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Elastic forward scattering in the cuprate superconducting state
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We investigate the effect of elastic forward scattering on the ARPES spectrum of the cuprate superconduct-
ors. In the normal state, small angle scattering from out-of-plane impurities is thought to broaden the ARPES
spectral response with minimal effect on the resistivity or the superconducting transition temp€gakieee
we explore how such forward scattering affects the ARPES spectrum id-theve superconducting state.

Away from the nodal direction, the one-electron impurity scattering rate is found to be suppressed as
approaches the gap edge by a cancellation between normal and anomalous scattering processes, leading to a
square-root-like feature in the spectral weightwaapproaches A, from below. For momenta away from the

Fermi surface, our analysis suggests that a dirty optimally or overdoped system will still display a sharp but
nondispersive peak which could be confused with a quasiparticle spectral feature. Only in cleaner samples
should the true dispersing quasiparticle peak become visible. At the nodal point on the Fermi surface, the
contribution of the anomalous scattering vanishes and the spectral weight exhibits a Lorentzian quasiparticle
peak in both energy and momentum. Our analysis, including a treatment of unitary scatterers and inelastic spin
fluctuation scattering, suggests explanations for the sometimes mysterious line shapes and temperature depen-
dences of the peak structures observed in th&BCaCyOg System.
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I. INTRODUCTION opening of the superconducting gap, but it is hangfriori to
guess why something similar should happen in the presence
Since the earliest ARPES studies of optimally dopedof an elastic scattering rate of order 100 meV. We here will
Bi,Sr,CaCyOg (BSCCO, spectral features near the Fermi argue that this difficulty need not invalidate the basic
level have been reported whose width suggested the exipremise of Abrahams and Varrhahe second problem is
tence of a significant elastic scattering contribution whichthat recently increased momentum resolutiand the use of
varied along the Fermi surface, taking its smallest valuelifferent photon energié$*2has resolved a bilayer splitting
along the (7,7) diagonal and largest near thér,0)  which has its maximum effect near the, 0) point. Some of
region’ The shapes of the measured energy dispersiothe previously observed “elastic broadening” is therefore cer-
curves(EDCy are quite unusual, suggesting that the one+ainly due to this as well as to pseudogap efféttsut ex-
electron self-energy is also strongly energy dependent. Abraactly how much is not clear.
hams and Varnfaattempted to account for both features by  On the other hand, one cannot ignore the out-of-plane
assuming that the self-energy was a sum of an energydisorder. The BSCCO material is thought to be doped by
independent part arising from small-angferward) scatter-  excess oxygen in the SrO and BiO planes, and even the best
ing, and a second, momentum independent term modellesingle crystals are believed to contain significant amounts of
with marginal Fermi liquid theory. They noted that the elasticcation switching and other out-of-plane defet# is there-
forward scattering was most probably associated with impufore reasonable to assume that quasiparticles moving in the
rities which were located away from the Cu@lanes and CuGQ, planes of this material must experience a smooth po-
reflected thevg(k)™ variation of the momentum-resolved tential landscape due to these defects, and useful to pursue
density of states as moved around the Fermi surface. They the question of the effect of this type of scattering in the
further remarked that, despite the large scattering rates afuperconducting state. In fact, #tdo Fourier transformed-
order 100 meV deduced from fits to ARPES spectra, the forscanning tunnelling spectroscopy measureméuis similar
ward scattering nature of the disorder would be consisterdamples to those used in the ARPES studies have recently
with such scattering having a negligible effect on the resisbeen shown to require both a strofmgar-unitary limiy scat-
tivity of the optimally doped cupratésin addition, it was tering component, attributed to native defects in the €uO
shown that this type of disorder would have a small effect orplanes, as well as a weaker, smooth scattering potential com-
T.8° ponent attributed to defects away from the plane. Recently,
There are two obvious difficulties with this scenario. The Markiewicz has also attempted to relate STM and ARPES
first is that the spectral peak measured by ARPES near théata in the superconducting state assuming a smooth
(7r,0) point is known to sharpen dramatically when one goegotentiall®
below T, a phenomenon interpreted as the formation of a In this work we model the complex collection of out-of-
coherent quasiparticle in the superconducting state. Thiplane defects with a simple set of impurity potentials with
sharpening has normally been attributed to the well-knowrfinite range, and find a number of surprising results. The first
collapse of the inelastic scattering rate beldwdue to the is that the elastic scattering rate indeed “collapses” in the
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superconducting state in the strong forward scattering limit, o) Hald m,m)
leading to a sharp spectral feature everywhere on the Fermi
surface except at the nodal point itself. The second is that as
one goes away from the Fermi surface, this feature disperses
away as expected for a quasiparticle pealy if the system
is sufficiently clean; otherwise it remains pinned to the gap
edge. This would appear to explain the apparent lack of qua- y
siparticle dispersion in older samples. In some situations
both a nondispersive gap edge peak and a dispersing quasi-
particle feature can be simultaneously observed. While we
do not attempt a direct fit to experiment, we show that as- (0,0) ”

. ) ; ) ) (r,0)
suming a rather simple and physically motivated model for X
the one electron self-energy, which combines the above de- FIG. 1. The Fermi surface corresponding to the bapgiven by

scription of forward elastic scattering with strong pointlike Eq. (3) with t'/t=—0.35 andu=—1. The energy distribution curves
elastic scattering and spin fluctuation inelastic scattering, als A(k ) will be discussed fokék,\, (noda), k=K, (antinodal

lows us to calculate a spectral function which appears tQnq various values along thé0,m) to k, cut shown by the solid
reproduce many of the qualitative features of current ARPES,5ints.

data on optimally to overdoped cuprates. It is our hope that

the ideas presented here can help unravel some of the mys-

teries surrounding the behavior of what is generally calledzreens functionG®= (w- e, + )" indicates that at first we
the superconducting “quasiparticle peak,” and allow a MOr§anore self-consistency, i.G° does not depend ob.

accurate description of the actual propagating excitation.” 14 model the electronic structure we take a simple near-

They will also have important immediate implications for aiqhbor hoppind and next-near-neighbor hopping such
other bulk properties of the superconducting state. g pping g Pping

The paper is organized as follows. Section || discussesh
general effects of extended impurities scattering on the
ARPES spectrum in both the normal and superconducting
states. In Sec. lll, we examine the effect of adding an isotro-
pic elastic scattering due to unitary scatterers as well as the
inelastic scattering due to spin fluctuations. Finally, Sec. IVgnq sett’ /t=-0.35 andu/t=-1. Note that with this choice

contains our comparison with existing data, conclusions, angd¢ parameters there is a van Hove singularity with a peak in

€ = — 2t(cosk, + cosk,) — 4t’ cosk, cosk, - u  (3)

plans for future work. the total density of states at —0.4The Fermi surface for
these parameters is shown in Fig. 1; it is similar but not
Il. ELASTIC SCATTERING identical to the Fermi surfaces found for both YBCO-123

and BSCCO-2212 by ARPES.
As the range of the potentiad™* increases, the scattering
We first consider a model system where scattering occursf a quasiparticle fronk to k' becomes peaked in the for-
only because of disorder. For simplicity, we will assume thatward direction. As shown in Fig. 2, whénis close tok’ and
the most important feature of the potential due to out-of-both are not too far from the Fermi surface, we may param-
plane impurities experienced by electrons moving in theetrize them as
CuQ, planes is its finite rang&™ . We therefore model a
single impurity simply as a ter¥/(r)=Vy,e™, or

A. Normal state

A 4)

where V, sets the strength of the potential ard® is its
range. Note thak andk’ are only defined up to a reciprocal
lattice vector. The self-energy due to many such impurities
gives rise to an elastic broadening of quasiparticle states
which depends upon the position lofin the Brillouin zone.

For weak scattering, the Born approximation for the retarded
self-energy associated with a random distributiompfm-
purities per unit area has the usual form in the normal state

S(K,w) =N 2 Vi [2Gok ", w), )
kl

Vikr = (1)

where w is understood to include an infinitesimal positive  FIG. 2. (Color online Geometry for the forward scattering pro-
imaginary part, and the superscript on the single-particleess in which a quasiparticle scatters fr&no k.
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FIG. 3. The elastic scattering
width T'(k)==Im 3(kg, 0) in units
of t plotted around the Fermi sur-
face with =tar(k,/k,). Results

40

60

80 are shown in Figs. @)-2(d) for

x=10, 5, 2, and 0.5, respectively,
with n|Vg|? adjusted so thaF
=-ImX(ka,0) is equal to 0.2
The dashed curve is proportional
to ve'(6) and one sees that as
decreases and the scattering peaks

1V (0)
1/1(0)

in the forward direction]'(k) var-
ies asvg(6).
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whereqg=k -k’ is the momentum transfer army its compo-
nent parallel to the Fermi surface. The unit vectorsandk’,
are the projections dk andk’ onto the Fermi surface, re-
spectively, such that, e.gg. =ve(k’)k’ . The imaginary part
of the retarded self-energ®) becomes

-ni(2mrV)? ([ dk dK)

Eu(k,w): niz’;:;(z 0) [q§+ szjsﬁ(u)—ék/) (6)
__ Ve dq
ek 2 A @)
q-+ kL_U_F +K

3’7Tnivg 1
o~ — ' 8
8|UF(k|)|K3M ) )2+1J5/2 (8)

UF(kH)K

Equation(8) shows explicitly that in the limit of smalk,
the self-energy becomes more and more sharply peaked

the mass shelllb=¢,. This is a generic feature of long-range

potentials. For example, on the Fermi surfdcekg at w
:0,

3mmn\V3
8|UF(kF)|K3.

In Fig. 3, we show how this angular dependend /v | is

=2"(kg,0) =To(kp) = 9

80

chosen such thafg(ka)=0.2 corresponding tol'g(ka)

=30 meV fort=0.15 eV. From Fig. 3 we see that in the
forward scattering limit, I'g(ky) =g(ka)/1.4=0.14. We
stress that the precise dependence of the forward elastic part
of the self-energy9) on x and on momentum depend on the
details of the Fermi surface shape and impurity scattering
potential. However, we do not expect qualitative features of
the resulting spectra to be affected. We note further that the
absolute magnitudes of the parameters chosen are roughly
consistent with th&(10%) weak scatterers of strength of

O(t) and range ofD(1-2a) extracted from FT-STS data in
Ref. 16. In Sec. Ill, we will show results for various values
of I'y(ks) and k.

Thus far we have not considered the effect of self-
consistency, i.e., replacings® in Eq. (2) by G(k,w)
=[(G%™1-32]L In the normal metal one is used for ignoring
this distinction, as the self-consistent solution for pointlike
scatterers can be shown to be identical to the non-self-
consistent one up to corrections of order Eg)?, whereEg
is the Fermi energy. If the scatterers have a finite range,

_however, this argument breaks down and self-consistency be-
%bmes important. As seen in Fig. 4, the effect of self-
consistency is to reduce the frequency dependence of
3"(k,w) induced by electronic structure; in particular, the
van Hove singularity atw=-0.4 is eliminated. This may
account for the complete absence of van Hove spectral fea-
tures in STM and other tunnelling experiments on BSCCO.
We note further that the scattering rate is cut off in the for-
ward scattering case=0.5 when|w|>vgk, reflecting the

approached by the exact res(®) as « decreases and the fact that if the electron’s momentum can only be shifted by a
range of the scattering is increased. In the figure and in whagmall amount~«, the allowed energy transfer is also re-

follows in this section, we will use the resy?) with n,[Vy|?

stricted.
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B. Superconducting state o

A
El(k,w):—mz |V(k,k')|22_2—A2. (14)

1. Elastic self-energy o o’ =€, o
To describe the superconducting state, we assume a BCS
d-wave order parameter corresponding to pure nearest-
neighbor pairing, We will calculate the self-energies both non-self-consistently,
A as in Eq.(11), and self-consistently by requiring tha{G°]
A, = —=2(cosk, - cosky) —2[G]. In Fig. 5, we show the variation of these self-energy
2 components with energy &t=ky andk =k,. Again the van
with Ay/t=0.2. The full matrix Green’s function in the pres- Hove singularity is washed out in the self-consistent evalua-
ence of scattering in the superconducting state is tion, and it is furthermore noteworthy that thg component
becomes quite small in the forward scattering limit. While in
Fig. 5 gaps appear in the, near theA point for smallk, the
values of2, andX; near the gap edge=A,. are large, of
5 order several times the hoppirig Quasiparticle properties
wherew=w-3g, §=€+23 Ay=A,+3;, and theX, are  near the Fermi surface are determined, however, by particu-
the components of the self-energy proportional to the Pauliar combinations of the Nambu self-energy components. As
matrices 7, in particle-hole space. If we first assume the can immediately be seen from the denominatofidd, the
simplest case, that the scattering is entirely elastic and weakotal elastic scattering rate broadening the quasiparticle state
we may approximate the self-energy in the Born approximaof energyw will be
tion similar to(2) as

DT+ G Tat A
Glk,w) = TSk (10)

=02 Vi PraGo(K )7, (1 A
K Fei(k) == Im<Eo(k,w) + ;kﬁl(k,w)) (15
with Nambu components

w
Sok,) =2, |V(k,k')|22_2—_A2, (12 provided one can negled; (see Fig. 5. In Fig. 6, we see
K’ O G T B that asw goes to A(k,) for k=k,, I'g is suppressed by the
near cancellation of the two components (ith) when «

€k’ becomes small. To obtain some insight into the physical ori-

— |2

2k, o) ‘nIZ [Vk. k) W=, — A2, (13 gins of this cancellation, we derive approximate analytical
. forms for k<1 following the discussion of the normal state

and above, leading to
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FIG. 5. The self-energy terms —IBy(k, w), Im 3;(k, ), and -Im35(k , w) in the superconducting state B0 for k=k s (top) andky
(bottom), for k=5 and 0.5 and the same band and scattering parameters as previously usekl3Hgy¢cos,—cosky)/2 with A;=0.2.
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n
o 0
" I'o(Kg) reason for this is clear: as seen in Fig. 2, for smadindk a
2ok, w) == w?— A2 1Sa distance at least from the node, small angle scattering can-
/ T Ag =t

not mix order parameters of different signs, and therefore
- w2 - A2\ 52 cannot break Cooper pairs. The analogy with sheave su-
Kl)—(k) +1 (16) perconductor and relation to Anderson’s theorem in the con-
F text of ARPES is discussed further in the Appendix. In addi-
Heres,=|o|, A, sgnw, andv sgnw\s"wz—Aﬁ for the Nambu tion, the slowing of the rate of; suppression due to disorder
componentsy=0, 1, and 3respectively, and’o(k) is given ~ as scattering becomes more anisotropic was treated some
by Eq. (9). Note thatS} vanishes on the Fermi surfaeg  time ago by several authotd’hese works were motivated by
=0 in this limit. In order to gain some further intuition for T suppression rates in the cuprates which appear to be 2-3
these expressions, we specialize to the case where the mignes slower than predicted by the classic Abrikosov-Gorkov
mentumk is close to the Fermi surface and the energjes formulazo appropriate for pOIntllke iSOtI’OpiC scatterers. The
are small, such thal(et Vw?~A2)/kue(k)|<1. The self- Suppression of; near the pure forward scattering limit has

energies may then be written been discussed recently_ in c_zlet_ail by Kee.
o In the forward scattering limit where Eg&.7)—(19) hold,
" w the effective elastic scattering ratg€5) becomes
Sotk,w) ~ = FO(kF)ﬁ, (17 g
Vo© - —_—
“ Vo — AE
Fe|(k,w) = Fo(kp)—, |(L)| = |Ak| (20)
" Ak Sghw |(1)|
21k, w) ~ FO(kF)“"Z——AZ' (18)
Ve K For k along the nodal direction, the elastic broadening in the
superconductingd-wave state is equal to its value in the
$4(k,w) =0, (19 on 7 )

normal state. However, fok in the antinodal region, the
but are strongly supressed due to energy conservation whé¥oadening vanishes as— A, and approaches the normal
|Vw?-A2- | becomes greater thaw, as one may observe state valu_e only \_/vhe_m) becomes large compare_d witky,.

in Fig. 5. These equations are now identical in form to thosel "€ elastic contributiom’e(k s, @) to the broadening at the
expected for ans-wave superconductofeven when self- antinodalk, point versusw is shown in Fig. 6. Physically,
consistency is includedAll peculiarities of thed-wave state  the individual contributions to the normaly(k,) and
which result from momentum averaging over the Fermi suranomalous,(k, ») self-energies are both enhanced by the
face have disappeared. We therefore expegriori to re-  density of states factdw?-A%(k)) ™Y/ (Fig. 5). However, the
cover Anderson’s theorem, the insensitivity of bulk thermo-normal contribution describing the scattering out of state
dynamic properties to nonmagnetic scattefifighe physical into k' is compensated by the anomalous contribution scat-
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tering intok from the pair condensate. This gives rise to the A, 1
suppression of the elastic scattering seen in Fig. 6 relative to I(Kn) =f Ak p, w)dw = — (27)
Fig. 5 asw approaches |AkA| from below. Ay, 0w

which is independent oﬁkA/FO(kA). However, when the
system is sufficiently dirty such thAtkA< I'o(kn), the falloff
The near-cancellation of the two Nambu components obf A(ka,®) as o decreases below Ay, varies as(w?
the self-energy near the gap edge in the forward scatteringAﬁA)‘l’z. In this case, the scale is set Iz}gkA and if one
limit leads to a dramatically redyceﬂasticscattering rate in  tgkes 5w:AkA, the peak intensity varies ad(kp,)
the superconducting state, which sharpens the spectral fe&AkA/FO(kA)- This is quite different from the usual BCS

t“fe;f: othuasiparticlesdwlhicn are not too close to thei nodesy adiparticle result which is proportional to the quasiparticle
Within the current model where we continue to neglect in-omalization factor(k,) times a coherence factor which
elastic scattering due to electron-electron interactions, WE. 172 on the Fermi surface. It should be possible to test the

now turn to the one-electron spectral function measured by : ; ; o
. S . tt th t f
ARPES. In the forward scattering limit, with the self—energyI?ﬁvsr\?viticike/rpo%ki;: enerio by comparing the variation o
A .

given by Eqs(17)—(19), one obtains a result for the Green'’s
function previously discussed by Markiewit,

2. Spectral function

Numerical results for the normal and superconducting
spectral weights fow <0 using the self-consistent version of
the self-energy(12)«14) with o — o, etc., for the model
Ry 5 (21 impurity potential(1) are shown in Fig. 7 fok=5 and 0.5.

(0= A2k, )"~ Eﬁ For k=0.5, the scattering is predominantly forward and in
. —~— the superconducting state Bt 0, the spectral weight fdk,
Here z(k, w)=1+il'x(k)sgnw/Vo*~Aj. The electron com- s seen to sharpen atly, despite the fact that the normal

_ (om+ Ayr)Z(K, w) + &3

G(k, w)

ponent of the spectral function is then state broadenind@'(k,) is in the order of the peak position.
For k=ky, the nodal spectral weight has the expected
AKK, @) = - 1 Im Gyy(k, @) = — 1 | wz(k,0) + & _ Lorentzian form with a width set b¥/(ky). For k=5, corre-
T (0? - AD)zk,w)% - & sponding to a more isotropic scattering, the spectral weight

(22) for k=k, broadens. In the limit of isotropic impurity scatter-
ing, the>; component of the impurity self-energy vanishes
It is useful to consider a few special cases(@?) more andA(ka,w) has a Lorentzian-type broadened peak.
closely. In particular, on the Fermi surfage=0 one has the

simple expression
I1l. ISOTROPIC ELASTIC AND INELASTIC

[‘O(k) 1 |w| ELECTRON-ELECTRON SCATTERING
Alkg, ) = T 2 2 2 27 (23) e i i
T \w? - A2 0° = Ag + (k) In addition to the forward scattering by out-of-plane im-
purities, in this section we consider unitary limit isotropic
while near the gap edge, e.g2=—[A|, elastic scatterers as well as inelastic electron-electron colli-
sions. In fact, it is the momentum and frequency dependence
Ak.w) ~ 1 Tok) |l (24) of the latter interaction about which one hopes to learn more

from the ARPES spectrum. Here we proceed phenomeno-
logically by writing
At the nodal pointky, where the gap vanishes, the spec-

T 5& + Fé(k) Vw? - Ai .

tral weight is given by the simple Lorentzian form Stot= Zeif + Tetu + Zinel- (28)
The first term is the contribution from elastiguasjforward
Alky w):M (25) scatterers we have discussed in Sec. Il. The second term
' w? +To(ky)?’ represents the effect of unitary scatterngrgssibly Cu vacan-

' o cieg with concentration roughly, ~ 0.2% observed as zero-
and at low temperatures where the elastic scattering is dombias resonances in STM experiments. It will be treated as
nant one can determiriéy(ky). However, fork at the anti-  ysual in the self-consistefftmatrix approximation,

nodal pointk, such that Ay, —do<w <-4y,
n

Seu=-—=———o.
1A, 1 TS Gk

Alkp, @) = wTokn) Jo7—aZ (26)
LKA o = A, In the normal state we find a scattering ratelgf= 10",
) _ leading to an impurity bandwidthy,~ I, Ag~107% (of
where the “width”sw depends upon the ratiy, /I'o(ka). If  order 1 to 2 meY. We note that thevidth of the resonance
Ay, is large compared withI'o(kp), the width dw  observed in STM is in fact roughly 3 times this number,
=F0(kA)2/(2AkA). If one integrate#\(ka, w) from A, =0 consistent with the self-consistefimatrix calculatior?! im-
to —AkA to define a “peak intensity” purity resonances are visible up to about 10 meV in experi-

(29)
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ments. Nevertheless the isotropic part of the elastic scatteringuction of the inelastic scattering rate at low excitation en-

appears to have a relatively insignificant effect on theergies reflects the suppression of the low energy spin fluc-

ARPES spectral function, as shown below. tuations due to the opening of tklewave gap. Here, we will
For the imaginary parts of the inelastic self-energies, wause a numerical interpolation of the andT-dependent’;

will use numerical results obtained from a spin-fluctuationobtained from Ref. 24.

calculation of the quasiparticle scattering. Following the ar-

gument leading to Eq15), we define an effectivinelastic A. The antinodal spectrum

scattering rate . I
g The various contributions to the self-energy are sketched

el A cinel in the schematic diagram shown in Fig. 8. We will use the
Finei(k, ) == Im{ Zg(k, w) + ;21 (k,w)]. (30 parameters discussed above to set the magnitudgs.pand
21 Then we will consider various values gfandI'o(K ),
In spin-fluctuation calculations ofl'j¢(k,w), it was  characterizing the forward elastic scattering. While the effect
foundf223 that at the nodal point, at low temperatures, theof 3, is already contained in the intrinsit, and the sup-
scattering rate initially increased as the third poweaalr T pression ofT, due to 2, is negligible for the parameters
depending upon which is larger. At othkrpoints on the considered, this is not necessarily the case for the forward
Fermi surface, the scattering rate varies approximately as thelastic scattering. As discussed by Kethe suppression of
third power of this energy measured relativeAp The re- T, varies as«®, so that for small values of such as«=0.5,

el,u

- 0 0
[ Ao -35, ® -A

FIG. 8. Schematic depiction of the various contributions to the scattering rate in the superconductingTstdie Fitst panel, elastic
forward scattering fok =k andky; second panel, isotropic unitarity limit impurity scattering due~t6.2% impurities; third panel, spin
fluctuation inelastic scattering rate interpolated from Ref. 24.
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2.5 . " persion of this peak to higher energies. However, if the for-
Iy .- *= ward elastic scattering strengthy(k A)zAkA, then the peak
2 ,’ f‘ ,‘| in A(k,w) remains at A, rather than dispersing. Figure 10
5 1oLy shows plots ofA(k, w) for different values ok between the
% 15 ,' Sl - =TT =00 M andA points for k=2 and 0.5, and several values of the
LS ’ ,-‘ 1 + TM=09 scattering ratd o(k ).
x . | S .= TIT =0.95 ) . . .
T 1l =10 As samples improve, there is a natural tendency in this
e : — e H
s (I} model for the spectrum fdt not too far from the antinode to
- B cross over from one characterized by a nondispersive peak at
0.5 A, in the dirty limit wherel'y~ A, to one characterized by a
Vi dispersive quasiparticle peak Bf when T’y is small com-
s Ry g o

0.25 02 015 0.1 —0.05 0  0.05 pared toAq. This crossover is due to the way in which the
® forward elastic scattering rate fordawave superconductor is
10 reduced as the gap edge is approached and is analogous to
x=0.5 the same effect discussed analytically in the Appendix for an
8 e s-wave superconductor. In a system wlth= Ay, no quasi-
particle peak is observed, but a sharp featlmesappear at
-A,, representing simply the spectral weight in the over-
damped quasiparticle peak piling up at the gap edge as in the
s-wave case. Only wheh, becomes small compared 1,
. does one see a true quasiparticle peak dispersind=gsir
A the most strongly forward scattering case; 0.5, one can
KA see that, depending on the strength of the scattering rate, one
T can have simultaneously a broadened dispersing feature as
— = ——— well as a gap edge feature. It is tempting to speculate that
-0.25 -0.2 -0.15-0.1 -0.05 0 0.05 this phenomenon is related to the peak-dip-hump features
o observed generically below, in cuprate ARPES experi-
ments, but we have not yet explored this issue in detail.

A(kA, o)f(w)
L —‘\—'"—:,-,-.'-,-‘- -———

FIG. 9. Finite temperature spectral function at the antinodal
point A on the Fermi surface multiplied by the Fermi function,
A(ka, ®)f(w) vs  including the full model self-energy as described C. The nodal spectrum

in Sec. lll. Results forx=2 and 0.5 withl'go(k,)=0.2t are shown. In Fig. 11, the corresponding EDC’s for the nodglpoint
are shown. In this case, th€=0 spectral function is a

the suppression of. is negligible for the scattering rates [orentzian centered at the Fermi level, whose width is lim-
I'o(ka) which we will consider. However, at larger values of ited essentially by the elastic scattering. For the band struc-
« this is not the case, so that tfig shift or the lack of shift ture parameters we have chosdiy(ky)=To(ka)/1.4, S0
implies constraints om andT'o. For the moment, however, thatI'y(ky)=0.14. Results in Fig. 11 are shown for several
we will ignore this and simply compare=0.5 withx=2 for different values of o(ky). At finite temperatures the peak is
three different scattering ratd%(k,)=0.2, 0.1, and 0.05 in fyrther broadened by inelastic processes. Defining a width of
units oft corresponding td’o(ka)/Ag=1, 0.5, and 0.025.  the asymmetric EDC's is quite difficult, a natural result of

In Fig. 9 we show the temperature dependence of theéhe stronglyw-dependent self-energy in the current approxi-
energy distribution curvel(k, »)f(w) for k at the antinodal mation. In fact, even the shape of the EDC curve is difficult
point k. Heref(w) is the Fermi function. In the supercon- to compare directly to experiment, since it can be qualita-
ducting state there is a square-root-like behaviowaap- tively changed by a small amount of averaging along the
proaches i—AkA| from below. This should be contrasted with Fermi surface due to the angular resolution of the detector. If
the broad Lorentizian peak in the normal state which is cubne goes a short angular distance away from the node along
off by f(w). While one could understand that inelastic broad-the Fermi surface, one finds at Iolvnot a smooth Lorentz-
ening would diminish as the temperature is lowered, thdan for <0, but rather a square root singularity with a small
asymmetric, one-sided, square-root-like sharpening of théocal gapA,. Averaging over a smak region will therefore
spectrum in the superconducting state is a consequence @fake the “leading edge” of this spectrum appear much
forward elastic scattering as discussed in Sec. Il. The peakharper.
intensity atk , should scale ady(T). The intrinsic T-dependent broadening is therefore most
clearly seen in the momentum distribution cury®#DC’s),
which in this work [see EQ.(25)] are simply Lorentzians
centered at the Fermi surface. In Fig. 12, we show that,

In a clean superconductor, there is a peak in the spectralithin this model, the rate of sharpening of the nodal MDC'’s
function A(k,w) at the quasiparticle pole=E, = \s"eﬁ+A§. indeed increases somewhat in the superconducting state as
In particular, as the momentum moves along the cut fronthe temperature is lowered, but that the widths saturate at a
(kp,) to (0,7) shown in Fig. 1, one expects to see a dis-value determined by the elastic scattering. The temperature

B. Quasiparticle dispersion near the antinodal point
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xk=2 x=0.5
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FIG. 10. Ak,w) vs o for «
15} =2 and 0.5. Results are given for
thek points as indicated along the
(0,7), A cut in Fig. 1. The disor-
der levels correspond to
FO(kA)/A():l, 05, and 0.025.
Note the spectra for differenk
points have been offset for clarity.
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dependence oAk shown in Fig. 12 is in disagreement with with different signs of the order parameter, and no pair
the results of Vallat al.® who reported a linear MDC width breaking occurs. Sufficiently near the nodal point, however,
dependence on temperature even in the superconductiiige sign change always takes place, implying that the full
state. However, the type ab and T dependence we find width of the quasiparticle due to elastic scattering is recov-
would appear to be consistent with nodal EDC linewidthered at the nodéky,.

measurements of Kaminskt al? We have discussed simple approximate forms as well as
fully self-consistent numerical calculations for the elastic
IV. CONCLUSIONS self-energies. In the overall model for the self-energy, we

also included an approximate treatment of electron-electron

The main point of this work is to raise the possibility that collisions, as well as unitary “native defect” scatterers ob-
some of the ARPES observations on optimally or overdopederved to be present in the BSCCO-2212 material in STM
samples which appeared to be in conflict with the BCS reexperiments. The energy distribution curves found in the
sults may in fact fit within the BCS framework when the self-consistent calculations using this model show no influ-
effects of forward elastic scattering are taken into accountence of the van Hove singularity, and display an asymmetric
Thus, while forward elastic scattering can be responsible foshape with a rounded square root peak near the local gap
some of the anomalous width of the spectral function meaedge. Widths and temperature dependences can be obtained
sured abovel, this need not be in conflict with the obser- which appear comparable to experiment, but it is difficult to
vation of a sharp spectral feature in the antinodal region becompare directly because of the unknown ARPES back-
low T.. Furthermore, ifl'g(kn) is larger thanA(k,), the  ground signal and bilayer splitting, which was not included
intensity associated with the area under this feature varies dgre. We also discussed the temperature dependence of the
A(kp)/T'(ka), which depends upon the doping and temperaimomentum distribution curves in the superconducting state
ture. At the same time, the spectrum at the nodal point caat the nodal point. It was found to have a Lorentzian shape
exhibit a Lorentzian behavior with a width that evolves which narrows with decreasing temperature in the supercon-
smoothly throughT, and then partially narrows as the inelas- ducting state, due to the suppression of inelastic scattering,
tic scattering is suppressed by the opening of the gap. Weaturating at a value determined by the elastic scattering.
have seen that these effects occur because of a phenomenonAlong the momentum cutk, ) to (0,m), if I'o(ka) is
similar to Anderson’s theorem which applies for much of thesmall compared ta\,, we find a dispersing quasiparticle
Fermi surface of ad-wave superconductor in the forward peak atw=-E,. However, wherl'o(k,) is comparable with
scattering limit: if scattering is sufficiently peaked in the for- A, the maximum response occurs fer=-A,, does not
ward direction, the scattering process does not mix statedisperse ak moves away from the Fermi level, and can still
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257 14}
k=2
12}
2t - = T/T_=0.0 . 4l
€ . TT_=0.5 ,’: 5 — TT =00
EpE .= TIT =09 - 108 . TIT =05
n - , a —
-;‘,Z — T/Tc_1.0 P 1 -i, 06} - = TT =10
< &

Ak

6
El
=
<
< 1 0
17~ 1 2 3
! TT,
1
: , FIG. 12. (a) Finite temperature spectral function near the nodal
0 . . - LN point N along a cut perpendicular to the Fermi surfaceNat
-0.3 -0.2 -0.1 0 0.1 A(k,w=0) vs k, including full model self-energy withk=0.5 and
0 I'o(ky)=0.14. (b) The half-width of A(k,w=0) at half-maximum,

. - ) Ak, plotted vsT/T,.
FIG. 11. (Color onling Finite temperature spectral functions at

the nodal poinfN on the Fermi surfacéA(ky, w)f(w) vs w includ- ) )
ing the full model self-energy as described in Sec. Ill ker2 and ~ Partial support was provided by ONR N00014-04-0060 and

0.5, withTo(ky)=0.14. NSF DMR02-11166.

represent a sharp spectral feature. This is similar to some of APPENDIX: ONE-ELECTRON SPECTRAL FUNCTION
the older data on the BSCCO-2212 system, which has not INADISORDERED s-WAVE SUPERCONDUCTOR

been explained in this paper and might have been taken for
some new type of dispersionless excitation in the supercons

ducting state. However, as we have shown, it is simply th d tteri b ined b ining th ral
consequence of forward elastic scattering which is supy/@/¢ Scalléring can be gained by examining he spectra

pressed at the gap edge in the superconducting state. function of an s-wave superconductor with disorder. Al-

Here we have focussed primarily on the effects of forwardthough quite simple, we are not aware that the spectral
elastic scattering on the BSCCO-2212 ARPES spectrum, an€ight for ans-wave superconductor with isotropic impurity
found that a model of several percent weak out-of-plane scaficattering has been discussed elsewhere. For simplicity, we
terers with a range of order one lattice spacing, similar tgestrict our consideration to isotropic, weak, nonmagnetic
current models of Fourier transform STM measurements, cafcatterers. The self-energies in the Born limit for a system
explain many qualitative features of the ARPES data. Wewith particle-hole symmetry and an isotropic order parameter
believe that the unique way in which this material is dopedA are

and disordered using current crystal growth techniques en- ~ ,
® ..usgnu

Insight into the spectral function of é&wave supercon-
uctor with k near the antinodal point and reasonably for-

dows it with an effective disorder potential which strongly So=nVEY — = —i[— , (A1)
influences the low-energy quasiparticle properties in a way kK @e— Eﬁ — A2 V-1
which is characteristically different from the much cleaner
YBCO system, for example. This picture should have impor- ~ ,
tant and calculable consequences for other superconducting S, =nV2Y — =il’ sgnu , (A2)
properties, such as microwave conductivity, which we ex- k @?- eﬁ—AZ Vu? -
plore elsewhere.
23 = 0, (A3)
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FIG. 14. A(k,w) for an s-wave superconductor ve/A for

FIG. 13. Ak,w) for an sswave superconductor vae/A for
e/ A=-1 for three valuesgsolid, dashed, dottgaf I'/A=0.01, 0.2,

I'/A=0.1 for three valuessolid, dashed, dottgdf ¢ /A=0, -1,

-2, 0.5.
o i’ sgnw
w-3p (w/A)Nu?-1+isgnu'Tu Jw?— A2 o+ &
Taes T P sgnuT (A Gulk.w) = il sgno \? - (A7)
' <1+—L) (02— A2) - &
. \,'wZ_ AZ
with I'=T"/A, which has the solution
In Fig. 13, we plot the spectral functiod\(k,w)=
» o —-Im Gy4(k,w)/ 7 for @<<0 for various values ik on and
U:Z:X- (A5)  near the fermi surface. Sind&/w?—A2 is pure real for

|o|/A<1, the spectral weight vanishes for enerdies<A
the (unrenormalizegd gap. However, aso approaches A
from below, the spectral weight fd=kg diverges as
|| A 1

(AB) Alkg, w) = IRy

This means, as is well known, that the density of states

sgn
plw) = Re- 2 =

= — , (A8)
Va2—A?  Vw?-A?

. . . . . . As seen in Fig. 13, this square root singularity gives way to
is not changed by this type of impurity scattering and there is, ,re symmetrically shaped dispersing quasiparticle peak

no renormalization of the momentum-integrated thermody-sk moves away fronk.. However, fork not too far from
namic properties. This is the essence of “Anderson'she Fermi level, a residual square root singularitywat—A
theorem.* On the other hand, one might expect that theremains. In Fig 14 which shows the dependence of the spec-
spectral weightA(k, w) for a quasiparticle of momentutki  tra on disorder, we see that away from the Fermi level the
should be broadened by disorder since the scattering mixesrength of the structure at=-A increases with disorder. In
different momentum states. This is the case in the normdiact one can easily show that wheg|>T, the spectral
state where the spectral weight in the presence of impurityveight as  approaches A varies as Ak, )
scattering becomes a Lorentzian of width. 2o determine z(FA/weﬁ)l/v"wz—Az. Thus in cleaner systems, the anoma-
what happens in the superconducting state we need the 1dus peak aiw=—A disappears and one has just the expected

component of the Nambu Green’s function

quasiparticle peak ab=-E,.

1B. Wells, Z.-X. Shen, A. Matsuura, D. M. King, M. A. Kastner,

M. Greven, and R. J. Birgeneau, Phys. Rev. Letd, 964
(1995.

2F. Ronning, C. Kim, D. L. Feng, D. S. Marshall, A. G. Loeser, L.

4A. Kaminski, J. Mesot, H. Fretwell, J. C. Campuzano, M. R.
Norman, M. Randeria, H. Ding, T. Sato, T. Takahashi, T. Mo-

chiku, K. Kadowaki, and H. Hoechst, Phys. Rev. L&#l, 1788
(2000.

L. Miller, J. N. Eckstein, I. Bozovic, and Z.-X. Shen, Science 5A. Damascelli, Z. Hussain, and Z.-X. Shen, Rev. Mod. PIg5,.

282, 2067(1999.

473(2003.

3T. Valla, A. V. Fedorov, P. D. Johnson, Q. Li, G. D. Gu, and N. ®E. Abrahams and C. M. Varma, Proc. Natl. Acad. Sci. U.S9&,

Koshizuka, Phys. Rev. Let85, 828(2000.

5714(2000.

214503-12



ELASTIC FORWARD SCATTERING IN THE CUPRATE. PHYSICAL REVIEW B 70, 214503(2004)

7J. Giapintzakis, D. M. Ginsberg, M. A. Kirk, and S. Ockers, Phys.°H. Eisaki, N. Kaneko, D. L. Feng, A. Damascelli, P. K. Mang, K.

Rev. B 50, 15 967(1994. M. Shen, Z.-X. Shen, and M. Greven, Phys. Rev68 064512
8G. Haran and A.D. S. Nagi, Phys. Rev. B}, 15463(1996); 58, (2004).
12 441(1998; M. L. Kulic and O. V. Dolgov,ibid. 60, 13 062 18] Zhu, W. A. Atkinson, and P. J. Hirschfeld, Phys. Rev.a3,
(1999. 060503(2004).
9H.-Y. Kee, Phys. Rev. B64, 012506(2001). 173, E. Hoffman, E. W. Hudson, K. M. Lang, V. Madhavan, and H.

10D, L. Feng, N. P. Armitage, D. H. Lu, A. Damascelli, J. P. Hu, P.  Eisaki, Science295 466 (2002; K. McElroy et al, Nature
Bogdanov, A. Lanzara, F. Ronning, K. M. Shen, H. Eisaki, C.  (London 422 592(2003.
Kim, and Z.-X. Shen, J.-I. Shimoyama, and K. Kishio, Phys. ®R.S. Markiewicz, Phys. Rev. B9, 214517(2004).
Rev. Lett. 86, 5550(2001). 19p, W. Anderson, Phys. Rev. LetB, 328(1959.
11y.-D. Chuang, A. D. Gromko, A. Fedorov, Y. Aiura, K. Oka, 2°Abrikosov and Gorkov, Zh. Eksp. Teor. Fi9, 1781 (1960
Yoichi Ando, H. Eisaki, S. I. Uchida, and D. S. Dessau, Phys. [Sov. Phys. JETPL2, 1243(1961.
Rev. Lett. 87, 117002(2007). 2LWw. A. Atkinson, P. J. Hirschfeld, and L. Zhu, Phys. Rev.@B,
12p v. Bogdanov, A. Lanzara, X. J. Zhou, S. A. Kellar, D. L. Feng,  054501(2003.
E. D. Lu, H. Eisaki, J.-l. Shimoyama, K. Kishio, Z. Hussain, and 2°S. M. Quinlan, D. J. Scalapino, and N. Bulut, Phys. Rev4®
Z. X. Shen, Phys. Rev. B4, 180505(2001J). 1470(1994).
3A, A. Kordyuk, S. V. Borisenko, T. K. Kim, K. A. Nenkov, M. 23M. L. Titov, A. G. Yashenkin, and D. N. Aristov, Phys. Rev. B
Knupfer, J. Fink, M. S. Golden, H. Berger, and R. Follath, Phys. 52, 10 626(1995.
Rev. Lett. 89, 077003(2002. 243, M. Quinlan, P. J. Hirschfeld, and D. J. Scalapino, Phys. Rev. B
14A. Kaminskiet al., cond-mat/0404385unpublishegl 53, 8575(1996).

214503-13



