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Macroscopic quantum tunneling in small antiferromagnetic particles:
Effects of a strong magnetic field
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We consider an effect of a strong magnetic field on the ground-state and macroscopic coherent tunneling in
small antiferromagnetic particles with uniaxial and biaxial single-ion anisotropy. We find several tunneling
regimes that depend on the direction of the magnetic field with respect to the anisotropy axes. For the case of
a purely uniaxial symmetry and the field directed along the easy axis, an exact instanton solution with two
different scales in imaginary time is constructed. For a rhombic anisotropy the effect of the field strongly
depends on its orientation: with the field increasing, the tunneling rate increases or decreases for the field
parallel to the easy or medium axis, respectively. The analytic results are complemented by numerical
simulations.

DOI: 10.1103/PhysRevB.70.214430 PACS nuniber75.45+j, 03.65.Sq, 75.10.Hk, 75.50.Tt

During the last decade macroscopic coherent quanturand found the behavior common to that in Ref. 13. They also
tunneling between two equivalent classical ground states iBuggested that such properties are universal for a wide class
macroscopic or, to be more precise, mesoscopic magnetigf antiferromagnets subject to a strong magnetic field.
systems became an object of intense experimental and theo- |, this paper we consider the effects of coherent quantum
retical investigations, see for a review Refs. 1 and 2. In thg,nneling for a compensated antiferromagnetic particle with
physics of magnetism such systems are, for instance, smajl,ompic anisotropy placed in the magnetic field. In Sec. | we

magnetic particles, magnetic clusters, and high-spin mOlgaqqrine the model used for the evaluation of tunnel splitting

eculgs: T he mte_rest in tunneling effects is asspuated with thSnd analyze the static energy of the particle for three differ-
possibility of using these systems as potential elements for

quantum computers. Initially, the calculations of tunnelingent orientations of the magnetic field along the crystalline

effects were carried out for ferromagnétsHowever, it hap- axes. Section I is devoted t_o the _calculation of th_e Ieyel
pened that the tunneling effects were experimentally ob_spllttmg O_f the ground state_s in the instanton appr_oxmatlon
served by the resonant absorption of electromagnetic wavd' the orientations of the field along the easy, middle, and
for antiferromagnetic ferritin particlésThe effect of the nard axis separately and for relevant ranges of the field
magnetic field on the tunneling probability in ferritin par- Strength. Section Il contains a qualitative comparison of
ticles have been experimentally studied, see Ref. 6. Accord@halytical results with data of numerical calculations for
ing to theoretical estimatiorf$ the level spitting in antifer- level splitting and a direct comparison for the Euclidean ac-
romagnets is stronger than in ferromagnets and the eﬁectg)n. The final section resumes obtained results and gives a
can be observed at higher temperatures. Antiferromagnets agort survey of experiments where the predicted effects
more convenient for experimental investigations of tunnelingcould be observed. We use the standard semiclassical analy-
effects. sis based on the instanton technique applied to the nonlinear
The interest in tunneling in compensated antiferromagnetg-model, as well as the direct numerical diagonalization of
has been renewed after the synthesis of high-spin moleculége corresponding quantum spin Hamiltonian. We demon-
with antiferromagnetic coupling of spins, so-called ferric strate that the behavior of the level splitting is highly sensi-
wheels, such as EeFe, Crg, See, for instance, Refs. 9-11. tive to the orientation of the magnetic field. In fact, three
The interference effects caused by the gyroscopic terms igdifferent scenarios for the orientation of the field along the
the o-model approximation were of main interédtFor ~ symmetry axes are found.
compensated antiferromagnets such effects can arise due to
an external magnetic fielé'® or a certain kind of the
Dzyaloshinskii-Moriya interactioi! Chiolero and LosS$
have also found a type of interference effect for such antifer-
romagnets placed in a strong magnetic field directed perpen-
dicular to the easy axis of the antiferromagnetic particle. This
effect caused by the imaginary part of the fluctuation deter- We start from the Hamiltonian describing a magnetic par-
minant together with the direct contribution of the field to theticle with an even numbed of magnetic ions with the spif
imaginary part of the Euclidean action produces the periodiand coupled with the nearest-neighbor antiferromagnetic ex-
dependence of the level splitting on the field strength. Therhange interactiod. We also assume that a single-ion aniso-
Hu et al® have investigated these effects for a more generairopy with rhombic symmetry and the magnetic fi¢ddare
case of antiferromagnets with rhombic anisotropy. They haveresent. The macroscopic Hamiltonian of the system can be
considered the case of the field directed along the hard axisritten as

I. NONLINEAR o MODEL FOR ANTIFERROMAGNETS
IN A MAGNETIC FIELD
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H=3> S.Ss+ B, [(S92+ ()] proportional to exp-Ag/#), where the value ofig is calcu-
(ap) « lated from appropriate equations of motion under the bound-

ary conditionsl(7) —1~ at 7— -« andl(7) —I* at 7— +co.
+B2 (S)*~gug 2 H - S,. (1) Tunnel splitting in the so-called dilute instanton gas approxi-

mation is determined by the modulus of the sum of such
Here,S, is the spin at thexth site,g~2 is the Landé factor, amplitudes calculated along all instanton trajectories with a
and ug is the Bohr magneton. The first term describes theminimal value of ReAg.
isotropic exchange interactioh>0 and the summation in It is convenient to introduce a polar parametrization for
this term is extended over the pairs of nearest neighbors. TH&€e unit vector
second and third terms give the simplest form of a rhombic
single-ion anisotropyB, and B, are the constants of the
uniaxial anisotropy and the anisotropy in the basal plyye  The Lagrangian from Eq2) in such a parametrization takes
respectively. We assume thaf>0 andB,>0. Thus,zis the  the form
easy axis and, y are the medium and hard axes, respec-

I,=cosh, I =sinfcos¢, I|,=sindsindg. (5)

2

tively. The last term corresponds to the coupling spins with — AN o
the magnetic field. Lel6(7), H(]=Nwe(6,¢) + 4\12((92 + ¢ sin 6

We will analyze the system under the assumption that all o . . ]
spin pairs are equivalent and have the same coordination — 219{0(H, cos¢ ~ Hysin @) + ¢[H, sir? 0
numberz. It is true for spin dimergz=1), spin wheels(z — (Hy cos¢+H, sin¢)sin f cosal}).  (6)

=2), and can be a good approximation for mesoscopic three-
dimensional crystalline particles witN>1, in which the Here we omitted the term with a full derivative proportional
surface variation of parameters can be neglected. Assunie NS¢ because it does not create the interference effects for
that the Zeeman energyugHS, the anisotropy energB,S?,  the tunneling between opposite points of the unit sphere for a
and B,S? are much smaller than the exchange enelg$.  fully compensated antiferromagnet.
The classical approximation gives that the spins in each sub- At zero magnetic field instanton solutions that give
lattice are parallel. This assumption is a necessary conditiominima of the action(2) with the boundary conditions
for using thes model as a model for describing both classicl(+>) — &, can be easily found. The above-mentioned con-
and quantum dynamics of antiferromagnét&or the semi-  ditions take the formg(—-=)=0, 8(+w) =1 with arbitrary val-
classical dynamics, especially for tunneling, it is convenientues for ¢(+e). The instanton solutions correspond to the
to use the Euclidean formulation, which is based on the inrotation ofl in the symmetry planes of the system, i..,
troduction of imaginary timer=it. =mk/2, wherek is integer, and

The Euclidean action for the model that corresponds to

the microscopic Hamiltoniaril) can be written as cosf=tanh@r), sinf= (T_ , )
+o0 coshiw7)
Aell(n]= f_w Lel6(7), d(n)]d7 whereo==*1 is thwarization of the instanton. The “fre-
- ) quency” w is 2SyJzB,/# for the instanton_paths going
_ NJ dr{ﬁ—[iz— 2igH - (1 % )] +w (I)} through the medium axi$=0,7 and w=2S,JzB,+B,)/%
o 4]z a ’ for the paths going through the hard axs=+7/2. The

Euclidean action calculated on these instantons is simply
) Ae=7%N(hw!J2). Following the saddle-point approximation

where y=gug/# is the gyromagnetic ratid\ is the number that corresponds to the dilute instanton gas we take into ac-
of magnetic ions in both sublattices, and the overdot denotegount only paths with a minimal real part of the Euclidean
the derivative with respect to the imaginary time action, i.e., with the smallesb=2S\JzB,/%. Thus, at zero
In this approach the total spBy, of the particle becomes magnetic field the only instanton pair wih=+1 and the
a slave variable, and it is determined through the unit Néefotation ofl in the planexz contributes to the tunneling. The
vector| and its derivativd with respect tor: presence of the magnetic field drastically changes the fea-
tures of the spin tunneling between two different classical
_ AN . : ground states in the antiferromagnetic particle.
St = E{V[H ~I(H-DI+i XD} ) First of all we consider the influence of the magnetic field
) ] ) . on the static classical properties of the antiferromagnetic par-
The functionw,(1) is an effective energy of anisotropy per ticle. We will use the expressiad) and restrict ourselves to
spin with renormalization caused by the external field the cases when the field is parallel to one of the symmetry
(gup)? ) axesx, Y, or z. In these cases the field simply renormalizes
E(H ‘D% (4  the value of the appropriate anisotropy constants.
The influence of the field on the ground state is essential
In accordance with the general rules of the semiclassicavhen the field is directed along the easy axi$n this case
approximation formulated in the instanton language the amthe renormalized constant of the uniaxial anisotrdgyH)
plitude of the tunnel transition from the stdtel” toI=1"is  can change its sigrBu(H):Bu(l—Hleﬁ), where

wo(l) =B S(1Z+19) + B,SAZ +
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H o= 2S\JzB, g (818¢) fdH -(1x1)=26(HI)sin@ that can be obtained
u— IMs ®) through the variation of the Lagrangi&®), it is convenient
to write down the Euler-Lagrange equations with the mag-

is the field of the familiar spin-flop phase transition in the netic fieldH directed along an arbitrary symmetry axis
classical theory of antiferromagnetism. Wheéh>H,, the

states with!|+&, become unstable and the ground states 6—{w?+ ¢+ y4(H2 - H?)
havel parallel to 3&,. 2 2,42 Ly .
WhenH is parallel to the medium axis the constanB, +[wp + y2(H — Hy)Isin? ¢}sin 0 cos o
. _ 2 )
increasesB,(H) =B, +(gugH)?/(4Jz$) and B, decreases as =~ 2idy(Hl)sin 6, (103

Bp(H)=B,~(gugH)?/(43z$), with the growth of the field.
Thus, the field does not effect on the ground state, but a

strong enough field can change the type of the axasdy ¢ Sin’ 6+ 20 sin 6 coso
in the basal plane. Whed >H,, where - [wr21+ 72(H§— H2)]sir? 6'sin ¢ cos ¢
. 2SyJzB, ©) = 2i 9y(H)sin 6. (10b)
p - i) f———
Yue Here w,=vyH,=2SV2JzB,/% and w,=YH,=25/2JzB, /.
the axisy becomes an easy direction in the basal plane- The terms in the right-hand side are responsible for the gy-
dium axig and the axis is a hard one. roscopic dynamics of the vectbrNote that we consider the

Finally, if the magnetic field is directed along the hard field directed along one of the crystalline axes only, so only

+(gugH)?/(43z9). In this case, the field does not change the It i_s important to_note that in the cai_eb# 0 simple planar
ground state, as well as the type of the axes. solutions such agh=mk/2 may not exist. If such solutions

The naive substitution of the renormalized constants intdX® @Psent, the full syste(@0) is equivalent to the Lagrange
the expression&?) for an instanton and the Euclidean action €duations for a mechanical system with two degrees of free-
calculated on it leads to a wrong prediction that when thedom. To integrate such a system, the existence of two inde-
field is directed along the easy axis-—0 atH— H,, and pendent integrals of motion is necessary. For the general case
for the field along the medium axis the values.&f on the ~ @u? 0 andw,#0 only one first integral is known
two classes of trajectorigigh=mk and ¢=(2k+1)w/2] be-
come equal aH=H,. As we will show below, both sugges-
tions are wrong. with the value€=0 for separatrix solutions we are interested

In addition to the abovementioned renormalizations of théin. For this reason the systefh0) cannot be solved analyti-
anisotropy constants, the field changes the dynamics of thgally. However, approximate solutions can be constructed for
vector| and leads to the appearance of a gyroscopic ternall cases of interest; see a detailed consideration in the fol-
linear in dl/d7 in the Lagrangian. The role of gyroscopic |owing sections.
terms for tunneling in antiferromagnets has been discussed in
Refs. 12 and 13. The authors of these papers have shown that
the gyroscopic term caused by the magnetic field can create . ]
the imaginary part of the Euclidean actigty. that is a linear We will start from the case of the field parallel to the easy
function of the magnetic field. As we have shown, similar@Xxis, for which the gyroscopic terms in the right-hand side of
effects can also arise due to the Dzyaloshinskii-MoriyaEds-(10) are independent ap. The field does not violate the
interactiont* The imaginary part of the Euclidean actioty ~ rotational symmetry around the easy axis, and the model
can lead to the interference effects and to the oscillations ofith an isotropic basal plan@s,=0) has a physical meaning
the tunnel splitting as a function of the magnetic field. wefor this case. Its analysis leads to instructive results and we
will show below that the gyroscopic term produces a dy-give it completely.
namic renormalization of the real part gfc, which is qua- If w,=0, the systent10) has one more integral of motion,
dratic in the magnetic field. It can completely suppress thavhich can be written as
static contribution tadg coming from the renormalization of . _
the anisotropy constants. Q= (¢-iyH)sir? 6= const. (12)

£= 62+ ¢? sin? 6 Wl Si? 6- w?sir? gsi? ¢, (11)

A. Field parallel to the easy axis

Using the two integrals of motiorill) and (12), we can
simplify the system to the ordinary differential equation for

1. INSTANTON SOLUTIONS 6(7) only
In order to describe macroscopic quantum tunneling be- Y 02
tween two classical statés &, andl=-&, in the saddle-point 0% - wSint 6— Sto & (13

approximation, it is necessary to find instanton solutions
of the two Euler-Lagrange equations for the Euclideanand integrate it exactly. The instanton solutions with appro-

action (2) for the independent variableg(r) and ¢(7).  priate boundary conditions— 0, , and 6—0 at 7— %o
Using the identitieq 8/ 86) fdrH - (1 X 1)=—2¢(HI)sin# and  correspond to the values of the integréls0, £=0. Thus,
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the solution is¢=iyH(7—71), wherer, is an arbitrary con- ied. The full set of its eigenvalues and normalized eigenfunc-

stant. Equatior13) simplifies to $?=w?sir? 6, and its solu-  tONS is

tion is described by the formul&@) with w=w,. In terms of 1

thg vecton,_the instanton solution fad parallel to the easy |\7|f0: 0, fo=—=——), (193
axis andw,=0 takes the form V2 coshé
coshyH(7— 7]
O, (149 - tanhé —ik)e ¢
coshao(7—79)] Mf = (1L+K)f, f.= % (19b)
VL(1 +K2)
_ . sinfyH(7-7)]
y—'0 costiwg(7— 7]’ (14b) The modef is a localized eigenfunction and the modes with

f=f, form a continuous spectrum.

I, = tantag(7 - 70)] (149 Itis worthwhile to note that in contrast to other problems

z 0 073 of macroscopic quantum tunneling, for the case of antiferro-
This solution has correct instanton asymptofics—0 and ~ magnets withw,=0 the zero mode, is present forboth
|,—+1 at 7— +o for all H in the rangeyH <w,, which  kinds of fluctuations. The second zero mode is caused by the
corresponds téd <H,,. It is valid in the full region of stabil- exact rotational symmetry around the axisThe full preex-

ity of the statesl=+*@&,. Though the constant of effective ponential factor for this problem is squareof the usual
anisotropyB,(H) changes fronB, atH=0to 0 atH=H,, the  fluctuation determinanD=1.4Y/(27#), and the tunnel
Euclidean action calculated on the solutidh¥) does not  splitting of the lowest leveld takes the form

depend orH, its real part is the same as Ht=0 and the

imaginary part is zero. Thus, in the uniaxial ca&e=0 and ©
H <H, the action is A =Chiw, o exp(— A1), (20)
B
Ag = 2iiNS,| J—; (15 whereC is a numerical constant of order of unity. The addi-

tional large factor\/A(E‘))/(Zﬂ%) is a consequence that the
This simple example shows that the gyroscopic term camstanton solutior(14) in the casew,=0 contains two(not
essentially suppress the static renormalization of the anisgne, as usuallycontinuous parameters and 7,. Note that
tropy constant. For the case,=0 the renormalization is the level splittingA does not depend on the magnetic field
completely compensated by the gyroscopic term aigdis  even if the fluctuation determinant is taken into account. This
real and does not depend on the field. result can be explained using exact quantum-mechanical ar-
For the casew,=0 an exact solution of the problem of guments. For uniaxial system the Hamiltonian of the system

small fluctuations around the classical instanton solution i%ommutes with the projection of the total spiléz and the

poss_|k_)le to construct, and the. preexponential factor can bgigenstates of the problem can be characterized by definite
explicitly written. To do so, we introduce small perturbations

valuesS,=0,+1,+2,.... The twdowest levels form a dou-
¥ andp as blet with S,=0 and the magnetic field does not influence on
0(7) = Oo(7) + O, (168  them. For this model the spin-flop transition at the field
=H, corresponds to the change of the valueSpffor the
o lowest level fromS,=0 to the valueS,=1 or higher. Then,

B(7) = ol 7) + (16b) the growth of the magnetic field leads to the growttspénd

a sawlike dependenc®(H) appears. Since these effects are
where 6y(7) and ¢o(7) correspond to the instanton solution not associated with tunneling, we will not consider them in
given by Eqgs(14). The variational part of the action idg  the following, and restrict ourselves only to the region
—A(EO), WhereA(E0> is calculated on the unperturbed instantonH <H,,.
solution. It can be written as a sum of two independent terms Now we consider a more general casg# 0. It is clear

Ae—AP=2A+2AP with the decoupled degrees of that at finite nonzere, the additional factot.Ag/27#)Y2 is

sin 00(7') '

freedomd and u. Both terms have the same form absent, and the preexponential factor is smaller than that for
NGZe [+ A the uniaxial case»,=0. The levels cannot be characterized
FAL = e de(f (@ Mf (@), (17) by the quantum numbe,=0,+1,+2,..., andheir splitting
Az J_. becomes dependent on the magnetic field.

The instanton solutions with=6(7), $=0 exist atH=0.

—or @ | 2 4(0) @) )
where é=or, (@) is 9 or p for AL’ or FAL, respec- i canpe expected that aH < w, the value of¢ or, more

tively, andM is the linear operator accurately, the appropriate projection of the vector,
R o2 2 =sin ¢ sin 6y is small, and the functiof(7) can be given by
M=- Y +1- cosR (18)  the solution similar to Eq(14). If w,> w,, the out-of-plane

components of are small, i.e/ly|<1. Assuming thafl,|
This operator frequently appears in scattering problems as<1 for all values of parameters, the variational technique
sociated with soliton theory, so its properties are well stud-can be applied for evaluating the action. Choosing as a trial
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function cosf#=tanH w(7—7;)] with some paramete® that Ag
have to be found later, we rewrite EQLOb) in the linear
approximation inl, as

~ _2iyH sinh§
(M+al(6)= w cosht ¢

(21)

Here e=(wy/ w)?, é=wr, and M is the linear operatof18)
introduced above with non-negative eigenvalues. Siace
>0, the operatol\7| + e is positively defined. It has an inverse
operator which can be written through the ordinary bra and
ket notation of eigenfunctions as

1 |f Wi | |f i | FIG. 1. The real part of the Euclidean action in unitsié8i/2Jz
— VAL 2 KAk 5, (22 as a function of the magnetic fie{dchematically. Data for the field
M+ e € Kk Ltetk directed along the easy, medium, and hard axes are marked as EA,

. . MA, and HA, respectively, close to the appropriate curves. Solid
where the summation is extended over the continuous spegpes represent the calculations.df on the base of the full system

trum. Since(sinhé&/coslt &,f5)=0, the formal solution of (10), dashed lines are results of the naive consideration.

Eq. (21) does not contain a term with &/The solutionl ()

is determined by the summation over the states of the con-

tinuous spectrunfy only. After simple calculations the Eu- of the vecton for all values of the field. The right-hand sides
clidean action as a function of the trial parametetakes the  of the system(10) are proportional to sfé sin ¢, and the

form exact solution of the systerfl0) is ¢=py=7K, w=w,. It
N 2 corresponds to the rotation in the most preferable plane
Ag(w) = —— 2(% +;) The real part of the Euclidean action is independent of the
4z w field, but the imaginary parts have opposite signs for the two
) 7T(7H)2w,2)f+°° dk equivalent instanton trajectories with=0 and ¢=1r,
20° ). (L+K2+ ww?)cost(mk/2) | B, . . migugHN
@ ( wpwcosti(md2) Ae(HA) = 20NSy [T 2 i%ufi. (26)

(23)

If w,=0, the minimum of the actiori23) is reached aw  The nonzero imaginary part of the acti(@6) leads to inter-
=w, and we return to Eq(15) again. Thus, in agreement ference of the instanton trajectories and an oscillating depen-
with the previous analysis the Euclidean action depends odence of the transition probability on the fiéfd3 In this
the field for w,#0 only. If the ratio w,/w, is small, this geometry the most interesting effect arises due to the fluc-
dependence is weak, and for the case of the field directetliation determinant>'® The equations for small fluctuations
along the easy axis the Euclidean action is ¥ and u around the instanton solution are uncoupled again,
2 but a complex-valued potential appears in the equatiorifor
_ By 7(yH) w; The eigenvalues and the fluctuation determinant are also
Ae(EA) = 2ANS Iz 1- PR (24) complex. Thus, the presencedf, changes not only the tun-
! neling amplitude for the instanton solution with a given
Thus, forw, < w, the dependence of the Euclidean actigp  value ofo, but also a phase shift for two instanton paths with
on the field is weaker than it can be obtained from the naiver=+1. At low fieldsD, is almost real. It creates a decrease
consideratior{see Fig. 1 The problem also can be solved in of the tunnel amplitude with the growth of the field. When
the limit casew,> w,, when the approximate solution of Eq. the field increases, the factdr, produces the phase shift of

(21) can be written as oscillations ofA(H) caused by the interference. The authors
o of Ref. 15 suggest that such a complicated behavidx(éf)
l, = 2 7":“’% <1, (25)  caused by the fluctuation determinantand the interference
wy cosif & of instanton trajectories with Ipdg#0 can be a universal

The field dependence of the Euclidean action can be eval eature for a Wide. class of antiferromagnet§. As we saw ear-
ated asdg ~ By(H)= \W/Hu)z Thus, the naive consider- ier, fo_r the field dl_rected along the easy axis the dependence
) N o A(H) is strongly different from the scheme proposed by the
ation of the magnetic field through the renormalization of theauthors of Ref. 15. For the field directed alona the medium
anisotropy is recovered only in the limit case of high planar__. Lo . . 9

ANISOLODVe- / @ —s 00 axis the behavior is also essentially different.

Pywpl @y ' The case of the field parallel to the medium axis is the
most complicated one, but it is interesting. The right-hand
sides of Eqs(10) are proportional to s cos¢. One type
The case of the field directed along the hard axis is thef exact solutions with the rotation &fin the planexy con-

simplest one. The planeremains preferable for the rotation taining the hard axiy (a planar solutiopncan be written as

B. Field perpendicular to the easy axis
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d=¢o=m(k+1/2) and cos¥=tanHw7) with w=\w’+w?.

| i idean action ANP(MA) = 2NS
For this planar solution the structure of the Euclidean action £ (MA) 2 20
Ag (MA) is the same as for the case of the field directed P
along the hard axis. Particularly, the real partA)g’)(MA) (30

doe; not depenq on the field and the imaginary part is prowhere numerical constany=72/4. The problem can be
portional to the field solved in the opposite limit case, namelygt< w,. For this

B +B mhigugHN case one can replace the operatdt € by €, and the ap-
AP(MA) = 2ANSy | ——L + i ©—. (27  proximate solution reads(&)=2iyH/(ew coslt &). Then, for
Jz 2)z the Euclidean action we arrive to the same equai@), but
For such instanton trajectories the fluctuation determinant iith another numerical constant=8/3~2.667. Comparing
similar to the factor obtained for the case of the field directedhis value found forw, < w, with 72/4~2.467 forw,< w,
along the hard axis. It contains an imaginary part which lead¥ve can tell that for the two opposite limit cases the Euclidean
to an extra contribution to the interference effects. But inaction A(ENP)(MA) is approximately described by the same
contrast to the case of the field directed along the hard axigquation. Thus, we can suggest the E2) is a good ap-
here the plang)=m(k+1/2) is not the plane passing through proximation for any relation between, and w,, that is in
the medium axis. The solution with=¢py=m(k+1/2) and line with numerical data, see Sec. Ill.
W=+ wf, satisfies the systerfil0) exactly, but the real Thus, wheﬂ th_e field is parallel to th.e medium axis, the
part of the action is not minimal, at least at small magneticEuclidean action is real for a nonplanar instanton, and due to
fields H<H,. In order to explain this fact it is sufficient to EQ. (30) it increases faster than it can be expected from the
consider the valug¢i=0, when we have an exact solution Static renormalization of the anisotropy constant. It is pos-
with the rotation in the planex ¢==k and a smaller real Sible to show that both fluctuation determinabts and D,
part of the action. Thus, only for high fields the planar solu-are also real. The interference effects are absent, and the
tion can be relevant. For the naive consideration of the fieldunnel splitting monotonically decreases with the growth of
the real part of the Euclidean action for the solution with ~ the field at smalH <H,, whereH_. is a critical field, at which
=k and 6=6() has to be proportional t§w?+(yH)2, and  the values of the Euclidean actlon)for the nonplanar instanton
ReA(Ep)(MA) is equal to Reél(Ep)(HA) at the pointH=H,. But becomes equal to the real p_armf (MA) for planar instan-
as we will see below, the situation is actually more compli-©ons: For small anisotropy in the basal plang<w,, the

B, (1 +HZH?) \/1+ nH?

cated. value ofH, is small, and

Due to nonzero gyroscopic terms ip the systéeifl) an B,
exact solution with¢=7k does not exist for the casd, He=Hym—— 5= <H,. (31)
#0 and an appropriate approximate instanton solution is By + (7/2)B,

nonplanar. Following the treatment of the preceding section

we write the solution as cog=tani(@?), I, =sin ¢ sin < 1 But it is smaller thatH, even in the opposite limit cass,

and determing, from the linear equation <@p,
. 1
y 2iH 1 H,=Hpy/—— ~0.616H (32
M + ¢)l =— , 28 cp / ‘ P

Thus, at low magnetic fieldd <H_ the Euclidean action for
the nonplanar instanton solutiof!'”(MA) is lower than for

the planar solution. Its value reachA%p)(MA) atH=H,, and

the scenario of tunneling is changed to the planar one, com-
mon to that is present for the field along the hard axis with
the tunneling exponent independent of the magnetic field and
d'vith interference effects caused by imaginary parts of both
Ag and fluctuation determinant.

where e=[w;~(yH)?]/w?, ¢é=w7, andM is defined by Eq.
(18). In contrast to the similar equatiq2l) the right-hand
side of Eq.(28) is symmetric with respect té and a contri-
bution from the localized eigenfuncti@h9q) is present. This
contribution is proportional to 1 and is mostly important
for the caseyH, w,<w,. As we will see below, such an
instanton is important at low field and the abovementione
restriction is irrelevant. The Euclidean action for this nonpla-
nar instanton as a function ef at w,< w, can be written as

52N wﬁ+ ysz . (m/H)ZJ Ill. NUMERICAL DATA

A = —— | 22— —— + 2w+ —— 5 | +AAg, . . .
() 43z ) © 2(w§— y?H?) . The semiclassical analysis of the coherent quantum tun-

(29) neling between the classically _degene_zrated gro_qnd states

demonstrates that the level splitting is highly sensitive to the

whereAAg is a contribution from the continuous spectrum orientation of the magnetic field. Among the considered field
that is determined through an integral okewith a structure  orientations along the axes of rhombic symmetry the cases of
that similar to EqQ.(23). This term contains the factor the easy and medium axis are the most interesting ones. In
(yH/w)? and it can be omitted for the case of interest both cases the Euclidean action has a zero imaginary part,
~ w,<w. After minimizing overw the action for a nonpla- and the corresponding interference effects are absent. We
nar instanton for the case, < w, takes the form also have shown that for these two cases the preexponential
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FIG. 2. Splitting of the lowest level for the quantum model with 0 005 010 015 02 0% 030
Hamiltonian (1), spin S=5, andB,/J=0.1 for three values of the gupH
ratio B,/B,=0.0(solid lineg, 0.2(circles, 0.4 (triangles. The mag- 2J8
netic field is directed along the easy axis and normalized to the N ]
exchange fielHq,=JzSN (gug) with z=1 andN=2. The cusps on FIG. 3. Splitting of the lowest level for the quantum model with
the curves correspond to the change of the ground state that isamiltonian(1), spin S=5, andB,/J=0.1 for three values of the
quantum counterpart of the spin-flop transition. ratio B,/B,=0.0 (solid lineg, 0.2 (circles, 0.4 (triangley, and

the magnetic field directed along the hard agapen symbolsor
medium axis (full symbolg. The field is normalized to the

factor, which could be a source of interference, is real. ThusS*change value.

for these orientations of the magnetic field interference ef-

fects does not appear, and the level splitting is mainly deterbetween the numerical data for the level splittBgE, and
mined by the dependence of the real part of the Euclideathe semiclassical results is that the field of the spin-flop tran-
action on the magnetic field. The character of this function sition identified as a field of the cusp on curves in Fig. 2
is determined by the anisotrofBy, in the basal plane. The slowly depends on the ratiB,/B, for the quantum model.
dependence is absent for the c8se 0 and the field parallel This dependence is completely absent in the semiclassical
to the easy axis only. The exponential factor @xpe/A) is ~ @pproximation, in particular, in the instanton.e_lpproach. Prob-
an increasing function df for the field parallel to easy axis, ably, close the point of the spin-flop transition, where the
and a decreasing function ®f for the field parallel to the sharp decrease of the Euclldean_actlorj is present, the value
medium axis. This behavior strongly differs from that is Of Ae/% becomes comparable with unity even for laige

present for the field directed parallel to the hard axis. and the quantum fluctuations treated beyond the semiclassi-
In order to check the semiclassical results found in as¢@l approximation become important. .
sumption of some inequalities suchBg<B, or B,<B, and In the case of the field directed along the hard axis as well

to estimate the role of the fluctuation determinant, which wa&s in the case of high fieldsi>H, along the medium axis
not investigated here, we diagonalize numeriGliyhe the instanton apprpach predicts that the tunneling occurs
Hamiltonian (1) for the two-spin quantum model with high thr(_)u_gh the plana_r instanton paths._For these cases t_he level
enough values of the spifup to S=100), a small uniaxial splitting A(H) oscnlates_as a fu_nctlon of the field with a
anisotropyB,/J=0.01—0.1 that guarantees reasonable value§onstant period. If the field is directed along the hard axis,
of the level sp“tt'ng, and for several values BE/BU’ see the behavior OfA(H) coincides W|th the-results Of Refs. 13
figures below in this section. The numerical results show @nd 15. The amplitude of oscillations is determined by the
satisfactory agreement with the instanton approximatiorPreexponential factor only, and it weakly depends B
even for moderate values of the S[SFI 10-20 even without This kind of behavior is Clearly seen in Flg 3. In the case of
taking into account the preexponential factor. But some dishigh fields,H>H,, directed along the medium axis the tun-
crepancies, which cannot be attributed to the approximationgeling is also determined by planar instantons with a nonzero
used in the analytical consideration, are also seen. imaginary part of the action and interference effects appear.
For the case of the field directed along the easy axis aBut when the ratioB,/B, increases, the main exponential
B,=0 the tunnel splitting is independent of the field up to thefactor drastically decreases, and the amplitude of oscillations
point of the spin-flop transition. This behavior is exactly re-A(H) decreases also. This feature is in a good agreement
produced by means of a numerical diagonalization, see Figvith the numerical calculations depicted in Fig. 3.
2. Due to the results of the instanton approachBip# 0 the At low fields, H<H,, parallel to the medium axis the
Euclidean action decreases, and the level splitting increasdégnneling is determined by nonplanar instantons. The real
with the growth of the fieldH. The effect becomes more part of the Euclidean action RE(ENP)(MA) monotonically in-
pronounced at larg8,. This behavior well corresponds to creases, and the instanton approach predicts a strong mono-
the numerical data represented in Fig. 2. The only differencéonic decrease ak(H) up toH=H,. For any values oB,/B,
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FIG. 4. Numerical data for the logarithm of the level splitting  FIG. 5. Real part of the Euclidean action per unit spin obtained
normalized by the value &1=0 versus the magnetic field directed from the quantum model with Hamiltonigt), B,/J=0.1 for three
along the medium axis for the spBr10 andB,/J=0.1 and three values of the ratioB,,/J=0.02 (circles, 0.04 (square} 0.08 (tri-
values of the anisotropy constant in the basal plBgJ=0.05  angles, and the magnetic field directed along the easy axis. Solid
(circles, 0.15(squarey 0.25(triangles. The magnetic field is nor-  lines are analytical predictions, E@4). The field is normalized to
malized to the reorientation fieldl,. The solid line describes the the exchange value.
theoretical dependeng80) for a nonplanar instanton.

see also Eq(20) and discussion thergg=3/2 for all rest

at H<H, the instanton approach also predicts that oscilla/n0dels with biaxial symmetry.

tions caused by interference are absent. The effect of the axes The parameteg is also chosen floating in order to absorb
reorientation in the basal plane Bt=H, does not clearly corrections to ther model and its semiclassical treatment.

manifest itself as the spin-flop transition in Fig. 2, but it can This method could, in principle, be applied for any semiclas-
be understood as a shift of a point, where oscillations start, t§ical problem, but it is mostly useful for problems, where the
the region of high fields. Both factors, as well as the growthimaginary part of the action, as well as the preexponential
of the characteristic field of transition to the high-field tun- factor, are zero, and interference effects with oscillations are

neling pictureH,, are in a qualitative agreement with data of @bsent. For the tunneling in the external field this is just the
numerical calculations presented in Fig. 3. problem we are interested in. This condition is realized at
In order to give a more detail comparison of the analytical? <Hu for the field directed along the easy axis ahd
and numerical data for small fields|<H,, parallel to the ~<Hp for the case of the field parallel to the medium one.
medium axis, we investigated numerically the value of spin In order to obtain the values of interest, a numerical cal-
S=10, for which the role of the field dependence of theculation of splitting of the lowest level is performed for few
fluctuation determinant is expected to be less important. Theat least, threglarge values of spin. The real part of the
data together with the simple theoretical estimate of the leve®ction can be easily extracted from the numerical data such
splitting, see Eqg. (30, in the form A(H)/A(0) as qualitatively presented in Figs. 5 and 6. The functions
=exp{-[.A(H)-A(0)]/#}, where A(H) is the value of the -Ae(H) in these figures are obtained by fitting the numerical
Euclidean action for nonplanar instantons, are present in Figlat@ for the spin 18:S<20 and each value of the field using

4. Here we can say about at least a semiquantitative agre&9- (33 , o ) .
ment. For the simplest uniaxial cadk =0 and the field directed

In order to check quantitatively the analytical expressiontlong the easy axis we found that the expected v@la@
(24) and (30) for the real part of the Euclidean action, we 8PPears, and the Euclidean action is independent of the field

propose the method of extracting the valuef from the ~ UP t0 the point of the spin-flop transition. Then, with growth
level splitting data without using an explicit expression for ©f Bp we found a very sharp transition to the regime with one

the preexponential factor. This method is based on the gerf€"© mode, for which the value q8=3/2 is reproduced.
eral theoretical formula for the level splitting Thus, checking tha8 does not differs significantly from 3/2
(the range 1.5+0.1 is takgside by side with more trivial

conditions that the obtained valuesdf 8, andA are stable
A=DS exp(-SA), (33)  with respect to varyingS and the exponenBA is large
enough, we select sets of the parameters for the quantum
whereD, 3, andA are functions independent of the spin with model(1).
normalized values of the magnetic fightVH, or H/H,. In The actionA obtained by fitting of Eq(33) with the fixed
the semiclassical approximation the functiénmeans the valueg=1.5is plotted as function&(H) in Figs. 5 and 6 for
real part of the action per unit of spib), is the preexponen- the fields directed along the easy and medium axes. Note that
tial factor and 3 is associated with the number of zero the actionA(0) at zero field is subtracted from the functions
modes:3=2 for the case of the purely uniaxial symmetry, A(H). The analytical theory gives the vaIlA'(O)=4v‘m
that isB,=0 and the magnetic field parallel to the easy axis,independent oiB,, but numerical calculations demonstrate a
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weak dependence @(0) on By, In details,A(0)=1.26 for 040 F
B,/J=0.1 andA,,,{0) is 1.22, 1.19 and 1.14 for the same 0.35
value B,/J=0.1 andB,/J equal to 0.05, 0.10, 0.20, respec-
tively.

The only way to describe the numerical data is to consider = ot
the fieldsH, andH, in Egs.(24) and (30) as phenomeno- =3
logical parameters that predicted by the classical expressions
(8) and(31). For simplicity, we rescale the fields in Fig. 6 as <% oas}
H—H/H,. The numerical data are fitted by Eq24) and

0.30 |

0.20

(30) using these fields in the rangel<0.1H, and H otor
<0.2H,. Obtained values for a trial parametét,/H, 0051
=1.164,1.144,1.145 fdB,/J=0.05,0.10,0.20 are in a good ok

agreement with the classical result, where obviouﬁly
=H,. Appropriate analytical curves are plotted as solid lines

n Flgs. 5 and 6. In the case of the m_edlum axis the theory FIG. 6. Real part of the Euclidean action per unit spin obtained
predicts the shape of the curves obtained from the quantug,, e quantum model with Hamiltoniad), B,/J=0.1 for three
model W!th a good .accuracy up to fields CI(.)sé.-l_p For the values of the ratioB,/J=0.05 (circles, 0.1 (squarey 0.2 (tri-
easy axis the action decreases more significantly that §nqeq and the magnetic field directed along the medium axis. The
would be expected from the perturbative treatment of thénagnetic field is normalized td, for each value o8, Solid lines
semiclassical model. In both cases we can pretend on thg@e analytical predictions, E¢30), with H, as a trial parameter.
guantitative agreement of the proposed theory and numerical
data.

It is important to note one more discrepancy between the L
developed analytical theory and the presented numericdlictated by the excess spin in the way common to

. . e . 6,17
data. The analytical expression for the level splitting in theferromagnets>*’ Moreover, the presence of a nonzero total

field directed along the hard axis does not contain any del@gnetic moment drastically changes the structure of the
pendency orB,, but in Fig. 4, as well as in the numerical ground state. It is enough to say that the degeneracy is absent

data of Refs. 13 and 15, this dependency is present. It {EXCEPt some fixed directions of the field with respect to the
more important for higher values &,/B,. To explain it, as crystalline axis*® We proposed a way to overcome this
well as the observed dependence of the parametgrand problem?® but limitations caused by noncompensated spins
H,, we note that ther model treats antiferromagnets in the S€ams to be more serious. Note that the same problem ap-
first approximation over small ratios of the anisotropy con-Pears for ferromagnetic particles where the effects of the

stants or the magnetic field to the exchange integralere barrier reductio® and the oscillation behavior of the
the values of these ratios was taken in the range 0.1-0.2, aiound-state tunnel splittif§®2 was predicted many years

the deviation of thar model results that is of order of 10% ad0, but observed only recentf. _ _
from the numerical calculations are not surprising. The key point in this important experimental success is
based on the synthesis of high-spin molecules packed in the

well-oriented monocrystals. Up to our understanding, the
first possibility to investigate purely antiferromagnetic fea-
tures is to use high-spin molecules with a well-defined spin
In conclusion, the antiferromagnetic particles can show atructure. The molecules with ferromagnetic and antiferro-
reach variety of tunneling behaviors that depend on the dimagnetic couplings, uniaxial and rhombic anisotropies have
rection of the magnetic field. In addition to the oscillation been synthesized in the recent ye#rBor known ferromag-
behavior for the field directed along the hard a%i$>we  netic molecules such as §¢he splitting is small, but the
found the growth of the tunnel splitting for the field di- technique developed by Wernsdorfer and SesSddllows
rected parallel to the easy axis and a steep decreasd@mf one to measure a very small tunnel splitting of order of
the field along the medium axis. Both mentioned behaviord0® K. The first possibility discussed by many authors con-
are connected to the tunnel exponent dependence on tlsésts in using spin rings with antiferromagnetic coupling. For
field. It is important to note that such effects cannot be di-well-known antiferromagnetic molecular magnets such as
rectly associated with the decrease or increase of the tunn€ky,, Fe;, Vg the problem is opposite to that for ferromag-
barrier, respectively, that governed by the static renormalizanetic molecules: the anisotropy is too small, and the barrier is
tion of the anisotropy energy. too low to see clear semiclassical effects such as MRST.
Let us briefly discuss the possibility for experimental in- On the other hand, antiferromagnetic rings of eight chro-
vestigations of the tunneling effects predicted in the papemium ions with a high anisotropy have been recently
The main point consists in kinds of antiferromagnets thatsynthesized’ One more possibility is to use spin dimers
could be used for experiments. The traditional antiferromageontaining two coupled high-spin moleculgsnolecular
netic samples such as small ferritin particles have unpairethagnety with a ferromagnetic coupling inside the molecule
spins and behave as noncompensated antiferromagnets. Ford an antiferromagnetic intermolecular coupling. For in-
this reason the destructive interference for them is mainhstance, the observation of the well-structured dimers of high-

IV. CONCLUDING REMARKS
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spin molecules Mp(spin S=9/2) with the antiferromagnetic by means of the magnetic field directed parallel to the me-
coupling between two Mp molecules has been recently dium axis can be useful for following investigations.
reportec?® Quantum tunneling in the Mdimers was inves-
tigated experimentall§? Such dimers of high-spin molecules
such as Fgwith the macroscopic spi8=10 and well pro- The authors thank A. K. Kolezhuk for fruitful discussions
nounced rhombic anisotropy could be a good candidates faind help, and H.-J. Mikeska for useful discussions. This
observation of the effects considered in our papdit. is work was supported by Volkswagen-Stiftung, Grant No.
worth to note also that the predicted possibility of enlargingl/75895. The authors also thank Institute of Theoretical Phys-
the value of the Euclidean actigto suppress the tunneling ics (University of Hanover for kind hospitality.
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