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A system of two coplanar superconducting films seamlessly connected by a bridge is studied. We observe
two distinct resistive transitions as the temperature is reduced. The first one, occurring in the films, shows some
properties of the Berezinskii-Kosterlitz-Thouless(BKT) transition. The second apparent transition(which is in
fact a crossover) is related to freezing out of thermally activated phase slips(TAPS) localized on the bridge. We
also propose a powerful indirect experimental method allowing an extraction of the sample’s zero-bias resis-
tance from high-current-bias measurements. Using direct and indirect measurements, we have determined the
resistanceRsTd of the bridges within a range of eleven orders of magnitude. Over such broad range the
resistance follows a simple relationRsTd=RN expf−sc/ tds1−td3/2g, wherec=DFs0d /kTc is the normalized free
energy of a phase slip at zero temperature,t=T/Tc is normalized temperature, andRN is the normal resistance
of the bridge.
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I. INTRODUCTION

Thermally activated vortex-like excitations(topological
defects) of the superconducting condensate are the primary
source of dissipation in mesoscopic superconducting
structures.1 These fluctuations take different forms in one-
dimensional(1D) and two-dimensional(2D) systems. In 2D
thin films the fluctuations are known to be broken vortex-
antivortex pairs2–11 while in 1D wires the resistance is due to
phase slips.12–21One important difference between these two
types of fluctuations is that vortices and antivortices form
bound pairs below a certain critical temperature, known as
the Berezinskii-Kosterlitz-Thouless(BKT) transition tem-
perature, while phase slips and anti-phase-slips are unbound
at any finite temperature. Thus the resistance of 1D wires is
greater than zero at any finite temperature due to the pres-
ence of phase slips, which are described by the theory of
Langer, Ambegaokar, McCumber, and Halperin
(LAMH ).13,14

Here we report a study of structures in which both types
of fluctuations can coexist, namely, thin films containing
constrictions, which are comparable in size to the coherence
length. The goals of this work are(i) to test the applicability
of the LAMH theory for short and rather wide constrictions
and(ii ) to test the effect of the vortex-antivortex sea existing
in the thin film banks adjacent to the constriction on the
phase slippage rate on the constriction itself. For this purpose
we fabricate and measure a series of thin superconducting
MoGe films22 (which are about 15mm wide) interrupted by
constrictions or “bridges”[see Fig. 1(a)]. The width of the
narrowest point of the bridges is in the range of 13–28 nm,
i.e., a few times larger than the coherence length[we esti-
matejs0d<7 nm for our MoGe films23]. Two resistive tran-
sitions are observed in such samples indicating that the
vortex-antivortex pair binding-unbinding transition(if any)
and thermally activated phase slip processes occur sepa-
rately. For T.TBKT the contribution of vortex-antivortex
pairs is dominant. On the other hand, belowTBKT the trans-
port properties are determined by the phase slip process on

the bridge, which may be regarded as a vortex-antivortex
pair breaking assisted by the bridge.

Using direct and indirect techniques we have tracked the
sample’s resistance within a range of eleven orders of mag-
nitude. The resultingRsTd curves are compared with the
LAMH theory. Regardless of the large width of the bridges
and their shortness, the shape of the measuredRsTd curves is
in perfect agreement with the overall shape of the curves
computed using the standard LAMH theory(note that this
theory was originally derived for very long wires that are
much thinner than the coherence length). The only disagree-
ment found with LAMH is that the preexponential factor had
to be modified in order to obtain a reasonably low critical
temperature of the bridges. The critical temperature is used
as an adjustable parameter in the fitting procedure. Following
the argument of Little12 we arrive at the conclusion that the
preexponential factor should be simplyRN and obtain a good
agreement with measured curves. The measurements show
that the bridges with intermediate dimensions(i) allow phase
slippage which does not quench at any finite temperature,(ii )
behave independently of the thin film banks, and(iii ) exhibit

FIG. 1. (a) Sample schematic. MoGe film(black) of thickness
d=2.5–4.5 nm is deposited over a SiN membrane(gray) substrate
with a constriction of widthw. (b) An SEM micrograph of a typical
sample. The MoGe coated SiN bridge(gray) is suspended over a
deep trench(black).
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a higher rate of phase slippage in the cases when the width of
the bridge is smaller and therefore when the coupling be-
tween the thin film banks is weaker.

Before presenting our experimental results we give a brief
summary of the BKT theory of topological phase transitions
and the LAMH theory of thermally activated phase slips. In
thin superconducting films, even in the absence of a mag-
netic field, an equal population of free vortices and antivor-
tices is expected to occur. The BKT theory predicts a univer-
sal jump in the film superfluid densityns at the characteristic
temperatureTBKT, lower than the mean-field critical tempera-
ture of the film Tc0. Such a jump is related to the vortex-
antivortex pair binding through a logarithmic interaction po-
tential between free vortices.3,26 Applied currents can break
bound pairs producing free vortices which cause to nonlinear
VsId curves. AboveTBKT the linear resistance of a film is
given by the Halperin-Nelson(HN) formula6,9

RHN = 10.8bRn,f expf− 2ÎbsTc0 − TBKTd/sT − TBKTdg, s1d

where Rn,f is the normal state resistance per square of the
film andb is a nonuniversal constant. Note that the HN equa-
tion predicts zero resistance for temperatures below the BKT
phase transition temperatureTBKT.

The LAMH theory1,12–14applies to narrow superconduct-
ing channels, in which thermal fluctuations can cause phase
slips, i.e., jumps by 2p of the phase difference of the super-
conducting order parameter. In unbiased samples the number
of phase slips(which change the phase difference by 2p)
equals the number of anti-phase-slips(which change the
phase difference by −2p). An applied bias current pushes the
system away from equilibrium and the number of phase slips
becomes larger than the number of anti-phase-slips. Thus a
net voltage appears on the sample, which can be calculated,
following LAMH, as V="ḟ /2e (below we will also discuss
an alternative approach to the voltage definition). Here" is
Planck’s constant,e is the electron charge, andḟ is the rate
of change of the phase difference between the ends of the
wire. During the phase slip process the energy of the system
increases since the order parameter becomes suppressed to
zero in the center of the phase slip. Thermal activations of
the system over this free energy barrierDFsTd occur at a rate
given by (VsTd /2p)e−DF/kT. If the bias current is not zero,

then the net rate of the phase slippage isḟ=VsTd
3se−DF+sId/kT−e−DF−sId/kTd. HereI is the bias current, andDF+

andDF− are the barriers for phase slips and anti-phase-slips
correspondingly(these two barriers become equal to each
other at zero bias current). The attempt frequency derived
from a time-dependent Ginzburg-Landau(GL) theory, for the
case of a long and thin wire, is14

VsTd =
L

jsTd
1

tGL
SDF

kT
D1/2

, s2d

where T is the temperature of the wire andL /jsTd is the
length of the wire measured in units of the GL coherence
lengthjsTd. The attempt frequency is inversely proportional
to the relaxation timetGL=p" /8ksTc−Td of the time-
dependent GL theory, withTc being the mean-field critical

temperature of the wire(or of the bridge, as in our discus-
sions below). The factorsDF /kTd1/2 provides a correction for
the overlap of fluctuations at different places of the wire and
the factorL /jsTd gives the number of statistically indepen-
dent regions in the wire.14 The free energy barrier for a single
phase slip is given13,18 by

DF =
8Î2

3

Hc
2sTd
8p

AjsTd, s3d

which is essentially the condensation energy density
Hc

2sTd /8p multiplied by the effective volume 8Î2AjsTd /3 of
a phase slip(A is the cross-section area of the wire).

A bias currentI causes a nonzero voltage(time averaged)
given by

V =
"VsTd

e
e−DF/kT sinhsI/I0d, s4d

whereI0=4ekT/h (I0=13.3 nA atT=1 K). Differentiation of
this expression with respect to the bias currentI gives the
differential resistance

dV/dI =
"VsTd

eI0
e−DF/kT coshsI/I0d. s5d

The dependence of the attempt frequency and free energy on
the bias current is neglected in this derivation. In the limit of
low currentsI ! I0, Ohm’s law is recovered

RLAMH sTd =
"VsTd

eI0
e−DF/kT = RqS"VsTd

kT
De−DF/kT, s6d

whereRq=h/ s2ed2=6.5 kV. In this approach the fluctuation
resistance does not have any explicit dependence on the nor-
mal resistance of the wire.

II. EXPERIMENTAL SETUP

The sample geometry is shown schematically in Fig. 1(a).
The fabrication is performed starting with a Si wafer covered
with SiO2 and SiN films. A suspended SiN bridge is formed
using electron beam lithography, reactive ion etching, and
HF wet etching.24 The bridge and the entire substrate are
then sputter coated with amorphous Mo79Ge21 superconduct-
ing alloy, topped with a 2 nm overlayer of Si for
protection.25 The resulting bridges are 100 nm long with a
minimum widthw<13–28 nm as measured with a scanning
electron microscope(SEM) [Fig. 1(b)]. All samples are listed
in Table I.

Transport measurements are performed in a pumped4He
cryostat equipped with a set of rf-filtered leads. The linear
resistanceRsTd is determined from the low-bias slope(the
bias current is in the range of 1–10 nA) of the voltage versus
current curves. The high-bias differential resistance is mea-
sured using an ac excitation on top of a dc current offset
generated by a low-distortion function generator(SRS-
DS360) connected in series with a 1 MV resistor. One
sample was measured down to the mV level using a low-
temperature transformer manufactured by Cambridge mag-
netic refrigeration.
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III. RESULTS

First we compare a sample with a hyperbolic constriction
(“bridge sample”) with a reference sample, which is a plain
MoGe film of the same thickness, without any constriction
(“film sample”). Both are fabricated on the same substrate
simultaneously. A resistive transition measured on the film
sample is shown in Fig. 2. The HN fit generated by Eq.(1) is
shown as a solid line and exhibits a good agreement with the
data, yielding a BKT transition temperature ofTBKT =4.8 K
and a mean-field critical temperatureTc0=4.91 K. Such good
fit suggests that the transition observed in the banks might be
the BKT transition, although a more extensive set of experi-
ments is necessary in order to prove this assumption rigor-
ously. As expected,TBKT is slightly lower thanTc0. The inset

of Fig. 2 compares theRsTd measurements of the “film”
(open circles) and the “bridge”(solid line) samples. AtT
=4.8 K theRsTd curve for the film sample crosses theR=0
axis with a nonzero(and large) slope, in agreement with the
behavior predicted by the HN resistance equation(1). Nev-
ertheless, unlike the film sample, the bridge sample shows a
nonzero resistance even below the BKT transition tempera-
ture predicted by Eq.(1). Such resistive tails, occurring at
T,TBKT, have been found in all samples with constrictions.

In Fig. 3 theRsTd curves for five samples with bridges are
plotted in a log-linear format. The resistance of sample B1
has been measured down to the mV range using a low-
temperature transformer. Two resistive transitions are seen in
each curve as the temperature decreases. The first transition
is the superconducting transition in the thin film banks adja-
cent to the bridge. The second transition corresponds to the
resistive tail mentioned above. In order to understand the
origin of the second transition it should be compared to the
LAMH theory.

IV. DISCUSSION

Below we analyze the resistive tails found on samples
with a constriction and demonstrate that they are caused by
the phase slip events localized on the bridge and behave
independently of the adjacent thin film banks. The analysis
indicates that no BKT(no vortex-antivortex binding within
the constrictions) or any other type of transition occurs on
the constrictions and that the phase slips and anti-phase-slips
are unpaired at any nonzero temperature due to thermal fluc-
tuations. This is demonstrated below by fitting theRsTd
curves with the LAMH-like fitting curves.

A. LAMH attempt frequency for a short bridge

In order to compare our results to the LAMH theory we
have to take into account the small length of the bridge,

TABLE I. Sample parameters, including the width of the con-
striction swd, determined from SEM images, normal resistance of
the bridgesRNd, determined from theRsTd curves(at a temperature
slightly below the resistive transition of the thin film banks), critical
temperaturesTcd, determined fromRWLsTd fits given by Eq.(9),
critical temperature of the filmsTc0d, film thicknesssdd, and a geo-
metrical fitting parametersbd.

Sample w (nm) RN sVd Tc (K) Tc0 (K) d (nm) b

A1 27±4 1380 3.88 3.90 2.5 1.47

B1 13±4 1650 4.80 4.91 3.5 0.723

B2 28±4 1320 4.81 4.91 3.5 1.10

C1 13±4 1440 5.16 5.50 4.5 0.653

C2 27±4 680 5.39 5.50 4.5 2.21

FIG. 2. Low-bias resistance versus temperature dependence
(open circles), measured on a thin filmsd=3.5 nmd without con-
striction. The solid line is a fit to the Halperin-Nelson theory[Eq.
(1)]. Inset: Resistance of the film without constriction(multiplied
by a constant factor), shown as open circles, is compared to the
sample with a hyperbolic bridge(B2), shown by the solid line. The
only qualitative difference is the presence of a “resistive tail,” ob-
served on all samples with constrictions.

FIG. 3. Low-bias resistance for five different samples with
bridges. The parameters of the samples are given in Table I. The
data points are shown by open symbols. Solid lines are fits to the
“bridge” phase slip model given by Eqs.(7) and (9).
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which does not allow more than one phase slip at a given
time. Therefore the attempt frequencyVsTd of Eq. (2) can be
simplified. First, it has a termL /jsTd that accounts for the
number of independent sites where a phase slip can occur.14

Since each of our samples has only one narrow region where
phase slip events can happen, we takeL /jsTd=1. Second,
the coefficientsDF /kTd1/2 which takes into account possible
overlaps of phase slips at different places along the wire14 is
taken to be unity also. This is because for short hyperbolic
bridges (not much longer than the coherence length) it is
reasonable to expect that there is only one spot, i.e., the
narrowest point of the bridge, where phase slips occur. As a
result, we obtain the attempt frequency for a short hyperbolic
bridgeVWL =1/tGL (the abbreviation “WL” stands for “weak
link” ). This attempt frequency can be combined with the
usual form of the LAMH resistance in Eq.(6) and can be
used to fit the experimentalRsTd curves(below the resistive
transition of the films). Although such fits follow the data
very well, there is one inconsistency, that is they require the
critical temperature of the bridge to be chosen higher than
the critical temperature of the films, which is unphysical for
such a system. We attempt to modify the preexponential fac-
tor in order to resolve this inconsistency, as discussed below.

B. Modification of the prefactor

Since the exact expression is unknown, we approximate
the resistance of a constriction(weak link) as

RWLsTd = RNe−DFWL/kT. s7d

The exponential factor here is that of the LAMH theory
and the prefactor is simply the normal resistance of the
bridge. This expression[Eq. (7)] can be justified by the fol-
lowing argument: the duration of a single phase slip(i.e.,
the time it takes for the order parameter to recover) is ,tGL
and the number of phase slips occurring per second is
,VWLsTdexpf−DFsTd /kTg, with the attempt frequency being
the inverse GL relaxation timeVWL =1/tGL, as was argued
above. Therefore the time fraction during which the constric-
tion is experiencing a phase slip(i.e., when super-
conductivity is suppressed on the bridge) is the product of
these two values, i.e.,f =stGLds1/tGLdexpf−DFsTd /kTg
=expf−DFsTd /kTg. Following Little,12 it can be assumed that
the bridge has the normal resistanceRN during the time when
a phase slip is present(i.e., when the bridge is in the normal
state), and the resistance is zero otherwise(when there is no
phase slip). Thus we arrive at the averaged resistance for a
bridge or a small size weak linkRWL = f 3RN+s1− fd30
=RNexpf−DF /kTg as in Eq. (7). Note that unlike in the
LAMH theory, in the present formulation the fluctuation re-
sistance is directly linked to to the normal state resistance of
the sample.

In order to compare Eq.(7) to the experimental results,
an explicit expression for the energy barrierDFWL
for a phase slip localized on the bridge is required. Starting
with the usual form18 derived for a long 1D wire
and some well known results from BCS and GL

theory,1,18 we find thatDFWLs0d=s8Î2/3dfHc
2s0d /8pgAjs0d

=0.83kTcRqL /RNjs0d, whereL is the length of the wire. Us-
ing RN=rnL /A, the free energy barrier for a weak link is

DFWLs0d = 0.83kTc
bwdRq

rnjs0d
, s8d

wherew is the width of the bridge,d is the film thickness,rn
is the normal resistivity, andA=wd. The parameterb mea-
sures the ratio of the phase slip length along the bridge to the
effective length of a phase slip in a 1D wire, which is equal
to 8Î2jsTd /3. Finally, assuming the same temperature de-
pendence of the barrier as in the LAMH theory, i.e.,DFsTd
=DFs0ds1−T/Tcd3/2, we arrive at the expression for the
bridge fluctuation-induced resistance

RWLsTd = RN expF− 0.83
bwdRq

rnjs0d
S1 −

T

Tc
D3/2Tc

T
G . s9d

The fits generated by Eq.(9) are shown in Fig. 3 as solid
lines. An impressively good agreement is found for all five
samples. In particular, sample B1 measured using the low-
temperature transformer, shows an agreement with the pre-
dicted resistanceRWL over about seven orders of magnitude,
down to a temperature that is more than two times lower
compared to the critical temperature of the sample. Only two
fitting parameters are used:b andTc (listed in Table I). The
other parameters required in Eq.(9), including RN, d, w,
js0d, and rn<180 mV cm are known.18,19,23 The fits give
quite reasonable values for the critical temperature of the
bridges, in the sense that they are slightly lower than the
corresponding critical temperatures of thin films of the same
thickness, as expected. This fact supports the validity of Eq.
(7). Such good agreement also indicates that the dissipation
in a thin film with a constriction atT,TBKT is solely due to
thermal activation of phase slips on constrictions. As ex-
pected,b<1 for all samples and the largerb values are
found on wider constrictions.

C. Determination of the linear resistance from high bias
current measurements

We now discuss the nonlinear properties of films with
constrictions. Measurements of the differential resistance
versus bias currentdV/dI vs I are plotted in Fig. 4 on log-
linear scale. Using these results it is possible to distinguish
between the BKT mechanism, which leads to a power-law
VsId dependence, and the phase slippage process, which is
characterized by an exponentialVsId dependence[Eqs. (4)
and (5)]. From Fig. 4 it is clear that atT,TBKT and suffi-
ciently low currents the dependence of the differential resis-
tance on bias current is exponential(it appears linear on the
log-linear plots). Thus it is appropriate to compare the results
with the LAMH theory. Equation(5) can be written as
dV/dI=RsTdcoshsI / I0d, where RsTd is the temperature-
dependent zero-bias resistance. Using this relation, we fit the
differential resistance data and useRsTd as a fitting param-
eter, as shown in Fig. 4 by solid lines, each corresponding to
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a fixed temperature.27 The fitting procedure illustrated in Fig.
4 gives us a powerful indirect method of determination of the
zero-bias resistance. This method is useful when the tem-
perature is low and the resistance of the sample is below the
resolution limit of the experimental setup. Thus, by fitting
the dVsId /dI curves, we obtained the zero-bias resistance
RsTd down to very low valuess,10−8 Vd. This method was
systematically applied on sample B2 and the results are
shown in Fig. 5 as solid squares. The open circles in Fig. 5
represent the zero-bias resistance obtained by direct mea-
surements at low bias currents. The two sets of data are
consistent with each other. The solid curve in Fig. 5 is aRWL
fit obtained using Eq.(9). An excellent agreement is seen in
a wide range of resistances spanning eleven orders of mag-
nitude. This reconfirms that the thermally activated phase
slip mechanism is dominant in the bridge samples29 for
T,TBKT. We emphasize that the critical temperature of the
bridge, which is used as an adjustable parameter, is found to
be Tc=4.81 K. As expected, theTc of the bridge is slightly
lower than the critical temperature of the film electrodes
Tc0=4.91 K.

The usual LAMH expressionRLAMH [Eq. (6)], which ap-
plies to thin superconducting wires,18–20,23can also be used
to fit our data. The overall shape of the fitting curve(dashed
curve in Fig. 5) agrees with the data as well as with theRWL
fit. The drawback of the usual LAMH formula is that the
critical temperature of the bridge, which is used as an adjust-
able parameter, turns out considerably higher than the film
transition temperature. For example, the dashed line fit in
Fig. 5 is generated usingTc=5.38 K which is larger than the
film critical temperatureTc0=4.91 K. This apparent enhance-
ment of the critical temperature of the bridge must be an
artifact, because a reduction of the dimensions of MoGesa-
mples always leads to a reduction of the critical
temperature.28 On the other hand, theTc extracted from the

fits made using Eq.(9) are almost equal but slightly lower
than the filmTc0 (Table I), as expected.

A rapid decrease of the LAMH resistance at temperatures
very close to the critical temperature reflects the behavior of
the LAMH attempt frequency which approaches zero asT
→Tc. The LAMH resistance is proportional to the attempt
frequency so we observeR→0 asT→Tc (dashed curve in
Fig. 5 ). Such behavior is unphysical and occurs since the
LAMH theory is not applicable very nearTc. It should be
emphasized that some of our measured bridges are wider
thanjs0d, yet the thermally activated phase slip model agrees
well with the data. This is in agreement with the prediction
(Ref. 13, p. 510) that superconducting channels of widthw
&4.4jsTd should exhibit a 1D behavior, i.e., nucleation of
vortices is unfavorable in such channels. Such condition is
true for all of our samples.

V. SUMMARY

Fluctuation effects in thin films interrupted by “hyper-
bolic” constrictions is studied. The measurements show two
separate resistive transitions. The higher-temperature transi-
tion shows some properties of a BKT transition in the films
(follows the HN formula). The second apparent resistive
transition is explained by a continuous reduction of the rate
of thermally activated phase slips with decreasing tempera-
ture. A quantitative description of the fluctuation resistance
of narrow and short superconducting constrictions is
achieved. For this purpose we have modify the LAMH ex-
pression for the resistance of a one-dimensional nanowire.

FIG. 5. Resistance vs temperature curve for sample B2. Open
circles represent data that have been directly measured while filled
boxes give the resistance values determined by fitting thedV/dI
curves of Fig. 4 using the formuladV/dI=RsTdcoshsI / I0d. The solid
and the dashed curves give the best fits generated by theRWLsTd
sTc=4.81 Kd andRLAMH sTd sTc=5.38 Kd formulas, respectively.

FIG. 4. Differential resistance as a function of the dc bias cur-
rent for sample B2. Experimental data are denoted by open symbols
and the solid lines are fits todV/dI=RsTdcoshsI / I0d. Temperatures
from left to right are 4.12, 3.92, 3.80, 3.64, 3.45, 3.36, 3.26, 3.16,
3.07, 2.80, and 2.68 K.
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An indirect method that enables us to trace the resistance
variation over eleven orders of magnitude is suggested,
based on the analysis of the nonlinear effects occurring at
high bias currents. The phase slippage model is found appli-
cable in the entire range of measured resistances, suggesting
that quantum phase slips19 do not occur in these samples, in
the studied temperature interval, which extends belowTc/2
for one sample(B1).
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