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Phase slips in superconducting films with constrictions
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A system of two coplanar superconducting films seamlessly connected by a bridge is studied. We observe
two distinct resistive transitions as the temperature is reduced. The first one, occurring in the films, shows some
properties of the Berezinskii-Kosterlitz-Thoulg&KT) transition. The second apparent transitiaich is in
fact a crossova@iis related to freezing out of thermally activated phase slTpeRS) localized on the bridge. We
also propose a powerful indirect experimental method allowing an extraction of the sample’s zero-bias resis-
tance from high-current-bias measurements. Using direct and indirect measurements, we have determined the
resistanceR(T) of the bridges within a range of eleven orders of magnitude. Over such broad range the
resistance follows a simple relati®{T) =Ry exd —(c/t)(1-1)%?], wherec=AF(0)/kT, is the normalized free
energy of a phase slip at zero temperattwel,/ T, is normalized temperature, aiy, is the normal resistance
of the bridge.
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[. INTRODUCTION the bridge, which may be regarded as a vortex-antivortex
pair breaking assisted by the bridge.
Thermally activated vortex-like excitationdopological Using direct and indirect techniques we have tracked the

defect$ of the superconducting condensate are the primargample’s resistance within a range of eleven orders of mag-
source of dissipation in mesoscopic superconductingitude. The resultingR(T) curves are compared with the
structures. These fluctuations take different forms in one- LAMH theory. Regardless of the large width of the bridges
dimensional1D) and two-dimensional2D) systems. In 2D and their shortness, the shape of the measB(@&g curves is
thin films the fluctuations are known to be broken vortex-in perfect agreement with the overall shape of the curves
antivortex pairs*while in 1D wires the resistance is due to computed using the standard LAMH theafiyote that this
phase slips?~?*One important difference between these twotheory was originally derived for very long wires that are
types of fluctuations is that vortices and antivortices formmuch thinner than the coherence lengifhe only disagree-
bound pairs below a certain critical temperature, known asnent found with LAMH is that the preexponential factor had
the Berezinskii-Kosterlitz-ThouleséBKT) transition tem-  to be modified in order to obtain a reasonably low critical
perature, while phase slips and anti-phase-slips are unboung@mperature of the bridges. The critical temperature is used
at any finite temperature. Thus the resistance of 1D wires ias an adjustable parameter in the fitting procedure. Following
greater than zero at any finite temperature due to the preshe argument of Littl& we arrive at the conclusion that the
ence of phase slips, which are described by the theory gfreexponential factor should be simg®y; and obtain a good
Langer, Ambegaokar, ~McCumber, and Halperinagreement with measured curves. The measurements show
(LAMH) 13.14 that the bridges with intermediate dimensighsallow phase

Here we report a study of structures in which both typesslippage which does not quench at any finite temperagiiye,
of fluctuations can coexist, namely, thin films containingbehave independently of the thin film banks, &iiid exhibit
constrictions, which are comparable in size to the coherence
length. The goals of this work al®) to test the applicability — (a)
of the LAMH theory for short and rather wide constrictions
and(ii) to test the effect of the vortex-antivortex sea existing
in the thin film banks adjacent to the constriction on the
phase slippage rate on the constriction itself. For this purpose
we fabricate and measure a series of thin superconductin
MoGe filmg? (which are about 1%m wide) interrupted by
constrictions or “bridges[see Fig. 1a)]. The width of the SiN supporting
narrowest point of the bridges is in the range of 13—28 nm, membrane
i.e., a few times larger than the coherence ler{gib esti-
mate &0) =7 nm for our MoGe film&®]. Two resistive tran-
sitions are observed in such samples indicating that the

vortex-antivortex pair binding-unbinding transitigif any) FIG. 1. (a) Sample schematic. MoGe filifblack) of thickness

and thermally activated phase slip processes occur sepg=2.5-4.5 nm is deposited over a SiN membrégeay) substrate

rately. For T>Tgyr the contribution of vortex-antivortex with a constriction of widthw. (b) An SEM micrograph of a typical
pairs is dominant. On the other hand, bel®yyr the trans-  sample. The MoGe coated SiN bridggray) is suspended over a
port properties are determined by the phase slip process afeep trenchblack).

w

(b)
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a higher rate of phase slippage in the cases when the width eémperature of the wirgor of the bridge, as in our discus-
the bridge is smaller and therefore when the coupling besions belovy. The factof AF/kT)¥2 provides a correction for
tween the thin film banks is weaker. the overlap of fluctuations at different places of the wire and

Before presenting our experimental results we give a briethe factorL/&(T) gives the number of statistically indepen-
summary of the BKT theory of topological phase transitionsdent regions in the wir& The free energy barrier for a single
and the LAMH theory of thermally activated phase slips. Inphase slip is givel#18 by
thin superconducting films, even in the absence of a mag- =
netic field, an equal population of free vortices and antivor- AF = %HC(T)AS(T) 3
tices is expected to occur. The BKT theory predicts a univer- 3 8=u '
sal jump in the film superfluid density, at the characteristic ) ) , , )
temperaturd@ g, lower than the mean-field critical tempera- W?'Ch is essentially the condensation energy density
ture of the filmT.,. Such a jump is related to the vortex- Hc(T)/8m multiplied by the effective volume &®A(T)/3 of
antivortex pair binding through a logarithmic interaction po- & Phase sligA is the cross-section area of the wire
tential between free vorticé€® Applied currents can break A bias current causes a nonzero voltagéme averaged
bound pairs producing free vortices which cause to nonlinea@iven by
V(I) curves. AboveTgyr the linear resistance of a film is AO(T)

- _e—AF/kT

given by the Halperin-Nelso(HN) formulef® Y, sinh(l/1), (4)

e
Rin = 10.80R, ¢ exi - 2Vb(Teo = Ter)/(T = Texr)], (1) wherely=4ekT/h (1,=13.3 nA atT=1 K). Differentiation of

whereR,; is the normal state resistance per square of théh's expression with respect to the bias curremives the
' differential resistance

film andb is a nonuniversal constant. Note that the HN equa-
tion predicts zero resistance for temperatures below the BKT AQ(T)
phase transition temperatufgr- dvidi==""e AFKT cosHI/1p). (5)
The LAMH theory1?~**applies to narrow superconduct- o
ing channels, in which thermal fluctuations can cause phas€he dependence of the attempt frequency and free energy on
slips, i.e., jumps by 2 of the phase difference of the super- the bias current is neglected in this derivation. In the limit of
conducting order parameter. In unbiased samples the numbkw currentsl <1, Ohm'’s law is recovered
of phase slipgwhich change the phase difference by)2
equals the number of anti-phase-slipghich change the RLAMH(T):Me_AF/szRq(M
phase difference by -2. An applied bias current pushes the ely kT
E)ésctgrwez\,\llzy from equilibrium and the ngmber of p_hase SIIp?/vhere quh/(Ze)2:6.5 kQ. In this approach the fluctuation
ger than the number of anti-phase-slips. Thus a . e
net voltage appears on the sample, which can be calculate{Jes'St"’m.Ce does not ha\{e any explicit dependence on the nor-
. : _ ) nial resistance of the wire.
following LAMH, as V=% ¢/2e (below we will also discuss
an alternative approach to the voltage definitiddere? is
Planck’s constant is the electron charge, anflis the rate
of change of the phase difference between the ends of the The sample geometry is shown schematically in Fig).1
wire. During the phase slip process the energy of the systemhe fabrication is performed starting with a Si wafer covered
increases since the order parameter becomes suppressedyiéh SiO, and SiN films. A suspended SiN bridge is formed
zero in the center of the phase slip. Thermal activations Oﬁsing electron beam lithography, reactive ion etching, and
the system over this free energy barie#(T) occur atarate  HF wet etching?® The bridge and the entire substrate are
given by (Q(T)/2m)e 7T, If the bias current is not zero, then sputter coated with amorphous e, superconduct-
then the net rate of the phase slippage ds=Q(T) ing alloy, topped with a 2 nm overlayer of Si for
X (e~AF+(DKT_ g=AF-DKT) "Here is the bias current, andiF, protection?® The resulting bridges are 100 nm long with a
and AF_ are the barriers for phase slips and anti-phase-slipglinimum widthw=~13—-28 nm as measured with a scanning
correspondingly(these two barriers become equal to eachélectron microscopeSEM) [Fig. 1(b)]. All samples are listed
other at zero bias currentThe attempt frequency derived in Table I.

)e—AF/kT’ (6)

Il. EXPERIMENTAL SETUP

from a time-dependent Ginzburg-LanddsL ) theory, for the Transport measurements are performed in a punipled
case of a long and thin wire, s cryostat equipped with a set of rf-filtered leads. The linear
resistanceR(T) is determined from the low-bias slogée
oM = Li(ﬁ)m 2) bias current is in the range of 1-10 yéf the voltage versus
T) g \ KT/ current curves. The high-bias differential resistance is mea-

sured using an ac excitation on top of a dc current offset
where T is the temperature of the wire and &(T) is the  generated by a low-distortion function generai@RS-
length of the wire measured in units of the GL coherenceDS360 connected in series with a 1M resistor. One
length &(T). The attempt frequency is inversely proportional sample was measured down to thénfevel using a low-
to the relaxation timerg =#A/8k(T,—T) of the time- temperature transformer manufactured by Cambridge mag-
dependent GL theory, witfi; being the mean-field critical netic refrigeration.
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TABLE |. Sample parameters, including the width of the con-
striction (w), determined from SEM images, normal resistance of
the bridge(Ry), determined from th&(T) curves(at a temperature
slightly below the resistive transition of the thin film bapksritical
temperaturg(T,), determined fromRy, (T) fits given by Eq.(9),
critical temperature of the filniT), film thickness(d), and a geo-
metrical fitting paramete(s).

Sample w(nm) Ry (Q) T, (K) Tg(K) d(nm) B

Al 27+4 1380 3.88 3.90 2.5 1.47
Bl 13+4 1650 4.80 491 3.5 0.723
B2 28+4 1320 481 491 3.5 1.10
C1 13+4 1440 5.16 5.50 4.5 0.653
Cc2 27+4 680 5.39 5.50 4.5 221

lll. RESULTS T

First we compare a sample with a hyperbolic constriction FIG. 3. Low-bias resistance for five different samples with
(“bridge sample) with a reference sample, which is a plain bridges. The parameters of the samples are given in Table I. The
MoGe film of the same thickness, without any constrictiondata points are shown by open symbols. Solid lines are fits to the
(“film sample”). Both are fabricated on the same substratebridge” phase slip model given by Eq&) and(9).
simultaneously. A resistive transition measured on the film

sample is shown in Fig. 2. The HN fit generated by 891is  f Fig. 2 compares th&k(T) measurements of the “film”
shown as a solid line and exhibits a good agreement with thf‘open circles and the “bridge”(solid line) samples. AtT
data, yielding a BKT transition temperature Bf«r=4.8 K -4 8 K theR(T) curve for the film sample crosses tRe0
and a mean-field critical temperatufg=4.91 K. Such good ;i \with a nonzer@and large slope, in agreement with the

fit suggests that the transition observed in the banks might bgap4vior predicted by the HN resistance equatibn Nev-

the BKT transition, although a more extensive set of eXperi'ertheless, unlike the film sample, the bridge sample shows a

ments is necessary in order to prove this assumption rigots,n,erq resistance even below the BKT transition tempera-
ously. As expectedlpr is slightly lower thariTe. The inset e predicted by Eq(l). Such resistive tails, occurring at

T<Tgkr, have been found in all samples with constrictions.

In Fig. 3 theR(T) curves for five samples with bridges are
plotted in a log-linear format. The resistance of sample B1
has been measured down to th&)mmange using a low-
R temperature transformer. Two resistive transitions are seen in
each curve as the temperature decreases. The first transition
is the superconducting transition in the thin film banks adja-
cent to the bridge. The second transition corresponds to the
resistive tail mentioned above. In order to understand the
origin of the second transition it should be compared to the
LAMH theory.
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1 0 e, T T Below we analyze the resistive tails found on samples
3 4 5 6 7 8 with a constriction and demonstrate that they are caused by
T (K) the phase slip events localized on the bridge and behave
4'8 4'9 5'0 5'1 5'2 independently of the adjacent thin film banks. The analysis
' ‘ TiK) ’ ' indicates t_hgt no BKTno vortex-antivortex p!ndmg within
the constrictionsor any other type of transition occurs on
FIG. 2. Low-bias resistance versus temperature dependené@e const_rictions and that the phase slips and anti-phase-slips
(open circley measured on a thin filtd=3.5 nn) without con- '€ _unpa|red_ at any nonzero temperature dug to thermal fluc-
striction. The solid line is a fit to the Halperin-Nelson thegg. ~ tuations. This is demonstrated below by fitting tRET)
(1)]. Inset: Resistance of the film without constrictiomultiplied ~ curves with the LAMH-like fitting curves.
by a constant factgr shown as open circles, is compared to the
sample with a hyperbolic bridgd2), shown by the solid line. The
only qualitative difference is the presence of a “resistive tail,” ob- In order to compare our results to the LAMH theory we
served on all samples with constrictions. have to take into account the small length of the bridge,

A. LAMH attempt frequency for a short bridge
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which does not allow more than one phase slip at a givetheoryl8 we find thatAF,y, (0)=(8y2/3)[H2(0)/87]A&(0)
time. Therefore the attempt frequenQyT) of Eq.(2) can be =0.8XKTR L/R\é(0), whereL is the length of the wire. Us-
simplified. First, it has a ternh/&(T) that accounts for the ing Ry=p,L/A, the free energy barrier for a weak link is
number of independent sites where a phase slip can é&tcur.

Since each of our samples has only one narrow region where BwdR
phase slip events can happen, we taie(T)=1. Second, AFy,(0) :0-83<Tcp 40) " (8)
n

the coefficien AF/kT)¥? which takes into account possible
overlaps of phase slips at different places along the'vise

taken to be unity also. This is because for short hyperboliqs the normal resistivity, and=wd. The parametep mea-

bridges (not much longer than the coherence lengthis ; ; .
reasonable to expect that there is only one spot, L.e., thgures the ratio of the phase slip length along the bridge to the

: : . ffective length of a phase slip in a 1D wire, which is equal
narrowest pom.t of the bridge, where phase slips occur. As.?0 8\f§§(T)/3. Finally, assuming the same temperature de-
re_sult, we o_btaln the attempt frequerlcy f’(,)r a short h)‘{perboll%endence of the barrier as in the LAMH theory, i&E(T)
bridgeQy, =1/7g_ (the abbreviation “WL" stands for “weak ZAF(0)(1-T/T)32 we arrive at the expression for the
link”). This attempt frequency can be combined with theb idae fl oo duced resi P
usual form of the LAMH resistance in E@6) and can be ridge fluctuation-induced resistance
used to fit the experiment&(T) curves(below the resistive

. . . d T 3/2T
transition of the. filmg. Although such fits .follow the d@ta Ry (T) = Ry exp| - 0.8£!Y %(1 __) =l (9
very well, there is one inconsistency, that is they require the pné(0) T.) T

critical temperature of the bridge to be chosen higher than . N .
the critical temperature of the films, which is unphysical for . The f|t§ genera_ted by E¢9) are shown_m Fig. 3 as SOI'q
lines. An impressively good agreement is found for all five

such a system. We attempt to modify the preexponential fac | | ficul lo BL d using the |
tor in order to resolve this inconsistency, as discussed belo amplies. in particular, sampie measured using the fow-
emperature transformer, shows an agreement with the pre-

dicted resistanc®,,, over about seven orders of magnitude,
B. Modification of the prefactor down to a temperature that is more than two times lower
compared to the critical temperature of the sample. Only two
‘ﬁtting parameters are use@:andT, (listed in Table ). The
other parameters required in E@), including Ry, d, w,
&0), and p,~180 uf) cm are knowrt®1%23The fits give
Ry (T) = Rye 4Fwl /T, (7)  quite reasonable values for the critical temperature of the
bridges, in the sense that they are slightly lower than the
The exponential factor here is that of the LAMH theory corresponding critical temperatures of thin films of the same
and the prefactor is simply the normal resistance of thdhickness, as expected. This fact supports the validity of Eq.
bridge. This expressiofEq. (7)] can be justified by the fol- (7). Such good agreement also indicates that the dissipation
lowing argument: the duration of a single phase glip., in a thin film with a constriction alT < Tgxy is solely due to
the time it takes for the order parameter to recp¥®r75 ~ thermal activation of phase slips on constrictions. As ex-
and the number of phase slips occurring per second ipected,8~1 for all samples and the large# values are
~Q(T)exd —AF(T)/KkT], with the attempt frequency being found on wider constrictions.
the inverse GL relaxation tim&y, =1/7g , as was argued
above. Therefore the time fraction during which the constric-
tion is experiencing a phase sligi.e.,, when super-
conductivity is suppressed on the briglge the product of
these two values, i.e..f=(7g)(1/7g )exd-AF(T)/KT] We now discuss the nonlinear properties of films with
=ex{—AF(T)/kT]. Following Little }? it can be assumed that constrictions. Measurements of the differential resistance
the bridge has the normal resistariggduring the time when versus bias currerdV/dl vs | are plotted in Fig. 4 on log-
a phase slip is presefite., when the bridge is in the normal linear scale. Using these results it is possible to distinguish
statg, and the resistance is zero otherwiagen there is no between the BKT mechanism, which leads to a power-law
phase slip. Thus we arrive at the averaged resistance for &/(I) dependence, and the phase slippage process, which is
bridge or a small size weak linRy, =f X Ry+(1-f) X0  characterized by an exponentid(l) dependencgEgs. (4)
=R\exd-AF/KT] as in Eq.(7). Note that unlike in the and(5)]. From Fig. 4 it is clear that af < Tgkt and suffi-
LAMH theory, in the present formulation the fluctuation re- ciently low currents the dependence of the differential resis-
sistance is directly linked to to the normal state resistance dfance on bias current is exponentjilappears linear on the
the sample. log-linear plotg. Thus it is appropriate to compare the results
In order to compare Eq.7) to the experimental results, with the LAMH theory. Equation(5) can be written as
an explicit expression for the energy barriexF,,  dV/dI=R(T)coshl/ly), where R(T) is the temperature-
for a phase slip localized on the bridge is required. Startinglependent zero-bias resistance. Using this relation, we fit the
with the usual forr® derived for a long 1D wire differential resistance data and URET) as a fitting param-
and some well known results from BCS and GL eter, as shown in Fig. 4 by solid lines, each corresponding to

wherew is the width of the bridged is the film thicknessp,

the resistance of a constrictigweak link) as

C. Determination of the linear resistance from high bias
current measurements
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| 412K

l(nA)

FIG. 4. Differential resistance as a function of the dc bias cur- FIG. 5. Resistance vs temperature curve for sample B2. Open
rent for sample B2. Experimental data are denoted by open symbolircles represent data that have been directly measured while filled
and the solid lines are fits wV/dI=R(T)cosK1/1y). Temperatures boxes give the resistance values determined by fittingdtied|
from left to right are 4.12, 3.92, 3.80, 3.64, 3.45, 3.36, 3.26, 3.16curves of Fig. 4 using the formutl//dI=R(T)cosH(1/1,). The solid
3.07, 2.80, and 2.68 K. and the dashed curves give the best fits generated bR{péT)

) o ) ~_ (T;=4.81K andR (T) (T,=5.38 K) formulas, respectively.
a fixed temperatur€. The fitting procedure illustrated in Fig. ¢ LAV ¢

4 gives us a powerful indirect method of determination of the
zero-bias resistance. This method is useful when the temy;
perature is low and the resistance of the sample is below tht%

N ' o an the filmT., (Table I, as expected.
resolution limit of the experimental setup. Thus, by fitting A rapid d f the LAMH resist Pt ¢
the dV(1)/dl curves, we obtained the zero-bias resistance / 'ap!d decrease ortne resistance at temperatures

R(T) down to very low valueg~10" Q). This method was V€Y close to the critical temperature reflects the behavior of
systematically applied on sample B2 and the results arthe LAMH attempt frequency which approaches zeroTas

shown in Fig. 5 as solid squares. The open circles in Fig. 5 T The LAMH resistance is proportional to the attempt
represent the zero-bias resistance obtained by direct mef€duency so we observi@—0 asT— T, (dashed curve in
surements at low bias currents. The two sets of data arEld- 5)- Such behavior is unphysical and occurs since the
consistent with each other. The solid curve in Fig. 5Ra  LAMH theory is not applicable very nedrf.. It should be

fit obtained using Eq(9). An excellent agreement is seen in €mphasized that some of our measured bridges are wider
a wide range of resistances spanning eleven orders of magané(0), yet the thermally activated phase slip model agrees
nitude. This reconfirms that the thermally activated phasavell with the data. This is in agreement with the prediction
slip mechanism is dominant in the bridge samflefr  (Ref. 13, p. 510 that superconducting channels of width
T<Tgkr.- We emphasize that the critical temperature of the<4.44T) should exhibit a 1D behavior, i.e., nucleation of
bridge, which is used as an adjustable parameter, is found f@rtices is unfavorable in such channels. Such condition is
be T.=4.81 K. As expected, the; of the bridge is slightly  true for all of our samples.

lower than the critical temperature of the film electrodes
Tep=4.91 K.

The usual LAMH expressioR avy [EQ- (6)], Which ap-
plies to thin superconducting wiré%;?%23can also be used
to fit our data. The overall shape of the fitting cufgdashed . . L .
curve in Fig. 5 agrees with thepdata as well &‘?S wﬁ?ﬁm I.:Iuctuatlo.n .efl‘ec.ts in thln films interrupted by “hyper-
fit. The drawback of the usual LAMH formula is that the Pelic” constrictions is studied. The measurements show two
critical temperature of the bridge, which is used as an adjusS€Parate resistive transitions. The higher-temperature transi-
able parameter, turns out considerably higher than the filndon shows some properties of a BKT transition in the films
transition temperature. For example, the dashed line fit itfollows the HN formulg. The second apparent resistive
Fig. 5 is generated usinf.=5.38 K which is larger than the transition is explained by a continuous reduction of the rate
film critical temperaturd ,=4.91 K. This apparent enhance- of thermally activated phase slips with decreasing tempera-
ment of the critical temperature of the bridge must be arfure. A quantitative description of the fluctuation resistance
artifact, because a reduction of the dimensions of MoGesasf narrow and short superconducting constrictions is
mples always leads to a reduction of the criticalachieved. For this purpose we have modify the LAMH ex-
temperaturé® On the other hand, th&, extracted from the pression for the resistance of a one-dimensional nanowire.

s made using Eq(9) are almost equal but slightly lower

V. SUMMARY
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