

respectively)\ is the London penetration depth, aads the
dielectric constant.
The matrix K,,, with dimensionsN X N describes cou-

agonalize it.
Currentj from the stripline is defined by a total voltage on

the Josephson statk=4d,2, ¢, by the relationj :\A(U, where
Y is admittance of the external electrodynamical system, and
by external biasing current,, which we assume to be in-
jected into the edge of the stripline. It is convenient to write
both contributions as
N
J=Hjexi— GE Pns

n=1

)

where G is the operator expressing current via total phase
difference, which is proportional to the admittan¢e 4,G,

peratorI:| stands for diffluency of injected current within
e stripline.
Now we briefly describe the derivation of the expression

for the operatorsé andH for a simple stripline, following

pling between the neighboring junctions via magnetic fieldthe procedure described in Ref. 15. We introduce the Carte-
penetration through the Superconducting |ayer. The matri)$|an *COOI’dInates as ShOWH N F|g 2. The d|Str|bUt|0n Of cur-
elementsK,,, are determined by layers thicknessess andentl(x,y,t) and voltageU(x,y,t) within a passive stripline

magnetic field penetration depth

is described by ordinary telegraph equations:
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Lal+VU=0, (6) = a(C2R + C2Td,— &), (15)
- where we introduce the value
CgU+divl=0; (7)
w
hereL,C are dimensionless inductance and capacity of the a= Wil
]

stripline, related to unit square and normalized to the respec-
tive values of Josephson junctions. Introducing a new scaladefining the strength of coupling between the Josephson su-
variable by relation U=4,¢, we come to relationl perlattice and the external stripline. Further we use expres-

=L V¢ and a two-dimensional wave equation fgr sion (15) for operatorG.
i 5 Thus, finally, we may conclude that the Josephson super-
CATF+Td) i~ Ty~ =0, (8)  Iattice with intrinsic coupling globally coupled via a narrow
external strip line is described by the following set of equa-

wherec, andI" are, respectively, the dimensionless veIocny

and the damping rate of electromagnetic waves in the strip tions:

line. On the boundaries with free spage-w and with a N N

stack of JJ'sy=0 the conditions of current and voltage con- ' K. #eon+ ydem+ Sin om=jet G, @ [ = Fep,

tinuity me1 [
Ly = JWj, L 7M0 0= jWj, n=1,...N, (16)

where operatof is defined by relatior{15). Equations de-
¢|y=0:§_: %n 9) scribing intrinsic coupling of different nature, say, charge
=t and quasiparticle coupling, and taking into account the in-
should be satisfied. Here we assume that bias current is ipplane dissipation, may be derived in a similar way.
jected in the edgg=-w of a stripline. By solving the linear

equation(8) with boundary conditiong9) we will find @, ANALYSIS OF THE RECTANGULAR JVL STABILITY
formula expressing dependency of currgfiowing into the
Josephson stack, on Josephson phage3o this effect, we In this section we perform an analytical investigation of
represent functiong, ¢,,]j,je as Fourier integrals stability of the solution to set16) which describes the in-
phase regime of vortex flow in the system. The set of equa-
(x,y,1) :J otk ( )d_‘*’% (10) tions (16) has a solution describing the rectangular JVL. In
e ok the limit of a high external magnetic field it can be written as
which lead us to one-dimensional differential equation for o o glh(x-up
o k(Y) ¢n=¢ =h(x-up+Im=—:r—, (17)
2. —
‘95‘#' x¢=0, (11) whereh is the dimensionless external magnetic field and
. _ 2_ B 2 .
where we introduce(w,k) = \k“— w(w+il')/cg and omit, for £=-h(1-u) +aN(1- uzlcg)] +ihuye. (18)

brevity, the subscribe, k. A general solution of Eq(11) is
_ . The JVL velocityu depends on the external current via the
y=Acoshaly +w) +B sinhx(y +w), (12) energy balance conditid
whence, satisfying the boundary conditiq@®)) and finding 11
A, B we come to the relations jot huye==Im=. (19)
N 2 L
j(0,k) =H(w,Kjdw,k) - G(w,K > ¢n(w,k), (13)  Note again that the solution in the for(l7) exists only
=t provided the matriXK satisfies the conditiofd).
expressing dependency of currgritowing into the Joseph- In order to investigate the stability of the JV&°, we
son superlattice, on phase distributidly ¢, and injected search the solution of E¢16) in the form
current j. in the Fourier representation. Functions o
G(w,k),H(w,k) are defined as en(Xt) = @+ (X 1), (20
W where|i,| <1. The set of equations for perturbatious is
G(w,k) =———tanhxw. (14)  written as follows:
wiL w
Returning in Eq.(14) to the (x,t) representation, we find + + +
relations expressing(x,t) via jo(x,t) and =, ¢,(x,t). Note K= r%l Kinel 2 + ¥t + 0 ¢4y GE v
that for a narrow stripline, when the conditioew<<1 is

fulfilled, operatorl:| turns to 1 andG turns to the wave op-
erator where cosg®~ cosh(x—ut)—Re[1-exp 2h(x—ut)]/2L.

Hwk) = coshsw’

(21
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The specific choice of matriK elements in the forni4) -
allows us to use a cosine Fourier transform to diagonalize the ]
matrix. After applying the cos-transform (] B
N 0.8 $ _
— a
Yn=N 1(X1+22 xi cos(n-3)( ‘”N)’ (223 s
=2 —
0.6 T
N - Y
xi= 2 ¢ cos(n-32)(1-1)— (22b)
) N 0.4
to the set of Eq21) we obtainN-independent equations for
Xt 0.2
aN 0
(1+aN)dx, = 1+ 2 Fxa+ vedxa+ cosexy, (238 ool UL P B0 04 P B B 1] [
© 1 2 3 4 5 6 7 8 9 10

l
vidox = doxi + vdx +cose’y;, 1=2, ... N. (23b)

. ) FIG. 3. The spectrum of characteristic velocities of linear per-
Equations(239 and (23b) are of the hyperbolic type. {rhation modes vs mode number for the chisel0. By changing
Equation (233 describes the evolution of perturbations the parameters of the external stripline, one controls the velocity of

which are same in all layefsymmetric perturbationsThe  symmetric perturbatiorv; not touching the velocities of other

characteristic velocity in Eq23a modes.
1+aN
vz (24) h

1+ aN/c2 &= E(X - ut), (26a
depends on the external stripline parameters.Nrell Egs.
(23b) describe the asymmetric perturbations. The character- h u
istic velocities in Eqs(23b) are T= §<t - —2x>. (26b)

U1

1

2 . . . .
= , 1=2,...N. (25 The equation takes the following form in new variables:
T 121 - cogl - ) miN] (@3 a g
. . _ 2
By changing the external stripline parameters, we can controly, ., - V115, = i+ < NW(XM-_ Ux1e)
the value of the symmetric mode velocity, while the char- a uvy
acteristic velocities of other modes remain unchanged. The 4 1 1 ( 1 1)
isti iti i i +———F———(cos Z--Re— |x;.
spectrum of characteristic velocities of linear perturbation 2 1—u2/v§1 +aN z e, X1

modes is shown in Fig. 3. Due to the fact that the set of
equations for perturbations has been reducell weparate (27)
equations we may investigate the stabilitygdfwith respect
to each perturbatiog, individually. For the stability analysis
we use the method described in Ref. 10.

The coefficient aty; in this equation depends only on the
new coordinatet. As the coefficients in Eq27) are inde-
pendent ofr, we may apply the Fourier transform tg,

which yields
A. Symmetric perturbations 2 5
~n w — Y HP ey i~
We start with the investigation of stability of the rectan- X'+ X = n1 +2Nm(— iwy = ux’)
gular JVL with respect to symmetric perturbatiopswhich V1 V1
are described by Eq23a. To solve Eq.(239 we use the 4 1 1 1 1.
Lorentz transform with the velocity not exceedingsince it 21 Wlo? 1 +aN cos Z - EReZ X

does not change the wave operat%—&tz. Depending upon
the relation betweerv; and the solution velocityu we (28
change to the reference frame where the parameter in EQuhere g(w, &)=/, yi(r, Hexplior)dr. Let us write down
(239 depends either on the coordindtd u<<v,) or on the i equation in new variables:
time (atu>uv,).

'+ 256" — ju cos(28€) 6= 0?6, (29

where u=4h"2(1-u?/v3) Y 1+aN)™, 5=h1y,(1
First, we consider the case<u<uv;. We perform Lor- +aN)u(1-u?/v3)™, O?=w?®+2iwdu ™+ (u/2)ReL™

entz transformation ii23g with simultaneous rescaling of According to the Bloch theorem, the solution of this equation

the coordinate and time, has the forma(§)=U(§expigé, whereUy(§) is a function

1. “Subluminal” case
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1.2 Re 4 0.02 hu X
I |m$ T= ?(t—a) (35b)
1.0 \
0.00 The equation takes the following form in the new variables:
0.8 e ___
--------------- \ s = et (-t
2 06 \ -o.oz_é VR AT h L s aN Wl -1\ u
/ + 4 1 1 (cos 2r— 1Rel)
Rl h2Wfu2 - 11 +aN 2 )X
/ -4 -0.04
0.2 (36)
The coefficient in this equation depends only on the new
005 0% o v s 1% time 7. We expand the perturbatiop into a Fourier integral
q over £ and obtain
FIG. 4. The eigenfrequency spectruniq) in the “subluminal” 2 u 2
case. —kzvﬁ—Y:— Ve 2—2<}’—ﬁik})
hl+aNu/vi-1 u
with a period7 and q is a quasimomentum. Assuming the . 4 1 1 - ER 1\,
parameten to be a small perturbation in this equation, we h? u2/v?-11+aN cos 2 eZ Xo
notice that the solution far from the Bragg resonances re-
mains unperturbed and has the form of a harmonic function. (37)
Thus, the eigenfrequency spectrum is whereb(k, )=/, x1(&, Dexp(-ik&)dé. In new variables the
QZ(q) - q2 - 2i 5q (30) equa“on IS
In the vicinity of the middle part of the first Brilloin zone the 6" +256' + pcos(27)6=-Q%, (39
solution has the form where =432 /v2 - 1) (1 +aN) ™, s=hlyy(1

31 reNuW/ui-1)T QP=Kui-2iksviut - (n/2)Re L7
_ The solution of this equation has the form(7)
where 6, ., are constants. The eigenfrequency spectrum ap=y _(rexpier, whereU,(7) is a function with a periodr

proximately equals ande is a quasienergy. Applying the same method as in the

0(8) = €9(6 + 6,67 + 6_,77%),

2 1 “subluminal” case, we obtain the eigenfrequency spectrum
Q2=?-280- 7. 32)  far from the Bragg resonances:
q q 8 1-(q-107 (32) 99
2_ 24 o
In the vicinity of the first Brilloin zone edge we search for a Q=&+ 20, (39)
solution in the form near the middle of the first Brilloin zone:
0(&) = €90, + 0_,e7%), 33 2 1
(5) ( 1 1 ) ( ) Q2:82+ 2i58_M_—.21 (40)
where ,, are constants. The eigenfrequency spectrum is 81-(e+id
2 and near the edge of the first Brilloin zone:
Q% ,=1+0¢?-2i5q+2 (q—i5)2+1—6. (34) 5
s%,2+2i58:1+Q212\/Q2+T—6. (41)

The dependence of eigenvalue®n quasimomenturg is
shown in Fig. 4. As seen in this figure, the imaginary part of

 does not take positive values at agyThus, there is N0 qyasienergy spectrum(k) looks as in Fig. 5. It is seen that
solution exponentually growing in time. Consequently, theyhare is a region ok which corresponds to the positive

rectangular JVL is stable with respect to symmetric pertur‘lmaginary part of the quasienergy. It means that there are

bations in the “subluminal” case. perturbations exponentually growing in time, thus the in-
phase regime is unstablewat-v,. As the periodic coefficient
in Eq. (37) depends only on time, this instability may be
referred to as the parametric instability, by analogy with the
phenomenon of parametric resonance.

As follows from formula(41), the spectrunz(k) changes

If the solution velocityu is slightly greater thaw,, the

2. Superluminal case

Let us consider now the case>v,. As in the previous
situation, we perform Lorentz transformation in @33
but now with a velocityuflu (which is obviously less than

v1): qualitalively with an increase in the solution velocity The
2 part of the spectrum corresponding to the vicinity of the first

&= h_u(x_ lﬂt), (359 Brilloin zone edge is shown in Fig. 6. The region lotor-
2 responding to Inz >0 disappears, which indicates suppres-
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FIG. 5. The quasienergy spectrugk) in the “superluminal” . .
case av,;<u<uv'. FIG. 7. The eigenfrequency spectruniq) of asymmetric per-

turbations in the subluminal casewstv’.

sion of the parametric instability. It was shown in Ref. 10

that this suppression takes place provideay=1. This :} w
gives the estimate of the solution velocity above which the hv|2— u?’
parametric instability is suppressed:

(45)
In the superluminal cas@u>v)) it is reduced to Eq(38)
v =(hy™ (42)  with the parameters

Hence, atv,<u<uv" the solution describing the in-phase w=4h"2(u? - v|2)"1, (46)
regime is parametrically unstable with respect to symmetric

perturbations, while at>uv" the rectangular lattice becomes , 28 w1
stable owing to the suppression of parametric instability. Q*=K%f + IkT + EReZ (47)
B. Asymmetric perturbations
The remainingN—-1 Eqgs.(23b) for asymmetric perturba- S 1w ) (48)

tions y;,1=2, ... N have a stricture similar to E¢23a), so, hu? - v?
they can be analyzed in the same way as(E8a for sym-
metric perturbations. The characteristic velocities of EqQs
(23b) arev,,1=2,... N. In the subluminal casau<v,) Eq.
(23b) is reduced to Eq(29) with the parameters

The solution of Eqs(29) and (38) and perturbation spectra

are described by formulg80)—(34) and(39—41) (with the

account of new expressions for the parameters
Analyzing the eigenfrequency spectruntq) in the sub-

W= 4h'2(v,2 -u)t, (43) luminal case we arrive at the following conclusion. Provided
the symmetric perturbations are slowesb,;<v,, |
> 26 1 =2,... N), the spectrumw(q) qualitatively depends on the

(44 relation between the JVL velocity and a certain threshold
valuev’. If u<wv’, the spectrum looks like in Fig. 7. There is

a region of positive Imw at smallg, which is the evidence of
long-wave-length instabilities in the system. Thus, the rect-
angular JVL is unstable at<v’—the vortex chains in the
neighboring layers tend to shift forming a nonrectangular
lattice. In the opposite cas@u>v’) the spectrumw(q)
changes its forngFig. 8). In this case, all asymmetric pertur-
-0.004 bations in the system are decaying, thus the rectangular JVL

0.06 —Ree

0.000

0.03

& 0.001 £ is stable with respect to asymmetric perturbations. The
threshold value of JVL velocity’ at which the sign of Inw
0,008 changes can be found analytically in the limit of low dissi-
0037 pation
2 22 _ 2
-0.06 T T T T T T -0.012 v ’2 = Ui - (vmm 1vi)(l;1 Ce) ' (49)
1.14 1.16 118 1.20 1.22 1.24 U1

wherev i, is the smallest characteristic velocity of asymmet-
FIG. 6. A part of the quasienergy spectraik) near the Brilloin ~ ric modeswv,, 1=2,... N. As seen from this formula, the
zone edge in the “superluminal” casewat v”. valuev' belongs to the region of the in-phase regime stabil-
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v UV,
1.2+ Re o - 0.02 12> VUnin a o d
———Ima
_ [ . N Y
0 C, Vpin U1 VU v* U

FIG. 10. The in-phase regime stability diagramv gt v,in. The
regions corresponding to different stability regimes are denoted as
in Fig. 9.

Re o

IV. NUMERICAL EXPERIMENT

In the preceding section we have shown analytically that
the rectangular JVL may be stable under certain conditions.
In terms of applications it would be interesting to know
whether this regime is established spontaneously when the
system parameters are changed. The linear perturbation
method is insufficient to check it, which calls for consider-
ation of the nonlinear problem. To this end, we perform a
numerical experiment which is described in the present sec-
ity with respect to symmetric perturbations<Q<v;, pro-  tion. Besides, the changes in the observed field distribution
videdv; <v;,1=2,... N. It means that only under this con- due to the instabilities in the system can be found by numeri-
dition there is a region’ <u<wv; where the rectangular JVL c¢al simulation.
is stable with respect to all perturbations in the system.

In the superluminal case the quasienergy spectrum of
asymmetric perturbations qualitatively depends on the solu- A. Method

tion velocity as in the case of symmetric perturbations. At i i , .
v<u<v", 1=2,...N the spectrum is similar to the one L€t US briefly describe the method of numerical experi-

shown in Fig. 5, i.e., the parametric instability of the solutionMent. For the sake of simplicity we assume the annular ge-

takes place. Au>v" the part of the spectrum near the first ©Metry of the system with a length It means that the phase
Brilloin zone edge looks like in Fig. 6, i.e., the parametrici” each layer of the stack satisfies the boundary condition

instability with respect to asymmetric perturbations appears
to be suppressed. on(L) = ¢n(0) + 27R,, (50)

FIG. 8. The eigenfrequency spectruniq) of asymmetric per-
turbations in the subluminal casewat-v’'.

C. Conclusion whereR, is the number of vortices trapped in théh junc-

Summing up the analytical results obtained above wdion. Introducing new variablegn(x) = ¢n(x) - 27Rx/L sat-
come to the following conclusion. Provided the symmetricisfying the boundary conditiong,(L)=¢,(0), we come to a
mode of perturbations is the slowest one in the system, thget of equations fot,
stability diagram looks like in Fig. 9. At JVL velocity O
<u<uv' the in-phase regime is unstable with respect to long- N
wave-length perturbations and this instability causes forma-E K. P+ yighe + SiN <¢ N 27TRmX> . +éE é
tion of a triangular lattice. Ab’ <u<uv, the in-phase regime mn) & Pm T YorPm moL : i
is stable. Atu> v, the short-wave-length parametric instabil- 5
ity is developed but further increase of the JVL velocity —=dénn=1,... N. (51)
leads to suppression of this instability. If the symmetric mode
is not the slowest one, then, as shown in Fig. 10, the regio
of the in-phase regime stability disappears and the regions o)
long-wave-length and short-wave-length instabilities over-
lap. Thus, the in-phase regime is unstable as long as the JVL

m=1

pplying the cos transforni22g and (22b) to this set of
quations, we get

velocity is high enough to suppress the parametric instability. 5 aN _
(1+aNIZyn =1+ 5 |fun+ yedyn + 1 =Nj, (523
V<Y, e
min a b ¢ d
0 e v v v o v VRGP ya+f, 122, N, (52b)

FIG. 9. The in-phase regime stability diagranvat vy, Let- )
ters denote: a, region of long-wave-length instability; b, region ofwhere f; are the cos transform images of @i,
absolute stability; ¢, region of parametric instability; d, region with + 27Rx/L). Applying then the Fourier transform over coor-
suppressed parametric instability. dinatex, we obtain a set of ordinary differential equations
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45 (2
4.0
4
3.5
3.0
) & 25
2.0
24
1.5
1.0 T T T T T T 1
0 50 100 150 200 250 300
1 X
0 FIG. 13. The coordinate distribution af,,, n=1,...,4 atj
0.0 12 =0.22. In-phase regime with a large amplitude of the alternate field
| component.
FIG. 11. CV curve of the four-layer system. See text for the B. Results

parameters. Digits denote the CV regions corresponding to different _. . .
vortex flow regimessee Figs. 12-17 Dashed line shows the de- Figure 11 shows the CV curve calculated in the numerical

pendence of the first harmonic of the field amplitude on externafXPeriment. We measure the JVL velocity at a given external
current. current j, which is varied from 0 to 1.1 with a step 0.02
forward and back. We use the following parameters: number
of layersN=4, number of flux quanta in each layR~10,
_ N\ = o length of the systenh =24, «=0.1, y=0.1,I'=0, s=-0.07,
K21 +aN) g, = (1 + _2>¢1,k+ Yetbx+ T1x— NLjo(K), c.=0.6. The parameters are chosen so that the characteristic
Ce velocity of the symmetric perturbatiom, is the smallest of
(53a  the characteristic velocities of all other perturbation modes
Ul, |:2,...,N.
We now consider the CV characteristic of the system con-
sisting of four layerqgFig. 11). At j=0 (starting point of the
e ~ _ measurementa static triangular JVL is formedFig. 12).
Kolvne= kvt fuc - 12, N B30\ e current s increased, the lattice starts moving,
keeping the triangular arrangement of vortices. At the point

. L . j=0.22 the transition to the in-phase regime takes pl&i
where the point denotes the derivative over time. In order t(i3 b g plBa:

calculate the Fourier transform, we use the standard fast FOLé—q)lj;P tgb‘i g (;IQ; Ojvﬁght?s i|:]1va|1_ Q;/ s&%cgérlzeﬁ)g?w?ﬁ tggla_
rier transform(FFT) algorithm. We reduce this system to the | 0 ; ;
set of first order differential equations and solve the latter b vtical formula (49). As seen from Fig. 11, the amplitude of

. ’the first harmonic of the field in the in-phase regime is
the fourth-order Runge-Kutta method. As a result, we build - : ;
current-voltaggCV) characteristi¢Fig. 11) and field distri- asharply increased to about half of the mean field vaig.

buti functi f dinate and | ind 13). It indicates high efficiency of the ac/dc conversion rate
ulionS ¢nx &S Tunctions of coordinate and layer index. in this regime. With a further increase of current the in-phase

regime persists but vortices experience Lorentz contraction
(Fig. 14. The ac/dc conversion rate remains high up to the

321 @ —tggg:; pointj=1. At j=1 the system changes the vortex flow regime
50 ;E‘ ,i‘ AERAS ,x( j,ﬁ ’,% AARR 2 R | —— Layer3 to the one with a fast phase growth rate. The field distribu-
I L AR tever tion is not qualitatively changed in this point but the first
2o CW WYYV harmonic amplitude sharply decreas@dgs. 11 and 1B
< ] AR AR R R RRERE When we decrease the current frgm1.1 the field oscilla--
' EURRREE 11 tion _amplltude g_radually increases, _and the in-phase regime
24 ! i | i | ] i | persists. In the interval from=0.6 t0j=0.32 the CV curve
VY VA exhibits a series of bends. Apparently, they are associated
22 AR AR vy with the successive changes of stability conditions of asym-
20 . . i . i i . metric modes. As the JVL velocity is decreased, the asym-
0 50 100 150 200 250 300

metric modes become unstable one by one due to the para-
metric instability. The typical distribution ofp,, in this

FIG. 12. The coordinate distribution ef,,, n=1,...,4 atj current interval is shown in Fig. 16. A&0.36 the field dis-
=0. Vortices form a triangular lattice. Here and in the following tribution shows 12 maximum@ig. 17 while we know that
figures the digit above plot denotes the region of CV curve whereonly 10 flux quanta are trapped into each junction. It means
this distribution is establishe@ee Fig. 11 that the short-wave-length instabilities lead to a vortex-
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— Layer 1
1] @ Layers 1-4] Layer 2
Layer 3
10 268 4 Layer 4
8 2.66
& 64 2.64 4
2624
4 x
S 2604
2 2.58
04 2.56
(I) 5IO 12]0 1I50 22]0 2:’70 360 2.54 4
X (I) 5I0 1 (I)O 1 50 260 250 3(I)0
FIG. 14. The coordinate distribution a@f,,, n=1,...,4 atj x
=0.6. Lorentz contraction of the vortices. FIG. 16. The coordinate distribution af,,, n=1,...,4 atj
. . L =0.6 (reverse branch The development of short-wave-length
antivortex pair nucleation in the system. By further decreas stabilities

of j the pair is annihilated, the rectangular JVL is restore
and, after the pointi=v’, the in-phase regime turns into a
triangular lattice.

The case when the characteristic velocity of symmetric In order to achieve stability of the in-phase regime of
perturbations is greater than the characteristic velocities ofortex flow in a multilayer Josephson structure, it is neces-
other modes is equivalent to the case of a multilayer systersary to slow down the symmetric mode of perturbations in
without any electromagnetic environment. The particulathe system. This deceleration must make the symmetric
situation of two-layer system without electromagnetic envi-mode slowest compared to all other perturbation modes.
ronment was analyzed in Ref. 10. It was shown that thelhen the in-phase regime becomes absolutely stable in the
in-phase regime is stable only when the JVL velocity ex-interval of velocities fromv’ to v;.
ceeds some critical value when the parametric instability be- Let us estimate the deceleration which is necessary to
comes suppressed. Therefore, we do not expect any spongehieve stability of the in-phase regime. For typical param-
neous establishing of the in-phase regime as we haveter values of BSCCQI'=12 A, t=3 A’Y” we haveuv,,
observed above and do not perform a numerical experimerit 10-%c. As follows from the expression far, (see Sec. Ilj,
for that case. in order to fulfill the conditionv;<vp,, we must at least

One may come to several conclusions from the numericaprovide ce<v;,. In order to reach such a slowing in a strip-
experiment. First, the in-phase regime of the vortex flow igline, one should fill it with a dielectric with large. Dielec-
formed provided the symmetric mode of perturbations in theric function e exhibits sharp peaks at frequencies close to
system is the slowest one, and this formation takes place &sonances on intrinsic degrees of freedom such as optical
the JVL velocity calculated by formuléd9). Second, at a phonons. It is also possible to use more complicated slow-
relatively high JVL velocity the short-wave-length instability wave system, for example, a periodic structure similar to that
appears, leading to nucleation of vortex-antivortex pairs irused in a traveling wave tube or in a backward wave tube.
the system. Finally, at high velocity the rectangular JVL isDue to the periodicity, the wave spectrum in this system has
stable due to the parametric instability suppression. Howzone structure, and is characterized by presence of sup-
ever, this regime of vortex flow is not promising for applica- pressed bands. The cutoff frequencies are determined by
tions because the alternating component of the field is veryesonant frequencies of the slow-wave system elements. By

V. DISCUSSION AND SUMMARY

low. decrease of the resonant frequency one may significantly re-
@ ”
T —— Layer 1
2.635 719 @ s LAY ET 2
2.630 2 P Layer 3
i ----Layer4
2.625 51
2,620 47
& 2615 & 3]
2 .
2610
1 4
2.605 -
04
2.600 )
0 50 100 150 200 250 300 2
X 0 50 100 150 200 250 300

X

FIG. 15. The coordinate distribution a@f,,, n=1,...,4 atj
=0.96(reverse branch In-phase regime with a small amplitude of FIG. 17. The coordinate distribution @f,,,, n=1,...,4 atj
the alternate field component. =0.36 (reverse branch Vortex-antivortex pair nucleation.
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duce the phase velocity in the system. Another way to obtain ACKNOWLEDGMENTS

the required deceleration is to engage intrinsic resonances in
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ficient to provide the necessary deceleration of the

symmetric perturbation mode.
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