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In noncentrosymmetric metals, the spin degeneracy of the electronic bands is lifted by spin-orbit coupling.
We consider general symmetry properties of the pairing functionDskd in noncentrosymmetric superconductors
with spin-orbit coupling(NSC), including CePt3Si, UIr, and Cd2Re2O7. We find thatDskd=xskdtskd, where
xskd is an even function which transforms according to the irreducible representations of the crystallographic
point group andtskd is a model-dependent phase factor. We consider tunneling between a NSC and a conven-
tional superconductor. It is found that, in terms of thermodynamical properties as well as the Josephson effect,
the state of NSC resembles a singlet superconducting state with gap functionxskd.
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I. INTRODUCTION

A better understanding of unconventional superconductiv-
ity has been sought ever since the pioneering discovery of
heavy fermion superconductivity in CeCu2Si2.

1 Soon after,
the effect of spin-orbit coupling(SOC) was recognized to
play an important role in the superconducting(SC) proper-
ties of heavy fermion materials, because it breaks spin rota-
tion symmetry.2,3 If there is no spin-orbit coupling,or if the
crystal has space inversion and time reversal symmetry, the
electronic bands are doubly degenerate everywhere in the
Brillouin zone.4 Then, the superconducting states can be
classified as spin singlet(even parity) and spin triplet(odd
parity), where the spin is replaced by pseudospin when SOC
is present.2,5–7However, if inversion symmetry is absentand
SOC is present, the degeneracy of electronic band states is
removed at all points in the Brillouin zone except at some
highly symmetric positions, while time reversal symmetry
ensures that states with opposite momenta are degenerate.4

The recent interest in noncentrosymmetric superconduct-
ors was stimulated by the discovery of superconductivity in
CePt3Si and UIr.8,9 SOC is normally strong in cerium and
uranium compounds since the atoms are heavy. A recent
band structure calculation of CePt3Si found that the bands,
which would be degenerate if SOC was absent, are split by
50–200 meV for the states close to the Fermi level.10 This
splitting energy is a factor of more than a thousand on the
characteristic energy scalekBTc. Therefore, the one-band
theory, which applies to the spin-degenerate case, should be
reformulated.11

Actually, several superconducting materials in which in-
version symmetry is absent have been known for some time.
Sesquicarbide materials, with chemical formulaR2C3−y
(R=La or Y, which can be partially substituted by a number
of elements), haveTc’s of up to 18 K, and space group sym-

metry I4̄3d.12–14 This belongs to the tetrahedral crystallo-
graphic classTd which has no symmetry center. However, in
sesquicarbides SOC does not seem to be important for con-
duction electrons, i.e., the bands are still spin degenerate.15,16

In 2001, superconductivity withTc=1 K was reported in
Cd2Re2O7.

17,18 At room temperature, this material has the

ideal pyrochlore structure, which includes a center of sym-
metry. However, superconductivity occurs on the back-
ground of a noncentrosymmetric tetragonal crystal field after
a series of structural phase transitions.19–21 In addition, SOC
dramatically affects the electronic band structure, as shown
by first-principles calculations for the pyrochlore phase.22,23

Following further calculations,24 it was predicted that if the
center of symmetry is removed from the structure, the spin-
orbit splitting of the bands reaches 68 meV<700kBTc. This
result was indirectly verified by a photoemission study,
which found that the energy spectrum is shifted noticeably
toward higher binding energies at low temperatures as com-
pared to room temperature.24 Therefore, Cd2Re2O7 should be
considered in the same category as CePt3Si and UIr. More-
over, Cd2Re2O7 is a useful test system for the theory since its
superconducting properties are well established.25,26 The
theory must, therefore, include the possibility for a nodeless
s-wave-like order parameter.27 Another appealing feature of
Cd2Re2O7 is the relative simplicity of its normal metallic
state: it neither orders magnetically,26 nor demonstrates
Kondo-like behavior such as that found in CePt3Si.8

In this article, we consider general symmetry properties of
the superconducting state in noncentrosymmetric crystals in
which the degeneracy is lifted by strong SOC. As a first
approximation, we restrict consideration to a one-band
model, neglecting possible pairing in other bands and inter-
band interactions. Section II discusses the symmetry proper-
ties of the superconducting order parameter. In Sec. III, we
consider Josephson tunneling between a conventional super-
conductor and a superconductor with nondegenerate bands.
Section IV discusses the limiting case of small SOC, using
the Rashba Hamiltonian as a specific example. In Sec. V, we
discuss the results of our approach in relation to previous
theoretical developments and the applicability to real mate-
rials.

II. SUPERCONDUCTING ORDER PARAMETER

Throughout this paper we use the weak coupling approach
to treat the pairing interaction. While this approach offers no
insight about the pairing mechanism, it has the advantage
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that many results can be obtained exactly. Also, the symme-
try properties of the superconducting(SC) state remain es-
sentially the same as in strong coupling models.7

A. Single-particle Hamiltonian

In the condensed state it is normally sufficient to treat
relativistic effects by the Pauli approximation to Dirac’s fully
relativistic approach. We begin by briefly reviewing the
properties of the single-particle Hamiltonian4

H1 =
p2

2m
+ Vsr d +

1

4m2c2f=Vsr d 3 p · sg, s1d

wherep=−i= is the momentum operator in the coordinate
representation,Vsr d is the periodic potential of the crystal
lattice, ands=ssx,sy,szd are the Pauli matrices. Here and
in the following we use the unit system in which"=kB=1.
The space group of the crystal is defined as the set of opera-
tions g (rotations, reflections, and translations) acting on the
real space coordinatesr which leaveVsr d invariant,

g:Vsr d = Vsgr d = Vsr d. s2d

Because of the last term in Eq.(1), the transformation prop-
erties ofH1 are expressed as

g:H1sr d = DsgdH1sgr dDsgd−1 = H1sr d, s3d

whereDsgd is a 232 spin-1/2 rotation matrix.Dsgd is de-
fined as follows. Ifg is a bare rotation about the axisn by an
anglef, then

Dsgd = cos
f

2
− in · s sin

f

2
. s4d

If g includes inversionI , g= Ig8, or a translationtsRd , g
=tsRdg8, where g8 is a bare rotation, thenDsgd=Dsg8d,
since inversion and translations do not change the spinor
components.

The solutionsCsr d of the Schrödinger equation

H1Csr d = «Csr d s5d

are two-component spinors which transform according to

g:Csr d = DsgdCsgr d. s6d

In nonmagnetic crystalsVsr d does not depend on spin, and
the Hamiltonian(1) is also invariant under time reversalK,

K:H1sr d = s− isydH1
*sr ds− isyd−1 = H1sr d, s7d

which uses the fact that spin reverses sign under time rever-
sal, expressed bysys* sy=−s. Correspondingly,

K:Csr d = s− isydC * sr d. s8d

Further, if tsRd is a proper lattice translation,

tsRd:H1sr d = H1sr + Rd = H1sr d. s9d

Therefore, as well as in the case of vanishing SOC, the so-
lutions of the Schrödinger equation(5) are Bloch waves la-
beled by a quantum number quasimomentumk,

Cksr d = Uksr deik·r , s10d

whereUksr d is the periodic spinor

Uksr d = Suk,↑sr d
uk,↓sr d

D, Uksr + Rd = Uksr d. s11d

It follows from Eq. (6) that

g:Cksr d = DsgdUksgr deisk,gr d

= DsgdUksgr deisg−1k,r d ; Cg−1k
sgd sr d. s12d

Clearly, C
g−1k
sgd sr d is a solution of Eq.(5), corresponding to

the quasimomentumg−1k. On the other hand, the same can
be said about the functionCg−1ksr d obtained fromCksr d by
the bare replacementk →g−1k. If the spin degeneracy of the
bands is lifted, these two functions can only differ by a phase
factor that does not depend onr ,

Cg−1k
sgd sr d = expfiagskdgCg−1ksr d. s13d

This argument also applies to time reversal operation,

K:Cksr d = s− isydUk
* sr de−ik·r ; C−k

sKdsr d. s14d

Let us definetskd as the phase factor in

C−k
sKdsr d = tskdC−ksr d, t * skd = t−1skd. s15d

Using the antilinear property of the time reversal operator
K :aCksr d=a* K :Cksr d and the fermionic nature ofCksr d,
one obtains

K2:Cksr d = − Cksr d = t * skdK:C−ksr d = t * skdts− kdCksr d.

s16d

Thus,tskd is an odd function ofk,

ts− kd = − tskd. s17d

Before discussing the interaction part of the Hamiltonian,
we formulate the symmetry properties of the Hamiltonian(1)
using the language of second quantization(see, e.g., Refs.
28,29). The N-particle wave functionFN is the antisymme-
trized product ofN single-particle functionsCksr d taken atN
different pointsk. By writing s… ,1k ,…d as the argument of
FN we emphasize that it describes a state in which a single-
particle state with quantum numberk is filled. By definition,
the creation operatorck

†

ck
†FN−1s…,0k,…d = ± FNs…,1k,…d, s18d

where the sign is defined by the antisymmetrization. In par-
ticular, we note that the matrix elements of the creation op-
erator are real numbers. Using the definition(18) and the
transformation properties ofCksr d, we obtain30

g:ck
† = expfiagskdgcg−1k

† ,

g:ck = expf− iagskdgcg−1k ,

K:ck
† = tskdc−k

† ; c−k
†sKd,

K:ck = t * skdc−k ,
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U1sud:ck
† = e−iuck

†,

U1sud:ck = eiuck , s19d

whereU1sud is a gauge transformation. The transformation
properties ofck follow from the fact that the number operator
ck

†ck must be a scalar.
The one-band single-particle Hamiltonian can be ex-

pressed as

H1 = o
k

jkck
†ck , s20d

wherejk =«k −m , «k is the eigenvalue of the Hamiltonian(1)
corresponding to momentumk, andm is the chemical poten-
tial. We note thatck

† andck are both two-component spinors,
and have all the general properties of spin-1

2 fermion opera-
tors, even though additional quantum numbers(such as spin)
are omitted since we consider only one band.

B. Pairing term

If the interband interaction is neglected, the interaction
term is

Hpair =
1

2 o
k1,k2

V2sk1,k2dc−k1

† ck1

† ck2
c−k2

, s21d

whereV2sk1,k2d=kC−k1
Ck1

uV̂2uC−k2
Ck2

l is the two-particle
matrix element. In the weak coupling approach,7 one intro-
duces the mean field potential

Dskd = − o
k8

V2sk,k8dkck8c−k8l s22d

and the interaction(21) is approximated by

H2 =
1

2o
k

fDskdck
†c−k

† + D * skdc−kckg, s23d

where a constant term is neglected. It follows immediately
from the anticommutation of the fermion operators that

Ds− kd = − Dskd. s24d

One can derive the other transformation properties of
Dskd from the fact that the full HamiltonianH=H1+H2 is
invariant under space group operations, time reversal, and
gauge transformations. Using Eq.(19), one obtains

g:Dskd = Dsg−1kdexpf− iagskd − iags− kdg. s25d

It will be seen already from a simple example given in Sec.
IV that the phase factor in Eq.(25) is not trivial. In general,
its dependence ong andk cannot be eliminated. Therefore,
the functionDskd does nottransform according to irreducible
representations of the space(point) group. For crystals with a
center of symmetry, a comprehensive discussion of this prop-
erty has been given by Blount.31 Instead of the pairing po-
tential Dmn which transforms likekcm ,cnl, an auxiliary ob-
ject which transforms likekK :cm ,cnl is introduced. Herem
and n denote the set of single-particle quantum numbers.

Following this idea, we define functionxskd by

Dskd = xskdtskd. s26d

Then, using the definition ofc−k
†sKd from the third Eq.(19) the

first term inH2 is expressed as

1

2o
k

xskdtskdck
†c−k

† =
1

2o
k

xskdck
†c−k

†sKd. s27d

Using the commutation propertygK=Kg, it is straightfor-
ward to show that10 g:c−k

†sKd=expf−iagskdgc
−g−1k
†sKd . Thus, from

the invariance of(27), we find

g:xskd = xsg−1kd. s28d

Equation(28) is the basis of the group-theoretical classi-
fication of SC states in noncentrosymmetric crystals.xskd
can be expanded in terms of basis functionsxiskd of irreduc-
ible representations of the space(point) group. At this point
we restrict our consideration to homogeneous SC states for
simplicity, so that only the point group is involved,

xskd = o
i

hixiskd s29d

wherehi will be identified as the components of the order
parameter. It follows from Eqs.(17), (24), and (26) that
xs−kd=xskd. Examples of even basis functionsxiskd for the
irreducible representations of point groupsC4v for CePt3Si
andC2 for UIr are given in Table I.

The other transformation properties ofxskd also follow
from Eqs.(19) and (27),

K:xskd = x * skd, U1sud:xskd = e2iuxskd, s30d

where we again use the antilinearity ofK. As is usually done
in the Ginzburg-Landau approach, the transformation prop-
erties ofxskd are reformulated as transformations ofhi.

7 If
xiskd are chosen real, theng:hi =Dikhk, K :hi =hi

* , and
U1sud :hi =e2iuhi, whereD is the matrix corresponding tog
in the representation chosen.

TABLE I. Even basis functions for irreducible representations
(IR’s) of point groupsC4v and C2. The notations for the IR’s and
their character tables can be found in Ref. 28.a, b, andc denote
lattice constants.

IR Nonperiodic Periodic

C4v

A1 1, kx
2+ky

2, kz
2 coskxa+coskya, coskzc

A2 kxkyskx
2−ky

2d sinkxa sinkyascoskxa−coskyad
B1 kx

2−ky
2 coskxa−coskya

B2 kxky sinkxa sinkya

E kxkz sinkxa sinkzc

kykz sinkya sinkzc

C2

A1 1, kx
2, ky

2, kz
2, coskxa, coskyb, coskzc

kxky sinkxa sinkyb

A2 kxkz, kykz sinkxa sinkzc, sinkyb sinkzc
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C. Possible forms of the Ginzburg-Landau potential
for CePt3Si

Even thoughC4v lacks inversion symmetry, the homoge-
neous terms in the Ginzburg-Landau potential(GLP) coin-
cide with those ofD4h,

7 because the GLP has to be invariant
with respect to gauge transformations, in particular
U1sp /2d :xskd=−xskd. For every representationG listed in
Table I, the productG ^ G* contains the representationA1.
The z component of the gradient operator

D = = −
2ie

c
A s31d

also transforms according toA1; therefore the GLP density
contains a term linear inDz,

o
i

hi
*Dzhi + hiDz

*hi
* . s32d

However, this term is equal to the derivatives] /]zdoiuhiu2.
Hence, after integration over the sample, its contribution to
the GLP vanishes.

For all one-dimensional representations ofC4v, the GLP is

F1D = F0 +E dr fK1suDxhu2 + uDyhu2d + K2uDzhu2 + auhu2

+ buhu4g. s33d

For the two-dimensional representationE,

F2D = F0 +E dr hK1suDxh1u2 + uDyh2u2d + K2suDxh2u2

+ uDyh1u2d + K3fsDxh1dsDyh2d* + c.c.g + K4fsDxh2d

3sDyh1d* + c.c.g + K5suDzh1u2 + uDzh2u2d + asuh1u2

+ uh2u2d + b1suh1u2 + uh2u2d2 + b2sh1
*h2 − h1h2

*d2

+ b3uh1u2uh2u2j. s34d

D. Green’s functions

The most straightforward way to calculate the normal
Gsk ,td and anomalousFsk ,td ,F†sk ,td Green’s functions
within the weak coupling approach is to use the Gor’kov
equations.32,33 The Green’s functions are defined as follows:

Gsk,td = − kTthckstdck
†s0djl,

Fsk,td = kTthckstdc−ks0djl,

F†sk,td = kTthc−k
† stdck

†s0djl, s35d

where Tt is the imaginary time ordering operator. The
Gor’kov equations for the Fourier transforms are

fivn − jkgGsk,vnd + DskdF†sk,vnd = 1,

fivn + jkgF†sk,vnd + D * skdGsk,vnd = 0, s36d

wherevn=pTs2n+1d are the Matsubara frequencies for fer-
mions. The equations are easily solved by

Gsk,vnd = − sivn + jkd/svn
2 + jk

2 + uxskdu2d,

F†sk,vnd = x * skdt * skd/svn
2 + jk

2 + uxskdu2d, s37d

where we have made use of the fact thatuDskdu2= uxskdu2.
Gor’kov and Rashba34 considered a model of supercon-

ductivity with split bands due to SOC and an isotropic pair-
ing interaction. They showed that the thermodynamics of
such a superconductor is equivalent to that of a conventional
s-wave superconductor. Here we have generalized this result
to the anisotropic case. As is evident from the denominator in
Eq. (37), the thermodynamical properties of a noncentrosym-
metric superconductor are governed by the gapuxskdu.

III. JOSEPHSON EFFECT

We consider tunneling of SC electrons between a super-
conductor with nondegenerate bands and a light conventional
superconducting metal like Nb, in which electronic bands are
spin degenerate. The tunneling Hamiltonian is

HT = o
k1,k2,s

fTssk1,k2dck1

† ak2,s + Ts
*sk1,k2dak2,s

† ck1
g, s38d

whereak,s
† creates an electron with spins in the conventional

superconductor andTssk1,k2d is the tunneling matrix ele-
ment. By applying the time reversal operation to the first
term in HT, we obtain

o
k1,k2,s,s8

Ts
*sk1,k2dtsk1dc−k1

† s− isydss8a−k2,s8

= o
k1,k2,s,s8

ts− k1dsisydss8Ts8
* s− k1,− k2dck1

† ak2,s. s39d

Therefore,

Tss− k1,− k2d = tsk1do
s8

sisydss8Ts8
* sk1,k2d. s40d

The following derivation follows that for conventional su-
perconductors given in Refs. 7 and 33, which is in turn based
on the formalism originally proposed by Ambegaokar and
Baratoff.35 For simplicity, we restrict our consideration to the
case of zero voltage. The current flowing between the two
superconductors isj =ek]Nstd /]tl=eikfHT,Ngl, where Nstd
=eiHTtokck

†cke−iHTt is the time-dependent particle number op-
erator.

Following the same steps as described in Ref. 33, we
obtain

j = 2eTIm o
k1,k2,s,s8,n

Tssk1,k2dTs8s− k1,− k2dF†sk1,vnd

3Fss8
scd sk2,vnd, s41d

where F
ss8
scd sk ,vnd=cskdsisdss8 / fvn

2+ek
2+ ucskdu2g is the

anomalous Green’s function for a conventional supercon-
ductor with the single-particle spectrumek and singlet gap
function cskd.7 Using Eqs.(37) and (40), we obtain
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j = − 2eTIm o
k1,k2

o
n

x * sk1dcsk2d
fvn

2 + jk1

2 + uxsk1du2gfvn
2 + ek2

2 + ucsk2du2g

3o
s

uTssk1,k2du2. s42d

The sum over Matsubara frequencies can be easily calculated
if needed by using the formula 2Tonsvn

2+E2d−1

=tanhsE/2Td /E. Therefore, the final expression for the Jo-
sephson current does not depend ontskd. Oncė again, we see
that the superconductor with SOC split bands behaves as a
singlet superconductor with gap functionxskd.

The tunneling HamiltonianHT is invariant with respect to
the operationsg of the point group which leave the surface
invariant. Thus,

g:Tssk1,k2d = e−iagsk1dDsgdss8Ts8sg
−1k1,g

−1k2d. s43d

It follows that

g:o
s

uTssk1,k2du2 = o
s

uTssg−1k1,g
−1k2du2. s44d

Therefore,j is invariant under the operationsg as expected.

IV. LIMIT OF SMALL SPIN-ORBIT COUPLING

In order to verify the general results given in Sec. II, it is
important to show that they remain valid for crystals with
small SOC, i.e., for almost degenerate electronic bands. In
this section we consider the Rashba approximation,36 be-
cause(i) the one-particle Hamiltonian is then exactly solv-
able and(ii ) we can easily compare our results for supercon-
ductivity with those known from the literature, where the
Rashba approximation was used.34,37

In the Rashba approximation, one assumes that the solu-
tions of the HamiltonianH0=p2/2m+Vsr d are plane waves
with definite projections of spin and energy spectrum«k

0, and
that =Vsr d can be replaced by a constant vector directed
along the axis of symmetryn=s001d. Therefore Eq.(1) is
approximated by

H18 = S «k
0 − bsky + ikxd

− bsky − ikxd «k
0 D , s45d

whereb is a constant which characterizes the strength of the
SOC. The Hamiltonian is diagonalized by the spinors34

Ck,± =
1

Î2V
S 1

± i expsiwkd
Deik·r , s46d

corresponding to the eigenvalues«k
±=«k

0±buk'u. Here,

expsiwkd=skx+ ikyd / uk'u and uk'u=Îkx
2+ky

2. In the following,
we shall consider coupling in the + band as an example.

In order to illustrate the complicated transformation prop-
erties(25) of Dskd, let us consider as an exampleg=mx, the

mirror plane perpendicular to thex axis. Acting bymx on
Ck+, we obtain

1
Î2V

S 0 − i

− i 0
DS 1

ieiwk
Deisk,mxr d =

eiwk

Î2V
S 1

ieiwmxk
Deismxk,r d

= eiwkCmxk,+ s47d

where expsiwmxk
d=−exps−iwkd was used. Hence, the phase

factor defined by Eq.(25) is equal tosikx+kyd2/k'
2 .

By applying time reversal toCk,+ using Eq.(14), we find

tskd = i exps− iwkd. s48d

The fermion operators corresponding to initial spin-up
and spin-down states can be expressed in terms of the new
band operators as

ck↑
† =

1
Î2

sck+
† + ck−

† d, ck↓
† = −

ie−wk

Î2
sck+

† − ck−
† d. s49d

At this point we assume that before SOC has been turned on,
the electrons were paired in the singlet state with gap func-
tion cskd,

H28 =
1

2o
k

cskdck↑
† c−k↓

† + H . c. s50d

Using Eqs.(48) and (49), we obtain

H28 =
1

4o
k

tskdcskdck+
† c−k+

† + H . c . + ¯ , s51d

where the rest of the terms, which describe pairing in the
other band and interband pairing, are neglected. By compar-
ing Eq. (51) with Eq. (23) we obtainDskd in the form (26)
with xskd=cskd /2.

Interestingly, a similar result is obtained if one starts with
triplet pairing for spin states,7

H28 =
1

2o
k

hf− dxskd + idyskdgck↑
† c−k↑

† + fdxskd

+ idyskdgck↓
† c−k↓

† + dzskdsck↑
† c−k↓

† + ck↓
† c−k↑

† dj + H . c .

=
1

2o
k

tskdfdyskdk̂x − dxskdk̂ygck+
† c−k+

† + H . c . + ¯ ,

s52d

wherek̂i =ki / uk'u and again only terms corresponding to the
coupling within the + band are kept. Therefore, we again find
Dskd in the form (26) with

xskd = dyskdk̂x − dxskdk̂y. s53d

Frigeri et al.37 used weak coupling theory to show that a
phase transition to the triplet pairing statedskd=s−ky,kx,0d
(which transforms according to the representationA2) in
CePt3Si is not suppressed by small but finiteb. According to

Eq. (53), this corresponds toxskd~ k̂x
2+ k̂y

2, which is isotropic
and fully gapped and transforms likeA1. By using the vec-
tors dskd corresponding to the rest of the irreducible repre-
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sentations ofC4v (which are similar to those forD4h and are
given in Ref. 7), the corresponding functionsxskd may be
obtained from Eq.(53) and are listed in Table II. Therefore,
in general, starting fromdskd corresponding to a representa-
tion G, we generatexskd using Eq.(53) corresponding to
another representationG8, while in the singlet case,xskd and
cskd /2 belong to the same representation because they are
proportional. The difference is due to the transformation
properties of the paired state under spin rotation, which was
used to diagonalize the HamiltonianH18: the singlet state
transforms into itself as a scalar, whereas the triplet state
transforms as a spin-1 state.38

V. DISCUSSION

A close analogy between the superconductors under con-
sideration and usual centrosymmetric singlet superconduct-
ors should not be surprising. A particle described by the
wave function(10) which is a solution of Hamiltonian(1)
has spinsskd= 1

2kCkusuCkl. SinceC−k andC−k
sKd differ only

by a constant phase factor, we have

ss− kd =
1

2
kC−kusuC−kl =

1

2
kC−k

sKdusuC−k
sKdl

= K:
1

2
kCkussKduCkl =

1

2
kCkussKduCkl*

= −
1

2
kCkusuCkl = − sskd, s54d

where we have used the fact that diagonal matrix elements of
the spin operator are real andssKd=s−isyds* s−isyd−1=−s.
Therefore, particles with opposite momenta within the same
band always have opposite spin(see also Ref. 11).

It was first noted by Anderson39 that for crystals in which
either the momentumk or spin is not a good quantum num-
ber, as in dirty superconductors, a one-particle state should
be paired with its time reversal. Using this idea, Samokhinet
al.10 definec−k

† as the time reversal ofck
†. This in turn leads

to the conclusion thatDskd is an odd function which trans-
forms according to the irreducible representations of the
point group. Then, the gaps in the quasiparticle spectrum of
the superconducting states described by all one-dimensional

representations ofC4v have line nodes. This, in particular,
rules out the possibility of an isotropic full gap, and therefore
contradicts the theoretical results of Refs. 34,37 and the ex-
perimental results for Cd2Re2O7. The origin of the discrep-
ancy is that Anderson’s statement is correct up to a phase
factor tskd, which is not important in the normal state due to
gauge invariance but cannot be ignored in the superconduct-
ing state.40 In other words, one cannot defineck

† in an asym-
metric unit of the Brillouin zone and then use the symmetry
elements(including time reversal) to define the states in the
rest of the Brillouin zone. Such a procedure would lead to a
discontinuity of the phase of the wave function on the
boundaries of the asymmetric units. Also, ifck

† is paired with
Kck

†, then Kck
† must be paired withK2ck

†=−ck
†, which is a

contradiction. Instead, ifck
† describes the particle with mo-

mentumk andk8=g−1k, whereg is a point group element or
time reversal, then the particle with momentumk8 must be
described byck8

† =cg−1k
† , which is proportional but not equal

to g:ck
†.

The formalism developed in this paper can be directly
applied to Cd2Re2O7, which shows no sign of magnetic or-
dering and therefore possesses time reversal symmetry.26 The
low temperature structure has symmetryI4122,19 with point
groupD4, which is isomorphic toC4v. The superconducting
order parameter corresponds to the representationA1 since
no nodes in the quasiparticle spectrum have been found.

In the application to CePt3Si, this theory should be
slightly modified to include the effect of antiferromagnetic
ordering sTN=2 Kd.8 A neutron scattering study41 revealed
that the antiferromagnetic structure is characterized by the
wave vectorQ=s0,0,p /cd. Therefore, the normal state just
aboveTc is invariant under the operationtscdK instead ofK,
wheretscd is a lattice translation along thez axis. This leaves
valid all of the results of our discussion, since we consider
translationally invariant superconducting states, and for the
antiferromagnetic case, one still has«k =«−k. However, the
presence of antiferromagnetic order can provide certain clues
about a possible superconducting state. It has been shown for
zero SOC that the singlet superconducting state with gap
function cskd is energetically favoured ifcsk +Qd=−cskd
(see Ref. 7 and references therein). Hence, the periodic basis
functions in Table I, which depend onkz, may be good can-
didates.

Even more exciting is the situation realized in UIr.9 At
ambient pressure it is ferromagnetic with Curie temperature
of 46 K. Superconductivity occurs at high pressures of 2.6–
2.7 GPa. One possibility is that the phase transition lines
from the normal paramagnetic to the ferromagnetic state and
from the normal paramagnetic to the superconducting state
meet at a quantum critical point. In that case superconduct-
ing states can again be classified with respect to the symme-
try of the time reversal invariant paramagnetic state. On the
other hand, ferromagnetism can survive high pressures and
coexist with the superconducting state. Then, time reversal
symmetry is completely broken. Since the center of symme-
try is also missing, in general«k Þ«−k. Therefore, a zero-
field analog of the inhomogeneous Larkin-Ovchinnikov-
Fulde-Ferrel state42 may be realized in this material. On the
other hand, superconductivity exists in a relatively narrow

TABLE II. Basis functions for triplet superconductivity inC4v
crystals with nondegenerate bands and vanishing SOC and the cor-
responding even basis functions determined by Eq.(53). Note that
Dskd is defined by Eq.(26) even for the triplet case.

A1 dskd=skx,ky,0d —

dskd=skx
3,ky

3,0d xskd=kxkyskx
2−ky

2d A2

A2 dskd=s−ky,kx,0d xskd=kx
2+ky

2 A1

B1 dskd=skx,−ky,0d xskd=kxky B2

B2 dskd=sky,kx,0d xskd=kx
2−ky

2 B1

E d1skd=skz,0 ,0d x1skd=kykz E

d2skd=s0,kz,0d x2skd=kxkz
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pressure range. Hence, an alternative scenario may imply
that «k and«−k areaccidentallydegenerate for a part of the
Fermi surface. In either case, superconductivity in UIr de-
serves further investigation.

In conclusion, we have considered the symmetry proper-
ties of the gap function in superconductors with lifted spin
degeneracy. We have shown that phase factors which appear
with the gap functionDskd under point group operations and
time reversal may be handled by the introduction of an even
auxiliary function xskd, which transforms according to the
irreducible representations of the point group. This function

defines the behavior of the superconductor in terms of ther-
modynamic and tunneling properties.

Note added.The criticism of Ref. 10 presented in this
article is addressed in Ref. 43.
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