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Models for the magnetic ac susceptibility of granular superferromagnetic CoFe/AlO5
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The magnetization and magnetic ac susceptibilityx’ —ix”, of superferromagnetic systems are studied by
numerical simulations. The Cole-Cole plgt, versusy’, is used as a tool for classifying magnetic systems by
their dynamical behavior. The simulations of the magnetization hysteresis and the ac susceptibility are per-
formed with two approaches for a driven domain wall in random media. The studies are motivated by recent
experimental results on the interacting nanoparticle systeggF8g/Al,O5; showing superferromagnetic be-
havior. Its Cole-Cole plot indicates domain-wall motion dynamics similarly to a disordered ferromagnet,
including pinning and sliding motion. With our models, we can successfully reproduce the features found in the
experimental Cole-Cole plots.
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l. INTRODUCTION the momentg>-3°The magnetic dynamic behavior resembles
at first glance that of the SSG case, but actually shows fea-
The physics of interacting ferromagnetiEM) nanopar- tures of domain-wall motion similar to an impure ferromag-
ticles is a vivid topic of modern magnetism research. Thisnet, as will be discussed beldWHere one should mention
also applies to the study of the reversal dynamics in thin FMhat also additional types of collective ordering are proposed
films. The first subject, the properties of interacting FMin the literature, e.g., the correlated superspin glass state
nanoparticles, is investigated by many groups focusing eithefCSSG,****and also that the effects of surface spin disorder
on the preparatiote.g., Refs. 1 and)r the magnetic prop- may become significarit.
erties(e.g., Refs. 1 and 337Numerous theoretical studies  The second topic, the reversal dynamics in thin ferromag-
were perfomed in order to understand the observed phenometic  films, finds equally large interest. Both
ena or to explore possible new effe¢esg., Refs. 8—1p experimenta®36 and theoreticdh3"2° investigations are
While individual single-domain FM nanoparticles exhibit performed in order to achieve a better understanding of the
superparamagneti¢SPM) behaviort13-15 interacting en- processes during the hysteresis cycle. The magnetization re-
sembles lead to very different kinds of phenomena dependersal occurs either by domain-walDW) nucleation and
ing on the type and strength of interactions. Dipolar interacmotion or by magnetization rotatidfi.The DW motion at
tions become relevant since the magnetic moment, e.g., fa@tonstani(dc) fields is characterized by three regions depend-
particles with diameter 5 nm, is of the order 5@@Q while  ing on the field strength, that isreep depinning andsliding
the interparticle distances are of the order 1-10 nm. Thénotion Creep is the thermally activated motion of DWs,
simple formula for the mean dipolar energy of a particle towhere the average DW velocity is(H)xexg—(T,/T)
one neighborEy_q/ks= (ol 47ks) 12/ D3, yields already 16 X (H/Hp)™].4=43This behavior is encountered at small ap-
K for D=10 nm. Considering many neighbors and shortemlied fields, H<H,, where H, is the critical depinning
distances, it is obvious that the effects of dipolar interactiorthreshold andT, proportional to a characteristic depinning
can be observed even at temperatures of the order 100 K. Bnergy, U,=kgT,. At zero temperature, a dynamic phase
addition, several other types of interactions are proposedjansition of second order &=H, is found. The mean DW
i.e., higher-order multipole terms of dipof¥!’ tunneling  Vvelocity, v, can be interpreted as an order parameter of the
exchangé?® or even retarded van der Waals interactiths. depinning transition, withu(H) = (H-Hy)#.44 At T>0, the
Independent from the still open question of which interac-phase transition is smeared out and th@l) curve is
tions are relevant, one can summarize that essentially threeunded. Beyond the depinning regidt>H,, sliding mo-

different kinds of phenomena occit. tion sets in and the DW velocity becomes linear with applied
For large interparticle distances, and hence a small corfield, v= yH. Here y is the mobility coefficient>46
centration of particles, th@lipolar) interaction is only a per- In alternating(ac) (magnetig fields, H=H; sin(wt), addi-

turbation to the individual particle behavior and no collectivetional dynamical effects will arise. The coercive field and the
behavior is found:?°?! For intermediate concentrations, a loop area become dependent on the frequency, or in other
superspin glaséSSG phase is encountered. In this case thewords on the field sweep raté3° dynamic phase transitions
particle momentgsuperspingcollectively freeze into a spin  and crossovers occéf{*>4’the ac susceptibility versus tem-
glass phase below a critical temperatutg??*22-2For even  perature shows similar features to spin glass systémsd a
higher concentrations, a superferromagn€8&M) state is DWW velocity hysteresis is fountf. Different models are em-
found. It is characterized by a ferromagnetic arrangement ofloyed, i.e., numerical solutions of the coupled differential
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equations of the DW displacement starting from Maxwell’'s One way of presenting the data is the Cole-Cole or Ar-
equations’ using an interface depinning model for an elasticgand representation. The imaginary part is plotted against the
DW in random medi#“5495 [sometimes referred to as real part of the susceptibility” versusy’.54°It can serve as
guenched Edwards-Wilkinséh (EW) equatiofj, kinetic  a fingerprint to distinguish different magnetic systems by
simulations of a DW in the sliding motion regimigand their dynamic response. For example, a monodisperse en-
calculations based on Fatuzzo’s domain thedapplied to  semble of noninteracting SPM particles has exactly one re-
ultrathin magnetic layer®’ laxation time, 7=1, exp(KV/kgT),1*>** and will display a

In this paper, we will present model investigations moti- semicircle with the center on thg axis. HereK is an effec-
vated by recent experiments on the SFM systentive anisotropy constany/ the volume of the particle, ang
[CoggFex(1.4 nm/Al,O5(3 nm)]y being a realization of a corresponds to the microscopic spin-flip time which is of
densely packed ensemble of interacting nanoparticles. Therder of 101°s. The Cole-Cole plot can easily be derived
complex magnetic ac susceptibility, —ix”, reveals that the from an analytic expression for the ac susceptibility given in
magnetic dynamic behavior can be explained within the conRef. 8 for a monodisperse SPM ensemble in zero-field with a
cept of domain-wall motion in an impure ferromagfet® random distribution of anisotropy axis directions,

That means the granular system behaves like a thin FM film, 5
the only difference being that the atomic moments are to be ¥ () = #0_5[1 +ﬂ;} (7)
replaced by “supermoments” of the individual particles. This 3K keT1+(w7)? ]’
concept implies that the FM nanoparticles remain single-
domain whereas the ensemble shows collective SFM behav- M2V  wr
ior. This idea is evidenced from tf@ole-Cole plot " versus X'(0) = Mo?sﬁﬁ, (8)
x'.5*Hence we will focus on the Cole-Cole presentation and B (@)
compare it to that found experimentally. where My is the saturation value of the magnetization. De-
fining a= ,u0M§/3K ando=KV/kgT and eliminatingw, one
ets
Il. ac SUSCEPTIBILITY AND COLE-COLE PLOTS J
. . . ao\? al2+0)\?
Magnetic systems exhibiting relaxational phenomena can X' = \/<?) - (X’ T ) , (9

be characterized by the complex ac susceptibijtyy)=x’
—ix". The time-dependent complex ac susceptibility is dewhich describes a circle with the radius ao/2 and center
fined as at (a(2+0)/2:0) in the Cole-Cole plane.
o~ In Fig. 1(a@), the result is shown for parameters
M(t) =X(OH(), (1) 4MZ/3K=1 andKV/kgT=1. In the case of a particle size
. ) = w distribution(polydispersivity and hence a distribution of re-
with Nthe complex external ~field, H(t)=-1He“TH(" laxation times, the Cole-Cole semicircle is expected to be-
=Re(H(t))=Hy sin(wt)] and the magnetizatiokl. In this pa-  come flattened and/or distortétFigure 1b) shows two nu-
per, we study the time-independent term of the Fourier serieerically obtained curves, where a particle volume

for x(t), namely distribution from a log-normal distributioiicircles and a
1 (T Maxwell distributiorf? (diamond$ is assumed using

XEX'-W':—J dfx(t), 2) woM2/3K=1, K/kgT=1, 15=1, (V)=1, and a relatively
7)o broad distribution widttAV=0.9. One finds an asymmetric

Cole-Cole plot for the case of a log-normal distribution. Ob-
viously this is due to the asymmetry of the distribution itself.
By choosing the more symmetric Maxwell distribution, the

with 7=27/ w=1/f.
This definesy’ and y” as follows:

1 (7 ) curve becomes symmetric and only slightly shifted down-
X' (w) = noT dtM(t)sin(wt), (3 ward. Extremely high polydispersivity is found in spin glass
0<70 systems, where the distribution of relaxation times is ex-
; pected to become infinitely broad due to collective
){,(w):_i dtM(t)cog wt) @) behavior® Figure Xc) shows an experimentally obtained

HoTJ, Cole-Cole plot on the SSG systeffCoggFey(0.9 nm/
~ _ Al,O5(3 nm)],, at different temperatured,=50, 55, and 60
Or equivalently, if we define’y(t)=dM(t)/dH(t)=M(t) K.5" Here the particle sizes follow a relatively narrow Gauss-

x (dh/dbt ian distribution with (V)=11.5 nn?¥ and AV=0.95 nn? as
. evidenced from a transmission electron microscopy image
1 - for a simliar samplé.
X' (0)=—- f dtM(t)coq wt), (5) P
I1l. MODELS
T
X' (w) = 1 f dtM(t)sin(wt). (6) We study the complex ac susceptibility with two different
2mHoJo approaches, where account is taken of the fact Mais
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al ) ) Z(X, oH
02 @ i 1920 M (12)

i vy  dt oL
wherey is a kinetic coefficient andy(x,t) is a thermal noise
OO L 1 N 1 L 1 N 1

0.0 0.2 0.4 0.6 0.8 term. The DW velocity is given by(x,t)=Z(x,t). Here we

1 - T y T y are interested in the mean DW velocitft) = (v(x, 1)), and
mean displacemer(t) =(Z(x,t)),, from which we can cal-
=< T goo 04 o 1 culate the ac susceptibility as described above. Herg,
10Hz 8 © %10’3 Hz denotes the average over the internal DW coordirate

. i . L (i) Adiabatic approach We use the expression for the
. . . . mean DW velocity in the adiabatic driving regime following
1 L(®) from a functional renormalization groufRG) treatment of

N Eqg. (12), given in Ref. 45, which interpolates between the
creep regime and sliding DW motion,

yHF(x,y) for H # 0,

‘ U(H'T):{O forH=0, (13

FIG. 1. Cole-Cole plotsy’vs x', (a) analytically obtained fora Wherex=H/H,, y=T,/T and
noninteracting monodisperse ensemble of SPM particles with
,uOM§/3K=1 andKV/kgT=1 (see text (b) numerical result for a (xy) = O(1-x
polydisperse ensemble with a log-normal distributjoincles and a ' 1+ (yx‘ﬂ)ﬁ/(’
Maxwell distribution (diamond3$ of particle volumes with B
MOM§/3K=l, K/kgT=1, p=1,AV=0.9, anKV)=1; and(c) shows ><|: 1_ + (l _ 1) ] (14)
experimentally obtained curves on the SSG system 1+ (yx#)Pe x) |
[CoF€0.9 nm/Al,O5(3 nm)]y at three different temperatures,
=50, 55, and 60 KRef. 57. The particle sizes follow a Gaussian Here(x) is the step funCtionszrezL,zj_d the typical pin-
distribution with(V)=11.5 nn¥ and AV=0.95 nri. The frequency Ning energy on the Larkin length scalg, H, the zero-
range is indicated in the figure. temperature depinning field, ang, B, and # the relevant

critical exponent® which depend on the DW dimensiohnA

controlled by the field-induced sideways motion of one DwW.time discretizationAt, is used which is chosen © be much
In this case, it follows thatvi(t)x u(t), where u(t) is the smal_ler than the period of the driving f|eld1;10‘ T Then '
(mean DW velocity, being a function of the external field Z(t) is calculated for each time step by a simple integration

H(t) and temperaturd. Both approaches are based on ihef Ed- (13), i.e., AZ(t)=ofH(t)]At, where[H(t)] is calcu-

same underlying model for @&dimensional elastic DW in a lated for each time step from EqL3). Here the values of
~ rying | . timet, 7, w, andf are chosen to be dimensionless, since no
D=(d+1)-dimensional random environment,

guantitative comparison to the experiment is required. For-
r mally this can be done by introducing an arbitrary time scale
H = f ddx{—(VxZ)z— H(t)Z+VR(x,Z)}, (10 to and substituting —t/t,. Analogously this can be applied
2 to all other parameters and observables, i.e., fieidH,
—Hy, temperatureT/T,—T, velocity v—uv/(yH,), and
lengthL,/Ly— L, whereL, is an arbitrary length scale.
The magnetization for a finite system is defined here as

exdyx “(1-x)1+0(x-1)

whereZ=Z7(x,t) is thed-dimensional displacement profile of
the DW with internal coordinate, I" the stiffness of the DW,
andVg the (quenchegirandom potentialVg can be written in

the following way: 27(t
M(t)z(i—l), (15
z LZ
VRIX,Z(x, )] = —f dzZ g[x,Z(x,1)], (1) whereL, is the extension of the sample in tAairection and
0 0<Z=<L, This implies that -=M=<+1. In all cases, the

initial condition is Z(0)=L,/2. This approach includes the

whereg[x,Z(x,t)] describes the random force acting on thetemperature as a parameter, but we restrict our investigations
DW with (g)=0 and(g(x,2)g(x’,z))=38%x~x")A¢(z=2Z'),  here to small values[=0.1.
with Ag(2)=Aq(—2) being a random force correlator which is  (ii) Nonadiabatic approachSince Eq.(13) was obtained
a monotonically decreasing function decaying over a finitfor an adiabatically changing field, it can only be used as an
distancet. approximation, if the frequency is sufficiently snfél{see

Since the experimental system is a magnetic film, we realso Fig. 2 in that Ref. In order to include the pronounced
strict ourselves to the cade=2 in the following. The dy- nonadiabatic effects at higher frequendies., hysteresis of
namics of the system follows from the EW equation of mo-the velocity, one has to start with the underlying equation of
tion, motion (12), which yields
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1dZ(x,t @) a2 (D) e
192D - ryezien + HO T o Z0ch), (16 A 1 1Y i
05 ] 4+ /A
where the thermal noise term is neglected which is justified g | , ,/ I / / /
since the relaxation times for the DW creep at low tempera- - , - / /[
tures are very long>w™1) and we consider only finiténot 05T ] 1T I
exponentially smajlfrequencies. In Ref. 49, this equation is 1.0k . 4 L ] ..................... i

studied in detail in the case of an ac driving force in an
infinite system and it is shown that thermal effects are not
essential for not too low frequencig¢s > wr= wp(T/Ty)*?* 1.0 (o) smcdmmermime | Elay C ]
with the critical exponents, z, and 6]. Therefore, we can o HE 1
restrict ourselves to the zero-temperature equation of motion. 05T/
In this approach, we investigate both infinitg,— ) and M 0.0 ',’ o
¥
}
1
1

finite (L,<<0) systems. In the second case, the DW will hit

the boundary of the system for low enough frequencies, such ~ *° [ At ]
that the magnetization will saturatel<M <1). Therefore, -1.0 IR . a N
we can derive a critical frequenay, above which the sys- 20 00 20 20 00 20
tem will behave as an infinite system. The finite frequency of H H
the driving force acts as an infrared cutoff for the propaga-
tion of the DW which can move up to a length scalg FIG. 2. M vs H curves from simulations of the adiabatic ap-
:Lp(FyL")zlw)l’z. Equating this scale th, gives the follow-  proach(i) with T=0.1,Hy=1.85,L,=8.0, ©=0.24, §=0.83, andB
ing expression fow, (f. accordingly: =0.66 at different frequencie&=1.6x1077 (a), 1.6x 1072 (b), 7
X 1073 (c), and 8x 1072 (d). Note that all quantities are measured in
we = wp(L/L)%, (17)  dimensionless units, as described in the text. Lines are guides to the

with the typical pinning frequency)pzyF/Lg. eye.

For the numerical integration of E¢L6), it is discretized o )
in x directior(s) into N¢ positions with a lattice constan. The ac susceptibility of such _hystere5|s cy(_:les can be cal-
Here we also go over to dimensionless units with an arbitrargulated from Eqs(3) and(4). In Fig. 3, the obtained data are
time scalet,. These two parameters; andt,, are chosen Shown for the same set of parameters as for Fig. 2ajrone
such thattyyI'/a?=1 and that the dimensionless random finds the real anq imaginary part of the ac susceptibijty,
force tyyg is set to values in the intervf-1/2,1/2 at po- andy”, as a function of the ac frequency. The real part shows
sitions with distance/. Between these positiong, is inter- &0 order-parameter-like behavior Wlthza nonzero value below
polated linearly, which results in a Gaussian distribution@d @ vanishing value abovk~10". Furthermore, the

i 3~
Aq(2) with variance(. The depinning fieldH, is not used as 'Maginary part has a peak 88X 10°~f..
an input parameter but can be calculated from @) (at

In the Cole-Cole plot, Fig. ®), this transition appears as
»=0) using a bisection procedure with constant amplitude. & SharP change of the slope and curvature. At low frequen-
For our simulations, we chooge=0.1,N=1000, for finite

cies, f <f. one observes a quarter-circle centered onxhe
systemsL,=8.0, and a time discretization such that

axis. It is possible to fit a circle with the center on feaxis
<min(w™t,0.1). The results fory are averaged over 100

to the low-frequency datgsee solid line in(b)]. This corre-
disorder configurations for each frequency. sponds well to the experimental restf® (Fig. 4 and sug-

gests the existence afne effective relaxation time in the
system. However, fof > f. only a vertical line can be ob-

IV. RESULTS AND DISCUSSION
3171 3 T T 1

Figure 2 shows an example of hysteresis loops from simu-
lations within approach(i) with T=0.1, Hy=1.85, andL,
=8.0 at different frequencids=1.6x 1077 (a), 1.6x 1072 (b),
7X1072 (c), and 8< 1072 (d). Note that all quantities are &
measured in dimensionless units, as mentioned above. For 1
the values of the critical exponents, we use the results from
the RG ford=2, i.e., u=0.24 (Ref. 43, 6=0.83 (Ref. 58,
and 8=0.66(Ref. 44. (Note that the precise values of these )
exponents do not have a significant influence on the behavior @)
under consideration here; in particular, the qualitative picture
does not change if the values are modified slightiyith FIG. 3. (a) ac susceptibilityy’ andy”, vs ac frequencyf, ob-
increasing frequency, the hysteresis loop broadens until iained with model(i) with the same parameters as in Fig.(B)
becomes elliptically shaped above107?, losing also its  same data, but plotted in the Cole-Cole presentaj6ivs x'. The
inflection symmetry. Similar results are found in solid line represents a least-squares fit of the low-frequency data to
experiments?39 a circle and the arrow shows the direction of increading

0L

log(f)
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<p<1]5%80 This vyields the linear relationshipy”
=tan(wB/2)[x' — x..). Note that forany velocity function
v=v(H) with v(H)=-v(-H) and without velocity
hysteresig? it follows that y'=0 and y”«1/f.5° This can
easily be seen from Eq¢5) and (6) andM«uv. The conse-
quence is that a monotonically increasing part with finite
slope cannot be found in the Cole-Cole plot by considering
only the adiabatic motion of one DW.

There are two possible ways to improve the model. The
first one is to simulate an ensemble of noninteracting sub-
systems with different domain propagation lengths, pinning
fields, H,, or depinning energies,. It is possible that this

FIG. 4. Experimental Cole-Cole plot taken from Ref. 31 show- case would yield the situation above qualitatively described
ing x' vs x obtained on the SFM granular system by the polydispersivity exponem<1. The second is to em-
[CoFe1.4 nm/Al,O5(2 nm) ], The susceptibility was measured ploy a more realistic description of the DW by using the
at ac amplitudegiHo=50(a) and 5uT (b) at 10 mHz<f<1kHz  above-introduced nonadiabatic approdith The latter case
at T=380(1), 350(2), 320(3), and 260 K(4). Transition fields are  was studied here.
marked by arrowgRef. 3. In Fig. 5, the results for the magnetization hysteresis of a

DW from Eq. (16) for Hy=1.85 are presented. The plots
served. This result differs from that found in experiment,(a)(c) show hysteresis loops at different frequenciés,
where the high-frequency part is characterized by a positive:0.0016 (a), 0.08 (b), and 0.48(c) for an infinite system
slope and positive curvature. This discrepancy needs a closélr,— ). Here we defindM=Z. In this case, the DW never
inspection here. touches the sample boundary. At low frequencies, one finds a

By comparison of the susceptibility data to the corre-symmetric loop with respect to tHd axis (a) similar to the
sponding hysteresis looBig. 2), one sees thdt marks the  result shown above in Fig.(@). This symmetry is lost upon
transition between loops saturating at high figldsv-f) and  increasing the frequencyb) and(c), and the loop becomes
those which do not saturatkigh-f). In the second case, the tilted. This tilting is responsible for a nonvanishing real part
domain wall is always in motion throughout the entire field of the ac susceptibility and cannot be observed in approach
cycle. The real part is then zero, whereas the imaginary pa(t). The tilting corresponds to the appearance of a velocity
has a 1t dependencdgFig. 3@)], which follows directly  hysteresig¢® That means there exists no functional relation-
from our result shown in Ref. 31, where the complex suscepship between the velocity and the field any more, as is the
tibility in the case of sliding DW motion is given by  case in the adiabatic regime.
=x.[1+1/(iw7)], or more generally byy=x.+x./(iw7). The resulting susceptibilities are plotted in Fig. 6.(&)

For x..=0, this yields directly the vertical part in the Cole- and(b), the real and imaginary part vs Idg and the corre-
Cole plot[Fig. 3b)]. In Ref. 31, it was argued that the non- sponding Cole-Cole plot, respectively, are shown for an in-
linearity of thewv(H) function in the creep regime can be finite system, when the DW never touches the boundary. In
taken into account by introducing a polydispersivity expo-(c) and (d), the same plots are shown for a finite system
nent, 3, in the above equatiofy,=x..[1+1/(iw7)?] [compare (L,=8.0). While the low-frequency parts resemble those
to a similar relationship formulated for the conductivity of from approach(i), the high-frequency part shows a com-
disordered hopping conductors(w) ~ (-iwn)" ", where 0 pletely different behavior. Fox’ —0, we find in the Cole-

80 . 1.4

720l @ 1ol

60 1.0

50 08

40

s 5 f=0.0016 0.6 {=0.08

20 04

10 0.2 1 FIG. 5. M vs H curves for the nonadiabatic

0 0.0 approach(ii) with Hy=1.85 at different frequen-

10 : : : cies, f=0.0016(a), 0.08(b), and 0.48(c) for an
(© (d) infinite system(in this case one definddl =2).
o201 osl (d) shows the magnetization curve f6£0.0016
0.15} | but a finite system(L,=8.0 so that the DW
s o0f f=0.48 ol touches the boundaries.
0.05|
05 f=0.0016, L,=8.0

0.00|
-0.05 ‘ ] ; 1.0 : ‘

2.0 -1.0 0 1.0 2.0 20 1.0 0 1.0 2.0

H
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FIG. 6. Real and imaginary part of the ac susceptibility vs frequency, calculated within apgiig@chinfinite systemsga) (the real part
is shifted and scaledind the corresponding Cole-Cole pib}. In (c) x’ andy” are plotted for the finite systefh,=8.0) and Cole-Cole plot
(d). The inset in(d) shows the high-frequency behavior in more detail. The arrows show the direction of increasing frequencies. All
simulations were performed witHy=1.85.

Cole plot[inset in Fig. &d)] a curve with positive curvature [CoggFexy(1.4 nm/Al,O5(3 nm)],o, we employed two types
similar to that in the experimeriFig. 4). One can expect that of simulations of a domain wall in random media driven by
X goes to 0 withw— o, since the velocity hysteresis disap- an external magnetic field. Using the first approach with the
pears forw— . Obviously, the more realistic second model mean velocity of a domain wall in the adiabatic limit, one
is capable of describing the experimentally found behaviorcan explain the monodisperse dynamic response evidenced
At this point, we want to emphasize that the adiabatic apby a partial semicircle centered around fieaxis. However,
proach only works for low frequencies, where nonadiabatidt fails to describe the increasing part with positive curvature
effects can be neglected. Furthermore, it only works at finitor higher frequencies in the Cole-Cole plot. This behavior
temperatures. On the other hand, the nonadiabatic approachn be found by taking the full equation of motion into ac-
can explain the main experimental features even if we useount, where an elastic interface is driven in genea-
the zero-temperature equation of motion, since the smearingiabatically in a random medium. Hence a model of an im-
effects of the depinning transition due to finite frequenciespure ferromagnet is capable of describing the main features
dominate the thermal creep effects at low temperatures. of the experimental results. We find that the appearance of a
However, two drawbacks still exist. One, the Cole-Colevelocity hysteresis is a crucial element in the dynamic re-
plot from the simulation shows a rather steep and narrovgponse of the superferromagnet. We show that a Cole-Cole
increasing part compared to the experiment. Second, we captot may be used to classify magnetic systems by their dy-
not retrieve the experimentally observed saturating part fonamic response. For example, the above-mentioned granular
the highest experimental frequencies, where the imaginarguperferromagnet can unambiguously be distinguished from
part becomes constarisee Fig. 4, insgt This case was a superparamagnet and a superspin glass system.
attributed? to the reversible relaxation response of the DW
for high frequencies and small excitation fieR9$2 It would
be interesting to study this case with a suitably modified ACKNOWLEDGMENTS
model which includes multiple and interacting DWs.
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