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We revisit the problem of the spin-Peierls instability in a one-dimensional spin-1
2 chain coupled to phonons.

The phonons are treated within the mean-field approximation. We use bosonization techniques to describe the
gapped spin chain and then use the thermodynamic Bethe ansatz to obtainquantitativeresults for the thermo-
dynamics of the spin-Peierls system in a whole range of temperature. This allows us to predict the behavior of
the specific heat and the magnetic susceptibility in the entire dimerized phase. We study the effect of small
magnetic fields on the transition. Moreover, we obtain the parameters of the Landau-Ginzburg theory describ-
ing this continuous phase transition near the critical point.
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The spin-Peierls instability1,2 is the magnetic analog of
the Peierls instability of a one-dimensional metal.3 In the
spin-Peierls instability, an antiferromagnetic spin-1/2 chain
coupled to optical phonons develops a spin gap via a static
deformation(or dimerization) of the lattice at zero tempera-
ture. In this dimerized phase, the gain in magnetic energy
resulting from the formation of the spin gap outweighs the
loss of elastic energy due to the static deformation. For a
system consisting of an array of spin chains coupled to two-
or three-dimensional phonons, the dimerized phase can per-
sist for temperatures 0,T,TSP, where TSP is the spin-
Peierls transition temperature. ForT.TSP, the chains are
undistorted and one recovers gapless spin excitations. The
phase transition atT=TSP between the dimerized and the
uniform state is a second-order phase transition and has been
observed in a host of quasi-one-dimensional organic materi-
als such as TTFCuS4C4sCF3d4 and TTFAuS4C4sCF3d4 (also
known as TTFCuBDT and TTFAuBDT),4 MEM-sTCNQd2,

5

sTMTTFd2PF6, sTMTTFd2AsF6,
6–8 and sBCPTTFd2PF6.

9

The discovery of the inorganic material10 CuGeO3 spurred
further activity in this domain as this system is more conve-
nient for neutron-scattering studies.

From the theory point of view, most of the treatments
consider the phonons as static.1,2,11This mean-field treatment
of the phonons is expected to work when the phonon fre-
quency can be neglected(adiabatic limit) compared to the
spin gap. Such an approach is thus better suited to the softer
organic materials than to the inorganic compound CuGeO3
where the frequency of the phonon driving the transition is
not small compared to the spin gap.12 However, a common
feature of the spin-Peierls transition in all the spin-Peierls
compounds is that some data indicate a BCS-type mean-field
behavior of the thermodynamic quantities near the
transition.13 For instance, a BCS-type relationship,14

D /kBTSP=1.76, between the zero-temperature spin gap and
the spin-Peierls transition temperatureTSPhas been observed
in CuGeO3, and this was used to argue that the transition in
this material could also be described within mean-field
theory. However, the exact nature of the transition in
CuGeO3 is still disputed.15 In particular, no phonon softening
was observed near the transition16 in disagreement with the

mean-field scenario.1,2,11 The absence of phonon softening
could be attributed to the high frequency of the phonons
coupled to the spin excitations.17 Other discrepancies with
the mean-field scenario are discussed in Ref. 13. Neverthe-
less, despite these deviations, phenomenological Landau-
Ginzburg theories can be used to some extent to fit the criti-
cal behavior of CuGeO3.

15 Therefore it is important to
develop a more quantitative description of the mean-field
theory of the spin-Peierls transition, particularly in the
gapped phase in order to have a more reliable comparison of
the predictions of the mean-field scenario with experimental
data on the spin-Peierls materials.

In the first theoretical approaches to the spin-Peierls
transitions,1,2 the spin chain was mapped onto a model of
interacting one-dimensional spinless fermions by the Jordan-
Wigner transformation18 and the interactions between the
fermions were either neglected1 or treated in the Hartree-
Fock approximation.2 Later, in Ref. 11, though the phonons
were still treated at the mean-field level, the spin chain was
described using bosonization which correctly describes the
quantum critical behavior of the pure spin-1

2 chain.19–22 A
linear response treatment of the spin-phonon coupling re-
sulted in a much improved estimation of dependence of the
transition temperature on the spin-phonon interaction. Fur-
thermore, a Landau-Ginzburg expansion was developed to
study the vicinity of the transition.

However, in contrast to Refs. 1 and 2 no prediction could
be made for the thermodynamics in the dimerized phase.
There are two reasons for this. First, in Ref. 11, the dimer-
ized phase is not described by a model of noninteracting
fermions with a gap as in Ref. 1, but by a more complicated
massive sine-Gordon model.23 Second, in bosonization, al-
though the expressions of the lattice operators in terms of
sine-Gordon fields are known, the amplitudes in this expres-
sions were unknown and have been determined quantita-
tively only recently.24–26 Since the thermodynamics of the
massive sine-Gordon model is now understood,27–32 and the
exact expression of the gap in the sine-Gordon theory is
known,33 it is now possible to study the thermodynamics of
the dimerized spin-Peierls phase within the mean-field ap-
proximation, as well as study the zero-temperature proper-
ties.
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In this paper, we will use the above developments to re-
visit the problem of the spin-Peierls transition in the adia-
batic approximation for the phonons. Our methodology and
results are also applicable to the chain mean-field theory of
quasi-one-dimensional antiferromagnets since the latter pre-
sents a formal analogy to the theory of the spin-Peierls
state.34–39 The paper is organized as follows: In Sec. I, we
present the model and its bosonized version. We obtain ana-
lytical results results for the spin-Peierls temperatureTSPand
the total energy and gap at zero temperature. In Sec. II, the
thermodynamic Bethe ansatz is used to study the thermody-
namic properties of the dimerized chain at finite temperature.
We obtain various results for the gap, the dimerization, the
specific heat, and the static magnetic susceptibility for an
entire range of temperatures smaller than the bandwidth. We
use these results to derive the Ginzburg-Landau functional
describing the mean-field transition and study the behavior
of the correlation length near the transition.

I. MODEL

Within a mean-field treatment of the phonons, the full
Hamiltonian describing the coupling of the lattice to the spin
chain is given by

H = o
n
FK

2
kul2 + Js1 + s− dnlkuldSn ·Sn+1G , s1d

wherekul is the mean-field displacement along the chain and
theSi are spin-12 operators.K is the elastic constant for lattice
deformations andl is a parameter related to the amplitude of
the spin-phonon coupling. For the sake of clarity, we intro-
duce the dimensionless variabled=lkul, and the reduced

elastic constantK̄=K /l2. To obtain the physics of the spin-
Peierls transition, we need to evaluate the mean-field dis-
placementkul, or equivalently, the parameterd in a self-
consistent manner, i.e., the value ofd which minimizes the
free energy at any given temperatureT. In the spin-Peierls
phaseTøTSP, dsTdÞ0, anddsTd=0 for all temperaturesT
.TSP. A self-consistent evaluation ofdsTd then permits a
systematic calculation of various properties of the spin chain
in a rather straightforward manner. Since we are mainly in-
terested in the low-energy/long-wavelength physics of the
spin-Peierls system, we study the Hamiltonian(1) in the con-
tinuum limit. In this limit, the continuum Hamiltonian reads

H =E dx
k

2
d2 + Hs, s2d

where k=K̄ /a, a is the lattice spacing andHs is the con-
tinuum approximation of the spin Hamiltonian. Using stan-
dard bosonization techniques,19,21,22,40 the continuum spin
Hamiltonian is found to be

Hs = uE dx

2p
fspPd2 + s]xfd2g −

2gd

s2pad2 E dxcosÎ2f,

s3d

where the fieldsf andP are canonically conjugate to each

other (i.e., ffsxd ,Psx8dg= idsx−x8d). The velocity of the
bosonic excitations defined by the fieldf is u=sp /2dJa and
g is an amplitude proportional to the exchange interactionJ.
The Hamiltonian(3) is the well known sine-Gordon model
with b2=2p. In Eq. (3), we have omitted a marginally irrel-
evant term.41 We will come back later to the effect of this
term on the properties of the system. In the Hamiltonian(3),
a nonzero dimerizationd induces the relevant operator,
cosÎ2f of dimension1

2. This results in a gapD,d2/3, and a
diminution of the ground-state energy11,21 Essdd−Ess0d,
−d4/3. For smalld, this reduction of magnetic energy com-
pensates the loss of elastic energy in Eq.(1), resulting in a
dimerized state atT=0. Until recently, the proportionality
constant betweeng and J was unknown, thus preventing a
quantitative estimation of the magnetic energyEsdd and
hence the correct value of the spin gapD. Consequently, only
exponents could be predicted from the above mean-field de-
scription, and no prediction could be made for the thermo-
dynamics of the system below the spin-Peierls transition
temperature. However, recent developments in integrable
systems and bosonization, now permit a precise determina-
tion of the amplitudes in the continuum theory.24–26A correct
mapping of the lattice spin model onto its bosonized version
fixes the amplitudeg in Eq. (3):

g = 6JSp

2
D1/4

a. s4d

Although the present paper focuses on the spin-Peierls sys-
tem, we reiterate that the approach outlined below, is also
applicable to the chain mean-field theory of quasi-one-
dimensional antiferromagnets34–38as long as marginal opera-
tors are neglected. In the case of the antiferromagnet, the
magnetizationm and the inverse of the interchain exchange
term J'

−1 play the role of the dimerization and the elastic
constant, respectively. We now analyze the full Hamiltonian
(2) in certain limits.

A. Zero-temperature limit

At zero temperature, the dimerizationd is nonzero, result-
ing in a gap for spin excitations. As mentioned earlier, the
precise mapping of the spin lattice model onto its continuum
version, the sine-Gordon model, yields exact expressions for
the gap and the total energy of the spin system.33 In this
model, the lowest energy excitation is a soliton23 and using
Eq. (4), its mass is given by

M =
2

Îp

Gs1/6d
Gs2/3dFGs3/4d

Gs1/4d
3

p2Sp

2
D1/4

dG2/3

. s5d

Besides the soliton and the corresponding antisoliton excita-
tions, the sine-Gordon model atbSG

2 =2p possesses two other
excitations, a light breather with a massM and a heavy
breather with a massMÎ3. The soliton, the antisoliton and
the light breather together form a SU(2) spin triplet while the
heavy breather forms a SU(2) singlet.42–44 The gap to the
lowest energy excitation or equivalently, the singlet-triplet
gap, is
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D =
u

a
M . 1.723Jd2/3. s6d

A comparison of this predicted value with the real gap of
the spin-lattice system calculated numerically using the
density-matrix renormalization group was done in Ref. 45
and a reasonably good accord was found. The knowledge of
the soliton mass(5) also yields the ground-state energy per
spin of the dimerized spin chain:33

Essdd = −
p

2
J

M2

4
tan

p

6
. − 0.2728Jd4/3, s7d

which is in reasonable agreement with numerics.45 To obtain
the effective dimerizationd at zero temperature, we need to
minimize the total ground-state energy per unit spin of the

spin lattice system,E=K̄ /2d2+Essdd which leads to the fol-
lowing results:

D =
2Îp

3Î3
SGs1/6d

Gs2/3dD
3FGs3/4d

Gs1/4d
3

p2Sp

2
D1/4G2J2

K̄
. 0.627

J2

K̄
,

d = S 2

3Î3
D3/2SGs1/6d

Gs2/3dD
3FGs3/4d

Gs1/4d
3

p2Sp

2
D1/4G2S J

K̄
D3/2

. 0.219S J

K̄
D3/2

,

E = −
1

p7Î3
SGs1/6d

Gs2/3dD
6SGs3/4d

Gs1/4dD
4 J3

K̄2
. − 0.012

J3

K̄2
. s8d

We note that the ratioJ2/ K̄ can be identified with the cou-
pling constantlCF used in Ref. 11, and we indeed have the
same exponents for the dependence of the gap on the cou-
pling constantlCF as in Ref. 11. However, the prefactors in
Eqs.(8) could not be obtained in Ref. 11.

The continuum approximation underlying our mean-field
theory is valid when the zero-temperature correlation length
is much larger than the lattice spacing, i.e., whenD!J.

Clearly, this requires thatJ! K̄, i.e., a sufficiently rigid lat-
tice. This criterion leads todsT=0d!1. We note that rela-
tions similar to the ones in Eq.(8) have been previously
obtained in the context of the chain mean-field theory of
quasi-one-dimensional(quasi-1D) antiferromagnets.39 In re-
ality, the results of Eq.(8) are slightly modified by the pres-
ence of a marginally irrelevant term in the continuum Hamil-
tonian for the spin system.41,46,47 When the marginal
interaction is taken into account, it is found that in the spin-
Peierls caseD,d2/3ulndu−1/2, whereas in the case of the an-
tiferromagnetD,d2/3ulndu1/6, i.e., the marginally irrelevant
term frustrates the dimerization and favors antiferromagnetic
ordering. The marginal interaction is eliminated in theJ1
−J2 chain at its critical point48,49 J2/J1.0.24. With an addi-
tional dimerization of the nearest-neighbor exchange49 in this
critical chain, the gapD=1.76d2/3. Moreover, in the absence
of dimerization,50 the spin velocity at the critical point is
found to be 1.1936J1a. Generalizing the results obtained
above, we find that the following amplitudeg=0.806p2J1a

should be used in the bosonized Hamiltonian(3) in order to
describe theJ1−J2 chain with J2/J1=0.2411. The resulting
energy gain from dimerization is thenEs/J1=−0.3745d4/3

and one obtains the following zero-temperature results:

D = 0.879
J1

2

K̄
,

d = 0.353SJ1

K̄
D3/2

,

E = − 0.093
J1

3

K̄2
. s9d

Comparing Eqs.(9) and (8), we see that the introduction of
J2 results in a strong enhancement of the zero-temperature
gap and of the dimerization, in agreement with a scenario
proposed in Ref. 51 for the spin-Peierls transition in
CuGeO3.

B. Transition temperature

In this section, we redo the calculation of Ref. 11 yielding
the spin-Peierls transition temperature. For any temperature,
a self-consistent treatment of the problem requires a calcula-
tion of the free energy as a function of the dimerizationd
taken as a variational parameter, followed by a minimization
with respect tod. Unlike the zero-temperature case, calculat-
ing the free energy for arbitrary temperatures requires the use
of thermodynamic Bethe ansatz techniques,27–29 and no
closed analytic expressions can be obtained. However, to cal-
culate the spin-Peierls transition temperature, this full treat-
ment is not required.11 Indeed, close to the spin-Peierls tran-
sition, the order parameterd becomes small and a second-
order perturbation theory ind is sufficient to evaluate the
leading behavior of the variational free energy. A straightfor-
ward perturbative development ind of the Matsubara imagi-
nary time path integral gives the following expression for the
free energy of the sine-Gordon model:

F = −
p

6u
T2 −

1

4

pa

bu
S 2gd

s2pad2D2

3E
−`

`

dxE
0

b

dt
Î2

Îcosh
2px

bu
− cos

2pt

b

+ osd2d.

s10d

Note that the first term in this expression is just the free
energy of a noninteracting Bose gas in one dimension. Using
Eq. (8.12.4) in Ref. 52 to integrate over the space variablex,
we obtain

FssT,dd = −
p

6u
T2 −

a

4
S 2gd

s2pad2D2E
0

b

pP−1/2S− cos
2pt

b
Ddt,

s11d

where the functionP−1/2 is a Legendre function. A final in-
tegration overt using Eq.(8.14.16) in Ref. 52 leads to
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FssT,dd = −
p

6u
T2 −

a

4
S 2gd

s2pad2D2 p2

Gs3/4d4T

= −
p

6u
T2 −

9J2d2

4p2GS3

4
D4

aT
Sp

2
D1/2

. s12d

The full mean-field variational free energy isFMFsT,dd
=sk/2dd2+FssT,dd=Cd2+osd2d. WhenC.0, which is obvi-
ously the case for high temperature, the mean-field free en-
ergy has a minimum ford=0 and forC,0, the energy is
minimized by a state with nonzero dimerization. Therefore
the spin-Peierls transition temperature is fixed by the condi-
tion C=0 and, using Eq.(12), we obtain

TSP=
9

2p2Gs3/4d4Sp

2
D1/2J2

K̄
= 0.25342

J2

K̄
. s13d

Note that the validity of the continuum description requires

thatTSP!J. In Ref. 11, the same dependence ofTSP on J2/ K̄
(up to the prefactor) was derived using an equivalent re-
sponse function formalism. Comparing the two expressions,
we observe that in Ref. 11, the transition temperatureTSP

.1.01J2/ K̄ obtained there is a gross overestimate ofTSP
highlighting the importance of having correct amplitudes in
the bosonized theory. Comparing Eqs.(8) and (13), we note
that the ratio

DsT = 0d
TSP

. 2.47 s14d

is independent of the various coupling constants present in
the theory. This ratio is in accord with values obtained in
numerical studies of the spin-Peierls problem.13 The exis-
tence of such a universal ratio is reminiscent of the BCS
mean-field theory for superconductivity53 where the ratio of
the superconducting gap and transition temperature is ap-
proximately 1.76. In fact, one can use the Jordan-Wigner
transformation18 to map the Heisenberg spin chain onto a
chain of interacting spinless fermions. Neglecting the
interactions,1 the resulting theory presents a formal similarity
with the BCS theory,53 which leads one to anticipate an uni-
versal ratio. We note, however, that the fact that the spinless
fermions theory is strongly interacting renormalizes the BCS
ratio away from the noninteracting value 1.76. In particular,
as already discussed in Ref. 13, the observation of a ratio of
1.76 between the zero-temperature gap and the transition
temperature in CuGeO3 cannotbe taken as an indication of
adiabatic behavior in this compound. As discussed earlier,
the results of Eq.(8) were obtained neglecting the logarith-
mic corrections induced by a marginally irrelevant interac-
tion. These marginal interactions affect the dependence of
the gap and the ground-state energy on the dimerization, par-
ticularly for d!1 and at finite temperatures induce logarith-
mic corrections in response functions.54 This inhibits a pre-
cise estimation of the BCS-like ratio especially in systems
with a small dimerization at low temperatures.

For the next-nearest-neighbor chain with a critical cou-
pling J2c=0.2411, where logarithmic corrections vanish,D

=1.5386J1
2/ K̄ andTSP=0.623J1

2/ K̄. Note that these values re-
spect the BCS relation(14). In the light of the preceding
discussion, it is interesting to note that a small change in the
velocity and the coefficient of the sine-Gordon term leads to
a big change in the gap and the spin-Peierls temperature.
This implies that the frustration engendered byJ2 enhances
fluctuations towards spontaneous dimerization, hence favor-
ing the formation of the spin-Peierls state.

C. Effect of logarithmic corrections

We now discuss the effect of the marginally irrelevant
operator cosÎ8f, neglected in the preceding sections. This
operator is known to induce logarithmic corrections in the
dimerization gap41,46,48 as well as in response
functions.48,55–57 This results in a modification of Eqs.(8)
and (13) and consequently deviations from the BCS-like ra-
tio (14). Including these corrections, the gap atT=0 and the
ground-state energy are

D , J
d2/3

uln du1/2, s15d

E0 , − J
d4/3

uln du
+

K̄

2
d2. s16d

Minimizing the ground-state energy with respect tod, one
finds

d2/3uln du ,
J

K̄
. s17d

For the transition temperature, it can be shown following
Ref. 57 that the susceptibility associated with the dimeriza-
tion operator is corrected by a logarithmic factor so that

xdsTd ,
1

T
Sln

J

T
D−3/2

. s18d

With this result, Eq.(13) is modified into

TSPSln
J

TSP
D3/2

,
J2

K̄
. s19d

We see from Eqs.(17) and(19) that the effect of logarith-
mic corrections is to decrease the spin-Peierls transition tem-
perature and the zero-temperature gap. In contrast, in the
case of the Néel state, these logarithmic corrections enhance
the transition temperature and the order parameter.34,36–39

Equation(17) leads to

d ,1
J

K̄

3

2Uln
J

K̄
U2

3/2

, s20d

resulting in a gap
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D ,
J2

K̄

1

Uln
J

K̄
U3/2. s21d

Solving forTSP in Eq. (19), and comparing with Eq.(21), we
find that to lowest order a BCS-type relation holds. This
relation, however, is obtained by retaining only the lowest-
order logarithmic corrections.

II. THERMODYNAMIC BETHE-ANSATZ
MEAN-FIELD THEORY

A. Mean-field equations

We now focus on the mean-field theory for the spin-lattice
system at arbitrary temperatures. We use the thermodynamic
Bethe ansatz(TBA) as a tool to evaluate the finite-
temperature free energy of the sine-Gordon Hamiltonian(3).
The TBA treatment of the generic sine-Gordon model with a
relevant term cosbf has been formulated using the string
hypothesis in Refs. 27–29. In general, this leads to an infinite
number of coupled integral equations for the various pseu-
doenergies. However, at the so-called reflectionless points,58

defined byb2=8p /n, wheren is an integer, the number of
independent integral equations becomes finite.29 Numerical
methods can then be used to solve these integral equations
and deduce the thermodynamics. The case of the dimerized
spin chain withb2=2p falls into this category and the TBA
equations of Refs. 27–29 can be used to calculate the free
energy. For generic values ofb away from the reflectionless
points, the general formalism developed by Destri and de
Vega30–32 is more appropriate than the string approach. This
latter method has been used successfully to obtain the ther-
modynamic properties of copper benzoate59 in a magnetic
field. This approach can be used to study the thermodynam-
ics of the generalized spin-Peierls transition60,61 or the anti-
ferromagnetic transition62 in systems of coupled spin ladders
in a magnetic field. Before we embark on an application of
the TBA method to the spin-Peierls system, we note that in
Refs. 27–29 the free energy is taken to be zero at zero tem-
perature. However, since our reference state is the undimer-
ized chain, we must add the zero-temperature dimerization
energy to the free energy calculated using the TBA of Refs.
27–29. Using the approach outlined in Refs. 27–29, we find
that in our case, the sine-Gordon free energy reads

FssT,dd = −
T

2pu
E

−`

`

duD coshuf3 lns1 + e−e1sud/Td

+ Î3 lns1 + e−e2sud/Tdg −
u

a2 tan
p

6

M2

4
, s22d

where the pseudoenergiese1sud and e2sud are self-
consistently determined by the following integral equations:

e1sud = D coshu +
3T

2p
E

−`

`

du8K11su − u8dlns1 + e−e1su8d/Td

+
T

2p
E

−`

`

du8K12su − u8dlns1 + e−e2su8d/Td,

e2sud = DÎ3 coshu +
3T

2p
E

−`

`

du8K12su − u8dlns1 + e−e1su8d/Td

+
T

2p
E

−`

`

du8K22su − u8dlns1 + e−e2su8d/Td. s23d

The integral kernels are given by

K11sud =

2 sin
p

3
coshu

sinh2 u + sin2 p

3

,

K12sud =

2 sin
p

6
coshu

sinh2 u + sin2 p

6

+

2 coshu sin
p

2

sin2 p

2
+ sinh2u

,

K22sud = 3K11sud. s24d

The pseudoenergiese1,2 have a transparent physical
interpretation:63 e1sud represents the dressed energy of the
solitons and of the light breather(which have identical
masses at theb2=2p point), whereas the pseudoenergye2sud
represents the dressed energy of the heavy breather. In fact,
because scattering is diagonal, Eqs.(22)–(24) can be easily
re-derived using the approach outlined in Ref. 63. It is useful
to recast the dimensionless free energyf =aF/J in terms of

the scaled energiesēi =ei /J and the reduced temperatureT̄
=T/J,

f =
K̄

2J
d2 −

T̄

2p
E duM coshuf3 lns1 + e−ē1sud/T̄d

+ Î3 lns1 + e−ē2sud/T̄dg −
p

8Î3
M2, s25d

ē1sud =
p

2
M coshu +

3T̄

2p
E

−`

`

du8K11su − u8dlns1 + e−ē1su8d/T̄d

+
T̄

2p
E

−`

`

du8K12su − u8dlns1 + e−ē2su8d/T̄d, s26d

ē2sud =
p

2
MÎ3 coshu

+
3T̄

2p
E

−`

`

du8K12su − u8dlns1 + e−ē1su8d/T̄d

+
T̄

2p
E

−`

`

du8K22su − u8dlns1 + e−ē2su8d/T̄d. s27d

To obtain the free energy for arbitrary temperatures we need
to solve for a given soliton massM, the pair of self-
consistent equations(26) and(27) for the dispersionsē1 and
ē2. Here, we use numerical methods28 to obtain the solutions
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for any arbitrary temperature. We use a simple iterative pro-
cedure to solve Eqs.(26) and (27) numerically for various
values of the dimerizationd at a fixed temperatureT. This
provides us with the variational free energy for an entire
range ofd at fixed temperature. We then identify the value of
d for which the free energy is a minimum. Such a procedure
is repeated for various values of the temperatureT thereby
permitting us to obtaindsTd. In particular, we find that the
numerical estimate ofTSP coincides perfectly with the pre-
diction of perturbation theory Eq.(13). This provides a first
check of the validity of our TBA mean-field solution. In Fig.
2, we plot our results for the mean-field dimerizationdsTd as
a function of the reduced temperature. These results fordsTd
are then used to obtain thermodynamic quantities. Figures 1
and 3 show a plot the gap and specific heat as as function of
the temperature. In the vicinity ofTSP, the gap vanishes as
D~ sTSP−Td1/3 and the specific heat jumps atTSPas expected
for a second-order transition. For low temperaturesT!TSP
the specific heat is exponentially suppressed by the spin gap
and for TùTSP, the specific heat is simply that of the pure
Heisenberg chain:Cv=p / s3udT=2T/ s3Jd which is the same
as that for a gas of free bosons.

B. Law of corresponding states

The mean-field theory leads to a law of corresponding
states64 or equivalently, scaling forms for the free energy and

associated quantities. We use theT=0 resultd,sJ/ K̄d3/2 [cf.
Eq. (8)] to rewrite the finite temperature dimerizationdsTd
=sJ/ K̄d3/2d̄sTd. Inserting this in Eq.(5), and in Eqs.(26) and
(27), and using Eq.(13), it is straightforward to see that the
pseudoenergies satisfy the scaling formeisud
=TSPēsT/TSP,ud. Consequently, this implies that the total
free energy, gap, and dimerization can be re-expressed as

FsTd = −
TSP

2

J
fS T

TSP
D , s28d

dsTd = STSP

J
D3/2

d̄S T

TSP
D , s29d

DsTd = TSPD̄S T

TSP
D , s30d

where the functionsD̄ , d̄ , and f are universal functions of
the scaled temperature. From Figs. 1 and 2, we see that the

numerical solutions forD̄ and d̄ do obey the above scaling
form. From the expression for the free energy(28), one eas-
ily obtains the following result for the specific heat:

Cv =
TSP

J

T

TSP
f9S T

TSP
D . s31d

As expected in a mean-field theory, there is a jump in the
specific heat at the transition whose magnitude is given by

JDCv

TSP
= f9s1−d −

2

3
= gSP. s32d

The numerical solution of the mean-field equation yields
gSP=1.39. Our result for the specific heat is shown in Fig. 3.

FIG. 1. The dimensionless scaling functionD̄ describing the law
of corresponding states followed by the spin-Peierls gap. The uni-
versal ratio 2.47 is reached forT,0.4TSP. For T→TSP the scaling

function D̄,s1−T/TSPd1/3.

FIG. 2. The dimensionless scaling functiond̄ describing the law
of corresponding states followed by the spin-Peierls dimerization.
The zero-temperature value is reached forT,0.4TSP. For T→TSP

the scaling functiond̄,s1−T/TSPd1/2.

FIG. 3. The specific heat of the spin-Peierls problem in the
mean-field approximation.
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A universal ratio of the specific-heat jump to the specific heat
above the critical temperature53 exists in the BCS theory,
whereDCv /CvsTSP

+ d=1.43. Here again, the value of the ratio
DCv /CvsTSP

+ d=2.1 in the spin-Peierls problem is different
from the BCS ratio of 1.43 due to the strong interactions
between the Jordan-Wigner pseudofermions. We note that in
experiments on CuGeO3, this ratio was found to be 1.5 or
1.6, which is close to the BCS prediction.65 However, as in
the case of the ratio of the gap to the transition temperature,
this apparent agreement with the mean-field description
proves to be spurious as we have seen that the ratio should
be near 2.1 in a spin isotropic material.

C. Landau-Ginzburg expansion

In this section, we use the results of the preceding sec-
tions to obtain a simple Ginzburg Landau functional describ-
ing the vicinity of the spin-Peierls transition. In Ref. 11, it
was shown that a soft Ising orf4 theory was enough to
describe the vicinity of the transition. However, the coeffi-
cients, in particular, that of the quartic term, could not be
entirely calculated. Our formalism permits us to obtain the
leading terms in the functional with the correct prefactors.
This will be useful for more sophisticated treatments of the
transition taking into account the fluctuations of the lattice66

or the role of solitons in the thermodynamics.67 A Landau-
Ginzburg expansion64 of the variational free energy per unit
length (22) in the vicinity of TSP gives

FsT,dd =
p

2
sT − TSPdd2 +

q

4
d4. s33d

The law of corresponding states(28) leads to some con-
straints on the form of the expansion. Minimization with
respect tod yields

d2sTd =
p

q
sTSP− Td,

FsTd = −
p2

4q
sT − TSPd2. s34d

The law of corresponding states(28) implies that p/q
,TSP

2 /J3 and thatp2/q,1/J. Thus we havep=c1J
2/TSP

2 and
q=c2J

5/TSP
4 , wherec1,c2 are dimensionless numbers. These

predictions are in agreement with the ones obtained from the
RG treatment in Ref. 68. The dependence ofp can also be
verified by the perturbation theory of Sec. I B. Although the
precise value ofq was not obtained in Ref. 11, it was shown
using perturbation theory that the Landau-Ginzburg free en-
ergy had an expansion in powers ofsJ/TSPd1/2D0/TSP, where
D0=Jd. Reporting this expansion in Eq.(5.5) of Ref. 11
leads precisely to the dependence ofq on J andTSP. Thus the
perturbative expansion of the free energy is fully consistent
with the law of corresponding states. In terms of the dimen-
sionless constants,

dsTd2 =
c1

c2
STSP

J
D3S1 −

T

TSP
D ,

FsTd = −
c1

2

4c2

sT − TSPd2

J
. s35d

This also implies from Eq.(5) that the spin-Peierls gap van-
ishes as,s1−T/TSPd1/3 near the transition. This behavior is
entirely consistent with our numerical results. It now suffices
to calculate the constantsc1 andc2. A comparison with Eq.
(12) fixes c1=0.2534 and the value ofc2=0.022 76 is ob-
tained by fitting the TBA mean-field theory results fordsTd
to Eq. (34) in the range 0.9TSP,T,TSP. Hence

p . 0.2534
J2

TSP
2 ,

q . 0.0228
J5

TSP
4 . s36d

As a check of the correctness of the results of the Ginzburg-
Landau expansion, we can compare the prediction for the
specific-heat jump from Eq.(34), DCv=c1

2/ s2c2dsT/Jd
.1.4s1dsT/Jd with the value given by the TBA mean-field
theory in Eq.(32) DCv.1.39sT/Jd. The 1% agreement be-
tween these two values provides a confirmation of the cor-
rectness of our Ginzburg-Landau expansion. From the be-
havior of the gap, we can obtain the behavior of the magnetic
correlation lengthjmagsTd. If the gap isD, the magnetic cor-
relation length atT=0 is u/D. Thus, neglecting thermal ef-
fects, we would obtainjmagsTd,J/TSPs1−T/TSPd−1/3. Near
the transition, this correlation length becomes much larger
than the thermal correlation lengthjth=u/ s2pTd. This means
that the exponential decay of the magnetic correlation that
would result from the gapDsTd is completely masked by the
thermal fluctuations which leads to a much shorter correla-
tion length. The above results are valid for the case of a
uniform dimerizationd. In reality, near the transition, the
dimerization can vary with the spatial location. To take into
account the energy cost of these fluctuations, as¹dd2 term
must be included in the Landau-Ginzburg effective theory.
The bosonization approach allows us to calculate the coeffi-
cient of this gradient term as outlined in the Appendix. The
full Landau-Ginzburg free energy is now given by

FL =E dxSc0

2
s¹dd2 +

p

2
sT − TSPdd2sxd +

q

4
d4sxdD , s37d

where the constantc0 measures the rigidity of the order pa-
rameterd and is given(see the Appendix) by

c0 =
9

8p2Sp

2
D1/2 bs2d

Gs3/4d4

J4a

T3 , s38d

wherebs2d.0.91596̄ is Catalan’s constant52 andp,q are
given by Eq.(36). It is interesting to note that the coefficient
of the gradient term falls asT3. We note that the Ginzburg-
Landau coefficients calculated in Ref. 68 using a fermionic
Renormalization Group treatment have the same dependence
on TSP as in the present mean-field calculation. However, we
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do not expect an agreement of the numerical prefactors as the
model studied in Ref. 68 is different from the one studied
here. The structural correlation length close to the transition
can be evaluated from Eq.(37) and is found be to be

j2sTd =
c0

psT − TSPd
= S Ja

2pTSP
D2

bs2d
TSP

T − TSP

= jth
2 S 2

p
D2

bs2d
TSP

T − TSP
. s39d

Near the transition,j@jth. This justifies the Landau-
Ginzburg approach where the magnetic fluctuations are inte-
grated out and only structural fluctuations close to the tran-
sition are retained. As was done in Ref. 68, the contributions
of these structural fluctuations to the specific heat can be
analyzed by the techniques of Refs. 67 and 69.

D. Magnetic susceptibility

Here we consider the effect of a magnetic field on the
spin-Peierls system. The field can close the spin triplet gap
and induce incommensuration. Here, we restrict ourselves to
fields much smaller than the gap and study their effect on the
spin-Peierls transition temperature and the susceptibility. Us-
ing the perturbative approach70 generalizing the one of Sec.
I B we find that for small magnetic fields there is a reduction
of the transition temperatureTSP, i.e., TSPshd=TSPs0d−lh2,
with l.0. Using bosonization(see the Appendix), we find

l =
bs2d

p2TSP
.

14.7

16p2TSP
. s40d

This result is in accord with that of Ref. 70 where it was
found thatl.14.4/s16p2TSPd. For large fields, a similar cal-
culation can be done provided that the field is smaller than
the soliton gap and the system does not exhibit a transition to
the incommensurate phase.

On the other hand, to calculate the finite temperature sus-
ceptibility, we need to generalize the TBA equations to in-
clude the effect of a magnetic field. To recapitulate, in the
absence of a field, we have two solitons of spin ±1, a light
breather of spin 0 forming a triplet and a heavy breather of
spin 0. A field breaks the spin degeneracy and for small
enough fields which do not induce any incommensuration we
can use the TBA to calculate the magnetic susceptibility.
Following Ref. 71, we obtain the following TBA equations:

ēssud =
p

2
M coshu − h̄s +

T̄

2p
o

s=−1,0,1
E du8K11su − u8d

3lns1 + e−ēssu8d/T̄d +
T̄

2p
E du8K12su − u8d

3lns1 + e−ē2su8d/T̄d,

ē2sud =
pÎ3

2
M coshu +

T̄

2p
o

s=−1,0,1
E du8K12su − u8d

3lns1 + e−ēssu8d/T̄d +
T̄

2p
E du8K22su − u8d

3lns1 + e−ē2su8d/T̄d,

f =
K̄

2J
d2 −

T̄

2p
E duM coshuF o

s=1,0,−1
lns1 + e−ēssud/T̄d

+ Î3 lns1 + e−ē2sud/T̄dG +
M2

8Î3
, s41d

where theēssud denote the reduced pseudoenergies of the
solitonsss=1d, antisolitonsss=−1d, and light breathersss
=0d and h̄=h/J. It is easy to see from the equations above

that ēssud= ē0sud− h̄s. This allows us to reduce the set of
TBA equations to 2:

ē0sud =
p

2
M coshu +

3T̄

2p
E du8K11su − u8dlns1 + e−ē0su8d/T̄d

+
T̄

2p
E du8K12su − u8dlns1 + e−ē2su8d/T̄d

+
T̄

2p
E du8K11su − u8dln31 +

sinh2S h̄

2T̄
D

cosh2S ē0su8d

2T̄
D4 ,

ē2sud =
pÎ3

2
M coshu +

3T̄

2p
E du8K12su − u8dlns1

+ e−ē0su8d/T̄d +
T̄

2p
E du8K22su − u8dlns1 + e−ē2su8d/T̄d

+
T̄

2p
E du8K12su − u8dln31 +

sinh2S h̄

2T̄
D

cosh2S ē0su8d

2T̄
D4 .

s42d

In the presence of a magnetic field, the law of corresponding
states(28) now reads

F = −
TSP

2

J
FS T

TSP
,

h

TSP
D . s43d

The magnetic susceptibility,xsTd=−limh→0s]2F /]h2d, satis-
fies the scaling relation
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xsTd =
1

J
Fy9S T

TSP
,0D , s44d

whereFy9=]y
2Fsx,yd. ForT.TSP, the susceptibility is that of

a free Bose gas:xsTd=1/sp2Jd. For temperatures 0øT
øTSP, the susceptibility can be obtained numerically from
Eqs.(42) and (44). The results are plotted in Fig. 4.

As in the case of zero magnetic field, one has an effective-
field-dependent Landau-Ginzburg functional which describes
the physics in the vicinity of the transition. ForT&TSP the
behavior of the magnetic susceptibility is obtained from the
following Landau-Ginzburg expansion:

FsT,h,dd =
p

2
fT − TSPshdgd2 +

q

4
d4 −

x0

2
h2, s45d

where x0=1/sp2Jd is the susceptibility of the undistorted
chain. Minimizing F with respect tod, one finds forT
,TSP:

FsT,hd = −
p2

4q
fT − TSPs0d + lh2g2 −

x0

2
h2. s46d

The definition ofx then gives

xsT , TSPd = x0 +
p2l

q
fT − TSPs0dg. s47d

This behavior of the susceptibility is reminiscent of the one
seen in a Néel antiferromagnet72 which stems from the simi-
larity of the mean-field equations for the spin-Peierls prob-
lem and the quasi-1D antiferromagnet. Using Eq.(40) and
Eqs.(36) it is easily seen that the resulting susceptibility(47)
satisfies to the law of corresponding states(44). Numerically,
one finds thatp2l /q=0.257/sJTSPd by fitting the susceptibil-
ity calculated near the transition to the Landau-Ginzburg
form. If, on the other hand, we use the values ofp and q
obtained in Sec. II C combined with the value ofl in Eq.
(40) we see that valuep2l /q=2.8314.7/s16p2JTSPd
=0.26/sJTSPd differs from that obtained in the presence of a
field by less than a percent. A Keesom-Ehrenfest relation64

exists between the jump of the specific heat and the jump in
the slope of the magnetic susceptibility as a function of tem-

perature. This Keesom-Ehrenfest relation is given by the
Landau-Ginzburg theory as

TSP
2

dx

dT

DCv
=

p2 − cs1ds3/4d
4p2 =

2bs2d
p2 . 0.3724. s48d

Such a proportionality has been observed in experiments on
TTFAuBDT in magnetic fields.73

E. Low-temperature expansions

In the preceding sections, we have obtained analytical re-
sults forT=0 and forT&TSP. In fact, the TBA equations are
amenable to analytical study forT*0 [more precisely 0
,T!DsT=0d]. In this regime, we expect that the mean-field
gapDsTd remains very close toDsT=0d, so that the thermo-
dynamics does not differ from the one of the Heisenberg
chain with dimerization. With this assumption, the TBA
equations(for h=0) to lowest order are

e1sud = DsT = 0dcoshu + Ose−DsT=0d/Td,

e2sud = DsT = 0dÎ3 coshu + Ose−DsT=0d/Td. s49d

Substituting these in Eq.(22) for the free energyF, we see
that the correction toF is indeedOse−DsT=0d/Td which justifies
our original assumption thatDsTd.Ds0d. We now derive
low-temperature expansions of the various physical quanti-
ties. It is convenient to use the the zero-temperature dimer-
ization d0=dsT=0d, the zero-temperature gapD0=DsT=0d,
and the zero-temperature ground-state energyE0, the expres-
sions of which are given in Eq.(8), to express the corre-
sponding finite temperature quantities as a function of the

dimensionless variabled̄. We obviously havedsTd=d0d̄sTd,
andDsTd=D0d̄2/3sTd. The total energy atT=0 reads

Esd̄d =
4
Î3

SGs1/6d
Gs2/3dD

6F Gs3/4d
Gs1/4dp2Sp

2
D1/4G4J3

k2Fd̄2 −
3

2
d̄4/3G

s50d

and it is easy to see thatEsd̄d has a minimum ford̄=1.
Expanding around this minimum we find

Esd̄d − E0 =
2

9pÎ3

D0
2

J
sd̄ − 1d2. s51d

The expression(51) is not the full expression of the free
energy forT.0, as we have also to take into account the
contributions of the solitons and the breathers that are ther-
mally excited. Since the heavy breathers have massMÎ3, as
can be seen from Eq.(49), their contribution at low tempera-
ture is negligible with respect to the soliton contribution.
Therefore, to lowest order, the thermal contribution to the
free energy reads

Fsol.= −
6T

p2

D0

J
d̄2/3K1SD0

T
d̄2/3D , s52d

where K1 is a modified Bessel function52 so that the full
variational free energy is

FIG. 4. The magnetic susceptibilityxsTd versus the reduced
temperature; forT.TSP, xsTd=1/sp2Jd.
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FsT,d̄d = E0 +
2

9pÎ3

D0
2

J
sd̄ − 1d2 −

6T

p2

D0

J
d̄2/3K1SD0

T
d̄2/3D .

s53d

Minimizing Eq. (53) with respect tod̄ we obtain

d̄ − 1 =
9Î3

p
FK18SD0

T
d̄2/3Dd̄1/3 +

Td̄−1/3

D0
K1SD0

T
d̄2/3DG .

s54d

To lowest order, this gives

d̄ = 1 − 37/2Î 2T

pD0
e−D0/T, s55d

and

DsTd = D0F1 − 6Î3Î 2T

pD0
e−D0/TG . s56d

Substituting Eq.(55) in Eq. (53), we see that the correction
to the elastic energy plus ground-state energy of the dimer-
ized chain is of ordere−2D0/T and is therefore negligible com-
pared to the contribution of the solitons. In physical terms,
this means that at sufficiently low temperature, the thermo-
dynamics of the spin-Peierls chain is the same as the ther-
modynamics of a chain with a constant dimerization. Using
this result, we find that

FsTd = −
D0

2

J
F 6T

p2D0
K1SD0

T
DG , s57d

which leads to a low-temperature specific heat of the form

CvsTd =
3Î2

p3/2

D0

J
SD0

T
D3/2

e−D0/T + osT−3/2e−D0/Td. s58d

In the presence of an infinitesimal applied magnetic fieldh
!T, the lowest-order contribution to the low-temperature
free energy is

FsTd = −
D0

2

J
F 2T

p2D0
K1SD0

T
DS1 + 2 cosh

h

T
DG , s59d

and the magnetic susceptibility is readily obtained as

xsTd =
1

p2J
Î8pD0

T
e−D0/T + osT−1/2e−D0/Td. s60d

III. CONCLUSIONS

In this paper, we have studied the thermodynamics of the
spin-Peierls system treated within a mean-field approxima-
tion. Using a combination of bosonization methods and the
thermodynamic Bethe ansatz, we have been able to obtain
quantitative results for the spin-Peierls transition temperature
TSP, the spin-Peierls gap to triplet excitations, the specific
heat and magnetic susceptibility at arbitrary temperatures.
Our calculations are a quantitative improvement of the re-
sults obtained by Cross and Fisher(who were restricted to

the vicinity of the spin-Peierls transition temperature) and
consequently help us obtain the effective Landau-Ginzburg
functional that describes the physics of dimerization close to
the transition. It would be interesting to study this Landau-
Ginzburg theory in one dimension, following Ref. 68 to un-
derstand more quantitatively how lattice fluctuations affect
the thermodynamics. Similarly to Ref. 68, we should expect
a regime of renormalized Gaussian fluctuations for 0.4TSP

MF

,T,TSP
MF, and a regime dominated by kinks for 0.3TSP

,T,0.4TSP as long as one-dimensional fluctuations domi-
nate. Also, it should be possible to use the Landau-Ginzburg
description to study the three-dimensional ordering of the
dimerization along the lines of Refs. 67 and 69. The depen-
dence of the transition temperature on interchain coupling
will be similar to the one predicted in Ref. 74 since both
models belong to the same universality class. A more direct
extension of the present work would be to study the
commensurate-incommensurate transition driven by an ex-
ternal magnetic field and then comparing the predicted re-
sults to various experiments on spin-Peierls systems. It
would also be interesting to extend this study to the general-
ized spin-Peierls transition obtained in ladders under mag-
netic field60 or to the antiferromagnetic phase transition ob-
tained in the same system.62 These questions are left for
future work.
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APPENDIX: CALCULATION OF THE RIGIDITY

Here, we present a derivation of the rigidity in our
Landau-Ginzburg effective action. In the continuum limit,
the space dependent dimerization leads to the modification of
the sine Gordon term in Eq.(3),

Hint = −
2g

s2pad2 E dxdsxdcosÎ2f. sA1d

Close to the transition, the second-order correction to the
free energy of the spin chain induced by the spin-phonon
coupling is given by

Fd =
1

4

pa

bu
S g

pa
D2E

−`

`

dxE
−`

`

dx8E
0

b

dsxddsx8dxsx − x8,td,

sA2d

and

xsx − x8,td = Î2Fcosh
2px

bu
− cos

2pt

b
G−1/2

. sA3d

In Fourier space,Fd~edq/ s2pddsqdds−qdx̂sq, ivn=0d. To
obtain the gradient term, it thus suffices to calculate the Fou-
rier transform x̂. In the limit q→0, x̂sq, ivn=0d= x̂s0,0d
+q2/2x̂9s0,0d. Plugging this form into Eq.(A2), it is
straightforward to find the rigidity.
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To find x̂sqd we generalize the calculation of theq=0
response function, and consider

x̂sqd =E dxdtxsx,tdeiqx

=E dxdt
Î2

ÎFcoshS2px

bu
D − cosS2pt

b
DGeiqx.

sA4d

Using Eq.(8.12.5) in Ref. 52, we can rewrite the integral:

a

2
E

−`

`

dv
eiqbu/s2pdv

Îcoshv − cos
2pt

b

=
p

Î2
a

1

coshSqbu

2
DP−1/2+ibuq/s2pdS− cos

2pt

b
D .

sA5d

Consequently, to calculate Eq.(A4), we only need the inte-
gral:

E
0

b

P−1/2+ibuq/s2pdS− cos
2pt

b
Ddt

=
pb

FGS3

4
+

iqu

4pT
DGS3

4
−

iqu

4pT
DG2 , sA6d

which is easily obtained from Eq.(8.14.16) in Ref. 52. The
final result is

x̂sqd =
p2

2 coshSuq

2T
DGS3

4
+

iqu

4pT
D2

GS3

4
−

iqu

4pT
D2 .

sA7d

Expandingx̂sqd to second order inq, we find

F = F0 −
1

16p2a3TGs3/4d4 E dq

2p
ugsqdu2F1 − hSuq

2T
D2G ,

sA8d

where

gsqd =E gdsxdeiqxdx, sA9d

and h=fp2−cs1ds3/4dg / s2p2d and cs1dsxd is the trigamma
function (see Ref. 52, p. 260). The numbercs1ds3/4d can
be expressed as a function of Catalan’s constant52 bs2d as
cs1ds3/4d=p2−8bs2d.2.5419. Finally, using the expression
of gsxd as a function ofdsxd we obtain the rigidityc0 as

c0 =
9

64
S1 −

cs1ds3/4d
p2 DSp

2
D1/2 1

Gs3/4d4

J4a

T3

=
9

8p2Sp

2
D1/2 bs2d

Gs3/4d4

J4a

T3 . sA10d

A similar calculation can be done to obtain the reduction
of the critical temperature as a function of the magnetic field.
When the system is magnetized, incommensuration in the
staggered operator sets in as the wave vector shifts fromp /2
to p /2±h/u and the equation giving the critical temperature
reads

k =
a

2
S g

2ap
D2 b sechSbh

2
D

GS3

4
− i

bh

4p
D2

GS3

4
+ i

bh

4p
D2 . sA11d

This implies that

TSPshdcoshS h

2TSPshdDFGS3

4
− i

h

4pTSPshdD
3GS3

4
+ i

h

4pTSPshdDG2

= TSPsh = 0dGs3/4d4.

sA12d

Equation(A12) was obtained in Ref. 70 using a real time
calculation of the response function. This can be seen explic-
itly by expressing the infinite products in Ref. 70 in terms of
Gamma functions. Expanding Eq.(A12) around smallh, one
obtains for magnetic fieldsh!TSPs0d

TSPshd
TSPs0d

. 1 − 2fp2 − cs1ds3/4dgS h

4pTSP
D2

. sA13d

In terms of Catalan’s constant, the spin-Peierls transition
temperature in the presence of a small field is given by

TSPshd
TSPs0d

= 1 −bs2dS h

pTSP
D2

+ osh2d. sA14d
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