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Within the London limit, we investigate the dynamics of stable vortex configurations in small thin super-
conducting disks by studying their elastic modes. The elastic modes are a mixture of shearlike and compres-
sionlike modes. More pronounced shearlike behavior is found for the low-energy eigenmodes, while a com-
pressionlike content is more prominent for higher eigenmodes. The eigenmode associated with a pure rotation
of the entire system is always zero. Highly symmetric stable configurations — in which the number of vortices
in different shells are multiples of each other — have several degenerate modes, in contrast with nonsymmetric
configurations, which have a less degenerate spectrum. The second lowest-energy mode is nearly zero in
configurations of the latter type, while is clearly nonzero for highly symmetric configurations. This suggests
that symmetric configurations are more stable against fluctuations, which is important in the development of
new superconducting devices. The present work could also be applied to electric charges confined within a
cylindrical hole inside a metal and submitted to a parabolic electric potential.
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I. INTRODUCTION

Vortex dynamics in superconductors has received much
attention due to its importance in potential superconducting
devices. In most of those applications, vortex motion is, in
fact, an undesired feature, since it generates dissipation.
Therefore, to understand the mechanisms which drive, pre-
vent, and guide vortex motion is essential for applications of
superconducting devices.

Vortex motion may be driven by thermal or quantum fluc-
tuations. As a result, vortices randomly wander around their
stable positions. Several consequences of such fluctuations
in the vortex positions have been investigated. For example,
at a given temperature,Tm,Tc, vortex lattice melting was
investigated theoretically,1,2 numerically,3,4 and
experimentally.5,6 Vortex fluctuations also induce modifica-
tions in the magnetizationsMd,7 which leads to a unique
crossing point in theM-T curves.8 To investigate the influ-
ence of fluctuations on the vortex lattice it is important to
know the elastic properties of such a lattice.9 It was shown
that the elastic properties of the vortex lattice10,11 in bulk
superconductors exhibit shear, compression, and tilt. In thin
films there is no tilt of the vortex lattice. This elastic descrip-
tion has been shown to be important in the understanding of
the behavior of the vortex lattice in the presence of fluctua-
tions and pinning(see, for example, Refs. 12 and 13).

In mesoscopic superconductors, vortices have stable posi-
tions dictated by their mutual interaction and the geometry
of the sample.14–18 The sample geometry acts as a kind of
confinement potential(since the boundary determines the
shielding current pattern and the appearance of “vortex
images”14), which makes these systems resemble charged
particles confined by some potential,19–21 at least for fields
much smaller thanHc2. In the latter system, the normal
modes were used to investigate the melting temperature and
the specific heat of charged particle clusters.19

In the present paper, we studied the elastic modes of the
vortex configurations in small thin disks — i.e., in a finite

system. These elastic modes are related to the elastic con-
stants of a given vortex configuration.9 This can be under-
stood by expanding the energy of the system close to a stable
configuration,

G = G0 + o
i,a

] G
] ri,a

dri,a +
1

2o
i,a

o
j ,b

]2G
] ri,a ] r j ,b

dri,adr j ,b,

s1d

where higher-order terms were omitted. Hereri is the [two-
dimensional(2D)] position of the vortexi. The italic sym-
bols refer to vortex indices and the greek ones to the coordi-
natesx and y. The derivatives are to be evaluated at the
vortex positions of a given stable configuration. The first
derivatives are just the forces acting on each vortex, which
are zero for a stable configuration.G0 is the energy of the
stable configuration and, thus,G−G0 represents the energy
associated with the elastic displacement of the particles in
the system. Thus, the second derivatives give the elements of
the elastic tensor, which can be related to an effective elastic
constant for each elastic mode and, consequently, to the en-
ergy required to excite such modes. One may also consider a
simple physical picture for the present problem in which
vortices would be connected to each other by springs. A
similar model has been used to treat vortices in a periodic
array of traps, the results of which were compared to numeri-
cal simulations.22,23

An important point worth to be mentioned is that, as vor-
tices belong to the class of viscous systems, the normal
modes are related to the dissipated power due to vortex mo-
tion. For example, if vortices are driven by an external force,
the motion of the vortex configuration will be associated
with a linear combination of the elastic modes, each of which
with an exponential decay associated with its eigenvalue. It
is also important to notice that, as pointed out in Refs. 14 and
24 and within the London approach, a vortex system may be
regarded as charged particles if the penetration length(l for
bulk or L=l2/d for thin film superconductors) is much
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larger than the typical dimensions of the system. Therefore,
the analogy of the present study with charged particles con-
fined to a parabolic electric potential inside the hole of a
metallic material is straightforward, where the normal modes
may be related with the oscillations of the particles around
their stable positions.

It should be stressed that if the conditionL@R is relaxed,
it is possible that some of our results might change. In the
case of arbitraryL the energy of the system may be calcu-
lated numerically by using the method presented in Ref. 25.
However the simplicity of the analytical formulation pre-
sented here allows us to calculate with high precision the
vortex-vortex interaction and the second derivative of the
energy.

This paper is organized as follows: In Sec. II we describe
the theoretical formalism, while in Sec. III we summarize the
numerical approach and briefly mention the stable states ob-
tained from it (see also Ref. 18). Elastic modes for stable
vortex configurations are presented in Sec. IV. In Sec. V we
relate the softening of elastic modes with the vortex expul-
sion. A comparison of the elastic mode spectra between
highly and nonhighly symmetric configurations is reported in
Sec. VI. Section VII deals with the shear and compression
content of the elastic modes. We draw our conclusion in
Sec. VIII.

II. THEORETICAL FORMALISM AND NUMERICAL
PROCEDURE

Here we considered a thin disk of radiusR and thickness
d, in which L=l2/d@R@j@d, in the presence of a uni-
form perpendicular magnetic fieldH0. The superconductor is
surrounded by vacuum. This allows for neglecting demagne-
tization effects and one may useH <H0. We also use dimen-
sionless variables, where lengths are measured in units of the
coherence lengthj, the vector potential in units ofc" /2ej,
the magnetic field in units ofHc2=c" /2ej2=kÎ2Hc, and the
average energy density in units ofHc

2/8p. The number of
vortices(vorticity) in the system will be denoted byL. Also,
if necessary, we use the notation presented in Ref. 17 to
distinguish vortex configurations with the sameL; e.g., for
L=6, (1,5) means 1 vortex in the center with 5 vortices
around it, and(6) represents 6 vortices with none of them in
the center of the disk.

In a thin disk with constant thickness, as demagnetization
effects can be neglected, the vector potential is given byA
=A0= 1

2H0rf̂. Also we study the system within the London
limit, which means thatH!Hc2. In such a limit, the energy
of the vortex system is given by14,18

G = o
i=1

L Sei
self + ei

shield+ o
j=1

i−1

ei jD + ecore+ efield, s2ad

where

ei
self = S 2

R
D2

lns1 − r i
2d s2bd

is the interaction energy between theith vortex and the
boundary of the superconductor(or, in other words, the in-
teraction with its own vortex image),

ei
shield= − 2H0s1 − r i

2d s2cd

represents the interaction between theith vortex and the
shielding currents, and

ei j = S 2

R
D2

lnF sr ir jd2 − 2r i · r j + 1

r i
2 − 2r i · r j + r j

2 G s2dd

is the repulsive energy between vorticesi and j (where the
interaction with the vortex images was taken into account).
Finally, ecore=s2/Rd2L lnsR/ad andefield=R2H0

2/4 are the en-
ergies associated with the vortex cores and the external mag-
netic field, respectively. In the above expressions we user i
=ri /R to simplify the notation. Also we made the usual
cutoff—i.e., i = j → uri −r ju=aj (in not normalized units) and
a is a constant—to remove the divergence in the self energy
terms. As recently shown by us,18 the choicea=Î2 makes
the London energy agree well with the Ginzburg-Landau
(GL) energy if a contributione8<−1+3L /R2 is added to the
London energy. However,ecore and efield are only necessary
in order to determine the actual state with lowest energy.
Since these terms do not depend on the vortex positions(in
the London approach), they do not contribute to the results
discussed in the present work.

From G one obtains the force acting on each vortex, by
using −¹kGsri ,r jd, where −¹k is the gradient with respect to
the coordinaterk. This yields a force per unit length,

F i = F i
s + o

k

F i,k
int, s3ad

in units ofHc
2j /8p, where the summation runs overk from 1

to L, except fork= i. The first term describes the vortex in-
teraction with the current induced by the external field and
with the interface,

F i
s = S 2

R
D3S 1

1 − r i
2 −

H0R
2

2
Dr i . s3bd

The second term is the vortex-vortex interaction

F i,k
int = S 2

R
D3S r i − rk

ur i − rku2
− rk

2 rk
2r i − rk

urk
2r i − rku2

D . s3cd

The above equations allow us to treat the vortices as par-
ticles and resemble the energy of a two-dimensional system
composed of charged particles with pairwise logarithmic re-
pulsion, confined to some potential.26,27 More precisely, the
above description is the same as if such charged particles
were inside a cylindrical hole surrounded by a metallic ma-
terial. The shape of such potential is similar to a parabolic
potential well for vortices close to the center, but the degree
of resemblance to a pure parabolic potential depends on the
applied magnetic field for a given number of vortices in the
disk (cf. Fig. 1 for the confinement potential for different
values of the magnetic field).

III. NUMERICAL PROCEDURE AND STABLE STATES

To investigate the elastic modes of the different vortex
configurations, we first have to find the stable configurations.
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This was accomplished by applying a procedure similar to
the one described in Ref. 19 to investigate(meta)stable state
close to the equilibrium. FirstL8 vortices were distributed
randomly inside the disk. Then, we applied a Monte Carlo
(MC) simulation with Metropolis algorithm to make the sys-
tem wander in the configurational space and arrive at the
neighborhood of some minimum ofGL. After typically 104

MC steps, we perform a molecular dynamics(MD) simula-
tion starting from the obtained MC configuration. The final
state is achieved after about 106 MD steps. In order to find
the ground state(or states with energies very close to it) this
trial procedure was repeated several times(more than 1000
times for systems withL.100), each starting with a differ-
ent random distribution ofL8 vortices at a given magnetic
field H0.

The MD simulation was performed by using the Bardeen-
Stephen equation of motion29

h
dri

dt
= F i , s4d

wherei represents theith vortex,h is the viscous drag coef-
ficient h,F0Hc2/rnc

2, with rn being the normal-state resis-
tivity. The time integration was accomplished by using the
Euler method, but using sufficiently small time stepsdt in
order to assure small vortex displacements between two con-
secutive steps. The dynamical matrix[cf. Eqs.(1) and (8a)–
(8c)], whose elements are given by

]2GL

] ra,i ] rb,j
, s5d

was calculated for the final vortex configuration. In this
equation, the Greek indices stand for the components of the
vectorri, while the Italic indices are the labels for the vorti-
ces. The computation of the dynamical matrix eigenvalues
allowed us to tell whether the given state was stable or un-
stable(for a stable state all the dynamical matrix eigenvalues
must be non-negative). Unstable states were discarded.

Notice that bothG and the forces acting on the vortices
diverge at the disk edge, which arises due to the failure of the
London limit atr.R−j. To avoid numerical difficulties dur-
ing the MD simulation, a vortex leaves the disk whenever it
was at a distance less thanj from the disk edge.

For L=2–9, vortices may arrange themselves as regular
polygons with the possibility that a single vortex stays in the
center of the disk14,17,18(of course, forL=1, the vortex is in
the center of the disk, and no minimization procedure is
needed). In these cases, the position of the vortex ring may
be found by solving the following equation:

1

1 − r2 − h +
N ± 1

2r2 − o
n=1

N−1
r2 − cosfn

1 + r4 − 2r2cosfn
= 0, s6d

whereN is the number of vortices on the ring(or the number
of sides of the polygon), r =rring/R, fn=2pn/N, h=H0R

2/2,
and the plus(minus) sign should be taken if there is one
(zero) vortex in the center of the disk. This equation comes
from the balance of forces on each vortex.

In addition to the above minimization routines, we also
performed Langevin dynamics(LD) simulations, where a
thermal fluctuation forceGi is added to Eq.(4).30,31 We em-
ployed a thermal contribution with zero mean and obeying
the fluctuation dissipation theorem

kGa,istdGb,jst8dl = 2hdabdi jdst − t8dkBT, s7d

wherek¯l means average value,kB is the Boltzman’s con-
stant,T is the temperature, and Greek and Italic indices refer
to vector components and vortex labels as before. The simu-
lations gave us insight into the time-dependent dynamics of
the system, particularly for studying the vortex expulsion.
For this purpose we started with a stable configuration at a
given magnetic field and decrease the magnetic field by a
step Dh=0.05 (it could be less in certain cases). For each
new magnetic field, we started with a small enough tempera-
ture (typically T=10−8 in units ofHc

2j3/8pkB), but sufficient
to free the configuration out of a local minimum. The system
was cooled down at a low exponential sweep rate[approxi-
mately Tstd=exps−tdT0, where T0 was the initial tempera-
ture]. We also chose a maximum time step ofDt=10−6 (in
units of 8ph /Hc

2). When the maximum displacement was
smaller than 10−16 or the time at that value ofh was greater
than 200, we saved the configuration and moved to the next
magnetic field. Again, the criterion for vortex expulsion was
that it leaves the disk whenever its distance from the edge is
smaller thanj (for computational purposes we considered
R=50j).

In Fig. 2 we depict the radius of the vortex ring for the
L=1, . . . ,9 states as function ofh=R2H0/2 obtained by solv-
ing Eq.(6). These states are realized in the limitR@1, where
the London limit and the GL theory are in good agreement.32

The dashed lines represent the radial position after which a
net force directed radially outwards acts on the vortex ring.
These results forL.2 were obtained numerically, while an
analytical solution is presented in the Appendix for the case
L=2. Also the radius of the vortex ring in the absence of
images(a system equivalent to classical charged particles in
a parabolic confinement) is given by the dotted lines. In this

FIG. 1. Confinement potentialsV=ei
self+ei

shieldd — excluding the
vortex-vortex interaction — as a function of the radiusr =r /R, for
several magnetic fieldsh=R2H0/2. This generates the so-called
Bean-Livingston barrier(Ref. 28). The vertical dashed line indi-
cates the radial positionr =1−j /R (for R=50j), beyond which the
London approach breaks down. A pure parabolic confined is repre-
sented by the thin lines.
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case,rring obeys a simple expression, given by Eq.(A7). One
can see that the actualrring (within the London limit) may be
approximated by such simple expression for magnetic fields
well above the field in which the configuration becomes
stable. Nevertheless, the influence of the images(i.e., the
edge of the disk) is important for lower magnetic fields. The
ground-state configurations areL=1, (2), (3), (4), (5), (1,5),
(1,6), (1,7), and (1,8), althoughL=s6d and L=s1,5d have
very close energies.18 In this figure the black dots also show
the magnetic fields below which a vortex is pushed away
from the disk according to our LD simulations. Notice that
vortices are forced to leave the disk at magnetic fields where
the regular polygon configuration is still a solution of Eq.
(6). The reason for this feature lies in the fact that Eq.(6) is
obtained from the radial forces acting on each vortex in a
very symmetric configuration. Therefore, therringsHd found
for each configuration is stable against the radial motion of
the entire vortex ring. This does not overrule the possibility
that one(or more) vortex moves radially(while the rest of
them may move in other directions) and leaves the system.

IV. ELASTIC MODES

Within the London limit vortices are considered as par-
ticles, and the elastic modes of the vortex configurations are
obtained by using the dynamical matrix computed for each
stable configuration[cf. Eq. (5)]. From Eq.(5), one finds the
following expression for the dynamical matrix:

Mdyn =
1

2
S 2

R
D4SDx 2C

2C Dy D , s8ad

with matrix elements

Dlm
x = dlmHH0R

2

2
−

1

1 − r l
2S1 +

2ul
2

1 − r l
2D + o

iÞl
F 1

ail
2Sr i

2 −
2bli

2

ail
2 D

−
1

r il
2S1 −

2uli
2

r il
2 DGJ +

1 − dlm

rlm
2 S1 −

2ulm
2

r lm
2 D

−
1 − dlm

alm
2 S1 – 2ulum +

2blmbml

alm
2 D , s8bd

Clm = − dlmF ulvm

s1 − rm
2 d2 + o

iÞl
Sblicli

ail
4 −

ulivli

r il
4 DG + s1 − dlmd

3F 1

alm
2 Sulvm −

blmcml

alm
2 D −

ulmvlm

rlm
4 G , s8cd

where dlm is the Kronecker delta,r il = ur i −r lu, ail
2=1–2r i ·r l

+r i
2r l

2, uil =ui −ul, vil =vi −vl, bil =r l
2ui −ul, cil =r l

2vi −vl, ul
=xl /R, vl =yl /R, r l =rl /R, and the matrix elementsDlm

y are
the same asDlm

x , but with vi replaced byui. The dynamical
matrix is in units ofHc

2/8pj2.
The eigenvalues of the dynamical matrix, Eq.(8a), are

analogs to the effective elastic constantKi of the modes
given by the eigenvectors of this matrix. Notice that for a
nondissipative system19 Ki is proportional to the eigenmode
frequency squared. In this case, a negative value forKi cor-
responds to an imaginary frequency for the eigenmode,
which implies that the system is unstable. For a dissipative
system this is also related to the timestid required for the
exponential overdamped decay of each modefexps−t /tidg. In
the following, we use the related quantityei =R2Ki /8H0
=sR/2d4Ki /h, whereei is of order unity for the highest mode
of everyL state we found.

For a givenL configuration there are 2L degrees of free-
dom and consequently 2L elastic modes. In highly symmet-
ric configurations — for example, some of the regular poly-
gon configurations with vorticity up toL=9 or the L
=s3,9d state — degeneracy of some elastic modes is ob-
served.

The modes forL=4 at h=10 are presented in Fig. 3.33

One notices that the lowest mode(with effective elastic con-
stant equal zero) is a pure rotation. The second lowest is the
compression of two vortices to the center of the disk while
the other two are pushed away. The third and fourth elastic
modes are degenerate and represent a translation of the vor-
tex configuration — i.e., is the center-of-mass motion. De-
generacy also happens for the fifth and sixth modes, in which
two vortices translate to one side, while the others move in
the opposite direction. In the seventh mode vortices form
pairs approaching toward each other and at the same time
moving farther from the other. The highest mode corre-
sponds to a pure compression; i.e., it is the breathing mode.
The elastic modes forL=19 ath=27 (which corresponds to
H0=0.0216 ifR=50) also have similar features as those dis-
cussed previously. Such a state has a highly symmetric con-
figuration, with 12(6) vortices in the outer(intermediate) ring
and 1 vortex in the center. We found the following degen-
eracy in the normal modes:se3,e4d, se5,e6d, se7,e8d,
se10,e11d, se13,e14d, se16,e17d, se18,e19d, se22,e23d, se24,e25d,
se27,e28d, se31,e32d, se33,e34d, and se35,e36d. Some of the
modes are depicted in Fig. 4. Again the lowest and highest
modes are pure rotation and compression, respectively. Inter-
mediate modes are related to several types of motion, such as
inner- and outer-shell opposite rotationsse2d or opposite
compressionsse37d, convectivelikemodes(cf. e4 ande9), and
mixed rotations and compressions(e16, e26, ande30). These
results are similar to the ones previously reported in classical
systems of particles, with logarithmic or Coulomb interac-

FIG. 2. Radius the vortex ring,rring, in units ofR (solid lines),
as a function of the magnetic field. The position of the vortex ring
in the absence of vortex images is shown by the dotted lines. The
dashed lines mark the radial position after which the “entire” vortex
regular polygon would be expelled from the disk. The solid dots
mark the stability region of the vortex configuration.
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tion, confined to a parabolic potential.19,21 This may be ex-
plained by the fact that the confining potential in the present
case is a mixture of parabolic confinement close to the center
of the disk and some sort ofdeconfiningpotential[the term
ei

self in Eq. (2a); cf. Fig. 1]. The resemblance to a parabolic
potential depends on the magnetic field and on the number of
vortices inside the disk.

V. SOFTENING OF MODES AND VORTEX EXPULSION

Unlike the classical particle system, which is unbounded,
the superconducting disk is bounded by the edge atR. Be-
sides, vortices cannot sit inside a sheath close toR, whose
thickness depends on the magnetic field, as well as on the
vortex configuration. This leads to a different dependence of
the elastic modes on the magnetic field compared to the one
expected if the system were even unbounded, as well as
bounded, but with no interactions with the disk edge. To
illustrate such difference, one may consider the caseL=2,
which can be solved analytically(see the Appendix). When
there is no interaction with the edge, one findse1=0 (rotation
of the system as a hole), e2=e3=1/2 (pure translation of the

system in two orthogonal directions), ande4=1 (pure com-
pression); each of these values is independent of the mag-
netic field. In the present case, the confinement(as well as
the vortex interactions) is not so simple. As a consequence,
although the elastic modes remain the same as the ones ob-
tained for pure parabolic confinement, the degeneracy of the
two translation modes is broken and, also,ek increases with
increasingH0 (except the pure rotation for whiche1=0).
These are depicted in Fig. 5, by using the analytical results
obtained in the Appendix. As one can see, the elastic modes
are less stiffer than the corresponding ones for pure parabolic
confinement, but tend to this case whenH0 is large enough.
The magnetic field dependence ofek is not the same for the
different modes; for example, thek=4 mode has the steepest
increase. Also, the translation along the axis joining the two
vortices is less stiff than the translation perpendicular to such
axis. The translation parallel to the axis joining the two vor-
tices also presents a peculiar feature: while the other modes
are positive forh.Î3s2Î3+3d /2<2.2018 [which is also
the range over which Eq.(6) admits real solutions; see
the Appendix], this mode is negative in the region
Î3s2Î3+3d /2,h,2.7875(0.001 76&H0&0.002 23 forR
=50), which simply means thatL=2 is unstable in this re-
gion. Hence, the criterion for stability yielded from the elas-
tic modes of a given configuration is more stringent than
only finding the solution to Eq.(6). This arises because, in
Eq. (6), only the radial forces acting on each vortex in the
regular polygon configuration were considered, due to the
symmetry of the system. But this neglects the possibility that
the solution of Eq.(6) is an unstable solution with respect to
some fluctuation in the vortex positions. Therefore, in the
specified magnetic field region forL=2, the two-vortex sys-
tem might be in a stable configuration with respect to pure
rotation, pure compression, or, even, to translation perpen-
dicular to the axis joining both vortices, but unstable with
respect to translation along the axis joining the vortices. This
characterizes a saddle point state. This suggests that, if this
state is realized forÎ3s2Î3+3d /2,h&2.7875, any fluctua-
tion in the vortices positions(due, for example, to thermal
fluctuations) could lead to the expulsion of one of the vorti-
ces from the disk.

Interestingly, the configurations we have studied do show
negative elastic modes—i.e., become saddle point
configurations—below a given magnetic field(which de-
pends on the configuration). In order to relate the saddle
point states with vortex expulsion,34 we analyzed the results
obtained from our LD simulations. At each given magnetic
field, we also measured the relaxation time(in units of
8ph /Hc

2) required for the maximal and the average vortex
displacement(in units of R) to decrease to 10−16 (notice that
the present system is purely dissipative).

For most of the configurations studied, as soon as the
magnetic field reaches the value at which one of the eigen-
modes is about to become negative, a vortex is expelled from
the disk. For example, our results forL=2 show that a vortex
is expelled at the magnetic field below which the lowest
elastic mode becomes negative—i.e., ath=2.7875. But for
some configurations, as for example theL=s1,8d state,35 a
change in the configuration geometry may happen first, keep-

FIG. 3. Elastic modes forL=4 at h=10. In each frameei

=sR/2d4Ki /h, whereKi is the effective elastic constant of the mode.
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ing the vorticity fixed, before a vortex is expelled. In this
case, at a high enough magnetic field, there are eight vortices
in a ring of radiusrring plus a central vortex. Ath=10.85(the
magnetic field below which this configuration turns to be a
saddle point) vortices arrange themselves in a deformed ring

or, equivalently, the initial perfect ring splits into two groups
of four vortices, each with a distinct radius. To confirm this
feature, in addition to the LD simulations we also solved
numerically the system of two equations,

8r i
8

1 − r i
8 − 2hri

2 + 5 + 8r i
4S 1

r i
4 + r j

4 −
r j

4

1 + r i
4r j

4D = 0, s9d

where i =a, b, ra=ra/R, and rb=rb/R are the two different
radius of each group of four vortices. This equation is ob-
tained from the radial forces[Eqs.(3a)] acting on vortices at
different rings. In Fig. 6(b) the LD results(symbols) and the
solutions of Eqs(9) (lines) are presented. Both agree very
well. The relaxation time for the maximal and average vortex
displacements are also shown. Notice that close to the
change in the configuration symmetry and to the vortex ex-
pulsion the relaxation time increases steeply. The modes
spectrum for the lowest energy are shown in Fig. 6(a). There
is a drastic change in the elastic mode spectrum exactly at
h=10.85. Above this field the second elastic mode consists
of the outward and inward motion of alternate vortices. In-
terestingly, the second mode ath.10.85 is represented by

FIG. 4. The same as Fig. 3 but now forL=19 ath=27.

FIG. 5. Dependence ofek upon h=H0R
2/2 for L=2 (see the

Appendix for the analytical expressions). The displacements corre-
sponding to the elastic modes are shown in the insets. The dotted
lines representek when neglecting the vortex images and including
only a pure parabolic potential.
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the outward and inward motion of alternate vortices, as indi-
cated by figure with the label 2 on top of Fig. 6. Ath
=10.85 this mode hase2=0. Decreasingh further, with the
motion of four of the vortices to an outer radius, this mode
becomes stiffer, and eventually the mode indicated by label 1
turns out to be the second lowest mode. It suggests that not
all four vortices which are closer to the edge are expelled
and, belowh<10.54, one vortex leaves the system. In fact,
our LD results show that small deviations from the solutions
of Eq. (9) do occur and such deviations become more pro-
nounced for one given vortex until its ultimate expulsion.

VI. CONFIGURATION SYMMETRY AND MODE
SPECTRA

To illustrate the influence of the configuration symmetry
on the modes, we plotted the evolution ofek with the mag-
netic field forL=s3,8d andL=s3,9d in Fig. 7. As forL=2,
for both configurationsek increases withH0 (excepte1 which
remains zero within the numerical accuracy 10−8), but some
modes are more sensitive than the others upon changes in
H0. This means that the vortex configurations become stiffer
with increase ofH0, because the force responsible for the
confinement of the vortices[proportional toH0, cf. Eq. (3a)]
becomes stronger. Moreover, some modes present a pro-
nounced dependence on the magnetic field, while others are

practically not influenced. Two main features may happen
with an increase of the magnetic field. First, a crossover be-
tween different types of modes may occur at a given mag-
netic field. Second, modes at lower fields can be different
than those at higher fields. The first feature is observed with
the modes related to a translation of the entire configuration
and other modes, for example, forL=12 (depicted in Fig. 8).
At low fields (for example ath,18), the two degenerate
modes associated with translation are the fifth and sixth low-
est ones, while forh.19 they appear as the seventh and
eighth modes. The other two modes depicted in this figure do
not present exactly the same vortex motions forh=15 and
h=20.1.

Since theL=12 configuration is more symmetric, eight
eigenvalues of the dynamic matrix are twofold degenerate
(shown by thick lines). On the contrary,L=11 present only
nondegenerate modes(although the difference between the
first and second modes is only about 10−5). Also the second
mode forL=12 has much larger value(and is clearly non-
zero) compared with its respective mode in theL=11 con-
figuration. The higher symmetry decreases the number of
degrees of freedom of the system, making easy direction
motions less likely. As a result the effect of fluctuations(as,
for instance, temperature) experienced by the vortex configu-
rations for L=12 are likely to be different than for theL
=11 configuration.

In order to test this conjecture, we obtained the vortex
trajectories forL=12 andL=11 ath=16 from our LD simu-
lations. This was performed by computing the vortex posi-
tions at Dt=0.1 time steps betweent=35 and t=200. The
results for two different temperatures—namely,T=0.0001
and T=0.001—are plotted on the left and right of Fig. 9,
respectively. The vortex trajectories are mainly oriented in
the azimuthal direction(see Ref. 36 for the equivalent sys-
tem of charges). Nevertheless, for both temperatures, the azi-
muthal range of the trajectories is quite different for the vor-
tices in the inner shell forL=11 (top) andL=12 (bottom). In
the former case, the trajectories within the inner shell are of
the same size or larger than the ones in the outer shell. Mean-
while, for L=12, the trajectories in the different shells seem

FIG. 6. (a) Dependence ofek upon h for L=9. Points 1 and 2
refer to the eigenmodes shown on the top.(b) Possible force-free
vortex configurations as function ofh. The solid lines are the solu-
tion of Eq. (9) and the symbols are the results from the MD simu-
lations. The open squares(dashed line) show the relaxation time
required for the maximal(average) vortex displacement to decrease
to 10−16. Above h=10.85(marked by the vertical dashed line), the
configuration with one vortex in the center and eight vortices on a
ring is stable(inset on the right). Below that field, when the second
elastic mode is about to become negative, the eight vortices arrange
themselves in two rings(inset on the left). For h,10.54 theL=9
state is no longer stable.

FIG. 7. Dependence ofek uponh=H0R
2/2 for L=s3,8d andL

=s3,9d. Thick lines depict twofold degenerate modes. ForL=11,
circles indicate modes whose difference is too small to be observed,
as in the case of thee1=0 ande2 modes(difference,10−4).
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to scale with the distance from the center of the disk, as
would be the case for a rigid-body rotation.

To better understand the temperature induced vortex dis-
placements within the two shells, we calculated the angular
vortex deviationDf=Îkf2l−kfl2. Here k¯l means time
average andf are the vortices angular position(in radians).
Figure 10(a) depictsDf for each vortex forL=11 (squares at
T=0.0001 and diamonds atT=0.001) and forL=12 (circles
at T=0.0001 and stars atT=0.001). The solid(open) sym-

bols denote vortices in the inner(outer) shells. It is clear that
the angular deviations in the inner[<0.03sT=0.0001d,
<0.2sT=0.001d] and the outer[<0.1sT=0.0001d, <0.3sT
=0.001d] shells are pretty much distinct in theL=11 configu-
ration (especially atT=0.0001). For L=12 the difference is
not so large, with vortices in the inner shell presenting
slightly larger angular deviations. Interestingly, the inter-
shell difference inDf for L=11 decreases atT=0.001,
which seems to be related with the increase in the deviation
in the radial direction(see Fig. 9). A similar result was found
for a colloidal system confined in a hard wall potential.37 The
angular distribution of the vortices was also calculated in
order to analyze the correlation between fluctuations in dif-
ferent shells. For this purpose, at eachDt=0.01 time step, we
measured the angular position of the vortices with respect to
a given reference vortex in the inner shell and computed a
histogram with these values. The results are plotted in Fig.
10(b). Thick (thin) lines represent the outer(inner) shell vor-
tices. The angular distribution in the inner shell — for both
configurations and at different temperatures — presents
peaks at 2p /3 and 4p /3, which indicates that intrashell vor-
tex fluctuations are correlated. But a noticeable difference
between theL=11 andL=12 configurations appears in the
angular distribution of the outer-shell vortices. ForL=12 the
vortex fluctuations in the outer shell(thick lines) are some-
what locked to the fluctuations in the inner shell, as indicated
by the well defined peaks. Meanwhile, forL=11, vortex
fluctuations in the outer shell are not well correlated with the
ones in the inner shell, particularly atT=0.001. These fea-
tures seem to be linked with the fact that the second eigen-
mode is distinctly nonzero forL=12, while it is almost zero
for L=11. Therefore, for the latter configuration different

FIG. 8. Modesk=5 to 8 for L=12 at h=16 (top) and at h
=20.1 (bottom). Notice thatek of the degenerate translation modes
become larger than the ones for the other two modes at increasing
magnetic field.

FIG. 9. Vortex trajectories obtained at eachDt=0.1 time interval
betweent=35 andt=200.
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types of modes other than pure rotation are easily accessible,
which is not the case forL=12. This shows how the symme-
try of the L=s3,9d configuration(especially the clear non-
zero value of the second elastic mode) plays a role in the
manner vortices move and we expect that similar features
can be observed in other highly symmetric configurations.

VII. SHEARLIKE AND COMPRESSIONLIKE
MODES

The elastic modes in infinite thin superconducting films
are usually characterized by the compressionsC11d and shear
sC66d moduli.10,11 Following Ref. 38, in disks, one may in-
vestigate shearlike and compressionlike modes by computing
¹3si,k and¹ ·si,k, wheresi,k are the interpolated eigenvector
field obtained from the eigenvectors associated with theith
mode. The interpolation was performed in a square grid, and
the curl and divergence of the eigenvector field were calcu-
lated numerically.38 A grid with N2=1203120 points was
chosen and cubic polynomials were interpolated between the
eigenvector values. From the divergence and curl of the ei-
genvector field, one can also obtain the quantities

fcsid2 =
1

N2o
k=1

N2

u¹ 3 si,ku2, s10ad

fdsid2 =
1

N2o
k=1

N2

u¹ ·si,ku2, s10bd

which describe how much each mode is shearlike or com-
pression like.

In Fig. 11 we show the calculatedfc and fd as function of
ek for 19 vortices ath=27, 111 vortices ath=125, and 234
vortices ath=250. These are the configurations with lowest
energy(for the given magnetic fields and number of vortices)
found by our numerical approach and within the usual Lon-
don limit.18 It is clear that the shearlike(compressivelike)
modes occur for smaller(larger) ek. Similar dependence for
fd and fc as function of the eigenfrequencies was observed
experimentally for charges interacting via a(screened) Cou-

FIG. 10. (a) Vortex angular deviation forL=11 andL=12 ath
=16, obtained at two differentT. The solid(open) symbols repre-
sent vortices in the inner(outer) shell. (b) Distribution of vortices
obtained at different time intervals as function of their angular po-
sitions with respect to a given vortex in the inner shell. Thick(thin)
lines represent vortices in the outer(inner) shell.

FIG. 11. Shearfc (solid circles) and compressionfd (open
squares) content of each mode as given by Eq.(10) for the (1,6,12)
state ath=27, L=111 ath=125, andL=234 ath=250.
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lomb interaction and confined to a parabolic potential39 (no-
tice thatek plays a role here similar to the eigenfrequencies
of the normal modes for particles confined to potential
wells). For such a high number of vortices(and at these
magnetic fields) fc is maximal aroundek,0.2, while fd
aroundek,0.8. In addition, the region aroundek,0.5 ex-
hibits a density of modes with approximate equally shear and
compressive content. After(before) this region the shearlike
(compressionlike) behavior decays(increases) practically
linearly. Other configurations with the same or similar num-
ber of vortices at those given magnetic fields exhibit a simi-
lar behavior.

In order to give an idea of the curl and the divergence
fields obtained from the eigenvectors, Fig. 12 shows the
eigenmodes(on top) and their respective spatial dependence
of u¹3sku andu¹ ·sku. Thek=2 mode(L=111 andh=125) is
a more pronounced shearlike mode, sinceu¹3sku varies
from 0 to 0.3, while u¹ ·sku is roughly zero. The opposite

happens fork=466 (L=234 andh=250), making this mode
more compressive like. The translation mode is obtained at
k=35 for 111 vortices and, as expected, does not have a
well-defined shearlike or compressivelike behavior, since
both u¹3sku and u¹ ·sku are very small.

Finally, to investigate further the dependence of the elastic
modes on the magnetic field, we computedfd and fc for the
L=s3,9d configuration as function ofh (see Fig. 13). First, a
big dip in fd and fc occurs atek,0.12 forh=16, but moves
to ek,0.2 for h=20.5. This dip comes from the(twofold-
degenerate) modes related with the entire translation of the
system, as seen in Fig. 12 fork=35 for 111 vortices. As
pointed out before(cf. Fig. 8), this change in the dip position
is due to the greater stiffness dependence of these modes on
h. Also, h=20.5, shearlike modes are more distinguished
from the compressivelike ones forek,0.2, with somewhat
equally shearlike and compressivelike modes at 0.2,ek
,0.7. At h=16, the transition from shearlike to compressive-

FIG. 12. (Color online) From left to right: modesk=2, 35, for L=111 at h=125, andk=466 for L=234 at h=250. Below each
configuration a density plot of the absolute value of the¹3si,k (curl) and¹ ·si,k (div) is presented.
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like modes is less steep. Moreover, ath=16, compressivelike
modes start appearing whenek.0.65, but such a feature oc-
curs atek,0.7 for h=20.5.

VIII. CONCLUSIONS

In this paper, we investigated the elastic modes of vortex
systems in superconducting thin disks. For such a purpose
the dynamical matrix was computed from stable vortex con-
figurations, and its eigenvalues and eigenvectors were found.
This study is also relevant for the understanding of the nor-
mal modes of charged particles confined to a finite cylindri-
cal metallic hole.

We observed that the stable vortex configurations have a
pure rotation of the entire vortex system as the lowest eigen-
mode. This is in agreement with recent results from simula-
tions of vortices in Corbino disks,40 which tells us that the
vortex arrangements rotate as a rigid body within the elastic
limit. The highest eigenmode is related to the so-called
breathing mode—i.e., a compression of the configuration as
a whole. For low vorticity values, the second lowest eigen-
mode usually corresponds to the intershell rotation, while the
creation of whirl and movement of vortices takes place at
higher vorticity.

The calculated eigenmodes present a marked dependence
on the magnetic field. Distinct modes may behave differently
as function of the magnetic field. The softening of the modes
yields a threshold magnetic field below which some of the
computed eigenvalues are negative. This indicates a saddle

point configuration, marking a transition to a different stable
configuration. Such a feature is also attested by the analytical
solution for a two-vortex system.

We also analyzed the shear and compressive contents of
the eigenmodes. Shearlike modes are less stiffer and are have
mostly eigenvalues belowek=0.5. Compressivelike modes
are mostly found withek.0.5. The mode corresponding to a
translation of the whole vortex system(i.e., the slushing
mode) has a relative low eigenvalue.
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APPENDIX: TWO VORTICES IN THE LONDON LIMIT

In this appendix we derive analytical expressions for the
L=2 configuration. More specifically we find the dependence
on H0 of both the vortex ring radial position and the normal
modes.

For N=2 Eq. (6) reduces to

2hr6 + 3r4 − 2hr2 + 1 = 0, sA1d

with 0, r ,1. Therefore one has to solve a third-degree
polynomial in r2. The physical solutions(0, r ,1 and
Imhrj=0) arise when

1

s2hd4 +
2

3

1

s2hd2 −
1

27
, 0 sA2d

or, equivalently,

H0 .
Î3s2Î3 + 3d

R2 . sA3d

The three real roots forr2 are given by

rn
2 = 2Î1

3
+

1

s2hd2cosSa + 2np

3
D −

1

s2hd2 , sA4ad

with n=0, 1, 2, anda is determined by

cosa = −
1 + s2hd2

F1 +
s2hd2

3
G3/2

. sA4bd

Obviously, forn=2 we have a purely imaginary solution for
r. The other two solutions forr represent radial positions in
which the vortex polygon is pushed towards the edge,ru
=ru/R, and is stable(concerning motion in the radial direc-
tion), rs=rs/R. Therefore,

FIG. 13. fc (solid circles) and fd (open squares) for the L
=s3,9d state ath=16 (top) andh=20.5 (bottom).
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ru = H0
−1/2Î2Î1 +

H0
2R4

3
cos

a

3
− 1, sA5ad

rs = H0
−1/2ÎÎ1 +

H0
2R4

3
SÎ3 sin

a

3
− cos

a

3
D − 1,

sA5bd

wherea is given by Eq.(A4b) remembering that 2h=H0R
2.

In Fig. 2, for the caseL=2, solid and dashed lines depict,
respectively,rs and ru as function ofH0. Expanding Eqs.
(A5) for large H0R

2 (or, equivalently, for small 1 /2h) and
neglecting terms of orders1/2hd2, one obtains

ru <Î1 −
2

H0R
2 sA6ad

and

rs < H0
−1/2. sA6bd

The first expression comes from the balance of the inward
shielding and the outward image forces acting on a vortex,
neglecting the interaction with other vortices and their im-
ages. This should be realized when such vortex is close to the
edge. So it is natural that when the magnetic field increases,
ru moves towards the disk edge with Eq.(A6a) as the limit.
The second expression is simply the position of the two-
vortex ring if there were no images—i.e., no interaction with
the disk edge. It is easy to find from Eq.(6), neglecting the
terms due to the interactions with images, that

r* =ÎN ± 1

H0
, sA7d

where the plus(minus) sign should be taken when one(zero)
vortex is the center of the regular polygon configuration with
N sides. ForL=N=2, this reduces to Eq.(A6b). Dotted lines
representing Eq.(A7) are shown in Fig. 2 forL=1→8. For
each of these configurations the actualrs has Eq.(A7) as a
limit, since vortices are more closely packed when the mag-
netic pressure increases, thus diminishing the interaction
with the disk edge.

We now turn to the problem of finding the elastic modes
for L=2. If we consider that the vortices sit atsrs,0d and
s−rs,0d, the dynamical matrix takes the following form in
this case

Mdyn =
1

2
S 2

R
D41

D1
x D2

x 0 0

D2
x D1

x 0 0

0 0 D1
y D2

y

0 0 D2
y D1

y
2 , sA8d

where

D1
x =

H0R
2

2
−

1

1 − r2S1 +
2r2

1 − r2D +
1

s2rd2 −
r2

s1 + r2d2 ,

D2
x = − F 1

s1 + r2d2 +
1

s2r2d2G ,

D1
y =

H0R
2

2
−

1

1 − r2 −
1

s2rd2 +
r2

s1 + r2d2 ,

D2
y = − F 1

s1 + r2d2 −
1

s2r2d2G ,

and r =rs/R. The eigenvalue problem leads to

SD1
i D2

i

D2
i D1

i DSs1i

s2i
D = 0, sA9d

with

l±
i =

1

2
S 2

R
D4

sD1
i ± D2

i d. sA10d

Above, i =x or y, s1i ss2id is the eigenvector components in
the i direction for particle 1(2) andl±

i are the eigenvalues. A
straightforward calculation yields the following eigenvalues:

l−
y = 0,

l+
y =

8

R2FH0

2
−

1

R2 − rs
2 −

R2 − rs
2

sR2 + rs
2d2G ,

l+
x =

8

R2FH0

2
−

1

R2 − rs
2S1 +

2rs
2

R2 − rs
2D −

1

R2 + rs
2G ,

l−
x =

8

R2FH0 −
2R2

sR2 − rs
2d2 +

2R2

sR2 + rs
2d2G ,

with their respective elastic modes being

s1x = s2x = 0, s1y = − s2y, → rotation,

s1x = s2x = 0, s1y = + s2y, → translation' ,

s1x = + s2x, s1y = s2y = 0, → translationi ,

s1x = − s2x, s1y = s2y = 0, → compression.

In the above expressions, translation'sid means translation
orthogonal (parallel) to the axis joining the two vortices.
These elastic modes, as well asek=R2l±

k /8H0, are plotted in
Fig. 5.

It would be interesting to compare the obtained formula
for l±

i with the ones predicted if there were no interaction
with the interface of the disk. The dynamical matrix in such
case is much simpler,

2

R2H01
3 − 1 0 0

− 1 3 0 0

0 0 1 1

0 0 1 1
2 ,

which has eigenvalues 0, 4H0/R2 (twofold degenerate), and
8H0/R2, related to pure rotation, translation, and pure com-
pression, respectively.
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