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We revisit the problem of the spin-Peierls instability in a one-dimensional%plnain coupled to phonons.
The phonons are treated within the mean-field approximation. We use bosonization techniques to describe the
gapped spin chain and then use the thermodynamic Bethe ansatz toqisatitativeresults for the thermo-
dynamics of the spin-Peierls system in a whole range of temperature. This allows us to predict the behavior of
the specific heat and the magnetic susceptibility in the entire dimerized phase. We study the effect of small
magnetic fields on the transition. Moreover, we obtain the parameters of the Landau-Ginzburg theory describ-
ing this continuous phase transition near the critical point.
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The spin-Peierls instability? is the magnetic analog of mean-field scenarib®'! The absence of phonon softening
the Peierls instability of a one-dimensional métdh the  could be attributed to the high frequency of the phonons
spin-Peierls instability, an antiferromagnetic spin-1/2 chaincoupled to the spin excitatiod$.Other discrepancies with
coupled to optical phonons develops a spin gap via a statithe mean-field scenario are discussed in Ref. 13. Neverthe-
deformation(or dimerization of the lattice at zero tempera- less, despite these deviations, phenomenological Landau-
ture. In this dimerized phase, the gain in magnetic energ{inzburg theories can be used to some extent to fit the criti-
resulting from the formation of the spin gap outweighs thec@l behavior of CuGe©'™ Therefore it is important to
loss of elastic energy due to the static deformation. For &l€velop a more quantitative description of the mean-field
system consisting of an array of spin chains coupled to twoth€0ry of the spin-Peierls transition, particularly in the
or three-dimensional phonons, the dimerized phase can peggpped Ph?‘se in order to ha\{e amore rgllable comparison of
sist for temperatures ©T<Tep Where Tep is the spin- the predictions of the mean-field scenario with experimental

Peierls transition temperature. For>Tgp, the chains are datli ()trr]léh%thpiTr}z(oairirtliiarlna;eri?clfa{ches o the spin-Peierls
undistorted and one recovers gapless spin excitations. Tt}Fa bp P

" 2 S nsitionst? the spin chain was mapped onto a model of
ph?‘se transition al=Tsp between the dlm_e_rlzed and the interacting one-dimensional spinless fermions by the Jordan-
uniform state is a second-order phase transition and has be%gner transformatiol and the interactions between the
observed in a host of quasi-one-dimensional organic materigmions were either neglectedr treated in the Hartree-

als such as TTFCUS,(CF;)4 and TTFAUSC,(CFy)4 (alsO  Eock approximation.Later, in Ref. 11, though the phonons
known as TTFCuBDT and TTFAUBDF* MEM-(TCNQ),,>  were still treated at the mean-field level, the spin chain was
(TMTTF),PFs, (TMTTF),AsFs%® and (BCPTTH,PF.°  described using bosonization which correctly describes the
The discovery of the inorganic matefialCuGeQ spurred quantum critical behavior of the pure spinehain.19—22A
further activity in this domain as this system is more conve-inear response treatment of the spin-phonon coupling re-
nient for neutron-scattering studies. sulted in a much improved estimation of dependence of the
From the theory point of view, most of the treatmentstransition temperature on the spin-phonon interaction. Fur-
consider the phonons as stati¢!' This mean-field treatment thermore, a Landau-Ginzburg expansion was developed to
of the phonons is expected to work when the phonon frestudy the vicinity of the transition.
quency can be neglectgddiabatic limij compared to the However, in contrast to Refs. 1 and 2 no prediction could
spin gap. Such an approach is thus better suited to the softee made for the thermodynamics in the dimerized phase.
organic materials than to the inorganic compound Cu§eOThere are two reasons for this. First, in Ref. 11, the dimer-
where the frequency of the phonon driving the transition isized phase is not described by a model of noninteracting
not small compared to the spin g&pHowever, a common fermions with a gap as in Ref. 1, but by a more complicated
feature of the spin-Peierls transition in all the spin-Peierlsnassive sine-Gordon mod&.Second, in bosonization, al-
compounds is that some data indicate a BCS-type mean-fietthough the expressions of the lattice operators in terms of
behavior of the thermodynamic quantities near thesine-Gordon fields are known, the amplitudes in this expres-
transition’* For instance, a BCS-type relationshfp, sions were unknown and have been determined quantita-
AlkgTsp=1.76, between the zero-temperature spin gap antively only recently?*-?6 Since the thermodynamics of the
the spin-Peierls transition temperat(ig has been observed massive sine-Gordon model is now understéod and the
in CuGeQ, and this was used to argue that the transition inexact expression of the gap in the sine-Gordon theory is
this material could also be described within mean-fieldknown23 it is now possible to study the thermodynamics of
theory. However, the exact nature of the transition inthe dimerized spin-Peierls phase within the mean-field ap-
CuGeQ is still disputedt® In particular, no phonon softening proximation, as well as study the zero-temperature proper-
was observed near the transittbin disagreement with the ties.
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In this paper, we will use the above developments to reother (i.e., [¢(x),I1(x")]=i8(x—x")). The velocity of the
visit the problem of the spin-Peierls transition in the adia-bosonic excitations defined by the figfdis u=(m/2)Ja and
batic approximation for the phonons. Our methodology andy is an amplitude proportional to the exchange interacfion
results are also applicable to the chain mean-field theory ofhe Hamiltonian(3) is the well known sine-Gordon model
quasi-one-dimensional antiferromagnets since the latter previth 82=2. In Eq.(3), we have omitted a marginally irrel-
sents a formal analogy to the theory of the spin-Peierlvant ternf! We will come back later to the effect of this
state3*=3°The paper is organized as follows: In Sec. I, weterm on the properties of the system. In the Hamiltor(@yn
present the model and its bosonized version. We obtain ana nonzero dimerizations induces the relevant operator,
lytical results results for the spin-Peierls temperaflygand Cos\ﬁ§¢ of dimension%. This results in a gap ~ 623, and a
the total energy and gap at zero temperature. In Sec. Il, thgiminution of the ground-state enefdy! E(8)—E40)~
thermodynamic Bethe ansatz is used to study the thermody=s%3 For small 8, this reduction of magnetic energy com-
namic properties of the dimerized chain at finite temperaturepensates the loss of elastic energy in By, resulting in a
We obtain various results for the gap, the dimerization, thgjimerized state af=0. Until recently, the proportionality
specific heat, and the static magnetic susceptibility for aonstant betweeg andJ was unknown, thus preventing a
entire range of temperatures smaller than the bandwidth. Wgyantitative estimation of the magnetic enerfys) and
use these results to derive the Ginzburg-Landau functioneﬂenCe the correct value of the spin gipConsequently, only
describing the mean-field transition and study the behaviogyponents could be predicted from the above mean-field de-
of the correlation length near the transition. scription, and no prediction could be made for the thermo-
dynamics of the system below the spin-Peierls transition
temperature. However, recent developments in integrable
systems and bosonization, now permit a precise determina-

Within a mean-field treatment of the phonons, the fulltion of the amplitudes in the continuum thedfy?A correct
Hamiltonian describing the coupling of the lattice to the spinmapping of the lattice spin model onto its bosonized version

I. MODEL

chain is given by fixes the amplitudey in Eq. (3):
K /
H=S [ S@2raa+mws, Sl @ e 7) a @
= | 2 9= 2

where(u) is the mean-field displacement along the chain a”%though the present paper focuses on the spin-Peierls sys-
the S, are spin operatorsK is the elastic constant for lattice tem, we reiterate that the approach outlined below, is also
deformations and is a parameter related to the amplitude of applicable to the chain mean-field theory of quasi-one-
the spin-phonon coupling. For the sake of clarity, we intro-dimensional antiferromagnéfs3®as long as marginal opera-
duce the dimensionless variab&\(u), and the reduced tors are neglected. In the case of the antiferromagnet, the

elastic constanK=K/\2. To obtain the physics of the spin- Magnetizatiorm and the inverse of the interchain exchange
Peierls transition, we need to evaluate the mean-field digerm Ji* play the role of the dimerization and the elastic
placement(u), or equivalently, the parametef in a self- constant, respectively. We now analyze the full Hamiltonian
consistent manner, i.e., the value ®fwhich minimizes the (2) in certain limits.

free energy at any given temperatureIn the spin-Peierls

phaseT<Tgp &T)+#0, andS&(T)=0 for all temperatured A. Zero-temperature limit

>Tgp A self-consistent evaluation of(T) then permits a

systematic calculation of various properties of the spin chain At zero temperature, the dimerizatidtis nonzero, result-
y prop P ing in a gap for spin excitations. As mentioned earlier, the

in a rather straightforward manner. Since we are mainly in- recise mapping of the spin lattice model onto its continuum

ter_ested_ in the Iow-energy/long-wavel_ength physws of théjersion, the sine-Gordon model, yields exact expressions for
spin-Peierls system, we study the Hamiltonfapin the con- the gap and the total energy of the spin systérm this
tinuum limit. In this limit, the continuum Hamiltonian reads model, the lowest energy excitation is a soltband using

Eq. (4), its mass is given by

2 r(1/6)[r(3/4) 3 (77)1/45]2/3

wherek=K/a, a is the lattice spacing anl, is the con- VaT (213 T(1/4) 72\ 2 '

tinuum approximation of the spin Hamiltonian. Using stan-

dard bosonization techniqué¥212240the continuum spin Besides the soliton and the corresponding antisoliton excita-

Hamiltonian is found to be tions, the sine-Gordon model ,agez 21 possesses two other
excitations, a light breather with a mas4 and a heavy
breather with a masM+3. The soliton, the antisoliton and
the light breather together form a &) spin triplet while the

3) heavy breather forms a $2) singlet*>-** The gap to the
lowest energy excitation or equivalently, the singlet-triplet

where the fieldsp and Il are canonically conjugate to each gap, is

H :fdx|5(52+ Hs,
(5

296
(27a)?

Hszuf%[(wl'[)%(&x(ﬁ)z]— fdxcos\@b,
21
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u 3 should be used in the bosonized Hamilton{@nin order to
A=_M= 17235, (6)  describe thel;-J, chain with J,/J;=0.2411. The resulting
energy gain from dimerization is theBy/J;=-0.3745"3
A comparison of this predicted value with the real gap ofand one obtains the following zero-temperature results:
the spin-lattice system calculated numerically using the

density-matrix renormalization group was done in Ref. 45 A=0 879‘£
and a reasonably good accord was found. The knowledge of K
the soliton masg5) also yields the ground-state energy per
spin of the dimerized spin chaffi: 3.\32
M - 5= o.35:<:1) :
Efd)=-237 tans = - 0.27285™3, 7) K
3
which is in reasonable agreement with numeffcso obtain __ J1
. o E=-0.093—. 9
the effective dimerizatio® at zero temperature, we need to K2

minimize the total ground-state energy per unit spin of the

spin lattice systemE=K/25%+E((5) which leads to the fol- Comparing Eqs(9) and(8), we see that the introduction of
lowing results: J, results in a strong enhancement of the zero-temperature

gap and of the dimerization, in agreement with a scenario

2\7:<I‘(1/6)>3{F(3/4) 3(17)1/4]2J2 0627J—2 proposed in Ref. 51 for the spin-Peierls transition in
“3B\rer/ [ram2\2) | CuGeQ.

B. Transition temperature

5= ( 2 )3’2< F(1/6)>3[F(3/4)i< 7T>1/4r< J )3/2 In this section, we redo the calculation of Ref. 11 yielding

3\6 r'2/3)) | T4 =2\ 2 K the spin-Peierls transition temperature. For any temperature,
3 a self-consistent treatment of the problem requires a calcula-
- 0.215<£_> tion of the free energy as a function of the dimerizati®n
K/ taken as a variational parameter, followed by a minimization
with respect tas. Unlike the zero-temperature case, calculat-
6 443 3 ing the free energy for arbitrary temperatures requires the use
- 71F<F(1/6)> (F(SM)) J:z—O.OlZJ:. (8)  of thermodynamic Bethe ansatz technigé€es$? and no
a\3\I'(213)) \T'(1/4)] k2 K2 closed analytic expressions can be obtained. However, to cal-
o= ) . ) culate the spin-Peierls transition temperature, this full treat-
We note that the ratid“/K can be identified with the cou-  ment js not required! Indeed, close to the spin-Peierls tran-
pling constanice used in Ref. 11, and we indeed have thegijtion the order parametet becomes small and a second-
same exponents for the dependence of the gap on the coyrger perturbation theory i is sufficient to evaluate the
pling constanc as in Ref. 11. However, the prefactors in jeading behavior of the variational free energy. A straightfor-
Egs.(8) could not be obtained in Ref. 11. ward perturbative development &of the Matsubara imagi-

The continuum approximation underlying our mean-fieldary time path integral gives the following expression for the
theory is valid when the zero-temperature correlation lengthqe energy of the sine-Gordon model:
is much larger than the lattice spacing, i.e., whereJ. )
Clearly, this requires that<K, i.e., a sufficiently rigid lat- F=- iTz_ ll""(ﬁ)
tice. This criterion leads t&(T=0)<1. We note that rela- 6u 4 Bu\ (27a)?
tions similar to the ones in Eq8) have been previously

o B
obtained in the context of the chain mean-field theory of xf dxf d7
= Jo \/
cosh

E=

[

V2

+0(8).
21X 27T
— —COS——
Bu

B

quasi-one-dimensiongtuasi-1D antiferromagnetd? In re-
ality, the results of Eq(8) are slightly modified by the pres-
ence of a marginally irrelevant term in the continuum Hamil- (10)
tonian for the spin systeft:#647 When the marginal

interaction is taken into account, it is found that in the spin-Note that the first term in this expression is just the free
Peierls case\ ~ 63Ins/~2 whereas in the case of the an- energy of a noninteracting Bose gas in one dimension. Using
tiferromagnetA ~ 673Ing|Y'8, i.e., the marginally irrelevant Eq.(8.12.4 in Ref. 52 to integrate over the space variakle
term frustrates the dimerization and favors antiferromagnetigve obtain

ordering. The marginal interaction is eliminated in the 2 B

—J, chain at its critical poir#f49J,/J;=0.24. With an addi- ¢ (T,8)=——T2- ?(&) f P <_ cos@->dr

tional dimerization of the nearest-neighbor exchdfgethis S 6u a\ (2ma)?) J, T M2 B ’

critical chain, the gap\ =1.765%°. Moreover, in the absence (11)

of dimerization3® the spin velocity at the critical point is
found to be 1.193Ba. Generalizing the results obtained where the functiorP_,,, is a Legendre function. A final in-
above, we find that the following amplitude=0.8067°J,a  tegration overr using Eq.(8.14.16 in Ref. 52 leads to
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m_, a 29 2 22 For the next-nearest-neighbor chain with a critical cou-
aT ! (2ma)?) T(314)*T pling J,.=0.2411, where logarithmic corrections vanigh,
25 o =1.53862%/K andTgp=0.623%/K. Note that these values re-
_ 7TT2_9‘]—<7_7) _ (12) spect the BCS relatioiil4). In the light of the preceding
4772F<§)4aT 2 discussion, it is interesting to note that a small change in the
4 velocity and the coefficient of the sine-Gordon term leads to
a big change in the gap and the spin-Peierls temperature.

The full mean-field variational free energy Bye(T,8)  This implies that the frustration engendered hyenhances
=(k/2) @+F(T,8)=C8+0(5). WhenC>0, which is obvi- fluctuations towards spontaneous dimerization, hence favor-

ously the case for high temperature, the mean-field free erfnd the formation of the spin-Peierls state.
ergy has a minimum fos=0 and forC<O0, the energy is
minimized by a state with nonzero dimerization. Therefore
the spin-Peierls transition temperature is fixed by the condi-
tion C=0 and, using Eq(12), we obtain We now discuss the effect of the marginally irrelevant
operator cos/8¢, neglected in the preceding sections. This
9 r\Y232 J? operator is known to induce logarithmic corrections in the
Tsp= m(5> —=0.25342-. (13)  dimerization gaf**64¢ as well as in response
K K functions?55-5" This results in a modification of Eqg8)
L ) o . and(13) and consequently deviations from the BCS-like ra-
Note that the validity of the continuum description requiresy;, (14). Including these corrections, the gapTat0 and the
thatTsp<<J. In Ref. 11, the same dependencelggonJ*/K  ground-state energy are
(up to the prefactgrwas derived using an equivalent re-

F«T,0) =~

C. Effect of logarithmic corrections

52/3

sponse function formalism. Comparing the two expressions, A~ (15)
we observe that in Ref. 11, the transition temperaflige |In 8%2’

=1.01J°/K obtained there is a gross overestimateTgh

highlighting the importance of having correct amplitudes in S K

the bosonized theory. Comparing E¢®) and(13), we note Eo~ ‘JM + 552- (16)

that the ratio
Minimizing the ground-state energy with respectdoone

A(T= finds
T=0 =247 (14)

SP

J
&In 8 ~ = (17
is independent of the various coupling constants present in K

the theory. This ratio is in accord with values obtained ingor the transition temperature, it can be shown following
numerical studies of the spin-Peierls probl€mhe exis-  Ref. 57 that the susceptibility associated with the dimeriza-

tence of such a universal ratio is reminiscent of the BCS;on gperator is corrected by a logarithmic factor so that
mean-field theory for superconductivifywhere the ratio of

the superconducting gap and transition temperature is ap- 32

proximately 1.76. In fact, one can use the Jordan-Wigner XdT) ~ T In T/ (18)
transformatio®® to map the Heisenberg spin chain onto a . ) o

chain of interacting spinless fermions. Neglecting theWith this result, Eq(13) is modified into

interactions, the resulting theory presents a formal similarity J\32 32
with the BCS theory? which leads one to anticipate an uni- Tsp<ln —> ~=. (19
versal ratio. We note, however, that the fact that the spinless SP K

fermions theory is strongly interacting renormalizes the BCS e
ratio away from the noninteracting value 1.76. In particular, We see from Eqs(17) and(19) that the effect of logarith

as already discussed in Ref. 13, the observation of a ratio glc corrections is to decrease the spin-Peierls transition tem-

1.76 between the zero-temperature aap and the transiti erature and the zero-temperature gap. In contrast, in the
X . P gap and the 1 Chse of the Néel state, these logarithmic corrections enhance
temperature in CuGe{xannotbe taken as an indication of

. i A : . _the transition temperature and the order parantéfér3°
adiabatic behavior in this compound. As discussed earlier, Equation(17) leads to

the results of Eq(8) were obtained neglecting the logarith-

mic corrections induced by a marginally irrelevant interac- J 32
tion. These marginal interactions affect the dependence of =
) . o ) K
the gap and the ground-state energy on the dimerization, par S~ ’ (20)
ticularly for <1 and at finite temperatures induce logarith- 3 | J
mic corrections in response functiosThis inhibits a pre- 2 n K

cise estimation of the BCS-like ratio especially in systems
with a small dimerization at low temperatures. resulting in a gap
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2 1 3T [~

A~— 302 (21)  &(6)=A\V3coshd+— | dO'Ky(6- 0)In(1 +e @)
K [ 3 27) .
In—=
K T (” ,
_ _ o +— f do'Ky(6— 6)In(1 +e 20Ty, (23
Solving forTgpin Eq.(19), and comparing with Eq21), we 27)_,

find that to lowest order a BCS-type relation holds. This _ _
relation, however, is obtained by retaining only the lowest-TNe integral kernels are given by
order logarithmic corrections. -
2 sin— cosh#
II. THERMODYNAMIC BETHE-ANSATZ Ki1(0) = ,
MEAN-FIELD THEORY sSint? 6 + sir? 757

A. Mean-field equations

We now focus on the mean-field theory for the spin-lattice o -
system at arbitrary temperatures. We use the thermodynamic 2sin— coshf® 2 coshésin >
Bethe ansatz(TBA) as a tool to evaluate the finite- Kix(6) = +
temperature free energy of the sine-Gordon Hamilto&n : Lo T o T
The TBA treatment of the generic sine-Gordon model with a sintf 6+ sir? 6 sir? 2 +sintfg
relevant term cog¢ has been formulated using the string
hypothesis in Refs. 2_7—29. In gene_ral, this leads tq an infinite Kool 0) = 3K14(60). (24)
number of coupled integral equations for the various pseu-
doenergies. However, at the so-called reflectionless pdints, The pseudoenergiess; , have a transparent physical
defined byg2=8/n, wheren is an integer, the number of interpretatiorf? €,(6) represents the dressed energy of the
independent integral equations becomes f#fitslumerical ~ solitons and of the light breathemwhich have identical
methods can then be used to solve these integral equatiomasses at thg?=27 point), whereas the pseudoenerey6)
and deduce the thermodynamics. The case of the dimerizegpresents the dressed energy of the heavy breather. In fact,
spin chain with?=2 falls into this category and the TBA because scattering is diagonal, E(&2)—(24) can be easily
equations of Refs. 27-29 can be used to calculate the frere-derived using the approach outlined in Ref. 63. It is useful
energy. For generic values gfaway from the reflectionless to recast the dimensionless free enefgaF/J in terms of
points, the general formalism developed by Destri and dehe scaled energieg=¢/J and the reduced temperatufe
Vega®-32is more appropriate than the string approach. This=T/],
latter method has been used successfully to obtain the ther-

modynamic properties of copper benzS8tm a magnetic _K T = Om

field. This approach can be used to study the thermodynam- f= 552_ o doM coshd[3 In(1 +e "'

ics of the generalized spin-Peierls transifidt or the anti-

ferromagnetic transitidid in systems of coupled spin ladders 2 “OM1_ T 12

in a magnetic field. Before we embark on an application of *V3In(1 +e )] 8\EM ' (25)

the TBA method to the spin-Peierls system, we note that in

Refs. 27-29 the free energy is taken to be zero at zero tem- 3T (= B
perature. However, since our reference state is the undimerz, (g) = TM cosho+ —f do'Kyy(6— 6')In(1 +e 1@y

ized chain, we must add the zero-temperature dimerization 2 2] _,

energy to the free energy calculated using the TBA of Refs. -

27-29. Using the approach outlined in Refs. 27-29, we find T , L “&(6")Ty

that in our case, the sine-Gordon free energy reads o do'Ki(60-6')In(1 +€ )y (26)

—00

T e
F(T, &)= 2_77uf dfA coshé[3 In(1 +e 19Ty &(0) = ZM\3 coshd
2

+13In(1 +e <2 OM)] . tanzlv|2 (22) T
v -2 a T (~ = (T
a6 4 +2—J do'Ki(6- 6)In(1 +e <))
T —00
where the pseudoenergies;(#) and e)(0) are self- -
consistently determined by the following integral equations: T (” =
+ z—f do'Koy(6- 6")In(1 +e 29Ty (27)
3T * ’ TJ o
€,(0) = A coshg + —J dg'K,1(0- 6')In(1 +e 0T
27 ) To obtain the free energy for arbitrary temperatures we need

T (" to solve for a given soliton masMl, the pair of self-
+ —f dO'K(6— 6)In(L +e )Ty, consistent equation®6) and(27) for the dispersiong; and

2m) '6,. Here, we use numerical methd8l$o obtain the solutions
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A(T)/Tgp
(fTgp)’? &(T)

% oz 04 06 08 1 12 % 02 04 06 08 1 12
T/Tgp T/Tep
FIG. 1. The dimensionless scaling functiardescribing the law FIG. 2. The dimensionless scaling functiéulescribing the law

of corresponding states followed by the spin-Peierls gap. The uniof corresponding states followed by the spin-Peierls dimerization.
versal ratio 2.47 is reached far<0.4Tsp For T— Tspthe scaling ~ The zero-temperature value is reachedTer 0.4Tsp For T— Tsp

function A ~ (1-T/Tgp 3. the scaling functions~ (1-T/Tgp /2

for any arbitrary temperature. We use a simple iterative pro- Tp\ 2 T

cedure to solve Eqg26) and (27) numerically for various aT) = K Teo)’ (29

values of the dimerizatiod at a fixed temperatur&. This sP

provides us with the variational free energy for an entire T

range ofé at fixed temperature. We then identify the value of A(T) = TSFX( T_> , (30
SP

6 for which the free energy is a minimum. Such a procedure
is repeated for various values of the temperatlirdereby
permitting us to obtainS(T). In particular, we find that the
numerical estimate ofgp coincides perfectly with the pre-
diction of perturbation theory Eq13). This provides a first
check of the validity of our TBA mean-field solution. In Fig.
2, we plot our results for the mean-field dimerizatié(iT) as
a function of the reduced temperature. These results(fbr C = Tsp T ,,( T ) 31

where the functions\ E andf are universal functions of
the scaled temperature. From Figs. 1 and 2, we see that the

numerical solutions foA and § do obey the above scaling
form. From the expression for the free ene(@®), one eas-
ily obtains the following result for the specific heat:

are then used to obtain thermodynamic quantities. Figures 1 v TTsp
and 3 show a plot the gap and specific heat as as function of

the temperature. In the vicinity ofsp, the gap vanishes as As expected in a mean-field theory, there is a jump in the
Ao (Tsp=T)Y3 and the specific heat jumpsBipas expected specific heat at the transition whose magnitude is given by
for a second-order transition. For low temperatufes Tgp JAC 2

the specific heat is exponentially suppressed by the spin gap T—v =f"(17) - 37 Ysp (32

and for T=Tgp, the specific heat is simply that of the pure SP

Heisenberg chainC,=/(3u)T=2T/(3J) which is the same The numerical solution of the mean-field equation yields

TSP

as that for a gas of free bosons. vsp=1.39. Our result for the specific heat is shown in Fig. 3.
25
B. Law of corresponding states
The mean-field theory leads to a law of corresponding 2r
state&* or equivalently, scaling forms for the free energy and
associated quantities. We use 0 results~ (J/K)%/? [cf. h% L5r
Eq. (E)] to rewrite the finite temperature dimerizati@dXT) =
=(J/K)%28(T). Inserting this in Eq(5), and in Eqs(26) and g oo
(27), and using Eq(13), it is straightforward to see that the
pseudoenergies  satisfy the scaling forme(6) 0.5r
=Tspe(T/Tgp, 6). Consequently, this implies that the total
free energy, gap, and dimerization can be re-expressed as 0O 05 1 3 )
T/Tgp
2
F(T) =_T_5Pf(L) (28) FIG. 3. The specific heat of the spin-Peierls problem in the
J \Tgp/’ mean-field approximation.
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A universal ratio of the specific-heat jump to the specific heat , CiTsp E T

above the critical temperatiffeexists in the BCS theory, a(T) =C_(T) (1‘-'-_):
whereAC,/C,(Tgp =1.43. Here again, the value of the ratio 2 sP
AC,/C,(Tgp=2.1 in the spin-Peierls problem is different 2 (T-Tep?

from the BCS ratio of 1.43 due to the strong interactions F(T)=--% SP (35)

between the Jordan-Wigner pseudofermions. We note that in 4c, J

experiments on CuGeQthis ratio was found to be 1.5 or Thjs also implies from Eq(5) that the spin-Peierls gap van-
1.6, which is close to the BCS predictishHowever, as in  ishes as~(1-T/Tsp)Y3 near the transition. This behavior is
the case of the ratio of the gap to the transition temperaturgntirely consistent with our numerical results. It now suffices
this apparent agreement with the mean-field descriptioy calculate the constants andc,. A comparison with Eq.
proves to be spurious as we have seen that the ratio showdl) fixes c,=0.2534 and the value af,=0.022 76 is ob-

be near 2.1 in a spin isotropic material. tained by fitting the TBA mean-field theory results f&(T)
to EqQ.(34) in the range 0.95p<T<Tgp Hence
C. Landau-Ginzburg expansion 2
) ] ) p=0.2534--,
In this section, we use the results of the preceding sec- Tsp
tions to obtain a simple Ginzburg Landau functional describ- .
ing the vicinity of the spin-Peierls transition. In Ref. 11, it _ J
was shown that a soft Ising ap* theory was enough to a= 0'0228@' (36)

describe the vicinity of the transition. However, the coeffi- .
cients, in particular, that of the quartic term, could not beAs a check of the correctness of the results of the Ginzburg-

entirely calculated. Our formalism permits us to obtain theLandau expansion, we can compare the prediction for the
leading terms in the functional with the correct prefactors.specific-heat jump from Eq.(34), AC,=ci/(2¢,)(T/J)
This will be useful for more sophisticated treatments of the=1.4(1)(T/J) with the value given by the TBA mean-field
transition taking into account the fluctuations of the laffice theory in Eq.(32) AC,=1.39T/J). The 1% agreement be-
or the role of solitons in the thermodynamfésA Landau-  tween these two values provides a confirmation of the cor-
Ginzburg expansidt of the variational free energy per unit rectness of our Ginzburg-Landau expansion. From the be-
length (22) in the vicinity of Tgp gives havior of the gap, we can obtain the behavior of the magnetic
correlation lengthé,.dT). If the gap isA, the magnetic cor-
p q relation length aff=0 is u/A. Thus, neglecting thermal ef-
F(T,0) = Z(T-Tsp "+ - 5" (33)  fects, we would obtairT) ~JI/ Tsd1-T/Tsp V3 Near
2 4 - . .
the transition, this correlation length becomes much larger
_ than the thermal correlation lengép=u/(27T). This means
The law of corresponding statg28) leads to some con- hat the exponential decay of the magnetic correlation that
straints on the form of the expansion. Minimization with \,4u1d result from the gap(T) is completely masked by the
respect tod yields thermal fluctuations which leads to a much shorter correla-
tion length. The above results are valid for the case of a
uniform dimerizationé. In reality, near the transition, the
dimerization can vary with the spatial location. To take into
account the energy cost of these fluctuation$yV &)? term
must be included in the Landau-Ginzburg effective theory.
p? ) The bosonization approach allows us to calculate the coeffi-
F(T) =~ E(T_TSP) : (34) cient of this gradient term as outlined in the Appendix. The
full Landau-Ginzburg free energy is now given by

D= (Tsp=T),

The law of corresponding state@8) implies that p/q _ Co > P q

~ T2/ 3 and thatp?/q~ 1/J. Thus we have=c,J?/ T3, and FL= J dX(E(V A+ 5 (T=Tsp) FH+ 4_164()()> » (37)
q=c2J5/Tép wherecy, ¢, are dimensionless numbers. These o

predictions are in agreement with the ones obtained from th@here the constard, measures the rigidity of the order pa-
RG treatment in Ref. 68. The dependencepafan also be ameters and is given(see the Appendixby
verified by the perturbation theory of Sec. | B. Although the 9 (w\¥2 B2 Ja
precise value of| was not obtained in Ref. 11, it was shown Co= ﬁ(z) F(3/4)4F’
using perturbation theory that the Landau-Ginzburg free en-
ergy had an expansion in powers(df Tsp) Ao/ Tsp where  where 8(2) =0.91596- - is Catalan’s constaftandp,q are
Ag=J4. Reporting this expansion in E@5.5 of Ref. 11  given by Eq.(36). It is interesting to note that the coefficient
leads precisely to the dependencej@in J andTsp Thus the  of the gradient term falls a%°. We note that the Ginzburg-
perturbative expansion of the free energy is fully consistentandau coefficients calculated in Ref. 68 using a fermionic
with the law of corresponding states. In terms of the dimen-Renormalization Group treatment have the same dependence
sionless constants, on Tgpas in the present mean-field calculation. However, we

(38)
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do not expect an agreement of the numerical prefactors asthe 77\5 T
model studied in Ref. 68 is different from the one studied  €,(6) = ——M coshd+ — >
here. The structural correlation length close to the transition 2 To=-1,0,1
can be evaluated from E¢B7) and is found be to be -

— T
XIn(1 +e 0Ty + — f do'K,(0-0")
21

dﬁ’Klz(a_ 0’)

2
2Ty—__ G0 _ ( Ja ) Tsp o
T) = = 2 o
g ( ) p(T_ Tsp) 27TTSP B( )T _ Tsp Xln(l +e (60 )/T)’
2\? T
= 5&(;) BT (39) < T -
sP f=—8-— J doM cosho| D In(1 +e <)
2J 2 0=1,0,-1
Near the transition,&> &, This justifies the Landau- - M2
Ginzburg approach where the magnetic fluctuations are inte- +13 In(1 +e‘€2(9)/T)} +—=, (41)
grated out and only structural fluctuations close to the tran- 8\V3

sition are retained. As was done in Ref. 68, the contributions .
of these structural fluctuations to the specific heat can bwhere thee,(6) denote the reduced pseudoenergies of the
analyzed by the techniques of Refs. 67 and 69. solitons (o=1), antisolitons(c=-1), and light breatherso

=0) andh=h/J. It is easy to see from the equations above

that e,(0)=¢,(0)—ho. This allows us to reduce the set of

. o TBA equations to 2:
Here we consider the effect of a magnetic field on the

spin-Peierls system. The field can close the spin triplet gap — B
and induce incommensuration. Here, we restrict ourselves tog (g) = T M coshé + 3T J do'Kyy(6— 0")In(L +e o))
fields much smaller than the gap and study their effect on the 2 27

spin-Peierls transition temperature and the susceptibility. Us-
ing the perturbative approathgeneralizing the one of Sec.

| B we find that for small magnetic fields there is a reduction
of the transition temperatur€gp, i.e., Tsgh)=Tgg0)—\h?,

with A >0. Using bosonizatioiisee the Appendix we find

D. Magnetic susceptibility

T o
+— f do'Kyp(6- 6)In(L +e <))
2w -

h
_ sinhz(—_>
T 2T
+—Jd0'K11(0—0')|n 1+
2

(40) cosﬁ(@) |
2T

_ B2 147

A= = :
™Tep  167°Tgp

This result is in accord with that of Ref. 70 where it was = —

found that\ = 14.4/(167°Tgp). For large fields, a similar cal- &(6) = ﬂ?’M cosh@ + 3T J do'K (06— 6')In(L

culation can be done provided that the field is smaller than 2 27

the soliton gap and the system does not exhibit a transition to = B

the incommensurate phase. +e o)) 4 T f dO'Koy(0— 6')In(L +e <28y
On the other hand, to calculate the finite temperature sus- 2w B _

ceptibility, we need to generalize the TBA equations to in- —

clude the effect of a magnetic field. To recapitulate, in the Sinhz(ﬂ_)

absence of a field, we have two solitons of spin +1, a light 2T

?
breather of spin 0 forming a triplet and a heavy breather of o f do'Ki(60-6')In[ 1+

spin 0. A field breaks the spin degeneracy and for small
enough fields which do not induce any incommensuration we
can use the TBA to calculate the magnetic susceptibility.

2T

osr?(_eo—(ﬁ)

|

(42)

Following Ref. 71, we obtain the following TBA equations:

In the presence of a magnetic field, the law of corresponding
states(28) now reads

_ T
EU(G)Z%TM cosho-ho+— > | do'Ky(6-0)

27 =01 2
0=-10, T2, [T h
ST =S 9
xIn(1 +e—?o<0’>”)+z—fda'Klz(e—a') sp TSP
ar

- The magnetic susceptibility(T)=-lim,_ o(?F/dh?), satis-
XIn(1 +e )Ty, fies the scaling relation
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12 : ' : ' : perature. This Keesom-Ehrenfest relation is given by the
. Landau-Ginzburg theory as
0.8 I
- dT _ = - y\"(3/4) _2p(2
~ Te— = LAl ) 28 )z0.3724. (48)
£ 06 AC, 477 a
% 04l Such a proportionality has been observed in experiments on
' TTFAuUBDT in magnetic field$?
02 E. Low-temperature expansions
0 : ' : : : In the preceding sections, we have obtained analytical re-
0 0.2 04 06 08 1 1.2

g sults forT=0 and forT<Tgp In fact, the TBA equations are
) amenable to analytical study foF=0 [more precisely 0
FIG. 4. The magnetic susceptibility(T) versus the reduced <T<A(T=0)]. In this regime, we expect that the mean-field

temperature; folf > Tgp x(T)=1/(72J). gapA(T) remains very close ta(T=0), so that the thermo-
dynamics does not differ from the one of the Heisenberg
1 T chain with dimerization. With this assumption, the TBA
x(T) = Sf;j(T—O) (44 equationgfor h=0) to lowest order are
sP

- - ~A(T=0)/T
Wheref’y’=d§}‘(x,y). ForT>Tgp, the susceptibility is that of €1(6) = A(T=O)coshd + O )

a free Bose gasy(T)=1/(#2J)). For temperatures €T = A=
<Tgp the susceptibility can be obtained numerically from €(6) = A(T=0)\3 coshg + O(e™ =), (49)
Egs.(42) and(44). The results are plotted in Fig. 4. Substituting these in Eq22) for the free energyF, we see
As in the case of zero magnetic field, one has an effectivethat the correction t& is indeedO(e™2(™%T) which justifies
field-dependent Landau-Ginzburg functional which describegur original assumption that(T)=A(0). We now derive
the physics in the vicinity of the transition. Fdt<Tspthe  |ow-temperature expansions of the various physical quanti-
behavior of the magnetic susceptibility is obtained from theties. It is convenient to use the the zero-temperature dimer-
following Landau-Ginzburg expansion: ization 8,=8(T=0), the zero-temperature gaj,=A(T=0),
and the zero-temperature ground-state en&ggyhe expres-
F(T,h,é):E[T—TSF(h)]52+ G- Xopz, (45)  sions of which are given in Eq8), to express the corre-
2 4 2 sponding finite temperature quantities as a function of the
where x,=1/(72)) is the susceptibility of the undistorted dimensionless variablé. We obviously haves(T)=8,8(T),

chain. Minimizing F with respect toé$, one finds forT andA(T):AOEZB(T). The total energy af=0 reads

T .

o — 4(TWe)\®| T34 (7\Y*P -5 3,

p* Xo E(9)=—1 =z “|#-25
F(T,h):—4—q[T—TSp(0)+)\h2]2—Eh2. (46) V3\r(213)) [ T(an*\ 2 K 2

(50)

The definition ofy then gives o — o —
and it is easy to see thd&i(5) has a minimum foré=1.

P2\ Expanding around this minimum we find
X(T <Tsp = xo+ —[T-TsdO)]. (47) —Panding
) E(8) - Ey= 2 A—‘z’g—l? (51)
This behavior of the susceptibility is reminiscent of the one ( 0~ 97-;\@ J ( )

seen in a Néel antiferromagréthich stems from the simi- . ) )

larity of the mean-field equations for the spin-Peierls prob-The expressior(51) is not the full expression of the free
lem and the quasi-1D antiferromagnet. Using E4p) and ~ €nergy f(_)rT> 0, as we have also to take into account the
Egs.(36) it is easily seen that the resulting susceptibi{dy) contributions of the solitons and the breathers tha'g_are ther-
satisfies to the law of corresponding stat4). Numerically, =~ mally excited. Since the heavy breathers have nWvie8, as

one finds thap?\/q=0.257/JTsp by fitting the susceptibil- can be seen from E@49), their contribution at low tempera-

ity calculated near the transition to the Landau-Ginzburgure is negligible with respect to the soliton contribution.

form. If, on the other hand, we use the valuespoéind g herefore, to lowest order, the thermal contribution to the
obtained in Sec. Il C combined with the value ofin Eq. ~ fre€ energy reads

(40 we see that valuepz)\/q=.2.8>§ 14.7 /(16723 Tgp) 6T Ay (Aosss

=0.26/(JTgp differs from that obtained in the presence of a Fso.=— ?752 Ky ?52 ' (52

field by less than a percent. A Keesom-Ehrenfest relétion
exists between the jump of the specific heat and the jump iwhere K, is a modified Bessel functia so that the full
the slope of the magnetic susceptibility as a function of temvariational free energy is
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— AZ — 6T Ag— <A0—
F(T,8) =Ep+ —(6-1)2- 5K | =3).
( ) 0 977\6 J ( ) 772 J 1 T
(53)
Minimizing Eq. (53) with respect tos we obtain
- ) o\ - 1/3 _
1 :%M@ s, T2 2 52)}
o T AO T
(54)
To lowest order, this gives
g: 1 - 372, lﬂe—AOIT’ (55)
7TAO
and
2T
A(T) = Ao{l - 63/ — —Ao'T} : (56)
7TAO

PHYSICAL REVIEW B70, 214436(2004

the vicinity of the spin-Peierls transition temperajuend
consequently help us obtain the effective Landau-Ginzburg
functional that describes the physics of dimerization close to
the transition. It would be interesting to study this Landau-
Ginzburg theory in one dimension, following Ref. 68 to un-
derstand more quantitatively how lattice fluctuations affect
the thermodynamics. Similarly to Ref. 68, we should expect
a regime of renormalized Gaussian fluctuations forTtji4
<T<TYE, and a regime dominated by kinks for Ug3
<T<0.4Tgp as long as one-dimensional fluctuations domi-
nate. Also, it should be possible to use the Landau-Ginzburg
description to study the three-dimensional ordering of the
dimerization along the lines of Refs. 67 and 69. The depen-
dence of the transition temperature on interchain coupling
will be similar to the one predicted in Ref. 74 since both
models belong to the same universality class. A more direct
extension of the present work would be to study the
commensurate-incommensurate transition driven by an ex-
ternal magnetic field and then comparing the predicted re-
sults to various experiments on spin-Peierls systems. It

Substituting Eq(55) in Eq. (53), we see that the correction would also be interesting to extend this study to the general-
to the elastic energy plus ground-state energy of the dimeiized spin-Peierls transition obtained in ladders under mag-
ized chain is of ordee 20T and is therefore negligible com- netic field® or to the antiferromagnetic phase transition ob-
pared to the contribution of the solitons. In physical termstained in the same systeﬁ%}_These questions are left for
this means that at sufficiently low temperature, the thermofuture work.

dynamics of the spin-Peierls chain is the same as the ther-

modynamics of a chain with a constant dimerization. Using

this result, we find that
SEme ]
Il 7y \NT/]
which leads to a low-temperature specific heat of the form
3_5A_<
23
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A APPENDIX: CALCULATION OF THE RIGIDITY
=0

3/2
= ) e—AOIT+ O(T—3/2e—A0IT)_ (58)

C,(T) = Here, we present a derivation of the rigidity in our
Landau-Ginzburg effective action. In the continuum limit,
In the presence of an infinitesimal applied magnetic fleld the space dependent dimerization leads to the modification of
<T, the lowest-order contribution to the low-temperaturethe sine Gordon term in E@3),
free energy is
29
A%{
F(M=-=
(M=-5

int:_m

Close to the transition, the second-order correction to the
free energy of the spin chain induced by the spin-phonon
coupling is given by

1 S
Fg:ZZ—i(%) f_wdxf_m olx'fO X)X ) x(x = X', 7),

(A2)

oT (AL)
ﬂleKl<

and the magnetic susceptibility is readily obtained as
\/ S%Aoeﬂo” +0o(T V2 2dTy (60)

[ll. CONCLUSIONS

Ao

—)(1 +2 coshhﬂ , (59
T T

J dx5(x)c05\5¢.

1

x(T) = =3

In this paper, we have studied the thermodynamics of theand
spin-Peierls system treated within a mean-field approxima-
tion. Using a combination of bosonization methods and the
thermodynamic Bethe ansatz, we have been able to obtain
quantitative results for the spin-Peierls transition temperatur# Fourier spaceF s> [dg/(2m) 8(q) 8(-q) x(q,iw,=0). To
Tsp the spin-Peierls gap to triplet excitations, the specificobtain the gradient term, it thus suffices to calculate the Fou-
heat and magnetic susceptibility at arbitrary temperaturegier transformy. In the limit g—0, x(q,iw,=0)=x(0,0)

Our calculations are a quantitative improvement of the re+g?/2y”(0,0). Plugging this form into Eq.(A2), it is
sults obtained by Cross and Fish@rho were restricted to straightforward to find the rigidity.

~ 27X 2mr |12
x(x=x',7) = \"Z{COShl - cosﬂ] . (A3)
Bu B
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To find x(q) we generalize the calculation of the=0 o
response function, and consider g(q) =fg§(x)e'q dx, (A9)

and n=[72- D (3/4)]/ (27 and y#V(x) is the trigamma
function (see Ref. 52, p. 260 The numberyY(3/4) can
be expressed as a function of Catalan's con®gst2) as

x(a) = J dxdrx(x, 7)e*

- f dxdr giax YV(3/4)=m?-8B(2) =2.5419. Finally, using the expression
\/{COS(ZLX) _ CO{@')J of g(x) as a function ofs(x) we obtain the rigidityc, as
z I TRREEY R
(Ad) %7 64 e 2) T(314*T
Using EQ.(8.12.5 in Ref. 52, we can rewrite the integral: ~ i(ﬂ)m B(2) ia (AL0)
J JaBu2m “8n?\2) BRI TE
—o 27T A similar calculation can be done to obtain the reduction
cosho - COS_ of the critical temperature as a function of the magnetic field.

When the system is magnetized, incommensuration in the

-4 (_ COS_T) staggered operator sets in as the wave vector shifts fr62n
V2 qﬂ P-124pug2m A to r/2+h/u and the equation giving the critical temperature
cos reads
2
(AS) 5 Bsec)’(ﬂ—h>
Consequently, to calculate EGA4), we only need the inte- k= i‘(i) 5 2 5. (A11)
gral: 2\ 2am 3_.Bh\ (3, .Bh
r i I'f=+i
8 4 A4 4 A4
27T
fo P—l/Zﬂ',Buo/(Zw)(_Cos?>dT This implies that
h 3 h
Tseh N--i——m—-—
S /B (A6) st )COS"(ZTSF(h)M (4 I47TTSp(h))
iqu 3 iqu
HZ*H)F(Z’F)J (Zeigh )] :
T T xT — || =Tsgh=0)I'(3/4)*.
4" amTodh) sih =03/

which is easily obtained from E@8.14.16 in Ref. 52. The

final result is (A12)
) Equation(A12) was obtained in Ref. 70 using a real time
x(@) = _ 5 —. calculation of the response function. This can be seen explic-
> cosV(ﬂ)F@ + ﬁ) F(§ _ ﬁ) itly by expressing the infinite products in Ref. 70 in terms of
2T) \4 A4AxT 4 AxT Gamma functions. Expanding Eg\12) around smalh, one
(A7) obtains for magnetic fields<Tgd0)
E g3 : - Tselh) 2
xpandingy(q) to second order im, we find =1-27%- ¢V 3/4)] . (A13)
TsH0) 4 TSP
1 dg ug\? , .
F:Fo‘ﬁj_m@mz[l—ﬂ(—) } In terms of Catalan’s constant, the spin-Peierls transition
16m°a°TI'(3/4) @ 2T temperature in the presence of a small field is given by
(A8) Teeh) 2
where T.H0) =1- B(Z)( Tsp) +o(h%). (A14)
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