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We study the dynamics of a Josephson vortex lattice in a stack of long Josephson junctions electromagneti-
cally connected with a waveguide in the form of a stripline. The stability of the dense rectangular vortex lattice
is investigated analytically. We show that this regime appears to be stable provided the characteristic velocity
of the symmetric perturbation mode in the system is lowest compared with other modes. We find a range of
velocities at which the rectangular Josephson vortex lattice is stable. We perform a numerical experiment
which shows a spontaneous establishing of the rectangular Josephson vortex lattice as the system parameters
are changed.
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I. INTRODUCTION

The idea of using the Josephson effect for generation of
high-frequency electromagnetic oscillations has attracted the
attention of many researchers since its discovery in 1962.
The main advantages of Josephson junctions(JJ’s) as oscil-
lators are their small dimensions, good tunability, and possi-
bility of working with frequencies up to several hundred
GHz.1 However, the radiation power of a single JJ is very
small and insufficient for most applications. Combining JJ’s
into arrays could significantly increase the radiation power
and reduce the linewidth of such devices. Multilayer Joseph-
son structures provide good example of JJ arrays. At present,
the existing technology allows growing high-quality mutli-
layers such as Nb/Al-AlOx/Nb stacks.2 The interest to
multilayer structures has become even greater after the dis-
covery of intrinsic Josephson effect in highly anisotropic
high-temperature superconductors.3 This discovery showed
that some high-temperature superconductors(HTSC’s), for
example, Bi2Sr2CaCu2O8+x, may be treated as JJ stacks
formed on atomic scales. Recent experiments showed the
possibility of using Bi2Sr2CaCu2O8+x crystals as bases for
high-frequency electronic devices.4

Electromagnetic radiation in multilayer structures can be
produced by moving Josephson vortex lattice(JVL). The ra-
diation is generated when a vortex collides with the edge of
the stack. This principle is similar to the one used in the
Josephson flux-flow oscillator5 (FFO) and, in this sense, a
multilayer structure is essentially an arrangement of several
Josephson FFO’s, joined together in a stack. The maximal
radiation power from such a structure is achieved when the
vortices form a rectangular JVL, which is also referred to as
the in-phase regime of vortex flow. In this case, the radiation
power at the main harmonic is proportional toN2, whereN is
the number of layers in the stack. There are many publica-
tions devoted to investigations of stability of regular Joseph-
son vortex structures in layered systems. It was shown in
some papers that either the in-phase regime6 or the regime
close to the in phase7 is reachable in Josephson stacks. How-
ever, these regimes have not been observed in experiments.
Apparently, the rectangular JVL is unstable due to mecha-
nisms which have not been taken into account so far in these

models, and the existence of instabilities is the intrinsic prop-
erty of isolated Josephson staćks. However, one may expect
that by changing the parameters of an external electromag-
netic environment, for example, a waveguide or a cavity, it is
possible to control the stability properties of the in-phase
regime and reach stability of the rectangular JVL. It is well
known that the connection of an external passive load to a
Josephson junction chain essentially influences the condition
of synchronization between these junctions(see Ref. 8 and
later works9).

In the present paper we investigate the dynamics of Jo-
sephson vortices in a stack of long JJ electromagnetically
coupled with a stripline, which is one of the simplest ex-
amples of electromagnetic environment. Such a system has
several attractive features. First, it can be easily fabricated
and used in an experiment. Second, as we show below, this
system can be described in the framework of a simple
model—a set of equations of the sine-Gordon type supple-
mented with terms responsible for the additional “global”
coupling via the stripline. We analyze the stability of a rect-
angular JVL by the method used in our previous article.10

Using this approach, we show that the important factor
which affects the stability of a JVL is the relation between
the characteristic velocities of perturbation modes in the sys-
tem. In particular, to ensure stability of a rectangular JVL,
the symmetric perturbation mode must be the slowest one in
the system. We show that under this condition the in-phase
regime is stable in a certain range of the external current and,
moreover, the in-phase regime is established spontaneously
at these currents.

The article is organized as follows. In Sec. II we derive a
set of equations describing a JJ stack connected with a strip-
line. Section III is devoted to analytical investigation of sta-
bility of the in-phase regime of vortex motion in the system
under consideration. The method and results of the numerical
experiment are described in Sec. IV. Finally, the main results
of the work are formulated in the summary.

II. BASIC EQUATIONS: INFLUENCE OF EXTERNAL
WAVEGUIDE SYSTEM

Let us consider a stacked configuration of JJ’s built in an
external waveguide system. For simplicity, we choose a
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simple stripline as the waveguide. The configuration of junc-
tions and external stripline is shown in Fig. 1.

The multilayer Josephson structure is usually described
by a set of sine-Gordon-type equations supplemented with
terms responsible for the interlayer coupling. This coupling
is provided by various mechanisms such as magnetic
coupling,11,12 charge coupling,13 quasiparticle imbalance,14

etc. To demonstrate our approach, we consider a simple
model with magnetic coupling. For the sake of simplicity we
neglect the in-plane dissipation.7

Assuming that superconductor superlattice is homoge-
neous and, hence, its parameters do not depend on the layer
index, we write down a set of equations describing a JJ stack
as

o
m=1

N

Kmnh]t
2wm + g]twm + sinwm − jj = ]x

2wn, n = 1, . . . ,N,

s1d

wherewn is the Josephson phase difference in thenth JJ,]t,x
are the differentiating operators with respect to time and co-
ordinate, respectively,g is the damping coefficient,j is the
density of a current flowing from the external waveguide, the
dimensionless timet and coordinatex are normalized to the
Josephson plasma frequencyvJ, and the Josephson charac-
teristic lengthlJ is defined as

vJ
2 =

8ped8 jc
"e

and lJ = Vs/vJ,

where

Vs =
c
Îe
F d8 sinhst/ld

d8 sinhst/ld + 2lscoshst/ld − 1dG1/2

is the Swihart velocity,c is the light speed,d8 and t are
thicknesses of the insulator and inner superconductor layers,
respectively,l is the London penetration depth, ande is the
dielectric constant.

The matrix Kmn with dimensionsN3N describes cou-
pling between the neighboring junctions via magnetic field
penetration through the superconducting layer. The matrix
elementsKmn are determined by layers thicknessess and
magnetic field penetration depth11

Kii = 1 – 2s, i = 2, ..N − 1,

K11 = KNN =
d8 + l cothst/ld + l cothstext/ld
d8 sinhst/ld + 2lfcoshst/ld − 1g

,

Ki,i±1 = s, s2d

where

s= −
l

d8 sinhst/ld + 2lfcoshst/ld − 1g
s3d

characterizes inductive coupling between the layers in the
superlattice, andtext is the thickness of the outer supercon-
ducting layer. In the present paper we assume the parameters
of the inner layers to be the same, and the thicknesses of the
outer layerstext to be chosen so that the elementsK11, KNN
are equal to

K11 = KNN = 1 −s. s4d

There are two reasons for the choice of matrixKmn in the
form (4). First, the solution which describes the in-phase
regime and has the same form in all junctions[see Eq.(17)
later] exists only provided the condition(4) is fulfilled. Sec-
ond, as shown below, it allows one to easily find the eigen-
values and eigenvectors of matrix(4) and, consequently, di-
agonalize it.

Currentj from the stripline is defined by a total voltage on

the Josephson stackU=]ton wn by the relationj =ŶU, where

Ŷ is admittance of the external electrodynamical system, and
by external biasing currentjext, which we assume to be in-
jected into the edge of the stripline. It is convenient to write
both contributions as

j = Ĥjext− Ĝo
n=1

N

wn, s5d

where Ĝ is the operator expressing current via total phase

difference, which is proportional to the admittanceŶ=]tĜ,

operatorĤ stands for diffluency of injected current within
the stripline.

Now we briefly describe the derivation of the expression

for the operatorsĜ and Ĥ for a simple stripline, following
the procedure described in Ref. 15. We introduce the Carte-
sian coordinates as shown in Fig. 2. The distribution of cur-

rent IWsx,y,td and voltageUsx,y,td within a passive stripline
is described by ordinary telegraph equations:

FIG. 1. View of a Josephson superlattice globally coupled via
external stripline.

FIG. 2. To the derivation of the set of Eqs.(16). Top view of the
multilayer structure connected with a stripline. The coordinate sys-
tem is shown.
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L ]tIW + ¹W U = 0W , s6d

C ]tU + div IW = 0; s7d

hereL ,C are dimensionless inductance and capacity of the
stripline, related to unit square and normalized to the respec-
tive values of Josephson junctions. Introducing a new scalar

variable c by relation U=]tc, we come to relationIW

=L−1¹W c and a two-dimensional wave equation forc:

ce
−2s]t

2 + G]tdc − ]x
2c − ]y

2c = 0, s8d

wherece andG are, respectively, the dimensionless velocity
and the damping rate of electromagnetic waves in the strip-
line. On the boundaries with free spacey=−w and with a
stack of JJ’sy=0 the conditions of current and voltage con-
tinuity

uL−1]ycuy=−w = jewj, uL−1]ycuy=0 = jwj,

ucuy=0 = o
n=1

N

wn s9d

should be satisfied. Here we assume that bias current is in-
jected in the edgey=−w of a stripline. By solving the linear
equation(8) with boundary conditions(9) we will find a
formula expressing dependency of currentj flowing into the
Josephson stack, on Josephson phaseswn. To this effect, we
represent functionsc ,wn, j , je as Fourier integrals

csx,y,td =E e−ivt+ikxcv,ksyd
dv

2p

dk

2p
, s10d

which lead us to one-dimensional differential equation for
cv,ksyd

]y
2c − û2c = 0, s11d

where we introduceûsv ,kd=Îk2−vsv+ iGd /ce
2 and omit, for

brevity, the subscribev, k. A general solution of Eq.(11) is

c = A coshûsy + wd + B sinh ûsy + wd, s12d

whence, satisfying the boundary conditions((9)) and finding
A, B we come to the relations

jsv,kd = Hsv,kd jesv,kd − Gsv,kdo
n=1

N

wnsv,kd, s13d

expressing dependency of currentj flowing into the Joseph-
son superlattice, on phase distributionon wn and injected
current je in the Fourier representation. Functions
Gsv ,kd ,Hsv ,kd are defined as

Hsv,kd =
1

coshûw
, Gsv,kd =

w

wjL

û

w
tanhûw. s14d

Returning in Eq.(14) to the sx,td representation, we find
relations expressingjsx,td via jesx,td and on wnsx,td. Note
that for a narrow stripline, when the conditionûw!1 is

fulfilled, operatorĤ turns to 1 andĜ turns to the wave op-
erator

Ĝ = asce
−2]t

2 + ce
−2G]t − ]x

2d, s15d

where we introduce the value

a =
w

wjL

defining the strength of coupling between the Josephson su-
perlattice and the external stripline. Further we use expres-

sion (15) for operatorĜ.
Thus, finally, we may conclude that the Josephson super-

lattice with intrinsic coupling globally coupled via a narrow
external strip line is described by the following set of equa-
tions:

o
m=1

N

KmnH]t
2wm + g]twm + sin wm − je + Ĝo

l

N

wlJ = ]x
2wn,

n = 1, . . . ,N, s16d

where operatorĜ is defined by relation(15). Equations de-
scribing intrinsic coupling of different nature, say, charge
and quasiparticle coupling, and taking into account the in-
plane dissipation, may be derived in a similar way.

III. ANALYSIS OF THE RECTANGULAR JVL STABILITY

In this section we perform an analytical investigation of
stability of the solution to set(16) which describes the in-
phase regime of vortex flow in the system. The set of equa-
tions (16) has a solution describing the rectangular JVL. In
the limit of a high external magnetic field it can be written as

wn
0 ; w0 = hsx − utd + Im

eihsx−utd

L , s17d

whereh is the dimensionless external magnetic field and

L = − h2fs1 − u2d + aNs1 − u2/ce
2dg + ihuge. s18d

The JVL velocityu depends on the external current via the
energy balance condition16

je + huge =
1

2
Im

1

L . s19d

Note again that the solution in the form(17) exists only

provided the matrixK̂ satisfies the condition(4).
In order to investigate the stability of the JVLw0, we

search the solution of Eq.(16) in the form

wnsx,td = w0 + cnsx,td, s20d

where ucnu !1. The set of equations for perturbationscn is
written as follows:

]x
2cn = o

m=1

N

KmnS]t
2cn + g]tcn + cosw0cn + Ĝo

l=1

N

clD ,

s21d

where cosw0<coshsx−utd−Re f1−exp 2ihsx−utdg /2L.
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The specific choice of matrixK̂ elements in the form(4)
allows us to use a cosine Fourier transform to diagonalize the
matrix. After applying the cos-transform

cn = N−1Sx1 + 2o
l=2

N

xl cossn − 1
2dsl − 1d

p

N
D , s22ad

xl = o
n=1

N

cn cossn − 1
2dsl − 1d

p

N
s22bd

to the set of Eqs.(21) we obtainN-independent equations for
xl:

s1 + aNd]x
2x1 = S1 +

aN

ce
2 D]t

2x1 + ge]tx1 + cosw0x1, s23ad

vl
2]x

2xl = ]t
2xl + g]txl + cosw0xl, l = 2, . . . ,N. s23bd

Equations(23a) and (23b) are of the hyperbolic type.
Equation (23a) describes the evolution of perturbations
which are same in all layers(symmetric perturbations). The
characteristic velocity in Eq.(23a)

v1
2 =

1 + aN

1 + aN/ce
2 s24d

depends on the external stripline parameters. ForN−1 Eqs.
(23b) describe the asymmetric perturbations. The character-
istic velocities in Eqs.(23b) are

vl
2 =

1

1 – 2sf1 − cossl − 1dp/Ng
, l = 2, . . . ,N. s25d

By changing the external stripline parameters, we can control
the value of the symmetric mode velocityv1, while the char-
acteristic velocities of other modes remain unchanged. The
spectrum of characteristic velocities of linear perturbation
modes is shown in Fig. 3. Due to the fact that the set of
equations for perturbations has been reduced toN separate
equations we may investigate the stability ofw0 with respect
to each perturbationxl individually. For the stability analysis
we use the method described in Ref. 10.

A. Symmetric perturbations

We start with the investigation of stability of the rectan-
gular JVL with respect to symmetric perturbationsx1 which
are described by Eq.(23a). To solve Eq.(23a) we use the
Lorentz transform with the velocity not exceedingv1 since it
does not change the wave operatorv1

2]x
2−]t

2. Depending upon
the relation betweenv1 and the solution velocityu we
change to the reference frame where the parameter in Eq.
(23a) depends either on the coordinate(at u,v1) or on the
time (at u.v1).

1. “Subluminal” case

First, we consider the case 0,u,v1. We perform Lor-
entz transformation in(23a) with simultaneous rescaling of
the coordinate and time,

j =
h

2
sx − utd, s26ad

t =
h

2
St −

u

v1
2xD . s26bd

The equation takes the following form in new variables:

x1jj − v1
−2x1tt =

2

h

ge

1 + aN

1

1 − u2/v1
2sx1t − ux1jd

+
4

h2

1

1 − u2/v1
2

1

1 + aN
Scos 2j −

1

2
Re

1

LDx1.

s27d

The coefficient atx1 in this equation depends only on the
new coordinatej. As the coefficients in Eq.(27) are inde-
pendent oft, we may apply the Fourier transform tox1
which yields

x̃9 +
v2

v1
2 x̃ =

2

h

ge

1 + aN

1

1 − u2/v1
2s− ivx̃ − ux̃8d

+
4

h2

1

1 − u2/v1
2

1

1 + aNFcos 2j −
1

2
Re

1

LGx̃,

s28d

where usv ,jd=e−`
` x1st ,jdexpsivtddt. Let us write down

this equation in new variables:

u9 + 2du8 − m coss2jdu = V2u, s29d

where m=4h−2s1−u2/v1
2d−1s1+aNd−1, d=h−1ges1

+aNd−1us1−u2/v1
2d−1, V2=v2v1

−2+2ivdu−1+sm /2dReL−1.
According to the Bloch theorem, the solution of this equation
has the formusjd=Uqsjdexp iqj, whereUqsjd is a function

FIG. 3. The spectrum of characteristic velocities of linear per-
turbation modes vs mode number for the caseN=10. By changing
the parameters of the external stripline, one controls the velocity of
symmetric perturbationv1 not touching the velocities of other
modes.
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with a periodp and q is a quasimomentum. Assuming the
parameterm to be a small perturbation in this equation, we
notice that the solution far from the Bragg resonances re-
mains unperturbed and has the form of a harmonic function.
Thus, the eigenfrequency spectrum is

V2sqd = q2 − 2idq. s30d

In the vicinity of the middle part of the first Brilloin zone the
solution has the form

usjd = eiqjsu0 + u2e
2ij + u−2e

−2ijd, s31d

whereu0,±2 are constants. The eigenfrequency spectrum ap-
proximately equals

V2 = q2 − 2idq −
m2

8

1

1 − sq − idd2 . s32d

In the vicinity of the first Brilloin zone edge we search for a
solution in the form

usjd = eiqjsu1e
ij + u−1e

−ijd, s33d

whereu±1 are constants. The eigenfrequency spectrum is

V1,2
2 = 1 +q2 − 2idq ± 2Îsq − idd2 +

m2

16
. s34d

The dependence of eigenvaluesv on quasimomentumq is
shown in Fig. 4. As seen in this figure, the imaginary part of
v does not take positive values at anyq. Thus, there is no
solution exponentually growing in time. Consequently, the
rectangular JVL is stable with respect to symmetric pertur-
bations in the “subluminal” case.

2. Superluminal case

Let us consider now the caseu.v1. As in the previous
situation, we perform Lorentz transformation in Eq.(23a)
but now with a velocityv1

2/u (which is obviously less than
v1):

j =
hu

2
Sx −

v1
2

u
tD , s35ad

t =
hu

2
St −

x

u
D . s35bd

The equation takes the following form in the new variables:

v1
2x1jj − x1tt =

2

h

ge

1 + aN

u

u2/v1
2 − 1

Sx1t −
v1

2

u
x1jD

+
4

h2

1

u2/v1
2 − 1

1

1 + aN
Scos 2t −

1

2
Re

1

LDx1.

s36d

The coefficient in this equation depends only on the new
time t. We expand the perturbationx1 into a Fourier integral
over j and obtain

− k2v1
2x̃ − x̃9 =

2

h

ge

1 + aN

u

u2/v1
2 − 1

Sx̃8 −
v1

2

u
ikx̃D

+
4

h2

1

u2/v1
2 − 1

1

1 + aN
Scos 2t −

1

2
Re

1

LDx̃,

s37d

whereusk,td=e−`
` x1sj ,tdexps−ikjddj. In new variables the

equation is

u9 + 2du8 + m coss2tdu = − Q2u, s38d

where m=4h−2su2/v1
2−1d−1s1+aNd−1, d=h−1ges1

+aNd−1usu2/v1
2−1d−1, Q2=k2v1

2−2ikdv1
2u−1−sm /2dReL−1.

The solution of this equation has the formustd
=U«stdexp i«t, whereU«std is a function with a periodp
and« is a quasienergy. Applying the same method as in the
“subluminal” case, we obtain the eigenfrequency spectrum
far from the Bragg resonances:

Q2 = «2 + 2id«, s39d

near the middle of the first Brilloin zone:

Q2 = «2 + 2id« −
m2

8

1

1 − s« + idd2 , s40d

and near the edge of the first Brilloin zone:

«1,2
2 + 2id« = 1 +Q2 ± 2ÎQ2 +

m2

16
. s41d

If the solution velocityu is slightly greater thanv1, the
quasienergy spectrum«skd looks as in Fig. 5. It is seen that
there is a region ofk which corresponds to the positive
imaginary part of the quasienergy. It means that there are
perturbations exponentually growing in time, thus the in-
phase regime is unstable atu.v1. As the periodic coefficient
in Eq. (37) depends only on time, this instability may be
referred to as the parametric instability, by analogy with the
phenomenon of parametric resonance.

As follows from formula(41), the spectrum«skd changes
qualitalively with an increase in the solution velocityu. The
part of the spectrum corresponding to the vicinity of the first
Brilloin zone edge is shown in Fig. 6. The region ofk cor-
responding to Im«.0 disappears, which indicates suppres-

FIG. 4. The eigenfrequency spectrumvsqd in the “subluminal”
case.
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sion of the parametric instability. It was shown in Ref. 10
that this suppression takes place providedhug*1. This
gives the estimate of the solution velocity above which the
parametric instability is suppressed:

v* . shgd−1. s42d

Hence, atv1,u,v* the solution describing the in-phase
regime is parametrically unstable with respect to symmetric
perturbations, while atu.v* the rectangular lattice becomes
stable owing to the suppression of parametric instability.

B. Asymmetric perturbations

The remainingN−1 Eqs.(23b) for asymmetric perturba-
tions xl , l =2, . . . ,N have a stricture similar to Eq.(23a), so,
they can be analyzed in the same way as Eq.(23a) for sym-
metric perturbations. The characteristic velocities of Eqs.
(23b) arevl , l =2, . . . ,N. In the subluminal casesu,vld Eq.
(23b) is reduced to Eq.(29) with the parameters

m = 4h−2svl
2 − u2d−1, s43d

V2 =
v2

vl
2 + iv

2d

u
+

m

2
Re

1

L , s44d

d =
1

h

gu

vl
2 − u2 . s45d

In the superluminal casesu.vld it is reduced to Eq.(38)
with the parameters

m = 4h−2su2 − vl
2d−1, s46d

Q2 = k2vl
2 + ik

2dvl
2

u
+

m

2
Re

1

L , s47d

d =
1

h

gu

u2 − vl
2 . s48d

The solution of Eqs.(29) and (38) and perturbation spectra
are described by formulas(30)–(34) and(39)–(41) (with the
account of new expressions for the parameters).

Analyzing the eigenfrequency spectrumvsqd in the sub-
luminal case we arrive at the following conclusion. Provided
the symmetric perturbations are slowestsv1,vl , l
=2, . . . ,Nd, the spectrumvsqd qualitatively depends on the
relation between the JVL velocityu and a certain threshold
valuev8. If u,v8, the spectrum looks like in Fig. 7. There is
a region of positive Imv at smallq, which is the evidence of
long-wave-length instabilities in the system. Thus, the rect-
angular JVL is unstable atu,v8—the vortex chains in the
neighboring layers tend to shift forming a nonrectangular
lattice. In the opposite casesu.v8d the spectrumvsqd
changes its form(Fig. 8). In this case, all asymmetric pertur-
bations in the system are decaying, thus the rectangular JVL
is stable with respect to asymmetric perturbations. The
threshold value of JVL velocityv8 at which the sign of Imv
changes can be found analytically in the limit of low dissi-
pation

v82 = v1
2 −

svmin
2 − v1

2dsv1
2 − ce

2d
1 − v1

2 , s49d

wherevmin is the smallest characteristic velocity of asymmet-
ric modesvl, l =2, . . . ,N. As seen from this formula, the
valuev8 belongs to the region of the in-phase regime stabil-

FIG. 5. The quasienergy spectrum«skd in the “superluminal”
case atv1,u,v* .

FIG. 6. A part of the quasienergy spectrum«skd near the Brilloin
zone edge in the “superluminal” case atu.v* .

FIG. 7. The eigenfrequency spectrumvsqd of asymmetric per-
turbations in the subluminal case atu,v8.
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ity with respect to symmetric perturbations 0,u,v1, pro-
vided v1,vl , l =2, . . . ,N. It means that only under this con-
dition there is a regionv8,u,v1 where the rectangular JVL
is stable with respect to all perturbations in the system.

In the superluminal case the quasienergy spectrum of
asymmetric perturbations qualitatively depends on the solu-
tion velocity as in the case of symmetric perturbations. At
vl ,u,v* , l =2, . . . ,N the spectrum is similar to the one
shown in Fig. 5, i.e., the parametric instability of the solution
takes place. Atu.v* the part of the spectrum near the first
Brilloin zone edge looks like in Fig. 6, i.e., the parametric
instability with respect to asymmetric perturbations appears
to be suppressed.

C. Conclusion

Summing up the analytical results obtained above we
come to the following conclusion. Provided the symmetric
mode of perturbations is the slowest one in the system, the
stability diagram looks like in Fig. 9. At JVL velocity 0
,u,v8 the in-phase regime is unstable with respect to long-
wave-length perturbations and this instability causes forma-
tion of a triangular lattice. Atv8,u,v1 the in-phase regime
is stable. Atu.v1 the short-wave-length parametric instabil-
ity is developed but further increase of the JVL velocity
leads to suppression of this instability. If the symmetric mode
is not the slowest one, then, as shown in Fig. 10, the region
of the in-phase regime stability disappears and the regions of
long-wave-length and short-wave-length instabilities over-
lap. Thus, the in-phase regime is unstable as long as the JVL
velocity is high enough to suppress the parametric instability.

IV. NUMERICAL EXPERIMENT

In the preceding section we have shown analytically that
the rectangular JVL may be stable under certain conditions.
In terms of applications it would be interesting to know
whether this regime is established spontaneously when the
system parameters are changed. The linear perturbation
method is insufficient to check it, which calls for consider-
ation of the nonlinear problem. To this end, we perform a
numerical experiment which is described in the present sec-
tion. Besides, the changes in the observed field distribution
due to the instabilities in the system can be found by numeri-
cal simulation.

A. Method

Let us briefly describe the method of numerical experi-
ment. For the sake of simplicity we assume the annular ge-
ometry of the system with a lengthL. It means that the phase
in each layer of the stack satisfies the boundary condition

wnsLd = wns0d + 2pRn, s50d

whereRn is the number of vortices trapped in thenth junc-
tion. Introducing new variablesfnsxd=wnsxd−2pRnx/L sat-
isfying the boundary conditionsfnsLd=fns0d, we come to a
set of equations forfn

o
m=1

N

KmnH]t
2fm + g]tfm + sin Sfm +

2pRm

L
xD − j + Ĝo

l=1

N

flJ
= ]x

2fn,n = 1, . . . ,N. s51d

Applying the cos transform(22a) and (22b) to this set of
equations, we get

s1 + aNd]x
2c1 = S1 +

aN

ce
2 D]t

2c1 + ge]tc1 + f1 − Nj , s52ad

vl
2]x

2cl = ]t
2cl + g]tcl + f l, l = 2, . . . ,N, s52bd

where f l are the cos transform images of sinsfm

+2pRmx/Ld. Applying then the Fourier transform over coor-
dinatex, we obtain a set of ordinary differential equations

FIG. 8. The eigenfrequency spectrumvsqd of asymmetric per-
turbations in the subluminal case atu.v8.

FIG. 9. The in-phase regime stability diagram atv1,vmin. Let-
ters denote: a, region of long-wave-length instability; b, region of
absolute stability; c, region of parametric instability; d, region with
suppressed parametric instability.

FIG. 10. The in-phase regime stability diagram atv1.vmin. The
regions corresponding to different stability regimes are denoted as
in Fig. 9.
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− k2s1 + aNdc̃1,k = S1 +
aN

ce
2 Dc̃

¨
1,k + gec̃

˙
1,k + f̃1,k − NLjdskd,

s53ad

− k2vl
2c̃l,k = c̃

¨
l,k + gc̃

˙
l,k + f̃ l,k l = 2, . . . ,N s53bd

where the point denotes the derivative over time. In order to
calculate the Fourier transform, we use the standard fast Fou-
rier transform(FFT) algorithm. We reduce this system to the
set of first order differential equations and solve the latter by
the fourth-order Runge-Kutta method. As a result, we build a
current-voltage(CV) characteristic(Fig. 11) and field distri-
butionswnx as functions of coordinatex and layer indexn.

B. Results

Figure 11 shows the CV curve calculated in the numerical
experiment. We measure the JVL velocity at a given external
current j , which is varied from 0 to 1.1 with a step 0.02
forward and back. We use the following parameters: number
of layersN=4, number of flux quanta in each layerR=10,
length of the systemL=24, a=0.1, g=0.1, G=0, s=−0.07,
ce=0.6. The parameters are chosen so that the characteristic
velocity of the symmetric perturbationv1 is the smallest of
the characteristic velocities of all other perturbation modes
vl , l =2, . . . ,N.

We now consider the CV characteristic of the system con-
sisting of four layers(Fig. 11). At j =0 (starting point of the
measurement) a static triangular JVL is formed(Fig. 12).
When the current is increased, the lattice starts moving,
keeping the triangular arrangement of vortices. At the point
j =0.22 the transition to the in-phase regime takes place(Fig.
13). In this point of CV the JVL velocity is approximately
equal tou=0.737, which is in a good agreement with ana-
lytical formula (49). As seen from Fig. 11, the amplitude of
the first harmonic of the field in the in-phase regime is
sharply increased to about half of the mean field value(Fig.
13). It indicates high efficiency of the ac/dc conversion rate
in this regime. With a further increase of current the in-phase
regime persists but vortices experience Lorentz contraction
(Fig. 14). The ac/dc conversion rate remains high up to the
point j =1. At j =1 the system changes the vortex flow regime
to the one with a fast phase growth rate. The field distribu-
tion is not qualitatively changed in this point but the first
harmonic amplitude sharply decreases(Figs. 11 and 15).
When we decrease the current fromj =1.1 the field oscilla-
tion amplitude gradually increases, and the in-phase regime
persists. In the interval fromj =0.6 to j =0.32 the CV curve
exhibits a series of bends. Apparently, they are associated
with the successive changes of stability conditions of asym-
metric modes. As the JVL velocity is decreased, the asym-
metric modes become unstable one by one due to the para-
metric instability. The typical distribution ofwxn in this
current interval is shown in Fig. 16. Atj =0.36 the field dis-
tribution shows 12 maximums(Fig. 17) while we know that
only 10 flux quanta are trapped into each junction. It means
that the short-wave-length instabilities lead to a vortex-

FIG. 12. The coordinate distribution ofwnx, n=1, . . . ,4 at j
=0. Vortices form a triangular lattice. Here and in the following
figures the digit above plot denotes the region of CV curve where
this distribution is established(see Fig. 11).

FIG. 13. The coordinate distribution ofwnx, n=1, . . . ,4 at j
=0.22. In-phase regime with a large amplitude of the alternate field
component.

FIG. 11. CV curve of the four-layer system. See text for the
parameters. Digits denote the CV regions corresponding to different
vortex flow regimes(see Figs. 12–17). Dashed line shows the de-
pendence of the first harmonic of the field amplitude on external
current.

A. V. CHIGINEV AND V. V. KURIN PHYSICAL REVIEW B 70, 214523(2004)

214523-8



antivortex pair nucleation in the system. By further decrease
of j the pair is annihilated, the rectangular JVL is restored
and, after the pointu=v8, the in-phase regime turns into a
triangular lattice.

The case when the characteristic velocity of symmetric
perturbations is greater than the characteristic velocities of
other modes is equivalent to the case of a multilayer system
without any electromagnetic environment. The particular
situation of two-layer system without electromagnetic envi-
ronment was analyzed in Ref. 10. It was shown that the
in-phase regime is stable only when the JVL velocity ex-
ceeds some critical value when the parametric instability be-
comes suppressed. Therefore, we do not expect any sponta-
neous establishing of the in-phase regime as we have
observed above and do not perform a numerical experiment
for that case.

One may come to several conclusions from the numerical
experiment. First, the in-phase regime of the vortex flow is
formed provided the symmetric mode of perturbations in the
system is the slowest one, and this formation takes place at
the JVL velocity calculated by formula(49). Second, at a
relatively high JVL velocity the short-wave-length instability
appears, leading to nucleation of vortex-antivortex pairs in
the system. Finally, at high velocity the rectangular JVL is
stable due to the parametric instability suppression. How-
ever, this regime of vortex flow is not promising for applica-
tions because the alternating component of the field is very
low.

V. DISCUSSION AND SUMMARY

In order to achieve stability of the in-phase regime of
vortex flow in a multilayer Josephson structure, it is neces-
sary to slow down the symmetric mode of perturbations in
the system. This deceleration must make the symmetric
mode slowest compared to all other perturbation modes.
Then the in-phase regime becomes absolutely stable in the
interval of velocities fromv8 to v1.

Let us estimate the deceleration which is necessary to
achieve stability of the in-phase regime. For typical param-
eter values of BSCCOd8=12 Å, t=3 Å,17 we havevmin
<10−3c. As follows from the expression forv1 (see Sec. III),
in order to fulfill the conditionv1,vmin we must at least
providece,vmin. In order to reach such a slowing in a strip-
line, one should fill it with a dielectric with largee. Dielec-
tric function e exhibits sharp peaks at frequencies close to
resonances on intrinsic degrees of freedom such as optical
phonons. It is also possible to use more complicated slow-
wave system, for example, a periodic structure similar to that
used in a traveling wave tube or in a backward wave tube.
Due to the periodicity, the wave spectrum in this system has
zone structure, and is characterized by presence of sup-
pressed bands. The cutoff frequencies are determined by
resonant frequencies of the slow-wave system elements. By
decrease of the resonant frequency one may significantly re-

FIG. 15. The coordinate distribution ofwnx, n=1, . . . ,4 at j
=0.96 (reverse branch). In-phase regime with a small amplitude of
the alternate field component.

FIG. 16. The coordinate distribution ofwnx, n=1, . . . ,4 at j
=0.6 (reverse branch). The development of short-wave-length
instabilities.

FIG. 17. The coordinate distribution ofwnx, n=1, . . . ,4 at j
=0.36 (reverse branch). Vortex-antivortex pair nucleation.

FIG. 14. The coordinate distribution ofwnx, n=1, . . . ,4 at j
=0.6. Lorentz contraction of the vortices.
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duce the phase velocity in the system. Another way to obtain
the required deceleration is to engage intrinsic resonances in
HTSC, for example, coupling viac-axis phonons.18 We em-
phasize once more that we choose a stripline only as a model
of a slow-wave structure in our consideration.

As for niobium multilayers, their parameters such as su-
perconducting and insulator layers’ thicknesses, are control-
lable. Thus, they can be fabricated so that a stripline is suf-
ficient to provide the necessary deceleration of the
symmetric perturbation mode.
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