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Elastic modes of vortex configurations in thin disks
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Within the London limit, we investigate the dynamics of stable vortex configurations in small thin super-
conducting disks by studying their elastic modes. The elastic modes are a mixture of shearlike and compres-
sionlike modes. More pronounced shearlike behavior is found for the low-energy eigenmodes, while a com-
pressionlike content is more prominent for higher eigenmodes. The eigenmode associated with a pure rotation
of the entire system is always zero. Highly symmetric stable configurations — in which the number of vortices
in different shells are multiples of each other — have several degenerate modes, in contrast with nonsymmetric
configurations, which have a less degenerate spectrum. The second lowest-energy mode is nearly zero in
configurations of the latter type, while is clearly nonzero for highly symmetric configurations. This suggests
that symmetric configurations are more stable against fluctuations, which is important in the development of
new superconducting devices. The present work could also be applied to electric charges confined within a
cylindrical hole inside a metal and submitted to a parabolic electric potential.
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[. INTRODUCTION system. These elastic modes are related to the elastic con-
stants of a given vortex configurati§riThis can be under-
Vortex dynamics in superconductors has received muclstood by expanding the energy of the system close to a stable
attention due to its importance in potential superconductingonfiguration,
devices. In most of those applications, vortex motion is, in

fact, an undesired feature, since it generates dissipation. G=Go+ 5 500 S0
Therefore, to understand the mechanisms which drive, pre- 2 IPi o Piiat %% a p; aapJ 8 PiaOPi.pe
vent, and guide vortex motion is essential for applications of (1)

superconducting devices.

Vortex motion may be driven by thermal or quantum fluc- where higher-order terms were omitted. Herés the [two-
tuations. As a result, vortices randomly wander around theitlimensional(2D)] position of the vortex. The italic sym-
stable positions. Several consequences of such fluctuatio®ls refer to vortex indices and the greek ones to the coordi-
in the vortex positions have been investigated. For exampleatesx and y. The derivatives are to be evaluated at the
at a given temperaturd,,,<T, vortex lattice melting was vortex positions of a given stable configuration. The first
investigated theoreticalf? ~ numerically>*  and  derivatives are just the forces acting on each vortex, which
experimentally:® Vortex fluctuations also induce modifica- are zero for a stable configuratioig is the energy of the
tions in the magnetizatiotM),” which leads to a unique stable configuration and, thug-G, represents the energy
crossing point in theM-T curves? To investigate the influ- associated with the elastic displacement of the particles in
ence of fluctuations on the vortex lattice it is important tothe system. Thus, the second derivatives give the elements of
know the elastic properties of such a lattfickk.was shown  the elastic tensor, which can be related to an effective elastic
that the elastic properties of the vortex lattit€ in bulk  constant for each elastic mode and, consequently, to the en-
superconductors exhibit shear, compression, and tilt. In thirrgy required to excite such modes. One may also consider a
films there is no tilt of the vortex lattice. This elastic descrip-simple physical picture for the present problem in which
tion has been shown to be important in the understanding ofortices would be connected to each other by springs. A
the behavior of the vortex lattice in the presence of fluctuasimilar model has been used to treat vortices in a periodic
tions and pinningsee, for example, Refs. 12 and)13 array of traps, the results of which were compared to numeri-

In mesoscopic superconductors, vortices have stable postal simulationg£223
tions dictated by their mutual interaction and the geometry An important point worth to be mentioned is that, as vor-
of the samplé*~'8 The sample geometry acts as a kind oftices belong to the class of viscous systems, the normal
confinement potentia(since the boundary determines the modes are related to the dissipated power due to vortex mo-
shielding current pattern and the appearance of “vortexion. For example, if vortices are driven by an external force,
images™¥), which makes these systems resemble chargethe motion of the vortex configuration will be associated
particles confined by some potenttét?! at least for fields with a linear combination of the elastic modes, each of which
much smaller tharH,. In the latter system, the normal with an exponential decay associated with its eigenvalue. It
modes were used to investigate the melting temperature ard also important to notice that, as pointed out in Refs. 14 and

the specific heat of charged particle clustérs. 24 and within the London approach, a vortex system may be
In the present paper, we studied the elastic modes of theegarded as charged particles if the penetration legigfor
vortex configurations in small thin disks — i.e., in a finite bulk or A=\?/d for thin film superconductojsis much
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larger than the typical dimensions pf the system. T_herefore, eiShie'd: - 2H(1 _riZ) (20)
the analogy of the present study with charged particles con- ) ) .
fined to a parabolic electric potential inside the hole of aféPresents the interaction between fiie vortex and the

metallic material is straightforward, where the normal modesshielding currents, and

may be related with the oscillations of the particles around 2\2 [(rr)2=-2r-r +1
their stable positions. €= (—) 5 —L (2d)
It should be stressed that if the conditidr® R is relaxed, R = 2r 1+

it is possible that some of our results might change. In thgs the repulsive energy between vortideand j (where the
case of arbitrary\ the energy of the system may be calcu-nteraction with the vortex images was taken into accpunt
lated numerically by using the method presented in Ref. 25Finally, €e=(2/R)2L In(R/a) andefield=R2H§/4 are the en-
However the simplicity of the analytical formulation pre- grgies associated with the vortex cores and the external mag-

sented here allows us to calculate with high precision theiic field, respectively. In the above expressions weryse
vortex-vortex interaction and the second derivative of the_ pi/R to simplify the notation. Also we made the usual

energy. _ _ _ __cutoff—i.e.,i=j—|p—pj|=a¢ (in not normalized unitsand
This paper is organized as follows: In Sec. Il we describe, js 5 constant—to remove the divergence in the self energy
the theoretical formalism, while in Sec. Il we summarize thejorms. As recently shown by 8 the choicea= V2 makes
nqmerlcal ap_proach and briefly mention the stable states ope | ondon energy agree well with the Ginzburg-Landau
tained from it(see also Ref. 18 Elastic modes for stable (GL) energy if a contributiore’ ~—1+3L/R? is added to the
vortex configurations are presented in Sec. IV. In Sec. V W§ gnqon energy. Howevee®® and €' are only necessary
relate the softening of elastic modes with the vortex expuliy order to determine the actual state with lowest energy.

sion. A comparison of the elastic mode spectra betweeyce these terms do not depend on the vortex positions
highly and nor_1h|ghly symmet_rlc configurations is reported_mthe London approaghthey do not contribute to the results
Sec. VI. Section VIl deals with the shear and compressionyiscssed in the present work.

content of the elastic modes. We draw our conclusion in From G one obtains the force acting on each vortex, by

Sec. VIl using -V, G(pi, p;), where ¥, is the gradient with respect to
II. THEORETICAL FORMALISM AND NUMERICAL the CoordinatQ)k. This ylelds a force per unit |ength,
PR EDURE ;
OCEDU F=Fo+ S AT (3a)
Here we considered a thin disk of radiRsand thickness k

d, in which A=\?/d>R> ¢>d, in the presence of a uni- . . 2 .
’ : I . in units of HZ£/87r, where the summation runs ovefrom 1
form perpendicular magnetic field,. The superconductor is to L, except fork=i. The first term describes the vortex in-

Elzjz;rt?(;]: gffg Cl?sl ;ﬁgu;nrg.rlg;s ua;lgv j;_o\r/\/geglses t:;ge ?j?r:]n :I?_net'e_raction.with the current induced by the external field and
sionless variables, where lengths are measured in units of tﬁ’&'th the interface,
coherence lengtlf, the vector potential in units affi/2e§, < (2 3/ 1 HoR?
the magnetic field in units dfl,=cA/2e&2=k\2H,, and the Fi= (E (1 2 T)
average energy density in units bIﬁ/Sw. The number of ‘
vortices(vorticity) in the system will be denoted ly. Also, = The second term is the vortex-vortex interaction

if necessary, we use the notation presented in Ref. 17 to 3 5

distinguish vortex configurations with the sarbpe.g., for it (E) ( i—fe _ 2 Ndi—rk ) (30)
L=6, (1,5 means 1 vortex in the center with 5 vortices AR\ -nd? Medn -2/
around it, and6) represents 6 vortices with none of them in

the center of the disk.

In a thin disk with constant thickness, as demagnetizatio
effects can be neglected, the vector potential is giver\by
=AO=%HOp<}5. Also we study the system within the London
limit, which means thaH <H,. In such a limit, the energy
of the vortex system is given b8

i-1

r. (3b)

The above equations allow us to treat the vortices as par-
ﬁicles and resemble the energy of a two-dimensional system
composed of charged particles with pairwise logarithmic re-
pulsion, confined to some potentfdl?” More precisely, the
above description is the same as if such charged particles
were inside a cylindrical hole surrounded by a metallic ma-
terial. The shape of such potential is similar to a parabolic

L , _ potential well for vortices close to the center, but the degree
G=> (eise"+ D> 6ij) + e+ e (28 of resemblance to a pure parabolic potential depends on the

i=1 =1 applied magnetic field for a given number of vortices in the
disk (cf. Fig. 1 for the confinement potential for different
values of the magnetic field

where

2
= (é) In(1-r?) (2b)

. . . . Ill. NUMERICAL PROCEDURE AND STABLE STATES
is the interaction energy between tlig vortex and the
boundary of the superconduct@r, in other words, the in- To investigate the elastic modes of the different vortex

teraction with its own vortex image configurations, we first have to find the stable configurations.
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Notice that bothG and the forces acting on the vortices
diverge at the disk edge, which arises due to the failure of the
London limit atp > R-¢. To avoid numerical difficulties dur-
ing the MD simulation, a vortex leaves the disk whenever it
was at a distance less thdrfrom the disk edge.

For L=2-9, vortices may arrange themselves as regular
polygons with the possibility that a single vortex stays in the
center of the disk-1718(of course, forL=1, the vortex is in
the center of the disk, and no minimization procedure is
neededl In these cases, the position of the vortex ring may

(R/2)* V(p)

0 0.2 0.4 0.6 0.8 1

"p/R be found by solving the following equation:
_ N-1
FIG. 1. Confinement potentidV/= "+ &M% — excluding the 1 h+ N+1 r? - cos¢, -0, (6
vortex-vortex interaction — as a function of the radiusp/R, for 1-r2 22 S 1+rt-2r%cos¢,

several magnetic fieldb=R?Hy/2. This generates the so-called

Bean-Livingston barrie(Ref. 28. The vertical dashed line indi- whereN is the number of vortices on the ririgr the number

cates the radial position=1-¢/R (for R=50¢), beyond which the  of sides of the polygonr=pyi,g/R, ¢,=27n/N, h=HyR?/2,

London approach breaks down. A pure parabolic confined is repreand the plus(minug sign should be taken if there is one

sented by the thin lines. (zero vortex in the center of the disk. This equation comes
from the balance of forces on each vortex.

This was accomplished by applying a procedure similar to In addition to the above minimization routines, we also
the one described in Ref. 19 to investigateetgstable state performed Langevin dynamicdD) simulations, where a
close to the equilibrium. First’ vortices were distributed thermal fluctuation forcd'; is added to Eq(4).3%3! We em-
randomly inside the disk. Then, we applied a Monte Carloployed a thermal contribution with zero mean and obeying
(MC) simulation with Metropolis algorithm to make the sys- the fluctuation dissipation theorem

tem wander in the configurational space and arrive at the N o

neighborhood of some minimum &, . After typically 10* (Cai(OT (1) = 273,56 St = ' )kgT, (7

MC steps, we perform a molecular dynam{@®D) simula-  where(---) means average valuky is the Boltzman’s con-
tion starting from the obtained MC configuration. The final stant,T is the temperature, and Greek and ltalic indices refer
state is achieved after about®lRID steps. In order to find to vector components and vortex labels as before. The simu-
the ground stateor states with energies very close tpthis  |ations gave us insight into the time-dependent dynamics of
trial procedure was repeated several tini@®re than 1000 the system, particularly for studying the vortex expulsion.
times for systems witt. >100), each starting with a differ-  For this purpose we started with a stable configuration at a
ent random distribution of’ vortices at a given magnetic given magnetic field and decrease the magnetic field by a

field Ho. step Ah=0.05 (it could be less in certain cages-or each
The MD simulation was performed by using the Bardeen-new magnetic field, we started with a small enough tempera-
Stephen equation of motiéh ture (typically T=10 in units of H2¢/8kg), but sufficient
to free the configuration out of a local minimum. The system
% -F @) was cooled down at a low exponential sweep faigoroxi-
7 at a mately T(t) =exp(-t) Ty, where T, was the initial tempera-

ture]. We also chose a maximum time step &f=107° (in
wherei represents thih vortex, » is the viscous drag coef- ynits of 8r5/H2). When the maximum displacement was
ficient 7~ ®gHc,/ pnc?, with p, being the normal-state resis- smaller than 10 or the time at that value df was greater
tivity. The time integration was accomplished by using thethan 200, we saved the configuration and moved to the next
Euler method, but using sufficiently small time stefisin = magnetic field. Again, the criterion for vortex expulsion was
order to assure small vortex displacements between two comhat it leaves the disk whenever its distance from the edge is

secutive steps. The dynamical matfof. Egs.(1) and(88)—  smaller thané (for computational purposes we considered
(80)], whose elements are given by R=50¢).
5 In Fig. 2 we depict the radius of the vortex ring for the
G (5) L=1,...,9 states as function bER?H,/2 obtained by solv-
9Paidpp’ ing Eq.(6). These states are realized in the liRi-1, where

the London limit and the GL theory are in good agreeniént.
was calculated for the final vortex configuration. In this The dashed lines represent the radial position after which a
equation, the Greek indices stand for the components of theet force directed radially outwards acts on the vortex ring.
vector p;, while the Italic indices are the labels for the vorti- These results fok. >2 were obtained numerically, while an
ces. The computation of the dynamical matrix eigenvaluegnalytical solution is presented in the Appendix for the case
allowed us to tell whether the given state was stable or unt=2. Also the radius of the vortex ring in the absence of
stable(for a stable state all the dynamical matrix eigenvaluesmages(a system equivalent to classical charged particles in
must be non-negatiyeUnstable states were discarded. a parabolic confinements given by the dotted lines. In this
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1.0 uv (b|'C|' U|'U|')1
C.=- ——"m E s | s T N Y P (1-6,)
08 Im dm|: (1 _ r%)z < aﬁ I’ﬁ Im
1 ( bImcml) uImUIm:|
0.6 X| <5 | yom— -—0 |, (80
e L{‘}n A )

where 6, is the Kronecker deltar;=|r;-r)|, af=1-2;r,

+r2rf, WS-, o=y, by =i, g =rioi-o, u
: =x/R, v;=y;/R, r;=p/R, and the matrix elementd},, are
0.0 —— : : : : the same a®},, but with v; replaced byy;. The dynamical
0o 5 1o 15 20 25 30 matrix is in units ofH2/8m&.
h=R'H,/2 The eigenvalues of the dynamical matrix, Ega), are

analogs to the effective elastic constat of the modes
FIG. 2. Radius the vortex ringying, in units of R (solid lines,  given by the eigenvectors of this matrix. Notice that for a
as a function of the magnetic field. The position of the vortex ringnondissipative systethK; is proportional to the eigenmode
in the absence of vortex images is shown by the dotted lines. Thp(equency squared. In this case, a negative valu&faror-
dashed lines mark the radial position after which the “entire” Vortexresponds to an imaginary frequency for the eigenmode,
regular polygon would be expelled from the disk. The solid dots,yhich implies that the system is unstable. For a dissipative
mark the stability region of the vortex configuration. system this is also related to the tine) required for the

case piing Obeys a simple expression, given by E47). One ~ €xponential overdamped decay of each miage(—t/7)]. In
can see that the actugj, (within the London limiy may be ~ the following, we use the related quantig=R?K;/8H,
approximated by such simple expression for magnetic fields (R/2)*K;/h, whereg, is of order unity for the highest mode
well above the field in which the configuration becomesof everyL state we found.

stable. Nevertheless, the influence of the images, the For a givenL configuration there arel2degrees of free-
edge of the diskis important for lower magnetic fields. The dom and consequentlyl 2elastic modes. In highly symmet-
ground-state configurations ake=1, (2), (3), (4), (5), (1,9,  ric configurations — for example, some of the regular poly-
(1,6, (1,7, and(1,8), althoughL=(6) and L=(1,5 have gon configurations with vorticity up td.=9 or the L

very close energie¥ In this figure the black dots also show =(3,9) state — degeneracy of some elastic modes is ob-
the magnetic fields below which a vortex is pushed awaygpeqd.

from the disk according to our LD simulations. Notice that  The modes forl.=4 ath=10 are presented in Fig. 3.

vortices are forced to leave the disk at magnetic fields whergy o ticas that the lowest modeith effective elastic con-
the regular polygon (_:onflgurathn IS still a solution o_f Eq. stant equal zenas a pure rotation. The second lowest is the
(6). The reason for this feature lies in the fact that &} is compression of two vortices to the center of the disk while

obtained from the radial forces acting on each vortex in Ghe other two are pushed away. The third and fourth elastic

very symmetric configuration. Therefore, thg,,(H) found :
for each configuration is stable against the radial motion o odes are de.genera.te ar_ld represent a translation .Of the vor-
ex configuration — i.e., is the center-of-mass motion. De-

the entire vortex ring. This does not overrule the possibility i . X .
that one(or morg vortex moves radiallywhile the rest of 9eneracy also happens for the fifth and sixth modes, in which

them may move in other directionand leaves the system. two vortices translate to one side, while the others move in
the opposite direction. In the seventh mode vortices form

IV. ELASTIC MODES pairs approaching toward each other and at the same time
Within the London limit vortices are considered as par-moving farther from the othe.r.. The highest mode corre-
ticles, and the elastic modes of the vortex configurations ar&Ponds to a pure compression; i.e., it is the breathing mode.

obtained by using the dynamical matrix computed for eachl he elastic modes fdr=19 ath=27 (which corresponds to
stable Configuratior[lcf_ Eqg.(5)]. From Eq.(5), one finds the Hg=0.0216 ifR=50) also have similar features as those dis-

following expression for the dynamical matrix: cussed previously. Such a state has a highly symmetric con-
1/2\4/D* 2C figuration, with 126) vortices in the outeintermediatgring
M gyn = _<_) ( ) (8a) and 1 vortex in the center. We found the following degen-
" 2\R/ \2Cc DY eracy in the normal modes(e;,e,), (es,€5), (€7,€5),

with matrix elements (€10,€11): (€13,€14), (€16,€17), (€15,€19), (€22,€23), (€24,€25),
R2 2 2 (€27,€29), (€31,€37), (€33,€34), aANd (€35,€35). Some of the
HoR" 1 ( + 24 ) +> i(r?— 2_b||) modes are depicted in Fig. 4. Again the lowest and highest
2 1-r? 1-r2) Zla\' & modes are pure rotation and compression, respectively. Inter-
2 2 mediate modes are related to several types of motion, such as
1 < 2u; } } 1- 5|m< 2u|m)
—_ _2 1 —_ + —_
il

X —
Im_‘slm

inner- and outer-shell opposite rotatiofis,) or opposite

rﬁ rﬁn r|2m compressionge;;), convectivelikenodes(cf. e, andey), and

mixed rotations and compressio(®g, €, andezy). These
1-6m 2bymbmi - : . .
-— 1-2uun+— , (8b) results are similar to the ones previously reported in classical
Am Qm systems of particles, with logarithmic or Coulomb interac-
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e,=027135 system in two orthogonal directionsande,=1 (pure com-

pressiol; each of these values is independent of the mag-
netic field. In the present case, the confinemest well as

the vortex interactionsis not so simple. As a consequence,
although the elastic modes remain the same as the ones ob-
tained for pure parabolic confinement, the degeneracy of the
two translation modes is broken and, alspjncreases with
increasingH, (except the pure rotation for which,=0).
These are depicted in Fig. 5, by using the analytical results
obtained in the Appendix. As one can see, the elastic modes
are less stiffer than the corresponding ones for pure parabolic

confinement, but tend to this case whepis large enough.
3¢, = 029947 o5 =5 = 048561 The magnetic field dependence efis not the same for the

different modes; for example, the=4 mode has the steepest
increase. Also, the translation along the axis joining the two
vortices is less stiff than the translation perpendicular to such
axis. The translation parallel to the axis joining the two vor-
tices also presents a peculiar feature: while the other modes
are positive forh>/3(2y/3+3)/2~2.2018 [which is also

the range over which Eq(6) admits real solutions; see
the Appendi}, this mode is negative in the region
V3(2y3+3)/2<h<2.7875(0.001 76 Hy=0.002 23 forR

=50), which simply means thdt=2 is unstable in this re-
c; = 060733 ey = 0.99348 gion. Hence, the criterion for stability yielded from the elas-

tic modes of a given configuration is more stringent than
only finding the solution to Eq(6). This arises because, in
Eq. (6), only the radial forces acting on each vortex in the
regular polygon configuration were considered, due to the
symmetry of the system. But this neglects the possibility that
the solution of Eq(6) is an unstable solution with respect to
some fluctuation in the vortex positions. Therefore, in the
specified magnetic field region far=2, the two-vortex sys-
tem might be in a stable configuration with respect to pure

rotation, pure compression, or, even, to translation perpen-
FIG. 3. Elastic modes foL=4 at h=10. In each frameg dicular to the axis joining both vortices, but unstable with
=(R/2)*K;/h, wherekK; is the effective elastic constant of the mode. respect to translation along the axis joining the vortices. This
characterizes a saddle point state. This suggests that, if this
tion, confined to a parabolic potentfI2! This may be ex- State is realized fog/3(2y3+3)/2<h=2.7875, any fluctua-
plained by the fact that the confining potential in the presention in the vortices positiongdue, for example, to thermal
case is a mixture of parabolic confinement close to the centdfuctuationg could lead to the expulsion of one of the vorti-
of the disk and some sort afeconfiningpotential[the term  ces from the disk.
°"in Eq. (2a); cf. Fig. 1. The resemblance to a parabolic ~ Interestingly, the configurations we have studied do show
potentlal depends on the magnetic field and on the number dfegative elastic modes—i.e., become saddle point

vortices inside the disk. configurations—below a given magnetic fie(dhich de-
pends on the configuratipgnin order to relate the saddle
V. SOFTENING OF MODES AND VORTEX EXPULSION point states with vortex expulsioiwe analyzed the results

obtained from our LD simulations. At each given magnetic

Unlike the classical particle system, which is unboundedfield, we also measured the relaxation tiria units of
the superconducting disk is bounded by the edgR.dBe- 8m]/H§) required for the maximal and the average vortex
sides, vortices cannot sit inside a sheath clos® those displacementin units of R) to decrease to 18f (notice that
thickness depends on the magnetic field, as well as on thie present system is purely dissipajive
vortex configuration. This leads to a different dependence of For most of the configurations studied, as soon as the
the elastic modes on the magnetic field compared to the ommagnetic field reaches the value at which one of the eigen-
expected if the system were even unbounded, as well awodes is about to become negative, a vortex is expelled from
bounded, but with no interactions with the disk edge. Tothe disk. For example, our results flor2 show that a vortex
illustrate such difference, one may consider the das@, is expelled at the magnetic field below which the lowest
which can be solved analyticalligee the Appendix When  elastic mode becomes negative—i.e.hat2.7875. But for
there is no interaction with the edge, one fimgls O (rotation ~ some configurations, as for example the(1,8) state®® a
of the system as a holee,=e;=1/2 (pure translation of the change in the configuration geometry may happen first, keep-
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e, =0 e, =0.0097327 0.038295
ey = 0.14035 e = 026876 o, = 0.69603

=0.83229 =0.98304 =0.9971

FIG. 4. The same as Fig. 3 but now for19 ath=27.

ing the vorticity fixed, before a vortex is expelled. In this or, equivalently, the initial perfect ring splits into two groups
case, at a high enough magnetic field, there are eight vorticesf four vortices, each with a distinct radius. To confirm this
in a ring of radiusp,jng plus a central vortex. At=10.85(the  feature, in addition to the LD simulations we also solved
magnetic field below which this configuration turns to be anumerically the system of two equations,
saddle pointvortices arrange themselves in a deformed ring 8 1 4
i g0 o
1- ri+ rJ 1+rfr i

wherei=a, b, r,=p,/R, andry=p,/R are the two different
radius of each group of four vortices. This equation is ob-
tained from the radial force€qgs.(3a)] acting on vortices at
different rings. In Fig. ) the LD resultssymbolg and the
solutions of EqY9) (lines) are presented. Both agree very
well. The relaxation time for the maximal and average vortex
displacements are also shown. Notice that close to the
change in the configuration symmetry and to the vortex ex-
pulsion the relaxation time increases steeply. The modes
FIG. 5. Dependence of, upon h=HyR?/2 for L=2 (see the Spectrum for the lowest energy are shown in Fig)6There
Appendix for the analytical expressigndhe displacements corre- iS @ drastic change in the elastic mode spectrum exactly at
sponding to the elastic modes are shown in the insets. The dottdd=10.85. Above this field the second elastic mode consists
lines represeng, when neglecting the vortex images and including of the outward and inward motion of alternate vortices. In-
only a pure parabolic potential. terestingly, the second mode lat-10.85 is represented by

LB R T NN

0.8
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o
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~

80 FIG. 7. Dependence a uponh=HR?/2 for L=(3,8) andL

40 =(3,9). Thick lines depict twofold degenerate modes. Eerll,
circles indicate modes whose difference is too small to be observed,
as in the case of the;=0 ande, modes(difference<107%).

O'610.6 108 11 112 114 11.8
h practically not influenced. Two main features may happen
FIG. 6. () Dependence o0&, upon h for L=9. Points 1 and 2 with an increase of the magnetic field. First, a crossover be-
refer to the eigenmodes shown on the tdp. Possible force-free  tWeen different types of modes may occur at a given mag-
vortex configurations as function bf The solid lines are the solu- Netic field. Second, modes at lower fields can be different
tion of Eq.(9) and the symbols are the results from the MD simu- than those at higher fields. The first feature is observed with
lations. The open squargdashed ling show the relaxation time the modes related to a translation of the entire configuration
required for the maximalaveragg vortex displacement to decrease and other modes, for example, for 12 (depicted in Fig. &
to 10716, Above h=10.85(marked by the vertical dashed lipghe At low fields (for example ath<<18), the two degenerate
configuration with one vortex in the center and eight vortices on anodes associated with translation are the fifth and sixth low-
ring is stablginset on the right Below that field, when the second est ones, while foh>19 they appear as the seventh and
elastic mode is about to become negative, the eight vortices arranggghth modes. The other two modes depicted in this figure do
themselves in two ringginset on the left Forh<10.54 theL=9  not present exactly the same vortex motions lierl5 and
state is no longer stable. h=20.1.

Since theL=12 configuration is more symmetric, eight
the outward and inward motion of alternate vortices, as indi€igenvalues of the dynamic matrix are twofold degenerate
cated by figure with the label 2 on top of Fig. 6. At  (shown by thick lines On the contraryl. =11 present only
=10.85 this mode has,=0. Decreasind further, with the ~ nondegenerate modéalthough the difference between the
motion of four of the vortices to an outer radius, this modefirst and second modes is only about30Also the second
becomes stiffer, and eventually the mode indicated by label mode forL=12 has much larger valu@nd is clearly non-
turns out to be the second lowest mode. It suggests that néero compared with its respective mode in the 11 con-
all four vortices which are closer to the edge are expellediguration. The higher symmetry decreases the number of
and, belowh~10.54, one vortex leaves the system. In fact,degrees of freedom of the system, making easy direction
our LD results show that small deviations from the solutionsmotions less likely. As a result the effect of fluctuatiaas,
of Eq. (9) do occur and such deviations become more profor instance, temperaturexperienced by the vortex configu-
nounced for one given vortex until its ultimate expulsion. rations forL=12 are likely to be different than for the

=11 configuration.
VI. CONFIGURATION SYMMETRY AND MODE In order to test this conjecture, we obtained the vortex
SPECTRA trajectories folL,=12 andL=11 ath=16 from our LD simu-
lations. This was performed by computing the vortex posi-
To illustrate the influence of the configuration symmetrytions atAt=0.1 time steps betweet¥ 35 andt=200. The
on the modes, we plotted the evolutiongfwith the mag-  results for two different temperatures—namely;:0.0001
netic field forL=(3,8) andL=(3,9) in Fig. 7. As forL=2,  and T=0.001—are plotted on the left and right of Fig. 9,
for both configurationsy increases with, (excepte; which  respectively. The vortex trajectories are mainly oriented in
remains zero within the numerical accuracy®pbut some  the azimuthal directiorisee Ref. 36 for the equivalent sys-
modes are more sensitive than the others upon changes fe@m of charges Nevertheless, for both temperatures, the azi-
Ho. This means that the vortex configurations become stiffemuthal range of the trajectories is quite different for the vor-
with increase ofH,, because the force responsible for thetices in the inner shell for =11 (top) andL=12 (bottom). In
confinement of the vorticelproportional toH,, cf. Eq.(3a)] the former case, the trajectories within the inner shell are of
becomes stronger. Moreover, some modes present a prtire same size or larger than the ones in the outer shell. Mean-
nounced dependence on the magnetic field, while others akghile, for L=12, the trajectories in the different shells seem
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FIG. 8. Modesk=5 to 8 for L=12 ath=16 (top) and ath
=20.1(bottom). Notice thate, of the degenerate translation modes
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h=16 T =0.0001 h=16 T=0.001

L=12 h=16 T=0.0001 L=12 h=16 T=0.001

FIG. 9. Vortex trajectories obtained at eakt=0.1 time interval
betweent=35 andt=200.

bols denote vortices in the inn@vutel shells. It is clear that
the angular deviations in the inngr=0.03T=0.0001,
~0.2(T=0.001] and the outerf{=0.1(T=0.0002, =0.3T
=0.001] shells are pretty much distinct in the=11 configu-
ration (especially aff=0.000). For L=12 the difference is
not so large, with vortices in the inner shell presenting
slightly larger angular deviations. Interestingly, the inter-
shell difference inA¢ for L=11 decreases at=0.001,
which seems to be related with the increase in the deviation
in the radial directiorisee Fig. 9. A similar result was found

for a colloidal system confined in a hard wall potentiaThe
angular distribution of the vortices was also calculated in
order to analyze the correlation between fluctuations in dif-
ferent shells. For this purpose, at edd+0.01 time step, we
measured the angular position of the vortices with respect to
a given reference vortex in the inner shell and computed a
histogram with these values. The results are plotted in Fig.
10(b). Thick (thin) lines represent the outénnern shell vor-
tices. The angular distribution in the inner shell — for both
configurations and at different temperatures — presents

become larger than the ones for the other two modes at increasiRfaks at zr/3 and 4r/3, which indicates that intrashell vor-

magnetic field.

tex fluctuations are correlated. But a noticeable difference
between thd.=11 andL=12 configurations appears in the

to scale with the distance from the center of the disk, asngular distribution of the outer-shell vortices. Eor12 the

would be the case for a rigid-body rotation.

vortex fluctuations in the outer shethick lineg are some-

To better understand the temperature induced vortex disyhat locked to the fluctuations in the inner shell, as indicated
placements within the two shells, we calculated the angulapy the well defined peaks. Meanwhile, for=11, vortex

vortex deviationA¢=\(¢?—(#)>. Here (---) means time
average andp are the vortices angular positigim radians.
Figure 1Qa) depictsA ¢ for each vortex fol =11 (squares at
T=0.0001 and diamonds at=0.001) and forL=12 (circles
at T=0.0001 and stars at=0.00]). The solid(open sym-

fluctuations in the outer shell are not well correlated with the
ones in the inner shell, particularly @=0.001. These fea-
tures seem to be linked with the fact that the second eigen-
mode is distinctly nonzero fdr=12, while it is almost zero

for L=11. Therefore, for the latter configuration different

214522-8



ELASTIC MODES OF VORTEX CONFIGURATIONS IN. PHYSICAL REVIEW B 70, 214522(2004)

o [ ®m L=11 T=0.0001 0.07
10" | ¢ L=11 T=0001 AN
@® L=12 T=0.0001 0.06f /o m
*® L=12 T=0001 L=19 h=27 %( hi
R w Y
00 ¢ © o o o o o 0.041 \[ / ﬁ\ / t/ L
S0t , ¥ m om L +° 0.03f RO 1
% ol %@ & %% % : \ ' R o
0.02} Y NN
g B g e | /’F\gﬁ /‘1/ \
@ o [v] 8 O o] 8 (e} o O 0.01} P / \ H\\
hact Lj e
O 1 1 1 1
1072 - . - s . . 0 0.2 0.4 0.6 0.8 1
0 2 4 6 8 10 12 ek
(a) Vortex index
= _ , , . , 012
5 T=10" |
< - /\ 01}
§ ! 3 0.08
g = |T=10 A A e : ”
e 5 } } ; + ~, 0.06 %
© T=10 - ;
g
2 o 0.04
,5 [ -
g = |T=10 0.02}
0 13 23 1 43 53 2 0
(b) o/m
FIG. 10. (a) Vortex angular deviation fot=11 andL=12 ath 0.16f L_£34

h=250 |

=16, obtained at two differenf. The solid(oper symbols repre-

sent vortices in the inngiouten shell. (b) Distribution of vortices

obtained at different time intervals as function of their angular po-

sitions with respect to a given vortex in the inner shell. THitkn)

lines represent vortices in the outémner shell. “H: 008} ¥
o

0.12r

types of modes other than pure rotation are easily accessible,
which is not the case fdr=12. This shows how the symme-
try of the L=(3,9) configuration(especially the clear non-
zero value of the second elastic mpgeays a role in the 0
manner vortices move and we expect that similar features
can be observed in other highly symmetric configurations.

0.04

FIG. 11. Shearf; (solid circle3 and compressiorfy (open

VIl. SHEARLIKE AND COMPRESSIONLIKE squarescontent of each mode as given by E#0) for the (1,6,129
MODES state ath=27,L=111 ath=125, andL=234 ath=250.

The elastic modes in infinite thin superconducting films N2

are usually characterized by the compression) and shear f()2= iz IV .52
(Cee) Modulil® Following Ref. 38, in disks, one may in- d N? o) Skl
vestigate shearlike and compressionlike modes by computing

VX s andV-s, wheres  are the interpolated eigenvector
field obtained from the eigenvectors associated withithe Bression like
mode. The interpolation was performed in a square grid, an X ' .

the curl and divergence of the eigenvector field were calcu- In Fig. 11 we shovv_the calculatefg andfd_as function of
lated numerically® A grid with N2=120x 120 points was X for 19 vortices ah=27, 111 vortices ah=125, and 234

chosen and cubic polynomials were interpolated between th\éﬁg'rce?f;t?;e%s .el-hnizenégt?ctfri]glgsgfr:%ur:i%)t?esrV(\)I]lt\r:olr(:gzzt
eigenvector values. From the divergence and curl of the eifoungyb our n%mericalga roach and within the usual Lon-
genvector field, one can also obtain the quantities y bp

don limit!8 It is clear that the shearlikécompressivelike

(10b

which describe how much each mode is shearlike or com-

1 N2 modes occur for smallgtargen .. Similar dependence for
fo(i)2= 722 |V x S,k|21 (103 fq and f. as function of the eigenfrequencies was observed
N1 experimentally for charges interacting vigscreenegfCou-
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e, =0.0017087 e, =0.055246 ¢, =0.99116

|eurl|

Ldiv] [dliv] [dliv]

0.1 0.2 0.3 0 0.05 0.1

0.02 004 006 008 01

FIG. 12. (Color onling From left to right: modek=2, 35, forL=111 ath=125, andk=466 for L=234 ath=250. Below each
configuration a density plot of the absolute value of e s (curl) andV -s; (div) is presented.

lomb interaction and confined to a parabolic poteftiado-  happens fok=466 (L=234 andh=250), making this mode
tice thate, plays a role here similar to the eigenfrequenciesmore compressive like. The translation mode is obtained at
of the normal modes for particles confined to potentialk=35 for 111 vortices and, as expected, does not have a
wells). For such a high number of vorticéand at these well-defined shearlike or compressivelike behavior, since
magnetic fields f. is maximal aroundg,~0.2, while f;  both|V X s/ and|V-s/ are very small.
arounde,~0.8. In addition, the region arourg ~0.5 ex- Finally, to investigate further the dependence of the elastic
hibits a density of modes with approximate equally shear andhodes on the magnetic field, we compufgdandf,. for the
compressive content. Afteébefore this region the shearlike L=(3,9) configuration as function df (see Fig. 13 First, a
(compressionlike behavior decays(increasep practically  big dip in f4 andf. occurs ate,~ 0.12 forh=16, but moves
linearly. Other configurations with the same or similar num-to e, ~0.2 for h=20.5. This dip comes from th@wofold-
ber of vortices at those given magnetic fields exhibit a simi-degeneratemodes related with the entire translation of the
lar behavior. system, as seen in Fig. 12 fé&=35 for 111 vortices. As

In order to give an idea of the curl and the divergencepointed out beforécf. Fig. 8), this change in the dip position
fields obtained from the eigenvectors, Fig. 12 shows thés due to the greater stiffness dependence of these modes on
eigenmodeson top and their respective spatial dependenceh. Also, h=20.5, shearlike modes are more distinguished
of |[VX s and|V-s/. Thek=2 mode(L=111 anch=125is  from the compressivelike ones feg<0.2, with somewnhat
a more pronounced shearlike mode, sif¥exs/| varies equally shearlike and compressivelike modes at<Gg
from 0 to 0.3, while|V-s is roughly zero. The opposite <0.7.Ath=16, the transition from shearlike to compressive-
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0.05p point configuration, marking a transition to a different stable
2N configuration. Such a feature is also attested by the analytical
0.047¢ L=12 h=1l6  / d/R\' solution for a two-vortex system.
1\ / b We also analyzed the shear and compressive contents of
0.03f | 4 1 the eigenmodes. Shearlike modes are less stiffer and are have
w \ e / mostly eigenvalues below,=0.5. Compressivelike modes
+° 0.02} \ '\(/’ e 1 are mostly found withe,> 0.5. The mode corresponding to a
\\ /P//’D L. translation of the whole vortex systefine., the slushing
0oll I 4 BN ] mode has a relative low eigenvalue.
¢/ A
?\ g A \J/ \
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0.02 /3\\\ /g - >< 1 APPENDIX: TWO VORTICES IN THE LONDON LIMIT
T\ \., /
0.01F BW N\ / L\ ] In this appendix we derive analytical expressions for the
j\j// \é’/ ¢ \\‘/\ L=2 configuration. More specifically we find the dependence
0 5 . . . | on Hy of both the vortex ring radial position and the normal
0 0.2 0.4 e 0.6 0.8 1 modes.
k For N=2 Eq.(6) reduces to
FIG. 13. f. (solid circleg and fy (open squarésfor the L
=(3,9) state acm(: 16 (top) an?jhzzo.%((bgttonp.q ° 2hr®+3rf-2hr?+1=0, (A1)

_ _ o with 0<r<1. Therefore one has to solve a third-degree
like modes is less steep. Moreoverhat16, compressivelike polynomial in r2 The physical solutiong0<r<1 and

modes start appearing wheg>0.65, but such a feature oc- |m{r}=0) arise when
curs ate,~0.7 forh=20.5.

1 21 1
omd T 2oz T 55 <
VIIl. CONCLUSIONS (2h*  3(2h)~ 27

In this paper, we investigated the elastic modes of vortexr, equivalently,
systems in superconducting thin disks. For such a purpose

0 (A2)

the dynamical matrix was computed from stable vortex con- V3243 +3)
figurations, and its eigenvalues and eigenvectors were found. Ho > R (A3)
This study is also relevant for the understanding of the nor-
mal modgs of charged particles confined to a finite cyI|ndr|—.|.he three real roots far are given by
cal metallic hole.
We observed that the stable vortex configurations have a
pure rotation of the entire vortex system as the lowest eigen- 12=24 /1 ¥ 1 co{ at 2””) _ 1 (Ada)
mode. This is in agreement with recent results from simula- N 3 (2h)? 3 (2h)*’
tions of vortices in Corbino disk¥, which tells us that the
vortex arrangements rotate as a rigid body within the elastigvith n=0, 1, 2, anda is determined by
limit. The highest eigenmode is related to the so-called
breathing mode—i.e., a compression of the configuration as 1+(2h)?
a whole. For low vorticity values, the second lowest eigen- Cosa=- Tm (A4b)
mode usually corresponds to the intershell rotation, while the {1 + ]
creation of whirl and movement of vortices takes place at 3

higher vorticity.

The calculated eigenmodes present a marked dependen®dviously, forn=2 we have a purely imaginary solution for
on the magnetic field. Distinct modes may behave differentlyr. The other two solutions for represent radial positions in
as function of the magnetic field. The softening of the modesvhich the vortex polygon is pushed towards the edge,
yields a threshold magnetic field below which some of the=p,/R, and is stablg¢concerning motion in the radial direc-
computed eigenvalues are negative. This indicates a saddfien), rs=ps/R. Therefore,
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2
-1/2 HR  « DB{:HORZ_ 1 1 s '
pu=Hp 2\/1+ 3 0085—1, (A5a) 2 1-r2 (2% (1+r??2
1 1
[ HR a o« D¥='[—22'T]’
pS:Hal/Z\/ 1+ (; (NESiﬂg—COSg)-l, (1+r) (Zr)

andr=p¢/R. The eigenvalue problem leads to

(A5b) o
o . 5 D} D3\ (su
where« is given by Eq.(A4b) remembering thati2=HgR". D =0, (A9)
In Fig. 2, for the casd.=2, solid and dashed lines depict, D> Di/\Si
respectively,ps and p, as function ofH,. Expanding Egs. ith
(A5) for large HyR? (or, equivalently, for small 1/ and
neglecting terms of orde(l/2h)?, one obtains o2\
giecting i ! >\'+=—<—> (D}, + D). (AL0)
\/72 = 2\R
Pu=\1- HoR? (AGa) Above,i=x ory, s;; () is the eigenvector components in
q thei direction for particle ¥2) and\! are the eigenvalues. A
an straightforward calculation yields the following eigenvalues:
ps= Hy'2. (A6b) =0
The first expression comes from the balance of the inward
shielding and the outward image forces acting on a vortex, 8 [ Ho 1 R2 - p?
neglecting the interaction with other vortices and their im- M:E D TRl (R 25 |-
ages. This should be realized when such vortex is close to the R*=ps (R°+p))

edge. So it is natural that when the magnetic field increases,
pu Moves towards the disk edge with Eé&6a) as the limit. 8 | Hg 1 2p§ 1
. . . . = _—— 1 + —
The second expression is simply the position of the two- 2 R-p? R -p2) RE+p2]
vortex ring if there were no images—i.e., no interaction with s s s

the disk edge. It is easy to find from E@), neglecting the 8 oR2 oR2
terms due to the interactions with images, that = =| Hp- + ,
il RLT (RR-pD)?  (RP+pd)?
. +

p = Hy (A7) with their respective elastic modes being
where the plugminug sign should be taken when ofeero) S=8x=0, Syy=-%,, — rotation,
vortex is the center of the regular polygon configuration with
N sides. Fol.=N=2, this reduces to EqA6b). Dotted lines Six=5x=0, sy=+s,, —translationl ,
representing EqA7) are shown in Fig. 2 foL=1—8. For
each of these configurations the actpahas Eq.(A7) as a S= +Sp Sy=S5y=0, — translatiori,

limit, since vortices are more closely packed when the mag-
netic pressure increases, thus diminishing the interaction
with the disk edge.

We now turn to the problem of finding the elastic modesin the above expressions, translatiaorill) means translation
for L=2. If we consider that the vortices sit gi,0) and  orthogonal(paralle) to the axis joining the two vortices.
(=ps,0), the dynamical matrix takes the following form in These elastic modes, as weIIe;st)\EISHO, are plotted in
this case Fig. 5.

It would be interesting to compare the obtained formula

Six=~Sx Siy=S=0, — compression.

X X .
D1 D; 0 0 for \} with the ones predicted if there were no interaction
M. = 1(2\ D3 DI 0 O A8 with the interface of the disk. The dynamical matrix in such
M=o\ R 0 0 Dy DY/ (AB)  case is much simpler,
0 0 Dy D} 3 -1 00
where 2 -1 3 00
2o '
« HR 1 <1+ 2r2>+ 1 REpo 01l
o2 1-r2\T 1-r2) (22 (1+4r)% 0 0 11
which has eigenvalues 0H4/R? (twofold degenerade and
DX=— 1 + 1 8H,/R?, related to pure rotation, translation, and pure com-
2 (L+r3)2  (2r3)2 ]’ pression, respectively.
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