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We investigate the effect of elastic forward scattering on the ARPES spectrum of the cuprate superconduct-
ors. In the normal state, small angle scattering from out-of-plane impurities is thought to broaden the ARPES
spectral response with minimal effect on the resistivity or the superconducting transition temperatureTc. Here
we explore how such forward scattering affects the ARPES spectrum in thed-wave superconducting state.
Away from the nodal direction, the one-electron impurity scattering rate is found to be suppressed asv

approaches the gap edge by a cancellation between normal and anomalous scattering processes, leading to a
square-root-like feature in the spectral weight asv approaches −Dk from below. For momenta away from the
Fermi surface, our analysis suggests that a dirty optimally or overdoped system will still display a sharp but
nondispersive peak which could be confused with a quasiparticle spectral feature. Only in cleaner samples
should the true dispersing quasiparticle peak become visible. At the nodal point on the Fermi surface, the
contribution of the anomalous scattering vanishes and the spectral weight exhibits a Lorentzian quasiparticle
peak in both energy and momentum. Our analysis, including a treatment of unitary scatterers and inelastic spin
fluctuation scattering, suggests explanations for the sometimes mysterious line shapes and temperature depen-
dences of the peak structures observed in the Bi2Sr2CaCu2O8 system.
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I. INTRODUCTION

Since the earliest ARPES studies of optimally doped
Bi2Sr2CaCu2O8 (BSCCO), spectral features near the Fermi
level have been reported whose width suggested the exis-
tence of a significant elastic scattering contribution which
varied along the Fermi surface, taking its smallest value
along the sp ,pd diagonal and largest near thesp ,0d
region.1–5 The shapes of the measured energy dispersion
curves (EDCs) are quite unusual, suggesting that the one-
electron self-energy is also strongly energy dependent. Abra-
hams and Varma6 attempted to account for both features by
assuming that the self-energy was a sum of an energy-
independent part arising from small-angle(forward) scatter-
ing, and a second, momentum independent term modelled
with marginal Fermi liquid theory. They noted that the elastic
forward scattering was most probably associated with impu-
rities which were located away from the CuO2 planes and
reflected thevFskd−1 variation of the momentum-resolved
density of states ask moved around the Fermi surface. They
further remarked that, despite the large scattering rates of
order 100 meV deduced from fits to ARPES spectra, the for-
ward scattering nature of the disorder would be consistent
with such scattering having a negligible effect on the resis-
tivity of the optimally doped cuprates.7 In addition, it was
shown that this type of disorder would have a small effect on
Tc.

8,9

There are two obvious difficulties with this scenario. The
first is that the spectral peak measured by ARPES near the
sp ,0d point is known to sharpen dramatically when one goes
below Tc, a phenomenon interpreted as the formation of a
coherent quasiparticle in the superconducting state. This
sharpening has normally been attributed to the well-known
collapse of the inelastic scattering rate belowTc due to the

opening of the superconducting gap, but it is harda priori to
guess why something similar should happen in the presence
of an elastic scattering rate of order 100 meV. We here will
argue that this difficulty need not invalidate the basic
premise of Abrahams and Varma.6 The second problem is
that recently increased momentum resolution5 and the use of
different photon energies10–13has resolved a bilayer splitting
which has its maximum effect near thesp ,0d point. Some of
the previously observed “elastic broadening” is therefore cer-
tainly due to this as well as to pseudogap effects,14 but ex-
actly how much is not clear.

On the other hand, one cannot ignore the out-of-plane
disorder. The BSCCO material is thought to be doped by
excess oxygen in the SrO and BiO planes, and even the best
single crystals are believed to contain significant amounts of
cation switching and other out-of-plane defects.15 It is there-
fore reasonable to assume that quasiparticles moving in the
CuO2 planes of this material must experience a smooth po-
tential landscape due to these defects, and useful to pursue
the question of the effect of this type of scattering in the
superconducting state. In fact, fits16 to Fourier transformed-
scanning tunnelling spectroscopy measurements17 on similar
samples to those used in the ARPES studies have recently
been shown to require both a strong(near-unitary limit) scat-
tering component, attributed to native defects in the CuO2
planes, as well as a weaker, smooth scattering potential com-
ponent attributed to defects away from the plane. Recently,
Markiewicz has also attempted to relate STM and ARPES
data in the superconducting state assuming a smooth
potential.18

In this work we model the complex collection of out-of-
plane defects with a simple set of impurity potentials with
finite range, and find a number of surprising results. The first
is that the elastic scattering rate indeed “collapses” in the
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superconducting state in the strong forward scattering limit,
leading to a sharp spectral feature everywhere on the Fermi
surface except at the nodal point itself. The second is that as
one goes away from the Fermi surface, this feature disperses
away as expected for a quasiparticle peakonly if the system
is sufficiently clean; otherwise it remains pinned to the gap
edge. This would appear to explain the apparent lack of qua-
siparticle dispersion in older samples. In some situations
both a nondispersive gap edge peak and a dispersing quasi-
particle feature can be simultaneously observed. While we
do not attempt a direct fit to experiment, we show that as-
suming a rather simple and physically motivated model for
the one electron self-energy, which combines the above de-
scription of forward elastic scattering with strong pointlike
elastic scattering and spin fluctuation inelastic scattering, al-
lows us to calculate a spectral function which appears to
reproduce many of the qualitative features of current ARPES
data on optimally to overdoped cuprates. It is our hope that
the ideas presented here can help unravel some of the mys-
teries surrounding the behavior of what is generally called
the superconducting “quasiparticle peak,” and allow a more
accurate description of the actual propagating excitation.
They will also have important immediate implications for
other bulk properties of the superconducting state.

The paper is organized as follows. Section II discusses
general effects of extended impurities scattering on the
ARPES spectrum in both the normal and superconducting
states. In Sec. III, we examine the effect of adding an isotro-
pic elastic scattering due to unitary scatterers as well as the
inelastic scattering due to spin fluctuations. Finally, Sec. IV
contains our comparison with existing data, conclusions, and
plans for future work.

II. ELASTIC SCATTERING

A. Normal state

We first consider a model system where scattering occurs
only because of disorder. For simplicity, we will assume that
the most important feature of the potential due to out-of-
plane impurities experienced by electrons moving in the
CuO2 planes is its finite rangek−1. We therefore model a
single impurity simply as a termVsrd=V0e

−kr, or

Vkk8 =
2pkV0

ssk − k8d2 + k2d3/2, s1d

where V0 sets the strength of the potential andk−1 is its
range. Note thatk andk8 are only defined up to a reciprocal
lattice vector. The self-energy due to many such impurities
gives rise to an elastic broadening of quasiparticle states
which depends upon the position ofk in the Brillouin zone.
For weak scattering, the Born approximation for the retarded
self-energy associated with a random distribution ofnI im-
purities per unit area has the usual form in the normal state

Ssk,vd = nIo
k8

uVkk8u
2G0sk8,vd, s2d

where v is understood to include an infinitesimal positive
imaginary part, and the superscript on the single-particle

Green’s functionG0;sv−ek +md−1 indicates that at first we
ignore self-consistency, i.e.,G0 does not depend onS.

To model the electronic structure we take a simple near-
neighbor hoppingt and next-near-neighbor hoppingt8, such
that

ek = − 2tscoskx + coskyd − 4t8 coskx cosky − m s3d

and sett8 / t=−0.35 andm / t=−1. Note that with this choice
of parameters there is a van Hove singularity with a peak in
the total density of states at −0.4t. The Fermi surface for
these parameters is shown in Fig. 1; it is similar but not
identical to the Fermi surfaces found for both YBCO-123
and BSCCO-2212 by ARPES.

As the range of the potentialk−1 increases, the scattering
of a quasiparticle fromk to k8 becomes peaked in the for-
ward direction. As shown in Fig. 2, whenk is close tok8 and
both are not too far from the Fermi surface, we may param-
etrize them as

k = kF + k'k̂', s4d

FIG. 1. The Fermi surface corresponding to the bandek given by
Eq. (3) with t8 / t=−0.35 andm=−1. The energy distribution curves
of Ask ,vd will be discussed fork =kN (nodal), k =kA (antinodal),
and variousk values along thes0,pd to kA cut shown by the solid
points.

FIG. 2. (Color online) Geometry for the forward scattering pro-
cess in which a quasiparticle scatters fromk to k8.
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k8 = kF + qi + k'8 k̂'8 , s5d

whereq=k −k8 is the momentum transfer andqi its compo-

nent parallel to the Fermi surface. The unit vectorsk̂' andk̂'8
are the projections ofk and k8 onto the Fermi surface, re-
spectively, such that, e.g.,ek8=vFsk8dk'8 . The imaginary part
of the retarded self-energy(2) becomes

S9sk,vd =
− nis2pkV0d2

s2pd2 E dki8 dk'8

fq2 + k2g3dsv − ek8d s6d

.−
nik

2V0
2

uvFskidu
E dqi8

Fqi8
2 + Sk' −

v

vF
D2

+ k2G3 s7d

.−
3pniV0

2

8uvFskiduk3

1

FS ek − v

vFskidk
D2

+ 1G5/2. s8d

Equation(8) shows explicitly that in the limit of smallk,
the self-energy becomes more and more sharply peaked “on
the mass shell”v=ek. This is a generic feature of long-range
potentials. For example, on the Fermi surfacek =kF at v
=0,

− S9skF,0d ; G0skFd =
3pniV0

2

8uvFskFduk3 . s9d

In Fig. 3, we show how this angular dependence~1/uvkF
u is

approached by the exact result(2) as k decreases and the
range of the scattering is increased. In the figure and in what
follows in this section, we will use the result(9) with nIuV0u2

chosen such thatG0skAd=0.2t corresponding toG0skAd
.30 meV for t=0.15 eV. From Fig. 3 we see that in the
forward scattering limit,G0skNd.G0skAd /1.4.0.14t. We
stress that the precise dependence of the forward elastic part
of the self-energy(9) on k and on momentum depend on the
details of the Fermi surface shape and impurity scattering
potential. However, we do not expect qualitative features of
the resulting spectra to be affected. We note further that the
absolute magnitudes of the parameters chosen are roughly
consistent with theOs10%d weak scatterers of strengthV0 of
Ostd and range ofOs1–2ad extracted from FT-STS data in
Ref. 16. In Sec. III, we will show results for various values
of G0skAd andk.

Thus far we have not considered the effect of self-
consistency, i.e., replacingG0 in Eq. (2) by Gsk ,vd
=fsG0d−1−Sg−1. In the normal metal one is used for ignoring
this distinction, as the self-consistent solution for pointlike
scatterers can be shown to be identical to the non-self-
consistent one up to corrections of ordersv /EFd2, whereEF

is the Fermi energy. If the scatterers have a finite range,
however, this argument breaks down and self-consistency be-
comes important. As seen in Fig. 4, the effect of self-
consistency is to reduce the frequency dependence of
S9sk ,vd induced by electronic structure; in particular, the
van Hove singularity atv=−0.4t is eliminated. This may
account for the complete absence of van Hove spectral fea-
tures in STM and other tunnelling experiments on BSCCO.
We note further that the scattering rate is cut off in the for-
ward scattering casek=0.5 when uvu.vFk, reflecting the
fact that if the electron’s momentum can only be shifted by a
small amount,k, the allowed energy transfer is also re-
stricted.

FIG. 3. The elastic scattering
width Gskd=−Im SskF ,0d in units
of t plotted around the Fermi sur-
face with u=tan−1sky/kxd. Results
are shown in Figs. 2(a)–2(d) for
k=10, 5, 2, and 0.5, respectively,
with nIuV0u2 adjusted so thatGmax

=−Im SskA,0d is equal to 0.2t.
The dashed curve is proportional
to vF

−1sud and one sees that ask
decreases and the scattering peaks
in the forward direction,Gskd var-
ies asvF

−1sud.
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B. Superconducting state

1. Elastic self-energy

To describe the superconducting state, we assume a BCS
d-wave order parameter corresponding to pure nearest-
neighbor pairing,

Dk =
D0

2
scoskx − coskyd

with D0/ t=0.2. The full matrix Green’s function in the pres-
ence of scattering in the superconducting state is

Gsk,vd =
ṽt0 + ẽkt3 + D̃kt1

ṽ2 − ẽk
2 − D̃k

2
, s10d

whereṽ;v−S0, ẽk ;ek +S3, D̃k ;Dk +S1, and theSa are
the components of the self-energy proportional to the Pauli
matricesta in particle-hole space. If we first assume the
simplest case, that the scattering is entirely elastic and weak,
we may approximate the self-energy in the Born approxima-
tion similar to (2) as

SI = nIo
k8

uVkk8u
2t3GI

0sk8,vdt3, s11d

with Nambu components

S0sk,vd = nIo
k8

uVsk,k8du2
v

v2 − ek8
2 − Dk8

2 , s12d

S3sk,vd = nIo
k8

uVsk,k8du2
ek8

v2 − ek8
2 − Dk8

2 , s13d

and

S1sk,vd = − nIo
k8

uVsk,k8du2
Dk8

v2 − ek8
2 − Dk8

2 . s14d

We will calculate the self-energies both non-self-consistently,
as in Eq.(11), and self-consistently by requiring thatSI fG0g
→SI fGg. In Fig. 5, we show the variation of these self-energy
components with energy atk =kN andk =kA. Again the van
Hove singularity is washed out in the self-consistent evalua-
tion, and it is furthermore noteworthy that theS3 component
becomes quite small in the forward scattering limit. While in
Fig. 5 gaps appear in theSa near theA point for smallk, the
values ofS0 andS1 near the gap edgev*Dk8 are large, of
order several times the hoppingt. Quasiparticle properties
near the Fermi surface are determined, however, by particu-
lar combinations of the Nambu self-energy components. As
can immediately be seen from the denominator of(10), the
total elastic scattering rate broadening the quasiparticle state
of energyv will be

Gelskd . − ImSS0sk,vd +
Dk

v
S1sk,vdD , s15d

provided one can neglectS3 (see Fig. 5). In Fig. 6, we see
that asv goes to −DskAd for k =kA, Gel is suppressed by the
near cancellation of the two components in(15) when k
becomes small. To obtain some insight into the physical ori-
gins of this cancellation, we derive approximate analytical
forms for k!1 following the discussion of the normal state
above, leading to

FIG. 4. Scattering rate
Gsk ,vd=−Im Ssk ,vd for k on the
Fermi surface at pointsA (left)
and N (right), for two different
values of forward scattering pa-
rameterk=5 (top) and 0.5 (bot-
tom). Here, as in Fig. 3,niV0

2 has
been chosen to giveGskAd=0.2t.
Dashed curves, non-self-
consistent Born approximation;
solid curves, self-consistent Born
approximation.
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FIG. 5. The self-energy terms −ImS0sk ,vd, Im S1sk ,vd, and −ImS3sk ,vd in the superconducting state atT=0 for k =kA (top) andkN

(bottom), for k=5 and 0.5 and the same band and scattering parameters as previously used. HereDk=D0 scosx−coskyd /2 with D0=0.2t.
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Sa9sk,vd . −
G0skFd

2Îv2 − Dk
2 o

n=±1
sa

3FS ek − nÎv2 − Dk
2

kvFskd
D2

+ 1G−5/2

. s16d

Heresa= uvu, −Dk sgnv, andn sgnvÎv2−Dk
2 for the Nambu

componentsa=0,1, and 3,respectively, andG0skd is given
by Eq. (9). Note thatS39 vanishes on the Fermi surfaceek
=0 in this limit. In order to gain some further intuition for
these expressions, we specialize to the case where the mo-
mentumk is close to the Fermi surface and the energiesv
are small, such thatusek±Îv2−Dk

2d /kvFskdu!1. The self-
energies may then be written

S09sk,vd , − G0skFd
uvu

Îv2 − Dk
2
, s17d

S19sk,vd , G0skFd
Dk sgnv

Îv2 − Dk
2
, s18d

S39sk,vd . 0, s19d

but are strongly supressed due to energy conservation when
uÎv2−Dk

2−eku becomes greater thankvF, as one may observe
in Fig. 5. These equations are now identical in form to those
expected for ans-wave superconductor(even when self-
consistency is included). All peculiarities of thed-wave state
which result from momentum averaging over the Fermi sur-
face have disappeared. We therefore expecta priori to re-
cover Anderson’s theorem, the insensitivity of bulk thermo-
dynamic properties to nonmagnetic scattering.19 The physical

reason for this is clear: as seen in Fig. 2, for smallk andk a
distance at leastk from the node, small angle scattering can-
not mix order parameters of different signs, and therefore
cannot break Cooper pairs. The analogy with thes-wave su-
perconductor and relation to Anderson’s theorem in the con-
text of ARPES is discussed further in the Appendix. In addi-
tion, the slowing of the rate ofTc suppression due to disorder
as scattering becomes more anisotropic was treated some
time ago by several authors.8 These works were motivated by
Tc suppression rates in the cuprates which appear to be 2–3
times slower than predicted by the classic Abrikosov-Gorkov
formula20 appropriate for pointlike isotropic scatterers. The
suppression ofTc near the pure forward scattering limit has
been discussed recently in detail by Kee.9

In the forward scattering limit where Eqs.(17)–(19) hold,
the effective elastic scattering rate(15) becomes

Gelsk,vd . G0skFd
Îv2 − Dk

2

uvu
, uvu * uDku. s20d

For k along the nodal direction, the elastic broadening in the
superconductingd-wave state is equal to its value in the
normal state. However, fork in the antinodal region, the
broadening vanishes asv→Dk and approaches the normal
state value only whenv becomes large compared withDk.
The elastic contributionGelskA,vd to the broadening at the
antinodalkA point versusv is shown in Fig. 6. Physically,
the individual contributions to the normalS0sk ,vd and
anomalousS1sk ,vd self-energies are both enhanced by the
density of states factor(v2−D2skd)−1/2 (Fig. 5). However, the
normal contribution describing the scattering out of statek
into k8 is compensated by the anomalous contribution scat-

FIG. 6. Scattering rate
Gelsk ,vd vs v for k =kA (left) and
kN (right) in the superconducting
state atT=0, for k=5 (top) and
k=0.5 (bottom). Here G0skAd
=0.2t.
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tering intok from the pair condensate. This gives rise to the
suppression of the elastic scattering seen in Fig. 6 relative to
Fig. 5 asv approaches −uDkA

u from below.

2. Spectral function

The near-cancellation of the two Nambu components of
the self-energy near the gap edge in the forward scattering
limit leads to a dramatically reducedelasticscattering rate in
the superconducting state, which sharpens the spectral fea-
tures of quasiparticles which are not too close to the nodes.
Within the current model where we continue to neglect in-
elastic scattering due to electron-electron interactions, we
now turn to the one-electron spectral function measured by
ARPES. In the forward scattering limit, with the self-energy
given by Eqs.(17)–(19), one obtains a result for the Green’s
function previously discussed by Markiewicz,18

GI sk,vd .
svt0 + Dkt1dzsk,vd + ekt3

sv2 − Dk
2dzsk,vd2 − ek

2 . s21d

Here zsk ,vd=1+iG0skdsgnv /Îv2−Dk
2. The electron com-

ponent of the spectral function is then

Ask,vd = −
1

p
Im G11sk,vd = −

1

p
Im

vzsk,vd + ek

sv2 − Dk
2dzsk,vd2 − ek

2 .

s22d

It is useful to consider a few special cases of(22) more
closely. In particular, on the Fermi surfaceek =0 one has the
simple expression

AskF,vd =
G0skd

p

1

Îv2 − Dk
2

uvu
v2 − Dk

2 + G0skd2 , s23d

while near the gap edge, e.g.,v&−uDku,

Ask,vd .
1

p

G0skd
ek

2 + G0
2skd

uvu
Îv2 − Dk

2
. s24d

At the nodal pointkN, where the gap vanishes, the spec-
tral weight is given by the simple Lorentzian form

AskN,vd =
G0skNd/p

v2 + G0skNd2 , s25d

and at low temperatures where the elastic scattering is domi-
nant one can determineG0skNd. However, fork at the anti-
nodal pointkA such that −DkA

−dv,v,−DkA
,

AskA,vd >
1

p

DkA

G0skAd
1

Îv2 − DkA

2
, s26d

where the “width”dv depends upon the ratioDkA
/G0skAd. If

DkA
is large compared withG0skAd, the width dv

.G0skAd2/ s2DkA
d. If one integratesAskA,vd from −DkA

−dv
to −DkA

to define a “peak intensity”

IskAd =E
−DkA

−dv

−DkA

AskA,vddv .
1

p
, s27d

which is independent ofDkA
/G0skAd. However, when the

system is sufficiently dirty such thatDkA
,G0skAd, the falloff

of AskA,vd as v decreases below −DkA
varies as sv2

−DkA

2 d−1/2. In this case, the scale is set byDkA
and if one

takes dv=DkA
, the peak intensity varies asIskAd

,DkA
/G0skAd. This is quite different from the usual BCS

quasiparticle result which is proportional to the quasiparticle
renormalization factorzskAd times a coherence factor which
is 1/2 on the Fermi surface. It should be possible to test the
foward scattering scenerio by comparing the variation of
IskAd with DkA

/G0skAd.
Numerical results for the normal and superconducting

spectral weights forv,0 using the self-consistent version of
the self-energy(12)–(14) with v→ ṽ, etc., for the model
impurity potential(1) are shown in Fig. 7 fork=5 and 0.5.
For k=0.5, the scattering is predominantly forward and in
the superconducting state atT=0, the spectral weight forkA
is seen to sharpen at −DkA

despite the fact that the normal
state broadeningGskAd is in the order of the peak position.
For k =kN, the nodal spectral weight has the expected
Lorentzian form with a width set byGskNd. For k=5, corre-
sponding to a more isotropic scattering, the spectral weight
for k =kA broadens. In the limit of isotropic impurity scatter-
ing, theS1 component of the impurity self-energy vanishes
andAskA,vd has a Lorentzian-type broadened peak.

III. ISOTROPIC ELASTIC AND INELASTIC
ELECTRON-ELECTRON SCATTERING

In addition to the forward scattering by out-of-plane im-
purities, in this section we consider unitary limit isotropic
elastic scatterers as well as inelastic electron-electron colli-
sions. In fact, it is the momentum and frequency dependence
of the latter interaction about which one hopes to learn more
from the ARPES spectrum. Here we proceed phenomeno-
logically by writing

SI tot = SI el,f + SI el,u + SI inel. s28d

The first term is the contribution from elastic(quasi)forward
scatterers we have discussed in Sec. II. The second term
represents the effect of unitary scatterers(possibly Cu vacan-
cies) with concentration roughlynu,0.2% observed as zero-
bias resonances in STM experiments. It will be treated as
usual in the self-consistentT-matrix approximation,

SI el,u = −
nu

ok
Gsk,vd

t0. s29d

In the normal state we find a scattering rate ofGu.10−3t,
leading to an impurity bandwidthgu,ÎGuD0,10−2t (of
order 1 to 2 meV). We note that thewidth of the resonance
observed in STM is in fact roughly 3 times this number,
consistent with the self-consistentT-matrix calculation,21 im-
purity resonances are visible up to about 10 meV in experi-
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ments. Nevertheless the isotropic part of the elastic scattering
appears to have a relatively insignificant effect on the
ARPES spectral function, as shown below.

For the imaginary parts of the inelastic self-energies, we
will use numerical results obtained from a spin-fluctuation
calculation of the quasiparticle scattering. Following the ar-
gument leading to Eq.(15), we define an effectiveinelastic
scattering rate

Ginelsk,vd = − ImSS0
inelsk,vd +

Dk

v
S1

inelsk,vdD . s30d

In spin-fluctuation calculations ofGinelsk ,vd, it was
found22,23 that at the nodal point, at low temperatures, the
scattering rate initially increased as the third power ofv or T
depending upon which is larger. At otherk points on the
Fermi surface, the scattering rate varies approximately as the
third power of this energy measured relative toDk. The re-

duction of the inelastic scattering rate at low excitation en-
ergies reflects the suppression of the low energy spin fluc-
tuations due to the opening of thed-wave gap. Here, we will
use a numerical interpolation of thev- andT-dependentGinel
obtained from Ref. 24.

A. The antinodal spectrum

The various contributions to the self-energy are sketched
in the schematic diagram shown in Fig. 8. We will use the
parameters discussed above to set the magnitudes ofSinel and
Sel,u. Then we will consider various values ofk andG0skAd,
characterizing the forward elastic scattering. While the effect
of Sinel is already contained in the intrinsicTc and the sup-
pression ofTc due to Sel,u is negligible for the parameters
considered, this is not necessarily the case for the forward
elastic scattering. As discussed by Kee,9 the suppression of
Tc varies ask3, so that for small values ofk such ask=0.5,

FIG. 7. Comparison of theT
=0 self-consistent normal state
(dashed) and superconducting
(solid) one-electron spectral func-
tions for k=5 (top) and 0.5(bot-
tom) at k =kA (left) andkN (right),
with G0skAd=0.2t.

FIG. 8. Schematic depiction of the various contributions to the scattering rate in the superconducting state atT=0. First panel, elastic
forward scattering fork =kA andkN; second panel, isotropic unitarity limit impurity scattering due to,0.2% impurities; third panel, spin
fluctuation inelastic scattering rate interpolated from Ref. 24.
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the suppression ofTc is negligible for the scattering rates
G0skAd which we will consider. However, at larger values of
k this is not the case, so that theTc shift or the lack of shift
implies constraints onk and G0. For the moment, however,
we will ignore this and simply comparek=0.5 withk=2 for
three different scattering ratesG0skAd=0.2, 0.1, and 0.05 in
units of t corresponding toG0skAd /D0=1, 0.5, and 0.025.

In Fig. 9 we show the temperature dependence of the
energy distribution curvesAsk ,vdfsvd for k at the antinodal
point kA. Here fsvd is the Fermi function. In the supercon-
ducting state there is a square-root-like behavior asv ap-
proaches −uDkA

u from below. This should be contrasted with
the broad Lorentizian peak in the normal state which is cut
off by fsvd. While one could understand that inelastic broad-
ening would diminish as the temperature is lowered, the
asymmetric, one-sided, square-root-like sharpening of the
spectrum in the superconducting state is a consequence of
forward elastic scattering as discussed in Sec. II. The peak
intensity atkA should scale asD0sTd.

B. Quasiparticle dispersion near the antinodal point

In a clean superconductor, there is a peak in the spectral
function Ask ,vd at the quasiparticle polev=Ek ;Îek

2+Dk
2.

In particular, as the momentum moves along the cut from
skA,pd to s0,pd shown in Fig. 1, one expects to see a dis-

persion of this peak to higher energies. However, if the for-
ward elastic scattering strengthG0skAd*DkA

, then the peak
in Ask ,vd remains at −Dk rather than dispersing. Figure 10
shows plots ofAsk ,vd for different values ofk between the
M andA points for k=2 and 0.5, and several values of the
scattering rateG0skAd.

As samples improve, there is a natural tendency in this
model for the spectrum fork not too far from the antinode to
cross over from one characterized by a nondispersive peak at
Dk in the dirty limit whereG0,D0 to one characterized by a
dispersive quasiparticle peak atEk when G0 is small com-
pared toD0. This crossover is due to the way in which the
forward elastic scattering rate for ad-wave superconductor is
reduced as the gap edge is approached and is analogous to
the same effect discussed analytically in the Appendix for an
s-wave superconductor. In a system withG0*D0, no quasi-
particle peak is observed, but a sharp featuredoesappear at
−Dk, representing simply the spectral weight in the over-
damped quasiparticle peak piling up at the gap edge as in the
s-wave case. Only whenG0 becomes small compared toD0
does one see a true quasiparticle peak dispersing as −Ek. In
the most strongly forward scattering case,k=0.5, one can
see that, depending on the strength of the scattering rate, one
can have simultaneously a broadened dispersing feature as
well as a gap edge feature. It is tempting to speculate that
this phenomenon is related to the peak-dip-hump features
observed generically belowTc in cuprate ARPES experi-
ments, but we have not yet explored this issue in detail.

C. The nodal spectrum

In Fig. 11, the corresponding EDC’s for the nodalkN point
are shown. In this case, theT=0 spectral function is a
Lorentzian centered at the Fermi level, whose width is lim-
ited essentially by the elastic scattering. For the band struc-
ture parameters we have chosen,G0skNd>G0skAd /1.4, so
that G0skNd=0.14t. Results in Fig. 11 are shown for several
different values ofG0skNd. At finite temperatures the peak is
further broadened by inelastic processes. Defining a width of
the asymmetric EDC’s is quite difficult, a natural result of
the stronglyv-dependent self-energy in the current approxi-
mation. In fact, even the shape of the EDC curve is difficult
to compare directly to experiment, since it can be qualita-
tively changed by a small amount of averaging along the
Fermi surface due to the angular resolution of the detector. If
one goes a short angular distance away from the node along
the Fermi surface, one finds at lowT not a smooth Lorentz-
ian for v,0, but rather a square root singularity with a small
local gapDk. Averaging over a smallk region will therefore
make the “leading edge” of this spectrum appear much
sharper.

The intrinsic T-dependent broadening is therefore most
clearly seen in the momentum distribution curves(MDC’s),
which in this work [see Eq.(25)] are simply Lorentzians
centered at the Fermi surface. In Fig. 12, we show that,
within this model, the rate of sharpening of the nodal MDC’s
indeed increases somewhat in the superconducting state as
the temperature is lowered, but that the widths saturate at a
value determined by the elastic scattering. The temperature

FIG. 9. Finite temperature spectral function at the antinodal
point A on the Fermi surface multiplied by the Fermi function,
AskA,vdfsvd vs v including the full model self-energy as described
in Sec. III. Results fork=2 and 0.5 withG0skAd=0.2t are shown.
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dependence ofDk shown in Fig. 12 is in disagreement with
the results of Vallaet al.,3 who reported a linear MDC width
dependence on temperature even in the superconducting
state. However, the type ofv and T dependence we find
would appear to be consistent with nodal EDC linewidth
measurements of Kaminskiet al.4

IV. CONCLUSIONS

The main point of this work is to raise the possibility that
some of the ARPES observations on optimally or overdoped
samples which appeared to be in conflict with the BCS re-
sults may in fact fit within the BCS framework when the
effects of forward elastic scattering are taken into account.
Thus, while forward elastic scattering can be responsible for
some of the anomalous width of the spectral function mea-
sured aboveTc, this need not be in conflict with the obser-
vation of a sharp spectral feature in the antinodal region be-
low Tc. Furthermore, ifG0skAd is larger thanDskAd, the
intensity associated with the area under this feature varies as
DskAd /GskAd, which depends upon the doping and tempera-
ture. At the same time, the spectrum at the nodal point can
exhibit a Lorentzian behavior with a width that evolves
smoothly throughTc and then partially narrows as the inelas-
tic scattering is suppressed by the opening of the gap. We
have seen that these effects occur because of a phenomenon
similar to Anderson’s theorem which applies for much of the
Fermi surface of ad-wave superconductor in the forward
scattering limit: if scattering is sufficiently peaked in the for-
ward direction, the scattering process does not mix states

with different signs of the order parameter, and no pair
breaking occurs. Sufficiently near the nodal point, however,
the sign change always takes place, implying that the full
width of the quasiparticle due to elastic scattering is recov-
ered at the nodalkN.

We have discussed simple approximate forms as well as
fully self-consistent numerical calculations for the elastic
self-energies. In the overall model for the self-energy, we
also included an approximate treatment of electron-electron
collisions, as well as unitary “native defect” scatterers ob-
served to be present in the BSCCO-2212 material in STM
experiments. The energy distribution curves found in the
self-consistent calculations using this model show no influ-
ence of the van Hove singularity, and display an asymmetric
shape with a rounded square root peak near the local gap
edge. Widths and temperature dependences can be obtained
which appear comparable to experiment, but it is difficult to
compare directly because of the unknown ARPES back-
ground signal and bilayer splitting, which was not included
here. We also discussed the temperature dependence of the
momentum distribution curves in the superconducting state
at the nodal point. It was found to have a Lorentzian shape
which narrows with decreasing temperature in the supercon-
ducting state, due to the suppression of inelastic scattering,
saturating at a value determined by the elastic scattering.

Along the momentum cutskA,pd to s0,pd, if G0skAd is
small compared toDk, we find a dispersing quasiparticle
peak atv=−Ek. However, whenG0skAd is comparable with
Dk, the maximum response occurs forv.−Dk, does not
disperse ask moves away from the Fermi level, and can still

FIG. 10. Ask ,vd vs v for k
=2 and 0.5. Results are given for
thek points as indicated along the
s0,pd, A cut in Fig. 1. The disor-
der levels correspond to
G0skAd /D0=1, 0.5, and 0.025.
Note the spectra for differentk
points have been offset for clarity.
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represent a sharp spectral feature. This is similar to some of
the older data on the BSCCO-2212 system, which has not
been explained in this paper and might have been taken for
some new type of dispersionless excitation in the supercon-
ducting state. However, as we have shown, it is simply the
consequence of forward elastic scattering which is sup-
pressed at the gap edge in the superconducting state.

Here we have focussed primarily on the effects of forward
elastic scattering on the BSCCO-2212 ARPES spectrum, and
found that a model of several percent weak out-of-plane scat-
terers with a range of order one lattice spacing, similar to
current models of Fourier transform STM measurements, can
explain many qualitative features of the ARPES data. We
believe that the unique way in which this material is doped
and disordered using current crystal growth techniques en-
dows it with an effective disorder potential which strongly
influences the low-energy quasiparticle properties in a way
which is characteristically different from the much cleaner
YBCO system, for example. This picture should have impor-
tant and calculable consequences for other superconducting
properties, such as microwave conductivity, which we ex-
plore elsewhere.
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APPENDIX: ONE-ELECTRON SPECTRAL FUNCTION
IN A DISORDERED s-WAVE SUPERCONDUCTOR

Insight into the spectral function of ad-wave supercon-
ductor with k near the antinodal point and reasonably for-
ward scattering can be gained by examining the spectral
function of an s-wave superconductor with disorder. Al-
though quite simple, we are not aware that the spectral
weight for ans-wave superconductor with isotropic impurity
scattering has been discussed elsewhere. For simplicity, we
restrict our consideration to isotropic, weak, nonmagnetic
scatterers. The self-energies in the Born limit for a system
with particle-hole symmetry and an isotropic order parameter
D are

S0 = niV
2o

k

ṽ

ṽ2 − ek
2 − D̃2

= − iG
u sgnu8
Îu2 − 1

, sA1d

S1 = niV
2o

k

D̃

ṽ2 − ek
2 − D̃2

= iG
sgnu8
Îu2 − 1

, sA2d

S3 = 0, sA3d

whereu=ṽ / D̃ andu8 is Reu. The self-consistency equation
is then

FIG. 11. (Color online) Finite temperature spectral functions at
the nodal pointN on the Fermi surface,AskN,vdfsvd vs v includ-
ing the full model self-energy as described in Sec. III fork=2 and
0.5, with G0skNd=0.14t.

FIG. 12. (a) Finite temperature spectral function near the nodal
point N along a cut perpendicular to the Fermi surface atN,
Ask ,v=0d vs k, including full model self-energy withk=0.5 and
G0skNd=0.14t. (b) The half-width ofAsk ,v=0d at half-maximum,
Dk, plotted vsT/Tc.
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u =
v − S0

D + S1
=

sv/DdÎu2 − 1 + i sgnu8Ḡu

Îu2 − 1 + i sgnu8Ḡ
, sA4d

with Ḡ=G /D, which has the solution

u =
ṽ

D̃
=

v

D
. sA5d

This means, as is well known, that the density of states

rsvd = Re
ṽ sgnv

Îṽ2 − D2
=

uvu
Îv2 − D2

, sA6d

is not changed by this type of impurity scattering and there is
no renormalization of the momentum-integrated thermody-
namic properties. This is the essence of “Anderson’s
theorem.”19 On the other hand, one might expect that the
spectral weightAsk ,vd for a quasiparticle of momentumk
should be broadened by disorder since the scattering mixes
different momentum states. This is the case in the normal
state where the spectral weight in the presence of impurity
scattering becomes a Lorentzian of width 2G. To determine
what happens in the superconducting state we need the 11
component of the Nambu Green’s function

G11sk,vd =

S1 +
iG sgnv

Îv2 − D2Dv + ek

S1 +
iG sgnv

Îv2 − D2D2

sv2 − D2d − ek
2

. sA7d

In Fig. 13, we plot the spectral functionAsk ,vd=
−Im G11sk ,vd /p for v,0 for various values ifk on and
near the fermi surface. SinceiG /Îv2−D2 is pure real for
uvu /D,1, the spectral weight vanishes for energiesuvu,D
the (unrenormalized) gap. However, asv approaches −D
from below, the spectral weight fork=kF diverges as

AskF,vd >
D

pG

1
Îv2 − D2

. sA8d

As seen in Fig. 13, this square root singularity gives way to
a more symmetrically shaped dispersing quasiparticle peak
ask moves away fromkF. However, fork not too far from
the Fermi level, a residual square root singularity atv=−D
remains. In Fig 14 which shows the dependence of the spec-
tra on disorder, we see that away from the Fermi level the
strength of the structure atv=−D increases with disorder. In
fact one can easily show that whenueku.G, the spectral
weight as v approaches −D varies as Ask ,vd
.sGD /pek

2d1/Îv2−D2. Thus in cleaner systems, the anoma-
lous peak atv=−D disappears and one has just the expected
quasiparticle peak atv=−Ek.
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