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dc transport in superconducting point contacts: A full-counting-statistics view
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We present a comprehensive theoretical analysis of the dc transport properties of superconducting point
contacts. We determine the full-counting statistics for these junctions, which allows us to calculate not only the
current or the noise, but all the cumulants of the current distribution. We show how the knowledge of the
statistics of charge transfer provides an unprecedented level of understanding of the different transport prop-
erties for a great variety of situations. We illustrate our results with the analysis of junctions between BCS
superconductors, contacts between superconductors with pair-breaking mechanisms, and short diffusive
bridges. We also discuss the temperature dependence of the different cumulants and show the differences with
normal contacts.
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I. INTRODUCTION particle undergoes a cascade of Andreev reflections in the
The current-voltagél-V) characteristics of superconduct- contact interface. They showed that a MAR in which a qua-

ing contacts have been the subject of investigation during théiParticle crosses the interfaneimes becomes possible at a
g ) d g yoltage eV=2A/n, which explains naturally the SGS. The

last four decades. The first experimental analyses were pe e X ; -
formed in tunnel junctiondIn this case the current inside the duantitative analysis of the I-Vs was based on a semiclassical
gproach, which fails away from perfect transparefféyA

superconducting gap is suppressed, and the results can . . .
accurately described with the BCS thedrfiowever, very €W years later, Arnold reported the first fully microscopic
! calculation of I-Vs based on a Green'’s function appro&ch.

often a significant current is observed in the subgap region, The theoretical discussion was finally clarified with the

\ﬁlc?irg?';?}%tmk;(ﬁeixw:'rge?e V\gﬁ?e;hg Sfrrzpllgr t:ggeélj?;g%advent of modern mesoscopic theories. Using the scattering
; P y lay " formalism®17” and the so-called Hamiltonian approdéh,
who noticed a small onset in the current when the applie

. ; ifferent authors reported a complete analysis of the dc and
voltageV was equal to the energy gayp/e, in a tunneling 5. Josepshon effect in point contacts. These theories clearly
experiment betV\_/een two equal superconduct_ors. Relativelyhowed that the MARS are responsible of the subgap trans-
soon afterward it was apparéfitthat not only is there an port in these systems. They also showed that the multipar-
anomaly in the current a&V=A, but, in fact, at all submul-  tjcle tunneling of Schrieffer and Wilkins and the MARSs are
tiples 2A/n, wheren is an integer. This set of anomalies is jndeed the same mechanism. The new microscopic theories
referred to asubharmonic gap structuesGS, and its tem-  have also allowed the calculation of a series of properties,
perature and magnetic field dependence were thoroughlyuch as resonant tunnel#ig® shot noisé!?2 and the Sha-
characterize§® piro steps?®

The first theoretical attempt to explain the SGS was done From the experiment point of view, the main problem has
by Schrieffer and Wilking,who noticed that if two electrons always been the proper characterization of the interface of
could tunnel simultaneously, this process would become erthe superconducting contact. Uncertainties in the interfaces
ergetically possible a¢V=A and cause the structure in the properties often avoid a proper comparison between theory
I-V observed by Taylor and Burstefa Within this multipar-  and experiment. The situation has considerably improved
ticle tunneling theorythe origin of the SGS would be the with the appearance of the metallic atomic-sized contacts,
occurrence of multiple processes in whiohquasiparticles which can be produced by means of scanning-tunneling-
simultaneously cross the contact barrier. The original perturmicroscope and break-junction techniqé&s? These
bative analysis of this theory has serious problems. In pamanowires have turned out to be ideal systems to test the
ticular, the current was found to diverge at certain voltagemodern transport theories in mesoscopic superconductors.
which avoids calculation of meaningful 1-Vs within this ap- Thus, for instance, Scheer and cowork&fsund a quanti-
proach. A second explanation was put forward bytative agreement between the measurements of the current-
Werthamet? who suggested that the SGS could be causedoltage characteristics of different atomic contacts and the
by a self-detection of the ac Josephson effect. The maipredictions of the theory for a single-channel superconduct-
problem with this explanation is that it invokes two different ing contact:®*8 These experiments not only helped to clarify
mechanisms for the odd and even terms, while the experithe origin of the SGS, but also showed that the set of the
mental current jumps are identical for both series. In 1982ransmission coefficients in an atomic-size contact is ame-
Klapwijk, Blonder, and Tinkhart introduced the concept of nable to measurement. This possibility has recently allowed
multiple Andreev reflectiofMAR). In this process a quasi- a set of experiments that confirm the theoretical predictions
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for transport properties, such as supercurfémipise®? and  which lead to a nonuniversal behavior of the transport statis-
even resonant tunneling, in the context of carbontics, predicted theoreticaty ~ and confirmed
nanotube$® From these combined theoretical and experi-experimentally* Here, we note that a doubling of the noise
mental efforts a coherent picture of transport in superconwas experimentally observed in diffusive wifés;onfirming
ducting point contacts has emerged with multiple Andreevearlier the_oretical predictior’§.However, to trace this back
reflections as a central concept. to a doubling of the elementary charge transfer follows only
The most recent development in the understanding of th&f0m an analysis of the counting statistics. A direct experi-
dc transport in superconducting contacts is the analysis of th@ental determination of the doubled charge transfer was re-

full-counting statistic$#35 Full-counting statistic§FCS) isa ~ Cently performed in a conductor containing a tunnel
familiar concept in quantum opticésee for instanc¥), junction?’ Here, the underlying statistics is Poissonian, and

which has been recently adapted to electron transport in m he noise directly gives access to the charge of the elemen-

8,59
soscopic conductors by Levitov and cowork&t&CS gives ary event:

- . An interesting problem occurs, when one applies the con-
the probability P(N) that N charge carriers pass through a cept of counting statistics to a supercurrent through a quan-

conductor in the measuring time. Once these probabilities arg, 1, contact” The resulting statistics cannot be directly re-
known one can easily compute not only the mean current angteq to a probability distribution because some of the
noise, but all the cumulants of the current distribution. Sincepropapilities” would be negative. A closer inspection of the
the introduction of FCS for electronic systems, the theoryformalism showed that the interpretation of probabilities re-
has been sophisticated and applied to many different contexfs on the proper definiton of a quantum measuring
(see Ref. 38 for a recent revigw device®®-%2As we will see below, in superconducting con-
The counting statistics of a one-channel quantum contagicts out of equilibrium, these problems do not occur and all
has the surprisingly simple form of leinomial distribution probabilities are positive.
P(N)=(})TN(1-T)"N, where T is the transmission prob-  Concerning the practical measurement of the FCS, re-
ability andM ~V is the number of attemp&:*° The gener-  cently Reuleet al5364were able to measure for the first time
alization to many contacts and/or finite temperatures ishe third cumulant of current fluctuations produced by a tun-
straightforward, by noting that different energies and channel junction. While the result was in agreement with the
nels have to be added independently. In this way, the countheoretical predictiofi® the interpretation had to account for
ing statistics of diffusive contacts at zero temperdfuemd  the effect of the electronmagnetic environnf@ot imperfect
at finite temperaturéscould be obtained using the universal voltage bia$® This experiment has already triggered further
distribution of transmission eigenvalu®s*?|t is worth not-  theoretical predictions for various systePds’® as well as
ing that the FCS in the limit of small transparency reduces t;ew proposals for improved measurement seftipsotably,
a Poisson distribution which can also be obtained using a recent experiment has been able to measure a fourth-order
classical arguments and neglecting correlations between thsrrelation of current fluctuatior’8.There also exist several
different transfer events. Interestingly, the Poissonian charagheoretical proposals to directly measure the counting
ter allows to directly extract the charge of the elementarystatistics3®73
event, which can be used to determine, e.g., fractional In Ref. 34 we have demonstrated that the charge transport
chargeg*~*¢ A general approach to obtain the counting sta-in superconducting point contacts out of equilibrium can be
tistics of mesoscopic condutors was formulated by NaZarov described by amultinomial distribution of processes in
using an extension of the Keldysh-Green’s function methodwhich a multiple charge is transferred. More importantly, we
which allowed to present the counting statistics of a largehave shown that the calculation of the FCS allows us to
class of quantum contacts in a unified marfidn Ref. 34 identify the probability of the individual MARs and the
we have shown, how this method can be used for a timeeharge transferred in these processes. This information prob-
dependent transport problem, such as a superconducting coably provides the deepest insight into the transport properties
tact out of equilibrium. of these systems. In this sense, in this work we present a
The counting statistics of a contact between a normatomprehensive analysis of the dc transport properties of su-
metal and a superconductor at zero temperatureed®@A  perconducting point contacts from the point of view of the
was shown to be again binomial with the important differ- FCS. We show that even in the most well-studied situations,
ence that only even numbers of charges are transféffBie  such as a contact with BCS superconductors, the FCS pro-
probability of an elementary event is then given by the An-vides a fresh view. In comparison to Ref. 34, we analyze new
dreev reflection coefficierR,=T2/(2-T)? (Ref. 49. Again,  situations, such as superconductors with pair-breaking
the generalization of this result to many channel conductorsnechanisms and SNS diffusive systems, and we also extend
is obtained by summing over independent channels. For aur analysis to finite temperatures.
diffusive metal the resulting statistics was shown to be an The paper is organized as follows. In Sec. Il, after intro-
exact replica of the corresponding statistics for normal diffu-ducing some basic concepts of charge statistics, we discuss
sive transport, provided the double charge transfer is takethe calculation of the cumulant generating functional within
into accoun®? This holds for coherent transpoetV<E,  the Keldysh-Green’s function approach. Section Il is de-
whereEq, is the inverse diffusion time, as well as in the fully voted to the calculation of the MAR probabilities at zero
incoherent regime V> E+, (Ref. 51). For intermediate volt- temperature. We present both the results of a toy model and
ages, correlations of transmission eigenvalues at different enthe full expressions. In Sec. 1V, we apply the results of Sec.
ergies modify the distribution of transmission eigenvakfes, Il to describe the different transport properties of three dif-
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ferent situations(i) a contact between BCS superconductorst,>#/eV, these oscillating currents do not contribute to the
(i) a contact between superconductor with a modified dennet charge transfer in which we are interested. However, this
sity of states due to a pair-breaking mechanisms, @nda intrinsic time dependence is reflected in the CGF, and a little
short diffusive SNS contact. In Sec. V, we analyze the transeare has to be taken when the FCS is defined.
port at finite temperature, paying special attention to the third To obtain the FCS in a superconducting point contact, we
cumulant. Finally, we present our conclusions in Sec. VI. make use of the Keldysh-Green’s function approach to FCS
introduced by Nazardv and Belzig and NazardV, and we
refer the reader to these papers for further details on the basis
Il. DESCRIPTION OF THE FORMALISM of this theoretical approach. In what follows, we concentrate
A. Some basic concepts ourselves on the specific difficulties introduced in the case of

Our goal is to calculate the full-counting statistics of al contact between two superconductors. Our starting point

superconducting contact. This means that the quantity it{fr the determination of the CGF is to define the relation
which we are interested is the probabiIiF%O(N) that N etween the CGF and the counting current in analogy to

) o~ Refs. 41 and 47
charges are transferred through the contact in the time inter-

val to. Equivalently, we can find theumulant generating J i (to
function (CGF) S (x), which is simply the logarithm of the 5(3(0()() = éfo dti(x.b). (4)
characteristic function and is defined by
This scalar current can be calculated in terms of rifagrix
exp(S, (X)) = 2 P (NJexp(iNy). (1) current which describes the transport properties of the con-
N tacts. Nazarov has shown that, in the case of short junctions,

Here, y is the so-called counting field. From the knowledge the matrix currentin Keldysh-Nambu spagedopts the fol-
of the CGF one easily obtains the different cumulants thatowing form:"
characterize the probability distribution

ez( ZT[él(X)@? éz]

o 1(ott)=-— > .
C,= (-I)”a—XnS(O(X) - (2) T\4+T({G1(x)eG,} — 2)

x=0

)(t,t')- (5)

Note that the first cumulants are related to the moments OlF|ere Gl(z?(t’t ) denote the matrix Green's functions on .the
the distribution as follows: left and right of the contact. In our problem these functions

depend on two time arguments, and the productappear-
C,= N= > NP, (N), C,=(N- N)?, ing in Eq.(5) should be understood as convolutions over the
N 0 intermediate  time  arguments, i.e., (A®B)(t,t")
=[dt"A(t,t")B(t",t’). It is worthwhile to note that the deri-

_ 3 _ 4 2 vation for the matrix current in Ref. 74 was done for Green’s
Ca=(N=N)% C4= (N=N)"~3C3, 3) functions in the static situation, in which case all Green’s
and so on. It is also important to remark that these cumulantiinctions depend only ot-t’. However, the derivation can
have a simple relation with the relevant transport propertiebe directly taken over to time-dependent problems because
that are actually measured. Thus, for instance, the mean cuthe time-dependent Green’s functions satisfy the normaliza-
rent is given byl =(e/ty)C; and the symmetrized zero fre- tion condition
quency noise is given b§ =(2€?/t,)C, (Ref. 85. For higher . . .
cumulants such relations are not straightforwardly obtained, (GeO)(tt)=at-t). (6)
but it can be shown that the cumulants defined above corre=jn|ly, the time-dependent scalar current is obtained from
sponq to th7eeooﬁtiservable guantities in an electron—countln%e matrix current by
experiment.”60.61Thus, the cumulants represent all informa-
tion, that is available in a measurement of the charge accu- 1 .~
mulated during the observation periggl 1t = de Tind (o], (7)

where 7 =033 is a matrix in Keldysh( )-Nambu( ) space.

oi(r) are the standard Pauli matrices in Keldysh-Nambu
As mentioned above, our system of interest is a voltagespace.

biased superconducting point contact, i.e., two superconduct- | et us now describe Green’s functions entering E).

ing electrodes linked by a constriction, which is muchThe counting fieldy is incorporated into the matrix Green’s

shorter than the superconducting coherence length. We cofgnction of the left electrode as follows:

centrate ourselves on the case of a single channel contact

described by a transmission probability The main diffi- él(X,Lt’) :e-ix?x/2é1(t,t')eix‘n</2‘ (8)

culty in the determination of the FCS arises from the ac .

Josephson effect. Here, a constant applied bias vokage HereG,(t,t’) is the reservoir Green’s function in the absence

gives rise to time-dependent currents as a consequence of théthe counting field. We set the chemical potential of the

Josephson relatiof¥/ dt) p(t) =2eV/ . In the long-time limit  right electrode to zero and represent the Green'’s functions by

B. Keldysh-Green'’s function approach to FCS
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él(t,t,) = ei ¢(t)?3/2és(t _ t,)e_i(ﬁ(tr)?s/z (9)

and éz(t,t’):és(t—t’). Here, ¢(t)=¢o+(2eVIh)t is the
time-dependent superconducting phase difference,¢and

its dc part.és is the Green’s function of a superconducting
reservoir (we consider the case of a symmetric juncjion
which reads

Gyt-t') = f dEGY(E)eEtt), (10)
(A-Rf+R  (A-R)f

és(E):<— — — —)-
A-R(1-f) (R-AF+A

Here,E(K)(E) are retarded and advanced Green’s functions

of the leads, and(E) is the Fermi function. Advanced and

retarded functions i10) have the Nambu structurE(K)
=gRAm+fRA7 fulfilling the normalization conditionf?

+g°=1. They depend on energy and the superconducting or-

der parameteA.

PHYSICAL REVIEW B70, 214512(2004

(G1® Gy(E,E") =de161(EaE1)Gz(E11E')- (13

The trace runs not only over the Keldysh-Nambu space, but
also includes a trace in the energy arguments, i.e.,
JdEQE,E).

The time-dependent Green’s functions of E§) fulfill
the normalization condition of E@6). This enables us to use
the relation

2-{G1,Gyle = (G1 - Gp)? (14)
to write the CGF as
SO0 = 2Te{in O, +1n O, (15

h

whereé,_,z11(\57/2)((:51()()—(:52). One can show that both
logarithms give the same contributi&hand, therefore, we
concentrate on the analysis of the first one and drop the sub-
index +. Additionally, we use the relation Tr i[@=In detQ

to write the CGF as

Using the time dependence of the leads Green'’s functions

it is easy to show from Eqb5) that the scalar current admits
the following Fourier series:

() = 2 1,(0em, (1)

2 .
S0 = 22 n detQ(). (16)

Thus, at this stage the calculation reduces to the calcula-
tion of the determinant of a infinite matrix. Due to the time

which means that the current oscillates with all the harmondependence of the lead Green’s functions, their form in en-
ics of the Josephson frequency. It is important to stress thairgy space isG(E,E’)==,Gg(E)S(E-E’ +neV), where n

the components,(x) are independent of the dc part of the -0 +
superconducting phase. In this work we only consider the d¢ '~
part of the CGF. For this purpose, we take the limit of a long
measuring time,, much larger than the inverse of the Josep-

shon frequency, and, hereafter, we drop the subingliExthe
expression of the CGF. From Eq4) and(11) it is obvious

that by selecting the dc component, the dc part of the phase
drops the calculation, and the CGF is free of the problems
related to gauge invariance found for the dc Josephson

effect47.60.75

Keeping in mind the presence of the time integration de-

scribed aboved, and with the help of E@S)—(7), one can
integrate Eq(4) to obtain the following expression for the
CGF of superconducting constrictiofis:

S0 = 2Tr ln{l #21(6100.6). - 2]}. (12

The symbol® implies that the products of the Green'’s func-

2. This implies that the matrié also admits the same

%ype of representation, which, in practice, means Qas a

block-tridiagonal matrix of the form

0
Q-4 Q-2 Qo 0
Q= 0 é—z,o éo,o éo,z 0 '
0 éz,o Q> Qua
o . .-

where we have used the notatiég,m:Q(E+ neV,E+meV.

Using the definition of the matrié and the expressions of
the lead Green functions of Eq8)—<10), it is straightfor-
ward to show that the differer(d X 4) matricesQ,, have
the following explicit form in terms of the advanced and

tions are convolutions over the internal energy argumentgetarded Green’s functiong*” and f** (remember that we

ie.,

consider a symmetric junction

Prer= Pt Oha=Oh  ~Pa— € Xpne1 = pn %
-y T ~bn-f1 P~ Pr-10n ~ O ~Pn - €Xp,_1+ pp
Qua=1+— X841 = 6, -3, PP+ Oy — 0 — 4B,
_’En - e_iX‘Sn—l + 6, - f;\ +Pn Pn-1~Pnt 0~ gﬁ—l
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0 € (Brr+fhy) O

5 JT| O 0
2= 7 ~
n,n 2 0 5h+1

0 0

0
- - ﬁ X(Pr-r + i)
Qn,n—2 - 2 0
Bn1

where we have used the shorthand notatigi'=gRA(E
+ne\) and p=(g*-g"f, f being the Fermi functiorip=(fA
~RYf, 8=(gh-gR)(1-f), and d=(fA-fR)(1-1).

One can restrict the fundamental energy intervaktig’
e[0,eV], and, therefore, the CGF adopts the fo(y)

=(2ty/h) [$'dE In deQ. From Eq.(17), it is obvious that
detQ can be written as the following Fourier seriesyin
n=oo

detQ(x) = > PA(E,V)e™,

n=-o

(18)

where the coefficient®/(E,V) have still to be determined.
Keeping in mind the normalizatio§(0)=0, it is clear that
one can rewrite the CGF in the following form:

2t0 eV [ * )
S(X):—f dEIn| 1+ X P(EV)(€X-1) ],

h 0 n=-o
(19
where
Pa(E,\V) =P/(EV)] X, PIE,V). (20)

Equation(19) has the CGF form of a multinomial distribu-
tion in energy spacéorovided more than onB, is different
from zerg. The different terms in the sum in EGL9) corre-
spond to transfers of multiple charge quantat energyE
with the probability P(E,V), which can be seen by the
(27/n)-periodicity of the accompanying-dependent count-

ing factor. This is the main result of our work, and it proves
that the charges are indeed transferred in large quanta. Of

course, we still have to determine the probabilitg$E, V),
which is a nontrivial task; it will the goal of Sec. Il C.

C. Cumulants

PHYSICAL REVIEW B 70, 214512(2004)

Pre
0 0

0 eiX(fﬁﬂ =P+

0 0

0 0 0
0 T)n—l 0

0 0 ol a7
0

e_iX(fﬁ—l ~Pn-1) O

respectively. From Eqg2) and (19), it follows that these
cumulants can be expressed in terms of the probabilities
P.(E,V) as follows:

C.= %foeVdEEn‘, nP,, (21)

C,= %deE[g n?p, - (; npnﬂ, (22)
Cs= %joeVdE[g P+ 2(% I'an>3

- 3(2 nPn)(E nan>] . (23)

These expressions are a simple consequence of the fact that
the charge transfer distribution is multinomial in energy
space. At zero temperature the sums averre restricted to
positive valuesin=1). We remind the reader that the first
two cumulants are simply related to the dc curreht,
=(elty)C4, and to the zero-frequency noi§e=(2€?/t,)C,.

It is instructive to discuss some consequences of these
expressions. Let us first recall, what happens when only one
process contributes, which has, for example, the and&he
first three cumulants are

eV
2t,dE
Cin=n f —‘;] P, (24)
0
eV
2t dE
Con=1? f OTPn(l -P,), (25)
0
eV
2t,dE
Can= nsf (;] Pn(1-Py)(1-2P,). (26)
0

We see, that théth cumulant is proportionat', i.e., theith

As explained before, from the CGF one can easily calcupower of the charge of the respective elementary event. The

late the cumulants of the distribution and, in turn, manyexpressions under the integral in Eq24)—«(26) have the
transport properties. Of special interest are the first three ctsame form as for binomial statistics, however, in general the
mulantsC,, C,, and C5, which correspond to the average, P,(E,V) depend on energy in a nontrivial way and the
width, and shape of the distribution of transmitted chargeenergy-integrated expressions for the cumulants do not cor-
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respond to binomial statistics. A simple interpretation in  TABLE I. Green’s functions in the toy model. The indicggs
terms of an effective charge transferred is only possible ifienote the respective element in Nambu sp#ge: ¥ 75— 27,et1x
P.(E,V) <1 for all energies, in which case one recovers thedenotes a matrix in Keldysh space. The table holds for the left and
standard result for Poisson Statisti(is;n:ni"lcl;n. Accord-  right terminal, provided the energies and the counting fields are
ing to Eq.(26), the sign of the spectral third cumulant can bechosen properly.

positive or negative, depending on the sizé>p{positive for

P,<1/2 and negative foP,>1/2). The overall sign de- super:  E>A |A|>E -A>E
pends on the energy average and is not simple to predict. normal: E>eV E<eV
Note, however, that the probabilities of MAR processes of K - -
higher orders decrease approximatelyTdsWe may there- G11(x) K-(x) 0 Ki(x)
fore speculate that to obtain a negative third cumulant for 020(x) _k_(_X) 0 —k+(—x)

higher order processes we will need more open contacts
rough estimate is thus that=1/{2 to haveP,=1/2 and,
therefore,C;<<0).

The general statisticgl9) is a multinomial distribution,  model that nicely illustrates the transmission dependence of

and it is therefore interesting to compare wittdependent  these probabilities, and second, we present the general ex-
binomial distributions. This is most easily done by assumingyressions.

that only two processes compete. Taking these processes to
be of ordern andm, the first three cumulants read

Cl;nm= C1;n + Cl;mv (27)

G12020(X) 0 etixms 0

A. Toy model

To obtain a feeling for the forthcoming calculations we
now study a strongly simplified model of a superconducting
contact. For that purpose, let us assume that we can neglect
the Andreev reflections for energies outside the gap region
and replace the quasiparticle density of states by a constant

&V 2t,dE
C2;nm: C2;n + CZ;m_ 2nm h
0

evor g for |E|>A. Furthermore, we neglect that energy-dependent
C3nm=Cspn+ Cam— 3nmJ “=p P.[n(1-P,) phase shift~aco$E/A), usually associated with the finite
0 penetration of excitations close to the gap edge. Mathemati-
+m1-P,)]. (29  cally, this means that we SERA(E|<A)=1, gRA(E|>A)

_ o ==%1, and both are equal to zero otherwise. This simplifies
We_ see that thg first cumulant is just the sum of the CoNntriyha calculation a lot, since the matri@ in Eq. (16) now
butions of the different processasandm, and therefore, we becomes finite. In particular, for subharmonic voltagé

mgst look at higher cumulants to ggin information on COMe-_5A /n, the matrix is also energy independent. It is interest-
lations between the processes of different order. In both, thﬁ1g to note that the toy model is also able to describe the
second and third cumulant, such correlations appear, and it lﬁ)unting statistics of normal and Andreev contacts

evident from Eqs(28) and(29) that bOth are .reduced below 14 facilitate the discussion of the matrix structure it is
the value obtained for independent binomials. The correlaasefm to introduce the @2 matrix in the Keldysh subspace
tion terms appear inside the energy integration, and, there-
fore, both processes must be possible at the same energy. Ki(x) = F 75— 27,65 (30)
Finally, we note that in order to study correlation between B - R

N different processes one would have to look atNileorder  where 7, are Pauli matrices and.=(7,+i7,)/2. In fact, K,
cumulant. This becomes clear if one notices that onlyNtie  correspond to occupietempty) quasiparticle stategfor E
cumulant contains a term with products Nf probabilites > |A|). The matrix structure for superconducting or normal
and, therefore, the possibility to have a product of probabiliterminals is summarized in Table I. The counting statistics
ties of N different processes. are obtained from the general relati¢i6).

To calculate the determinant we note ti@tis a band
matrix of width 3 in the energy index. Then the following
This section is devoted to the calculation of the probabili-reduction formula for the determinant is usefaksuming a

ties P,(E,V) at zero temperature. First, we discuss a simpléblock starts at soma, which we arbitrarily set to zejo

Ill. MAR PROBABILITIES: ZERO TEMPERATURE

é ’ é , 0 0 . S .
S00 T Q2= Q0Q Q02 Qs O
Q20 Q22 Q24 0 — I > ~ .
b b _ |Qo.d Qs Qaa |- (31)
0 Qs2 Qa4 0 . .
0 0o - :
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Another useful propertgwhich holds in the toy modgis the R _ k-(X) n>0
Nambu structure of th€'s [see Eq(17) and Table J: diag- (G22=) . : (39

: . ~K.(x), n=0
onal components in energy space, i. @,, are always
block-diagonal in Nambu space and the off-diagonal compo

nents Qn:z are purely off-diagonal in Nambu space andwise. The only nonzero block is the=0 energy block
diagonal in Keldysh space. ConsequenthQ, ;.-

—Qn_zyanann,n_z, appearing in the expansion of the deter- . - K_(x) -1
minant, is block-diagonal again, and the whole calculation of Gi(xY) —Gz={ _ 1 —Ki=y)'
the determinan{16) boils down to a recursive calculation of X
determinants and inversions o2 matrices. This will be-  which yields for the CGF in the forri.2) the determinant of
come clearer, when we treat the explicit examples below.

and for the superconductd6,);,=(G,),;=7 and 0O other-

(36)

-1 Ii.-k
1. Normal Contact 2 4( + -

It is instructive to demonstrate the procedure first for a Q T~ T ' 37
normal contact. We restrict the calculation here to (thd) Z(K‘f —KJ) 1- 2
components in Nambu spageee Table.)l There are no
off-diagonal components and th{2,2) components actually To calculate the determinant we subtract from rows 3 and 4
give the same contribution. The Green'’s functions are rows 1 and 2, multiplied withT/4(1-T/2)(K,-K_), and

- - make use of the fact thélK_—K,)?=4(1-&2Y). The matrix is
G, = K, n=0 , éz= K.(0), n=>0 _ then tridiagonal, and its determinant is
K.(x), n<0 K.(0), n<O
(32 (

T\? T? "
1—§> [1+(2_T)2(e xX-1)|. (38)

Note that we hgve chosen the fun(’JIament_aI energy mtervqlhe prefactor is canceled because we are operating under the
[-eV/2,eV/2], since then the Green's functions are constani, ‘and have to normalize. Note that the evaluation of the

inside each interval. Then we find determinant outside the transport window can be done in a
n similar way. One obtains for the determinant of one block

~ T.(eX-1) n>0 > —ors ” 2 2 . L
Q-Dpm _ NP N ~0 (1-T/2)“-THK_(x)-K_(=x)1°=(1-T/2)4, which is inde-

T2 Snm| T3+ nel-T h=4 . (33 pendent of the counting fielgy and is therefore canceled

7(e™X-1 n<o0 after normalization of the CGF. Finally we obtain for the

) ) FCS(collecting all prefactong®

The matrixQ has, thus, a block-diagonal form. The blocks

n>0 andn<0 are tridiagonal, and the determinants are all 2eVi T2

equal to 1. The remaining determinant of te0 block is Sk = h Inj 1+ 2-T)7

(€x-1) 1. (39)

The statistics correspond to a binomial distribution of charge
transfers. The Andreev reflection leads tergeriodicity in

X, which shows that only couples of charges can be trans-
The CGF s, finally, S(x)=(2eVi/h)in[1+T(¢x-1)] in  ferred and the charge transfer probability for odd-charged
agreement with Levitov and Lesovik Note that a factor of Numbers vanishes. The number of attempts, determined by
2 enters the CGF because we get an additional contributiof'® Prefactor of the In i39), remains unchanged in com-
from the(2,2) components in Nambu spagbus, it is due to  Parison to the normal case.

spin).

(1 + \ﬁ' ﬁeiX
de

=1-T+Téx. 34
—\ﬁ' 1—\5') (34

3. Superconducting point contact

2. Andreev contact We now come to the main subject of this paper, a point
We now consider a contact in which one of the sides icontact between two superconducting banks held at different

voltageleV| <A to the normal contact. The Green’s functions dition for energies to be subgap. Here, we restrict ourselves
are again diagonal in the energy space, since we assume tfgtSubharmonic voltages, which we write, in general, as eV
the superconductor is at zero potential. For the normal metaf2A/(N—1), where N denotes the order. The dominating

we find (taking as fundamental energy interjakV,eV)) charge transport mechanism we expect is Mi@harges are
transferred. In the toy model, it is the only transport mecha-
. k—(X) n=0 nism(since Andreev reflections above the gap are neglgcted
(G)11=) . ' , To obtain single-valued matrix entries, it is favorable to
K.(x), n<O0 choose as fundamental energy interf@leV] for even N

214512-7
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TABLE II. Matrix structure of the Green functions for the toy
model of a superconducting point contact.

n N=2 N=3 N=4 N=5 N=6
2 + + + + + + +0 +0
+ + + + + + 0+ 0+
1 + + +0 +0 00 00
+ + 0+ 0+ 00 00
0 +0 00 00 00 00
0+ 00 00 00 00
-1 0- (e 00 00 00
-0 -0 00 00 00
-2 - - - - 0 - 0 - 00
- - - - -0 -0 00
_3 —_ — - — —_ — - — 07
- - - - - - - - -0

=2M and[-eV/2,eV/2 for oddN=2M-1. For the Nambu

row indices of the Green’s function of the left terminal we

find
Nambu order |Ej<A
upper odd -Msn=M-1
lower odd -M+1lsns<M (40
upper even —M-1sn=sM-1
lower even -M=sn=<sM

The row indices in Nambu space of the right Green’s func-

PHYSICAL REVIEW B70, 214512(2004

. AT(Rpp -1
Q=1+ 2( 1 —f<+(—x)> (42
and
. ““r'_ k_ 0 e—i)(a'3
QZB:1+%( o€ ) 3
e - K+(0)

By comparison with Eq(36) we see that In dé2A yields the

counting statistics of usual Andreev reflectidgpyg actually
gives the same result. This is most easily seen, if the unitary
transformationUQ,gUT with U=diage™¥? e77¥?) is ap-
plied, which transform®),5 into Q,,. Note that the signs of
the off-diagonal matrices do not matter because they can be
eliminated by similar unitary transformations. The counting
statistics are therefore given by H§9), the same as for the
Andreev contact.

Now we come to the slightly more complicated cdse
=3 (eV=2A/2). Here we encounter the matrix

K(yp O 0o -1 0 0
0 K(0) €%3 0 0 0
0 € 0 o0 0 -1
-1 0 0 0 e 0
0 0 0 € —K,(0) 0
0 0o -1 0 0 -Ki-y

(44)

tions have the energy arguments of upper and lower rowgnce again, the matrix decouples into two blogksvs 1,4,5
interchanged.To clarify the matrix structure we have pre-ng rows 2,3,6 The first block is

pared Table Il. Each entry in the table denotes the energy for

the structure

(@b QE)
0 O/

where the seconNambu) indexi=1,2 plays no role. The

entries are denoted by for E>A, 0 for |[E|<A, and— for
E<-A.

= K_(X) - 1 O
v NT s
Qu=1+—| -1 0 eh®
0 &% K,(0)
It is already evident that we will encounter a three-particle

process if we apply the transformation U
=diagexplix73), explix7s),1). This yields

(45)

We observe that the matrix structure in all cases is similar.

A block with 0 and+ elements, i.e., connecting the quasi-
particle states above the gap to the subgap region is followed
a number of blocks inside the géagepending on the applied

voltage and, finally, is connected by a block with 0 and
elements to quasiparticle states below the gap.

Let us now discuss the casé=2 (eV=2A). Here the
relevant 8< 8 matrix is

K(y) O 0 -1
O-1 0 K.(0) e 0
Qr _ _(A ) i 41
VT/2 0 X  —K,(0) 0
10 0 Ry

—[K@By -1 0
063A0T = 1 + \? -1 0 1
0 1 K0

Evaluating the determinant we obtain the counting statistics
(including the other block, see belpw

2eVi T .
Inf1+———(e"™-1)|.
n Mt asan® Y
Evidently, this corresponds to the binomial transfer of pack-
ages of three charges, where the probability of a third-order
process isP;=T3/(4-3T)%. A similar procedure may be ap-

plied to the second bloo(@?,B. The result is the same. Physi-

(46)

Sx) = (47)

We observe, that the matrix decouples into two blocks of 4cally, the two blocks correspond to two independent pro-

X 4 matrices

cesses, which differ by the spin.

214512-8
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For higher-order processes the calculation goes in com-
plete analogy. The property of a decoupling into two inde-
pendent blocks remains. Furthermore, it is possible to the

shift the entirey dependence to the uppermagst the low-

es) block. This is achieved by a series of unitary operations

of the type[1,...,1,exfinxy7s),1,...,1. One can easily
convince oneself that for a process of ordiethis gives, for
example, the upper-left blodk_(Ny), and the remaining ma-
trix is now independent of. For example a fifth-order pro-
cess yields

K@By 100 0
— 1 010 0
\T
1+ 0o 101 o0 (48)
0 010 1
0 0 0 1 K,(0)

Additionally, the signs of the off-diagonal element may be
removed by unitary transformations. Evaluating the determi

nant we find S(y)=(2eVty/h)In[1+Ps(e™-1)], where Pg
=T%/(16-20T+5T?)2. This expression describes binomial
transfers of five charges with probabiliBg.

PHYSICAL REVIEW B 70, 214512(2004)

P,= T
‘T (8-8T+T)

T5
Pez ————————,
7 (16 - 20T + 5T%)?2

T6
C(2-T)%(16- 16T+ 1)’

Pe

T7
" (64— 117 +56T2- 7T3)2’

Pz

T8
T (T*-32T3+ 160T2 - 256T + 1282°

Note the limiting cases of these probabilitiBg~ TN/4N"1
for T<1 andPy=1 for T=1.

We can draw several conclusions from the toy model.
First, we obtain simple expressions for the probabilities of
multiple chargePy, which are not simple products of An-
dreev reflection probabilities and quasiparticle transmissions,
see EQ.(53). Furthermore, it is interesting to note that by

Pg

Using the above scheme, it is also possible to derive reyirtye of the unitary transformations we can interpret the
cursion relations for the probabilities. We find the probability charge transfer as simultaneous transmissioN ofuasipar-

for a process of ordeN

1

2l

AT
Al 4 YN-1

\E _ T
2)%7g

(49)

The factorsa, and y are determined from the recursion re-
lations

T T v
+ n-1
a-=1- , =, 50
" 4aJﬁr—1 o 4 a;—lan—l (50
with the initial conditions
— J”-_I—
y1=4T, af:1i\?. (51)

For general subharmonic voltaged/ZN-1), we find the
counting statistics

2eV .
S0 = = 2 In[1+ Py - ], (52
where the probabilities are given by
T2
P,=——, 53
2 (2 —T)2 ( )
T3
Pz ———
T (4-31)?

ticles. This explanation does not invoke any kind of com-
bined transfer of Cooper pairs and quasiparticle.

B. Full expressions

Let us now discuss the full expression of the probabilities

P.(E,V) at zero temperature. Sin€ehas a block-tridiagonal
form, in order to calculate its determinant we can use the a
recursion technique similar to the one described for the toy
model. We define the following 4 4 matrices:

Fin=Qinn— Qin,iniZF;%iZQiniZ,in; n=2
Fo=Qo,0~ Qo-F3Q-20~ Qo F2' Q0. (54)
With these definitions, d@ is simply given by deé
=I1I;._., detFy. In practice, deF,=1 if [n|>A/[eV]. This re-
duces the problem to the calculation of the determinants of
4X 4 matrices.
In the zero-temperature limit one can work out this idea

analytically, and after very lengthy but straightforward alge-
bra, we obtain the following expressions fBf(E,V):

T T T
PHEN) = K{zﬁ{l +5 (05~ - Z(f/jl)zBéz} - Z(f?)Z}

X[R«+ A].

n-1

PAEV) =2 I
1=0

-1

I1

k=—n+l+1

(T/4)|fﬁ|2] Jin=1

(55)

Here, we have used again the shorthagid(E)=g*RE
+neV) and defined
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= -1
VT T 2 : T .
Zin =1+ ?[gz(nﬂ) - ggn] - Z[fg(nﬂ)] Bg(n+2)vn =0, P(T<1)= 4n__1POPnH |f'|3|21 (59
k=1

(56) wherep(E) is the reservoir density of states. If we use this

" v - - . result in the current expressigaee beloy, we recover ex-
where a=R,A, K=(IIj_; detF_y)(ITj_; detFy) and the dif-  5cyy the result of the multiparticle tunneling theory of Schri-
ferent functions can be expressed as follqws-0): effer and Wilkins? As we mentioned in the introduction, the
- expression above leads to divergences in the current, which
w1 NT. o . T .. " shows that this problem is non-perturbative in the transmis-
(B =1 ?[gin ~Gin-n] - Z(f‘—'ﬂ)z/z’—'n’ (57) sion. Thus, even at low transparencies one has to use the full
expression of Eqs(55—57), where the mentioned diver-
— gences are regularized in a natural manner.
- @ NT. o LI For perfect transparenc{T=1), the absence of normal
detF.,= [ ( _n{li?[gin_gt(n—l)]}_Z(fin ) backscattering makes the expressions of the probabilities
P.(E,V) much simpler, and one can show that they can be
written as(n=1)

a=AR

% =
- T -1 -1
3 :(H detFy z))[—«ﬁ —gi‘><25 vin .
SAVE S e U PuT=0)=2 (L-lanP| II lad®|@-[a,
1=0 k=—n+l+1
T T
- Z|f§n|2> + Z(fﬁn_ fsn)(f5n2§n+ fénzgn :| (59)

) wherea(E) is the Andreev reflection coefficient defined as
Note that, since at zero temperature the charge only flowg(g) = —ifR(E)/[1+gR(E)] and a,=a(E+neV). As can be

in one direction, only thé®, with n=0 survive. It is worth  ¢aan in Eq(59), a quasiparticle can only move upward in

stressing that the full information about the transport PrOPeranergy due to the absence of normal reflection. If we use this

ties of superconducting point contacts is encoded in thesgypression in the current formula, then we recover the result
probabilities. Let us also remark th&,(E,V) are positive  piain by Klapwijk, Blonder, and Tinkhathfor T=1.
numbers bounded between 0 and 1, and fulfill the normaliza-

tion conditionZ,P,(E,V)=1. Thus, we see that for the finite
bias dc transport, where the superconducting phase does not V. APPLICATION TO DIFFERENT SITUATIONS
play any role, there is no problem with the typical interpre-
tation of P,, as probabilities” Moreover, although at a first
glance the expressions of Eq$5)—(57) look complicated,

As explained in Sec. I, with the expression of the MAR
probabilities we can easily describe many different transport

they can be easily computed and provide the most efficiergmpert'es' Moreover, not that so far we have not made any

way to calculate the transport properties of these contacts Inssumption about the lead Green's functigst and "
y ] ) P p. P R . " ‘entering in the expressions Bf,(E,V). Therefore, these ex-
practice, to determine the functioB4™" and defF,,, one can

U pressions allow us to address a great variety of situations. In
use the boundary conditid®,"®=detF,=1 for |n|>A/leV].  this section we analyze the zero-temperature transport prop-
In view of Egs.(55—57) the probabilitiesP,, can be in-  erties of three different situation§) a contact between BCS
terpreted in the following wayP, is the probability of a superconductorgji) a contact between superconductor un-

MAR of ordern, where a quasiparticle in an occupied stateder the influence of pair-breaking mechanisms, &iid a

at energyE is transmitted to an empty state at enef§y short diffusive SNS contact, where N is a normal disordered

+neV. The typical structure of the expression for this prob-region shorter than the superconducting coherence length.

ability consists of the product of three terms. Fiktgives

the probability to inject the incoming quasiparticle at energy

E. The termIT}_}(T/4)|f]? describes the cascade of 1 A. BCS superconductors

Andreev reflections, in which an electron is reflected as a Let us start analyzing the most standard situation, namely,

hole and vice versa, gaining an energy eV in each reflectiora contact between two BCS superconductors with a\gdp

Finally, J, gives the probability to inject a quasiparticle in an this case*R=iA//(E ¥ i7)?- A2, where=0", andg"R fol-

empty state at energig+neV. This interpretation is illus- lows from normalization. As mentioned in the introduction

trated in Fig. 1 of Ref. 34. The product of the determinants inthe current and noise of such a contact have been thoroughly

the expression of,, [see Eq.(57)] describes the possibility studied both theoreticafly1821.22and experimentall§?-32

that a quasiparticle makes an excursion to energies bElow Our goal here is to show how the knowledge of the FCS

or aboveE+neV. In the tunnel regime this possibility is very provides a different and deeper insight into the different

unlikely and at perfect transparency is forbidden. For thistransport properties.

reason the expressions of the MAR probabilities simplify a In Fig. 1 we show the first three cumulants of the charge

lot in these two limits, as we discuss in the next paragrapharansfer distribution: current, shot noise, and third cumulant.
In the tunnel regime a perturbative calculation yields Let us discuss their most remarkable featu(@sThe current

=1) exhibits the so-called subharmonic gap structure, as dis-
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<, 4 0.95 ~ ]
g : 00001 LEee o 3
L) : ; g )
1 1076 f” T e t
' g L__/':‘\ _%
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= 1 1 ] ' [ !
—_ 15 Third cumulant 7
= 10 N
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\L\} Ui = Y B e
-3 N 0.95 © 7] VIA
qob—a—o L 11 1 B
0 05 1 15 2 25 3 FIG. 3. Average MAR probabilities P, (V)

eV/A E(1/e\/)f8VdEPn(E,V) as a function of voltage for a contact be-

FIG. 1. Current, shot noise, and third cumulant at zero temperat-Ween BCS superconductors at zero temperature. The two panels

ture as a function of the voltage for BCS superconductors ofAgap correspgn(_:i tc_) two c_iifferent transmi_ssions. The _inde_x of the_ pro-
The different curves correspond to different transmission coeffi-CESSES IS indicated in the plots. Notice the logarithmic scale in the
cients as indicated in the panels. HeBg,=(2€?/h)T is the normal panel(a).

state conductance. o ) ) )
cumulant at low transmissions is described By=qg-C,

cussed in the introduction. This subgap structure evolvewhere againg is the quantized effective charge defined
from a steplike behavior for low transmission to its disap-above. For higher transmissions this cumulant is negative at
pearance at perfect transparen@y) The shot noise in the high voltage as in the normal state, wheg=(to/h)T(1
subgap region can be much larger than the Poisson noisel)(1-2T)eV, but it becomes positive at low bias, and after
(S poissor= 2€l). Moreover, in the tunneling regime the effec- this sign change there is a huge increase of the @4ic;.
tive charge defined as the ratie= S /21 is quantized in units The features described in the previous paragraph can be
of the electron chargey(V)/e=1+Int(2A/eV). This is illus-  easily understood with the help of an analysis of the prob-
trated in Fig. 2, where the rati@,/C, andC,/C, are shown abilities P,(E,V). To give an idea about them, in Fig. 3 we
as a function of the voltagéiii) As shown in Fig. 2, the third  have plotted their average value defined g_g(v)
= (l/e\MSVdEPn(E,V) for two very different transmissions.
First of all, note that, no matter what the transmission is, the
probability of ann-order MAR has a threshold voltagg/,
=2A/n, below which the process is forbidden. Whéh
>V,, ann-order MAR gives a new contribution to the trans-
port, which is finally the explanation of the subharmonic gap
structure. On the other hand, the big difference between the
tunneling regime and perfect transparency can be explained
as follows. At low transparency there are two factors that
make the subgap structure so pronounced. FirsY/,athe
n-order MAR is a process that connects the two gap edges,
where the BCS density of states divergisse Eq(58)]. This
fact, together, of course, with its higher probability, implies
that this MAR rapidily dominates the shape of the I-V
curves, giving rise to a nonlinearity ¥. Second, aV,, there
L _ is a huge enhancement of the probabilities of the MARs of
i — TN [ S S — orderm>n. This is due to the fact that precisely ¥} the
MAR trajectories can connect both gap edges, which as can
be seen in Eq.58) enormously increases their probability. At
FIG. 2. (@ Second cumulant an¢b) third cumulant at zero perfect transparency, the MAR probabilities do not exhibit
temperature for BCS superconductors. Both are normalized to thany abrupt featurefsee Fig. 8)]. This is due to the fact that
first cumulantithe average currentThe transmissions are indicated the BCS density of states is renormalized, and, in particular,
in the plots. the divergences disappegee Eq.(59)]. This fact explains
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naturally why the subharmonic gap structure is completely
washed out aT=1.

Another interesting feature of the MAR probabilities oc-
curs at low transparencies. As one can see in Hig), &t a
voltage 2A/n<eV<2A/(n-1) the MAR of ordern has a
much higher probability than the other MARs. This means
that in this voltage window, tha-order MAR clearly domi-
nates the transport properties and the charge is predomi- - i
nantly transferred in packets aofe. This fact explains the ob— L 1,

charge quantization in the tunnel regime observed botyin -
and C; (see Fig. 2. More generally, this fact implies that at @ E/A,
low transparencies the multinomial distribution of E9) << L I R
becomes Poissonian, and in this limit all the cumulants are 082\ ]
proportional to the currenS,=(q(V)/e)"C,, whereq(V) is LN AIAy 7]
the voltage-dependent quantized charge. When the transmis- 0.6 \\ |
sion is not very low, there are always several MARs that give - .
a significant contribution to the transport at every voltage 04 A g/A .. —
[see Fig. 80)]. This explains why the charge is in general not r 0 N Y
quantized. 021~ el

The explanation for the sigh change®©f at low bias and 0 I
high transparencies can be found in [E2@). In order to get 0 01 02 03 04 05
a positive value folIC,, one needs the first two terms in Eq. (b) /A,

(23) to dominate, which happens whéh<1. This is pre-

cisely what happens at low bias, where the MAR probabili-  FIG. 4. (8) Density of states as a function of energy of a super-

ties are rather small. On the other hand, the huge enhancgenductor for different values of the depairing enefgyneasured

ment after the sign change is due to fact thathe charge ™" units of gap in the absen(_:e of palr-breakm@ (b Ord_er param-

transferred by these MARSs is, indeed, huge at low bias. €T A and spectral gagq in units of Ay as a function of the
Finally, atT=1 the cumulant€, (with n> 1) do not com-  depairing energy normalized byao.

pletely vanish due to the fact that at a given voltage different ) . ,
MARSs give a significant contribution, and, therefore, theirParameter in the absence of pair breaking. The gapless su-

probability is smaller than ongsee Fig. 80)]. perconductivity survives until the critical valuig-=0.5A,,.
This behavior is illustrated in Fig.(4), where we show the

density of states as a function of energy for different values
of I' in units of Ay. In Fig. 4b) one can see the evolution of

It is well known that there are many mechanisms that canhe order parameter and spectral gap with the depairing en-
lead to pair-breaking effects, which modify the quasiparticlegrgy.
spectrum of a superconductor. Typical examples are a mag- |et us discuss now how this modified density of states is
netic field, supercurrents, or magnetic impurities. It wasreflected in the transport properties. In Fig. 5 we show I-Vs
shown in the 1960s that for diffusive superconductors, varifor different transmissions and different values of the depair-
ous pair-breaking mechanisms can be described in a unifigfig energy. The most noticeable features @yehe subhar-
manner with a single parametét, the depairing energy,

B. Pair-breaking mechanisms

which describes the strength of the pair breakihghe only

3

difference between these mechanisms is contained in the mi- 2 -
croscopic expression df. For instance, for a thin film of < 2
thicknessd, much smaller than the superconducting coher- @ I
ence length in a magnetic field parallel to the filmI" e !
=De?d?H2/(6Ac?), where D is the diffusion constant. In o 0'
these situations, the energy-dependent retarded Green’s func al
tion can be calculated froff 3 3r NS
22 C
gR=— 5 —ur® E:u[l—;}. (60) ® L 2L
V-1 A AV1 -u? I P o
Here, A is the order parameter, which in this case differs %03 ‘eV/Al-S 225

from the spectral gap and has to be determined
self-consistently’ For small I', the pair-breaking mecha-

FIG. 5. Zero temperature current-voltage characteristics for su-

nisms result in a smearing of the BCS singularities in theperconductors with a depairing enerfiyin units of A,. The current
density of states and in a suppression of the spectral energyd the voltage have been normalized with the order parameger

gap Ay to a reduced valué\g=A[1-(I'/A)*?]*2 The gap
disappears completely &t=0.4%\,, whereA, is the order
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$/(2GA)

S/CGA)

FIG. 7. Zero temperature noise for superconductors with a de-
: : pairing energyl” in units of Ag. The current and the voltage have
. S5 1 15 225 been normalized with the order parameteat the corresponding.
eV/A evia The different panels correspond to different transmissions values.

FIG. 6. Current contribution of processes1,2,... forT=1 as
a function of voltage for superconductors with a depairing enérgy superconductors. In this case, the distribution of transmission
in units of Ay. The current and the voltage have been normalizedcoefficients is continuous and characterized by the density
with the order parameteX at the corresponding. The order of the  function p(T), which has the well-known bimodal fofi
processes is indicated in the plots.

Gy 1
T = ——,
monic gap structure is shifted to voltageg=2A4/n, and(ii) p(T) 2GoTy1-T

the subgap structure progressively disappears as the pair- ) .
breaking strength is increased. These features are simpféhereGy is the normal-state conductance of tReregion
consequences of the evolution of the density of statesivith @ndGo=2€?/h is the conductance quantum. Then, the differ-
Anyway, one can get further insight by analyzing the contri-€nt cumulants can be calculated from the single-channel re-
bution to the current of the individual MAR processgs: SultsCy(T) as follows:
=(2e/h)f8VdEPn(E,V). These quantities are plotted in Fig. 6 1
for T=1. As one can see, the threshold voltage forarder C,= f dTp(T)CH(T). (62
MAR is now eV,,=A4/2n as a consequence of the reduced 0
spectral gap. As the gap diminishes, the processes of the
lowest order dominate the I-Vs, even at low bias. It is inter-
esting to note that, even in a gapless situatibr0.475,
there is a finite contribution of the MARs. It is worth men-
tioning that in Refs. 78 and 79, the type of theory describe
here accounted for the magnetic field dependence of the |-
of atomic contacts.

Let us now turn our attention to the second and thir
cumulants, which can be seen in Figs. 7 and 8, respectively.
As in the case of the current, the subharmonic gap structure 4
is shifted and smoothed as the gap evolves WitWoreover, € 3

e 2

(61)

In Fig. (@) we show the first three cumulants for this SNS
system. Both the current and the noise have been previously
discussed in the literaturé®! and here we recover these
desults. Both quantities exhibit a subharmonic gap structure,

hich is a result of the competition of channels with differ-
ent transparencies. Again, this structure can be understood by
danalyzing the individual contributions to the current of the

one can notice that for high transparencies and in the subgar=
region, there is a great reduction of both cumulantsl’as

increases. This is a consequence of the fact that low-order
MARs dominate even at low bias, which, in practice, means OF
that the charge transferred at these voltages is on average ncg 157
very big. =10

o

C,/(TAt
o

C. Diffusive SNS contacts

o

1 L R I L
So far we have discussed the case of a single channel : : : S 1 L5 2

.. . . V/A
contact. The results are trivially generalized to the multi- eVl

channel case by introducing a sum over the conduction chan- F|G. 8. Zero-temperature third cumulant for superconductors
nels. In this section we briefly address the case of a shoWith a depairing energ¥ in units of Ay. The current and the volt-
diffusive SNS junction with a large number of transmissionage have been normalized with the order paramatat the corre-
channels and diffusive electron transport in the noriRal spondingl’. The different panels correspond to different transmis-
region. The superconducting leads are considered as BGCs$ons values.
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SOF 1 o]
leO— —
oL _ 0
5_ —
L . eV/A(T) eV/A(T)
Ql=""1 L €

L 1 L
5 10 15 20 o N
() 2A/eV FIG. 10. Current-voltage characteristics at finite temperature for
. _ BCS superconductors. The temperature is in units of the critical
FIG. 9. Zero-temperature transport properties of a short diffu+emperaturac. The current and the voltage are normalized with the

sive SNS junction(a) First three cumulants: current in units of omnerature-dependent gap. The different panels correspond to dif-
(GNA/e), shot noise in units 02GyA), and the third cumulant in ferent transmission values.

units of (GyAty/hGy). (b) Current contribution of the different pro-
cesses(c) Ratio C,/C; as a function of the inverse of the voltage.
(d) Ratio C;3/C; as as a function of the inverse of the voltage.

calculate them by taking the numerical derivative of the
CGF, see Eq(2).

In Figs. 10-12 we show the current, noise, and third cu-
different MARs, see Fig. @). As one can see, at every volt- mylant, respectively, for different transmission and tempera-
age there are several processes giving significant contribygres ranging from zero to the critical one. Note that in order
tions, which makes that subgap structure much smootheap get rid of the trivial temperature dependence due to the
than in the Single-Channel case. This fact also eXpIainS thaecrease of the gap, we have normalized the V0|tage by the
absence Of the Chal’ge quantization in thIS multichannel Cas%mperature_dependent gAmTQ AS |t can be seen in F|g
This is illustrated in Fig. &), where we show the ratio 10 the temperature progressively smoothes the SGS and in-
C,/C, as a measure of the effective charge. Note that at IoWeases the current for low transmissions. These are simple
bias this effective charge grows &/V) as obtained in Ref.  onsequences of the thermal excitation of quasiparticles. For
22. In this regime the numerical results can be approximatelpigher transmissions the temperature has the opposite effect
described by the following linear function:C,/C;  (see the lower two panels in Fig. 10The current decreases
=0.31(2A/eV)+0.55. On the other hand, the third cumulant with increasing temperature and approaches the normal state
exhibits a huge increase at low voltagédn particular, as  current-voltage characteristic from above. At the same time
shown in Fig. 9d), the ratioC;/C, grows as(1/V)® at low  the excess current, i.80V>A/e) -GV, vanishes obviously.

bias. In this regime the ratio can be approximated bySo in short, by increasing the temperature high-order An-
C,/C,=0.052A/eV)2+0.5.

H— TJ/T.=00

V. TRANSPORT PROPERTIES AT FINITE

TEMPERATURES g
4 /:
So far we have discussed the transport properties of su§ ____________

perconducting point contacts at zero temperature. In this sec"
tion, we shall investigate the role of the temperature, which
we shall denote ag.. We focus our attention on the case of

a single channel contact between BCS superconductors. A5
finite temperature it is not easy to determine analytically the(nglZ
probabilitiesP,(E,V), and, in this case, we have calculated -
them numerically. The idea goes as follows. According to
Eq. (18) we need to calculate the coefficien®(E,V),

|

Ll ]
0 05 1 15 2 25

which are simply the Fourier coefficients of the series in Eq. ' eV/ACT) eV/A(T)
(18), i.e., e e
1 (27 5 FIG. 11. Finite temperature noise for BCS superconductors. The
P.(E,V) :—f dye ™™ detQ(y). (63) temperature is normalized with the critical temperatilige The
2w ) different panels correspond to different transmission values. The

. voltage is normalized with the temperature-dependent gap, and the
Finally, def)(y) is calculated numerically. Of course, if one current with the zero-temperature gap. Note that the scaling is dif-
is only interested in the different cumulant, one can easilyferent from the other plots in this section.
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= TTe=00 not have any finjte threshold voltage, and.they can contribute

<3 NIES ¥gcig; / ] down to zero bias due to thermal activation. Second, as the

S i sew| £ temperature increases the probability of the single quasipar-

F op—= T ticle processes is greatly enhanced inside the gap. This fact
QM [ results in a reduction of the average effective charge trans-
© mitted through the contact. Finally, note that although the
MAR probabilities are reduced inside the gap at finite tem-

g perature, high-order processes can give a significant contri-

iu bution to the transport even at voltages larger than the gap at
F the corresponding temperature. This is clearly at variance

=3 with the zero temperature case. To understand this behavior,

© i — let us recall that the total voltage gain for an ordgsrocess

0 05 1 15 2 25 is neV, which means essentially that higher-order processes

SV/A(T) SV/A(T) can start well below the gap and end well above the gap.

Now, at finite temperature, for example, the end states above
FIG. 12. Finite temperature thrid cumulant for BCS supercon-the gap are filled with finite probabilit)(E +neV), assuming
ductors. The temperature is normalized with the critical temperaturéhat the process has started with a quasiparticle at eriergy
Tc. The different panels correspond to different transmission valued® certain process can only happen if its final state is empty.
The third cumulant and the voltage are normalized with theThis gives a factor 1H{E+ne\), which enhances the chance
temperature-dependent gap. for higher-order processes, since they have to end up at
higher energies, for which this factor is larger. On the other
dreev reflections contribute less to the current, which ishand, a similar argument can be made about the initial state,
dominated by thermally activated direct quasiparticle tunnelwhich has to be filled for the process to take place. Again,
ing. This behavior is clearly illustrated in Fig. 13, where we this is more likely for higher-order processes, since they can
show the evolution with the temperature of the average probemerge from energies well below the gap, which are com-

ability P.,(V)=(1/eV)[SXdEPR,(E,V) of different processes Pletely filled also at finite temperature.

for a contact with transmission=0.95. Note that we only It is interesting to discuss the qualitative different tem-
show the first electron processes that give a positive contriP€rature behavior of the second and third cumulants. The
bution to the current. Remember that at finite temperatur&0ise exhibits a transition from pure shot noise at zero tem-
there are also hole processes that give a negative contributigfrature to thermal noise when the temperature is larger than
to the current, the magnitude of which is still much smallerthe voltage. As it can be seen in Fig. 11, this transition is

than the one of the electron processes in the shot noise limfeflected in a saturation of the noise at low bias to a finite
eV>kgT. At vanishing voltages, of cours®,=P_, as re- value, which is given by the fluctuation-dissipation theorem.

quired by the fluctuation-dissipation theorem. > " . )
In Fig. 13 one can observe the following important fea-Of voltage in the transition region from thermal to shot noise

tures. First, at finite temperature the different processes d@iS© for relatively small transmissions. Such a behavior can

It is interesting to note, that the noise decreases as a function

be attributed to the multinomial distribution. Interestingly,

0.8 T 08— from Eg. (28) we see that the cross correlations between
@ TTe=00 (b) TJ/T=07 1 processes of orders with opposite signg., m=-n) tend to
0.6/ 3 S207 0.6/ 3 7 increase the noise. As these terms appear only in the thermal
o4k §\,/\)/ ] 0a s AL N ] regime, whenP,~P_,, the reduction of noise below the
X

0

0.4

0.2

0.2

it

thermal level can be understood as consequence of the van-
ishing cross correlations between processes of orders with
different signs.

The temperature dependence of the third cumulant is very
interesting. First, we recall that the third cumulant vanishes
at zero voltage for any temperatufas all odd cumulants
do). In Ref. 45 the temperature dependence of the third cu-
mulant for a quantum contact between normal metals was
calculated. It was shown that an increasing transparency has
quite a dramatic effect on the third cumulant. For a tunnel

0 05 1 152 as o 05 1 15 2 25  junction (i.e., for small transmissionCs is independent of
eV/A(T,) eV/A(T,) the temperature and it is simply equal to tff€,. However,
this is interesting because it allows a direct measurement of
FIG. 13. Average MAR probabilities En(V) the chargey transferred in an elementary event even for volt-

=(1/eV)JSdER,(E,V) at finite temperature as a function of volt- 8g€s below the shot noise limit. Note, that this relation holds
age for a contact between BCS superconductors with transmissicdlSO for nonlinear current-voltage characteristics, since it is a
T=0.95. The four panels correspond to different temperatlifes consequence of the bidirectional Poisson distribution in this
expressed in units of the critical temperatdke The index of the  limit. The effects of a finite transparency are even more dra-
processes is indicated in the plots. matic. The third cumulant has a marked temperature depen-
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age. We have demonstrated that the charge transfer in these

10:!! n08 T/T.=0.7 | - : : 1 ragrig g
R dlc systems is described by a multinomial distribution of pro-
~ J: LA T04 . cesses, in which multiple chargesne (with n
QS N e ' ) =1,2,3,...,20,.). are transferred through the contact.
SR S N These processes are nothing but multiple Andreev reflec-
oF 1 o ITramsacsames tions. The knowledge of the full-counting statistics allows us
F -G 0s (a) 1 to obtain the probabilities of the individual MARS, providing
Sk F— | a deep insight into the electronic transport of these junctions.
1ok From the knowledge of these probabilities one can easily
4: calculate not only the current or the noise, but all the cumu-
Y osh lants of the current distribution. We have also shown that one
J" 1' can obtain analytical expressions for the MAR probabilities
oF at zero temperature, which provides the most efficient
L method to calculate the transport properties of these contacts.
5 Moreover, the FCS approach allows us to describe a great

eV/A(T') ‘ variety of situations in a unified manner.
e In this sense, we have addressed different situations, such
FIG. 14. RatioCs/C, for two different temperatures as a func- as contacts between BCS superconductors, junctions be-

tion of the voltage for a contact between BCS superconductors. ThBNefen supercondgctor.s where a pair-breaking mechamsm 1S
different curves correspond to different transmissions as indicate@Cting, or short diffusive SNS contacts. We have also dis-
in the plots. cussed the temperature dependence of the first cumulants and
illustrated their peculiarities as compared to the normal case.
It is also worth mentioning that the formalism developed in

dence, crossing over fromR@ dependence, whefe=1-T . . . e
) . this work can be easily applied to other situations not ad-
is the Fano factor, to an unusual high-temperature depen;

dence~FI(1-2T), which can even become negative for dressed here, such as point contacts with proximity-effect

. o . superconductofd and Josephson junctions of unconven-
>1/2. In view of these findings, we now discuss our resultstional superconductof:#4

for the temperature dependence of the third cumulant of a ™ " full-counting-statistics view point, we have
superconducting point contact. found a different distribution occuring in superconducting

derfégté\%ir:r?tfhteh?érﬁglgé 1i%n¢*ehfsae;ergﬁﬁézt?;etgeep?g;ipoint contacts. The statistics take the form of a multinomial

S gime. / P PreVigistribution of charge transfers of all orders, which are al-
ous paragraph, this is in contrast with the normal state, wher
C; is almost independent of the temperature, as it has be

discussed theoretically in Ref. 45 and observed experimeqﬁlh
tally in Ref. 63(after correcting for the effect of the environ- tiple charge transfers in a direct manner. Furthermore, we

ment, see Refs. 65In our case the temperature Olependencehave discussed consequences of the multinomial statistics of

s due to th(_a change in the MAR probabilities caused by.th%harge transfers of different sizes at the same time. For ex-
thermal activation. As explained above, the thermal activa

. - . . mple, an n con h finite noi he presen
tion enhances the probability of the tunneling of single qua—a ple, an open contact has a finite noise due to the presence

siparticles inside the gap, which, in turn, reduces the avera of different MAR processes at the same time. The tempera-

' : X Yre dependence of the counting statistics provides a new
effective charge. A consequence of this fact is the great re- b g P

duction of the raticC./C. as the temperature inereases Thismsight in to the transport characteristics because we have
S A H . peratur SN shown that higher-order Andreev processes contribute also at
is illustrated in Fig. 14. This reduction is specially pro-

: . ) ; vol much larger than th rcon in .
nounced in the subgap region for intermediate transparen—O tages much larger than the superconducting gap
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