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In noncentrosymmetric metals, the spin degeneracy of the electronic bands is lifted by spin-orbit coupling.
We consider general symmetry properties of the pairing funcige in noncentrosymmetric superconductors
with spin-orbit coupling(NSC), including CeP4Si, Ulr, and CdRe,O,;. We find thatA(k) =yx(k)t(k), where
x(k) is an even function which transforms according to the irreducible representations of the crystallographic
point group and(k) is a model-dependent phase factor. We consider tunneling between a NSC and a conven-
tional superconductor. It is found that, in terms of thermodynamical properties as well as the Josephson effect,
the state of NSC resembles a singlet superconducting state with gap fugttion
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[. INTRODUCTION ideal pyrochlore structure, which includes a center of sym-
metry. However, superconductivity occurs on the back-
A better understanding of unconventional superconductivground of a noncentrosymmetric tetragonal crystal field after
ity has been sought ever since the pioneering discovery & series of structural phase transitidfi2 In addition, SOC
heavy fermion superconductivity in CegSi,.* Soon after, dramatically affects the electronic band structure, as shown
the effect of spin-orbit couplingSOQ was recognized to by first-principles calculations for the pyrochlore phds&
play an important role in the superconducti(®C) proper-  Following further calculation* it was predicted that if the
ties of heavy fermion materials, because it breaks spin rotacenter of symmetry is removed from the structure, the spin-
tion symmetry.? If there is no spin-orbit couplingor if the  orhit splitting of the bands reaches 68 meV0kgT,. This
crystal has space inversion and time reversal symmetry, thesult was indirectly verified by a photoemission study,
electronic bands are doubly degenerate everywhere in thghich found that the energy spectrum is shifted noticeably
Brillouin zone? Then, the superconducting states can beoward higher binding energies at low temperatures as com-
classified as spin singlgeven parity and spin triplet(odd  pared to room temperatuféTherefore, CeRe,O, should be
parity), where the spin is replaced by pseudospin when SOonsidered in the same category as G8Pand Ulr. More-
is present:>~"However, if inversion symmetry is abseamd  over, CgRe,0; is a useful test system for the theory since its
SOC is present, the degeneracy of electronic band states dsiperconducting properties are well establisted. The
removed at all points in the Brillouin zone except at sometheory must, therefore, include the possibility for a nodeless
highly symmetric positions, while time reversal symmetry s.wave-like order parametéf.Another appealing feature of
ensures that states with opposite momenta are degeﬁerateCdZ|:eezo7 is the relative simplicity of its normal metallic
The recent interest in noncentrosymmetric SUpeI’COﬂdUC'ﬁstate: it neither orders magneticaﬁfy,nor demonstrates
ors was stimulated by the discovery of superconductivity inkondo-like behavior such as that found in C¢5#
CePtSi and UIr?® SOC is normally strong in cerium and  |n this article, we consider general symmetry properties of
uranium compounds since the atoms are heavy. A recerhe superconducting state in noncentrosymmetric crystals in
band structure calculation of CeBt found that the bands, which the degeneracy is lifted by strong SOC. As a first
which would be degenerate if SOC was absent, are split bgpproximation, we restrict consideration to a one-band
50-200 meV for the states close to the Fermi lédeThis  model, neglecting possible pairing in other bands and inter-
splitting energy is a factor of more than a thousand on th@yand interactions. Section Il discusses the symmetry proper-
characteristic energy scalesT.. Therefore, the one-band ties of the superconducting order parameter. In Sec. IIl, we
theory, which applies to the spin-degenerate case, should k®nsider Josephson tunneling between a conventional super
reformulated:* conductor and a superconductor with nondegenerate bands.
Actually, several superconducting materials in which in-Section IV discusses the limiting case of small SOC, using
version symmetry is absent have been known for some timehe Rashba Hamiltonian as a specific example. In Sec. V, we
Sesquicarbide materials, with chemical formuRyCsy,  discuss the results of our approach in relation to previous
(R=La or Y, which can be partially substituted by a numbertheoretical developments and the applicability to real mate-
of elementg haveT.'s of up to 18 K, and space group sym- rjals.
metry 143d.1-4 This belongs to the tetrahedral crystallo-
graphic clasgy which has no symmetry center. However, in
sesquicarbides SOC does not seem to be important for con-
duction electrons, i.e., the bands are still spin degenétafe. Throughout this paper we use the weak coupling approach
In 2001, superconductivity witfi;=1 K was reported in to treat the pairing interaction. While this approach offers no
Cd,Re,0,.1718 At room temperature, this material has the insight about the pairing mechanism, it has the advantage

Il. SUPERCONDUCTING ORDER PARAMETER
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that many results can be obtained exactly. Also, the symme- P (r) = U, (e, (10)
try properties of the superconducting§C) state remain es-

sentially the same as in strong coupling models. whereU,(r) is the periodic spinor

Uy 4 (r
| | o Uy (r) =( i )>, Udr +R)=Uy(r). (1D
A. Single-particle Hamiltonian Uk,l(r)
In the condensed state it is normally sufficient to treatlt follows from Eg. (6) that
relativistic effects by the Pauli approximation to Dirac’s fully ) - i(k,gr)
relativistic approach. We begin by briefly reviewing the 9:¥k(r) = D(g)Uk(gr)e
i ; . . -
properties of the single-particle Hamiltonfan =D(g)U,(gr)e@ k1 = ‘Pé@lk(r). (12)
2
_b 1 @ - - -
Hy= o +V(r) + 4m202[vv(r) Xp-ol, (1) Clearly, \I’g_lk(r) is a solution of Eq(5), corresponding to

the quasimomenturg k. On the other hand, the same can
wherep=-iV is the momentum operator in the coordinate be said about the functiow -1 (r) obtained fromw,(r) by
representationy/(r) is the periodic potential of the crystal the bare replacemekt—g=k. If the spin degeneracy of the
lattice, ando=(oy, 0, 0,) are the Pauli matrices. Here and bands is lifted, these two functions can only differ by a phase
in the following we use the unit system in whidekg=1.  factor that does not depend on

The space group of the crystal is defined as the set of opera- P9 - i (KW 13
tions g (rotations, reflections, and translatipracting on the 9_1k(r) exfliag(K) W g (1) (13
real space coordinateswhich leaveV(r) invariant, This argument also applies to time reversal operation,

g:V(r) = V(gr) = V(r). 2 KW (r) = (—ioy)U(r)e® " = w0(r). (14)
Because of the last term in E@L), the transformation prop- Let us definet(k) as the phase factor in

erties ofH, are expressed as © o
WI(r) =tk)W_ (r), t* (k) =t"(k). (15

g:H1(r) = D(g)H1(gr)D(g) = Hy(r), (3 . . .
Using the antilinear property of the time reversal operator
whereD(g) is a 2X 2 spin-1/2 rotation matrixD(g) is de-  K:aW,(r)=a* K:W¥,(r) and the fermionic nature o¥,(r),
fined as follows. Ifg is a bare rotation about the axidoy an  one obtains

angle, then K2ZW, (1) = =Wy (1) =t (KW (1) = t* (K)t(= k)W, ().
D(g) = cos% -in-osin é. (4) (16)

2 Thus,t(k) is an odd function ok,
If g includes inversionl, g=Ig’, or a translation(R), g
=1R)g’, whereg’ is a bare rotation, therD(g)=D(g’), t(=k)==tk). (17)
since inversion and translations do not change the spinor Before discussing the interaction part of the Hamiltonian,
components. we formulate the symmetry properties of the Hamiltonian
The solutions¥(r) of the Schrodinger equation using the language of second quantizatisee, e.g., Refs.
HA(r) = W (r) (5) 28,29. The N-particle wave functionby is the antisymme-
1 trized product oN single-particle function®,(r) taken atN
are two-component spinors which transform according to different pointsk. By writing (..., 1, ...) as the argument of
®\ we emphasize that it describes a state in which a single-

g:W(r) =D(g)W(gr). (6)  particle state with quantum numbleris filled. By definition,
In nonmagnetic crystal¥/(r) does not depend on spin, and the creation operatar
the Hamiltonian(1) is also invariant under time reverskl ClPpa(enn, 0 nn) = £ D ), (18)
K:Hy(r) = (= ig)Hy(r) (= ioy) ™ = Hy(r), (7)  where the sign is defined by the antisymmetrization. In par-

ticular, we note that the matrix elements of the creation op-
Erator are real numbers. Using the definitidi8) and the
transformation properties oF,(r), we obtairf°

which uses the fact that spin reverses sign under time reve
sal, expressed by, o* o,=-0. Correspondingly,

KW(r)=(=ioy)¥* (r). (8) gicl = exr{iag(k)]cg-lk,
Further, if {(R) is a proper lattice translation,
g:¢ = exfd—iay(k)]cy1,
7(R):Hy(r) = Hyr + R) = Hy(r). 9) ‘ o
Therefore, as well as in the case of vanishing SOC, the so- IC:CI :t(k)cfk = cﬁf),
lutions of the Schrodinger equati@b) are Bloch waves la-
beled by a quantum number quasimomentum K:co=t* (k)cy,
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U1(9)3Cl = e‘i”cI, TABLE 1. Even basis functions for irreducible representations
(IR’s) of point groupsC,, and C,. The notations for the IR’s and
their character tables can be found in Ref. @8b, andc denote

Us(0):0, =€, (19 lattice constants.
where U;(6) is a gauge transformation. The transformation
properties ot follow from the fact that the number operator IR Nonperiodic Periodic
cic, must be a scalar. c
The one-band single-particle Hamiltonian can be ex-Al 1 k§+k§, % cosk.a+cosk a, cosk.c
pressed as ) _ Y
A, kyky (K5 — kﬁ) sink.a sink,a(cosk,a—cosk,a)
Hi= 2, &cCicy, (200 B K-k cosk,a- cosk,a
k B, kky sinkasinkya
whereé, =g, —u, g is the eigenvalue of the Hamiltoniah) E ki, sink,asink.c
corresponding to momentuky andu is the chemical poten- kyk, sinkya sink,c
tial. We note that] andc, are both two-component spinors, C,
and have all the general properties of séil‘ermion opera- A, 1,12, k§ K, cosk,a, cosk,b, cosk,c
tors, even though additional quantum numb@sisch as spin Ky sinkeasinkb

are omitted since we consider only one band. A, ke Kok, sinkaasink,, sink,bsink,c

B. Paring term Following this idea, we define functiop(k) by

If the interband interaction is neglected, the interaction

term is A(k) = x(k)t(k). (26)
1 Then, using the definition aﬂf(’c) from the third Eq(19) the
Hpair= 5 > Vao(ky,ko)ely cf ccor,, (21)  first term inH, is expressed as
k1.ko
. 1 tr 1 t A
Wherevz(kl,k2)=<‘lf_k1*1'kl|vz|\lf_k21[fk2> is the two-particle 2% x(kjtk)eees, = 2% xkjees”. (27)
matrix element. In the weak coupling approdcbne intro-
duces the mean field potential Using the commutation properg/C=Kg, it is straightfor-
ward to show thaf g:cff(’c):ex;{—iag(k)]ci(g’f)lk. Thus, from
AK) = = 2 V(KK )G Cyer) (22)  the invariance of27), we find
k!
: : : . 2x(K) = x(g7k). (28)
and the interactioni21) is approximated by ox X9
Equation(28) is the basis of the group-theoretical classi-
1 fication of SC states in noncentrosymmetric crystai)
== [AK)cic!, + A* (K)o, 23 ! rosymn y
Ttz 2%[ (K)o, (K)ecid @3 anbe expanded in terms of basis functigf(&) of irreduc-

ible representations of the spagmint) group. At this point

where a constant term is neglected. It follows immediatelyye restrict our consideration to homogeneous SC states for
from the anticommutation of the fermion operators that  gimplicity, so that only the point group is involved,

Ak == AdK). (24 xK) = 2 7xi(k) (29)
One can derive the other transformation properties of :

A(k) from the fact that the full Hamiltoniaf{=",+H, is  where 7 will be identified as the components of the order
invariant under space group operations, time reversal, angarameter. It follows from Eqs(17), (24), and (26) that
gauge transformations. Using EG.9), one obtains x(=k)=x(k). Examples of even basis functioggk) for the

00 =3 0o gl —log-K. (25 (EUCLIe preseniations ofpont orues for CePts
It will be seen already from a simple example given in Sec. The other transformation properties gfk) also follow
IV that the phase factor in E@25) is not trivial. In general, from Egs.(19) and(27),
its dependence og andk cannot be eliminated. Therefore, . _ : — 20
the fuﬁctionA(k) d?)es notransform according to irreducible Kix(k) =x* k), Uy(0):x(k) = (), (30)
representations of the spa@mint) group. For crystals with a where we again use the antilinearity /6f As is usually done
center of symmetry, a comprehensive discussion of this progn the Ginzburg-Landau approach, the transformation prop-
erty has been given by Blouft.Instead of the pairing po- erties of y(k) are reformulated as transformations gf’ If
tential A, which transforms like(#,, ), an auxiliary ob-  y;(k) are chosen real, thew: =Dy, K: nizn;*, and
ject which transforms lik&/C: ,,,) is introduced. Herge  U;(6): 7,=€?%7;,, whereD is the matrix corresponding tg
and v denote the set of single-particle quantum numbersin the representation chosen.
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C. Possible forms of the Ginzburg-Landau potential Gk, w,) = = (iwy + §k)/(w§ + §E +|x(k)]?),
for CePt5Si
Even thoughC,, lacks inversion symmetry, the homoge- Fik, ) = x* (K)t* (K)(w2+ & +|xK)|D), (37

neous terms in the Ginzburg-Landau potent@LP) coin-

cide with those oD,;,,” because the GLP has to be invariantwhere we have made use of the fact thetk)|?=|x(k)|.

with respect to gauge transformations, in particular Gor’kov and Rashi4 considered a model of supercon-
U(m/2): x(k)==—x(k). For every representatiohi listed in  ductivity with split bands due to SOC and an isotropic pair-

Table I, the producl’ ® I'* contains the representatiofy. ing interaction. They showed that the thermodynamics of
The z component of the gradient operator such a superconductor is equivalent to that of a conventional
) s-wave superconductor. Here we have generalized this result
2ie ; ; ; ; ; ;
D=V-22A (31) to the anisotropic case. As is evident from the denominator in
c Eq. (37), the thermodynamical properties of a noncentrosym-

also transforms according thy: therefore the GLP density MeC superconductor are governed by the k).

contains a term linear iD,,

> 7D, + 7Dy (32)
I

Ill. JOSEPHSON EFFECT

We consider tunneling of SC electrons between a super-
conductor with nondegenerate bands and a light conventional

. . o 5
However, this term is equal to the derivativél 92)%||* superconducting metal like Nb, in which electronic bands are
Hence, after integration over the sample, its contribution tqspin degenerate. The tunneling Hamiltonian is

the GLP vanishes.
For all one-dimensional representationsXgf, the GLP is He= s [Ts(klakz)cllakz,s"'T;(klvk2)al2,sckl]a (39)

kl,kz,s

Fip=Fo+ | dr[Ky(|Dynl?+ |Dy7]?) + Ko|D,7f* + o nf? L ,
o f [(Kal[Doonl” +[Dy7%) + KolDo™ + el wherea/  creates an electron with spirin the conventional

superconductor andy(kq,k,) is the tunneling matrix ele-

4

+ Al (33) ment. By applying the time reversal operation to the first
For the two-dimensional representatién term inH, we obtain
X T _ .
Fop=Fo+ f dr {Ky(IDy|* + [Dy72l) + Ka(| Dy ’ kESS, Ts(kykaltlk) e, (Zloy)ssay, s
1821
+[Dym[?) + K[ (Dy71) (Dymp)" + c.C] + K [ (Dye7p) = X t(-kp(0y)ss Ty (- Ky, - koot B,s (39)
X(Dyﬂl)* +¢.¢] + Ks(|D, 771/ + D772 + | 7 kykass’
+|72l?) + Bol|lmf? + [ 92P)% + Balmimz = mmn)? Therefore,
2|, |2 .

+ el el 34 Tk ko) =tk S (0y)ss Ty (kpko).  (40)

S

D. G 's functi . R .
reen’s functions The following derivation follows that for conventional su-

The most straightforward way to calculate the normalperconductors given in Refs. 7 and 33, which is in turn based
G(k,7 and anomalous=(k,7),F'(k,7) Green's functions on the formalism originally proposed by Ambegaokar and
within the weak coupling approach is to use the Gor’kovBaratoff3> For simplicity, we restrict our consideration to the
equations®>33 The Green’s functions are defined as follows: case of zero voltage. The current flowing between the two

superconductors ig=e(dN(t)/ dt)=ei( H+,N]), where N(t)

__ t : :

Glk,n) =~ (Tc(nc O}, =€y, clc.e "M is the time-dependent particle number op-
erator.

F(k,7) =(TAc(nck(0)}), Following the same steps as described in Ref. 33, we
obtain

F(k,n =(T{cl (DeckO)}), (35

j=2eTIm X Tyky,ko) Te (= kg, ko)F (g, wp)

kq,ko,ss’,n

XFO (Ky, wp), (41)

where T, is the imaginary time ordering operator. The
Gor’kov equations for the Fourier transforms are

[iwn = &JG(k, 0p) + AK)F(k, 0) = 1,

(© — ; 2 21 i
_ N . ~ where F3 (K, wp)=(K)(i0)sg /[wi+ec+|p(K)[?] is the
[in+ &JF(k, 0n) + A% (K G(K, @) =0, (36) anomalous Green's function for a conventional supercon-
wherew,=#T(2n+1) are the Matsubara frequencies for fer- ductor with the single-particle spectrugy and singlet gap
mions. The equations are easily solved by function y(k).” Using Eqs.(37) and(40), we obtain
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i=-2TImS S x* (K ky) mirror plane perpendicular to the axis. Acting by m, on
j=—2eTIm .
ko Lon+ &+ XkoPIlwf+ &+ ko)) Wy, we obtain
1 (0 -i 1) ei‘Pk( 1 ) _
2 = ] ikme) — = @l (Mkir)
Xg | To(ky, ko) (42 \”/2_\/(_i 0 )(ie""k>e oo
=W 47

The sum over Matsubara frequencies can be easily calculated
if needed by using the formula T2 (0?+E?™*  where exfi ¢mk) =—€xp(-ig,) was used. Hence, the phase
=tanHE/2T)/E. Therefore, the final expression for the Jo- factor defined by Eq(25) is equal to(ikx+ky)2/ki_

sephson current does not depend(@). One again, we see By applying time reversal t&’, , using Eq.(14), we find
that the superconductor with SOC split bands behaves as a ) )
singlet superconductor with gap functiauk). t(k) =i exp(—igy). (48

The tunneling Hamiltoniafky is invariant with respectto  The fermion operators corresponding to initial spin-up
the operationg of the point group which leave the surface and spin-down states can be expressed in terms of the new

invariant. Thus, band operators as
9:To(ka ko) =€ VD(Q)se To (k1,0 ko). (43) o = Lic+d, o == e e -cl). (49
\‘/2 \’12

It follows that At this point we assume that before SOC has been turned on,

the electrons were paired in the singlet state with gap func-
9.2 [Teky, k) 2= 2 [Tdg kg k)2 (44 tion y(k),
S S

1
[ T AT
Therefore,j is invariant under the operatiomsas expected. Hy= 2§k: K)CiCoyy +H . C. (50)

Using Eqgs.(48) and (49), we obtain
IV. LIMIT OF SMALL SPIN-ORBIT COUPLING

1

In order to verify the general results given in Sec. Il, it is Hy= ZE tk)gk)ciucl +H.c. +-o, (51
important to show that they remain valid for crystals with k
small SOC, i.e., for almost degenerate electronic bands. Iwhere the rest of the terms, which describe pairing in the
this section we consider the Rashba approximatfobe-  other band and interband pairing, are neglected. By compar-
cause(i) the one-particle Hamiltonian is then exactly solv- ing Eq. (51) with Eq. (23) we obtainA(k) in the form(26)
able andii) we can easily compare our results for superconith y(k)=y(k)/2.
ductivity with those known from the literature, where the |nterestingly, a similar result is obtained if one starts with
Rashba approximation was uséd’ triplet pairing for spin states,

In the Rashba approximatizon, one assumes that the solu- L
tions of the HamiltoniarH,=p</2m+V(r) are plane waves ,_ L a . bt
with definite projections of spin and energy spectrefinand Ha= 2§k: {[=dutl) +idy (k) oy 5 + [k
that VV(r) can be replaced by a constant vector directed ) - - -
along the axis of symmetrp=(001). Therefore Eq(1) is +idy(k)Jey Coy | + d(K) (G Coy ) + G Co)l +H . C
approximated by 1 . .

= 52 t(k)[dy(K)ky = dy(k)kyIcf . ch # H.c + -1,
&2 - Bk, + ik “
H:,l:( k - ﬁ( YO x))’ (45) (52)
- Bk, —iky) &y i
wherek;=k;/|k , | and again only terms corresponding to the

whereg is a constant which characterizes the strength of theoupling within the + band are kept. Therefore, we again find
SOC. The Hamiltonian is diagonalized by the spifbrs A(k) in the form(26) with
1 1 . x(K) = dy(K)k, = d(K)k,. (53)
\Pk,i =7 . . ’ (46) . . .

V2V \xi expliey) Frigeri et al3’ used weak coupling theory to show that a
phase transition to the triplet pairing staték)=(-ky,k,0)
corresponding to the eigenvalues:=sﬁi,8|ki|. Here, (which transforms according to the representatiyy) in
expligy) = (ke +iky) /[K | | andlk  |=k2+ kf, In the following, ~ CeP4Siis not suppressed by smaJI byt finfieAccording to
we shall consider coupling in the + band as an example. Eq.(53), this corresponds t,Q(k)OCk)2<+ kﬁ which is isotropic

In order to illustrate the complicated transformation prop-and fully gapped and transforms liklg. By using the vec-
erties(25) of A(k), let us consider as an examglem,, the  torsd(k) corresponding to the rest of the irreducible repre-
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TABLE II. Basis functions for triplet superconductivity Gy, representations o€,, have line nodes. This, in particular,
crystals with nondegenerate bands and vanishing SOC and the caules out the possibility of an isotropic full gap, and therefore
responding even basis functions determined by(&8). Note that  contradicts the theoretical results of Refs. 34,37 and the ex-

A(k) is defined by Eq(26) even for the triplet case. perimental results for G&e,O,. The origin of the discrep-
ancy is that Anderson’s statement is correct up to a phase
Ar d(k)=(keky,0) — factort(k), which is not important in the normal state due to
33 s o gauge invariance but cannot be ignored in the superconduct-
d(k)=(k¢.ky, 0) x(K)=keky (k- k) Ao ing state’ In other words, one cannot defing in an asym-
Az dk)=(ky,ky, 0) X(K) =K+ K Ay metric unit of the Brillouin zone and then use the symmetry
B,  d(k)=(ky,—ky,0) x(k) =K.k, B, elementgincluding time reversalto define the states in the
B,  d(k)=(ky,k,0) x(k)=KE-K2 B, rest of the Brillouin zone. Such a procedure would lead to a
E  dik)=(k,,0,0 xa(K) =Kk, E discontinuity of the phase _ of t_he wave _funct_ion on the
dy(k)=(0,k,, 0) Yo(K) =k k, boundaries of the asymmetric units. Alsogffis paired with

Kcl, then Kcl must be paired withc?c)=—c], which is a
contradiction. Instead, i€} describes the particle with mo-
sentations of,, (which are similar to those fdb,, and are mentumk andk’=g~'k, whereg is a point group element or
given in Ref. §, the corresponding functiong(k) may be time reversal, then the particle with momentlérhmust be
obtained from Eq(53) and are listed in Table II. Therefore, described byc),=c/ 4, which is proportional but not equal
in general, starting frond(k) corresponding to a representa- to g:CE.

tion I', we generatey(k) using Eq.(53) corresponding to The formalism developed in this paper can be directly
another representatidrf, while in the singlet casey(k) and ~ applied to CdRe,O;, which shows no sign of magnetic or-
(k)/2 belong to the same representation because they af€ring and therefore possesses time reversal symstéihe
proportional. The difference is due to the transformationlOW temperature structure has symmei#y22'® with point
properties of the paired state under spin rotation, which wag0Up D4, which is isomorphic tdC,,. The superconducting
used to diagonalize the Hamiltoniad}: the singlet state Order parameter corresponds to the representatiosince

transforms into itself as a scalar, whereas the triplet statB0 nodes in the quasiparticle spectrum have been found.
transforms as a spin-1 stafe. In the application to CeRSi, this theory should be

slightly modified to include the effect of antiferromagnetic
ordering (Ty=2 K).2 A neutron scattering stud¥ revealed
V. DISCUSSION that the antiferromagnetic structure is characterized by the
wave vectorQ=(0,0,w/c). Therefore, the normal state just
A close analogy between the superconductors under corghoveT, is invariant under the operatiofic) K instead ofiC,
sideration and usual centrosymmetric singlet superconduciyherer(c) is a lattice translation along trzaxis. This leaves
ors should not be surprising. A particle described by the,gjiq all of the results of our discussion, since we consider
wave f_unctionglo) which is a solution of "('%m'_'ton'aml) translationally invariant superconducting states, and for the
has spins(k)=3(Vy|a|¥). SinceV_ and W’ differ only  antiferromagnetic case, one still hag=¢_,. However, the

by a constant phase factor, we have presence of antiferromagnetic order can provide certain clues
1 1 about a possible superconducting state. It has been shown for
s(-k) = §<\lf_k|g|\lf_k>:§<\II(JE)|0-|\II(_}E)> zero SOC that the singlet superconducting state with gap

function (k) is energetically favoured if{k +Q)=—iys(k)

1 . 1 . . (see Ref. 7 and references thejetdence, the periodic basis
= /CZE(‘I’HU( W) = E(q,k|0'( W) functions in Table I, which depend dg, may be good can-
didates.
_ 1 B Even more exciting is the situation realized in @At
- §<q’k‘"|q'k> =-s(k), (54) ambient pressure it is ferromagnetic with Curie temperature

of 46 K. Superconductivity occurs at high pressures of 2.6—
where we have used the fact that diagonal matrix elements ¢f 7 GPa. One possibility is that the phase transition lines
the spin operator are real amd")=(~ioy)o* (-ioy) '=-0.  from the normal paramagnetic to the ferromagnetic state and
Therefore, particles with opposite momenta within the samérom the normal paramagnetic to the superconducting state
band always have opposite sgsee also Ref. )1 meet at a quantum critical point. In that case superconduct-

It was first noted by Anderséfithat for crystals in which  ing states can again be classified with respect to the symme-
either the momenturk or spin is not a good quantum num- try of the time reversal invariant paramagnetic state. On the
ber, as in dirty superconductors, a one-particle state shoulgther hand, ferromagnetism can survive high pressures and
be paired with its time reversal. Using this idea, Samoktin - coexist with the superconducting state. Then, time reversal
al. 1% definec’, as the time reversal af!. This in turn leads symmetry is completely broken. Since the center of symme-
to the conclusion that(k) is an odd function which trans- try is also missing, in general, # ¢_,. Therefore, a zero-
forms according to the irreducible representations of theield analog of the inhomogeneous Larkin-Ovchinnikov-
point group. Then, the gaps in the quasiparticle spectrum ofulde-Ferrel stafé may be realized in this material. On the
the superconducting states described by all one-dimensionather hand, superconductivity exists in a relatively narrow
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pressure range. Hence, an alternative scenario may implyefines the behavior of the superconductor in terms of ther-
thate, ande_, areaccidentallydegenerate for a part of the modynamic and tunneling properties.
Fermi surface. In either case, superconductivity in Ulr de- Note addedThe criticism of Ref. 10 presented in this
serves further investigation. article is addressed in Ref. 43.

In conclusion, we have considered the symmetry proper-
ties of the gap function in superconductors with lifted spin
degeneracy. We have shown that phase factors which appear ACKNOWLEDGMENTS
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