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We consider an effect of a strong magnetic field on the ground-state and macroscopic coherent tunneling in
small antiferromagnetic particles with uniaxial and biaxial single-ion anisotropy. We find several tunneling
regimes that depend on the direction of the magnetic field with respect to the anisotropy axes. For the case of
a purely uniaxial symmetry and the field directed along the easy axis, an exact instanton solution with two
different scales in imaginary time is constructed. For a rhombic anisotropy the effect of the field strongly
depends on its orientation: with the field increasing, the tunneling rate increases or decreases for the field
parallel to the easy or medium axis, respectively. The analytic results are complemented by numerical
simulations.
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During the last decade macroscopic coherent quantum
tunneling between two equivalent classical ground states in
macroscopic or, to be more precise, mesoscopic magnetic
systems became an object of intense experimental and theo-
retical investigations, see for a review Refs. 1 and 2. In the
physics of magnetism such systems are, for instance, small
magnetic particles, magnetic clusters, and high-spin mol-
ecules. The interest in tunneling effects is associated with the
possibility of using these systems as potential elements for
quantum computers. Initially, the calculations of tunneling
effects were carried out for ferromagnets.3,4 However, it hap-
pened that the tunneling effects were experimentally ob-
served by the resonant absorption of electromagnetic waves
for antiferromagnetic ferritin particles.5 The effect of the
magnetic field on the tunneling probability in ferritin par-
ticles have been experimentally studied, see Ref. 6. Accord-
ing to theoretical estimations,7,8 the level spitting in antifer-
romagnets is stronger than in ferromagnets and the effects
can be observed at higher temperatures. Antiferromagnets are
more convenient for experimental investigations of tunneling
effects.

The interest in tunneling in compensated antiferromagnets
has been renewed after the synthesis of high-spin molecules
with antiferromagnetic coupling of spins, so-called ferric
wheels, such as Fe6, Fe10, Cr8, see, for instance, Refs. 9–11.
The interference effects caused by the gyroscopic terms in
the s-model approximation were of main interest.12 For
compensated antiferromagnets such effects can arise due to
an external magnetic field12,13 or a certain kind of the
Dzyaloshinskii-Moriya interaction.14 Chiolero and Loss13

have also found a type of interference effect for such antifer-
romagnets placed in a strong magnetic field directed perpen-
dicular to the easy axis of the antiferromagnetic particle. This
effect caused by the imaginary part of the fluctuation deter-
minant together with the direct contribution of the field to the
imaginary part of the Euclidean action produces the periodic
dependence of the level splitting on the field strength. Then
Hu et al.15 have investigated these effects for a more general
case of antiferromagnets with rhombic anisotropy. They have
considered the case of the field directed along the hard axis

and found the behavior common to that in Ref. 13. They also
suggested that such properties are universal for a wide class
of antiferromagnets subject to a strong magnetic field.

In this paper we consider the effects of coherent quantum
tunneling for a compensated antiferromagnetic particle with
rhombic anisotropy placed in the magnetic field. In Sec. I we
describe the model used for the evaluation of tunnel splitting
and analyze the static energy of the particle for three differ-
ent orientations of the magnetic field along the crystalline
axes. Section II is devoted to the calculation of the level
splitting of the ground states in the instanton approximation
for the orientations of the field along the easy, middle, and
hard axis separately and for relevant ranges of the field
strength. Section III contains a qualitative comparison of
analytical results with data of numerical calculations for
level splitting and a direct comparison for the Euclidean ac-
tion. The final section resumes obtained results and gives a
short survey of experiments where the predicted effects
could be observed. We use the standard semiclassical analy-
sis based on the instanton technique applied to the nonlinear
s-model, as well as the direct numerical diagonalization of
the corresponding quantum spin Hamiltonian. We demon-
strate that the behavior of the level splitting is highly sensi-
tive to the orientation of the magnetic field. In fact, three
different scenarios for the orientation of the field along the
symmetry axes are found.

I. NONLINEAR s MODEL FOR ANTIFERROMAGNETS
IN A MAGNETIC FIELD

We start from the Hamiltonian describing a magnetic par-
ticle with an even numberN of magnetic ions with the spinS
and coupled with the nearest-neighbor antiferromagnetic ex-
change interactionJ. We also assume that a single-ion aniso-
tropy with rhombic symmetry and the magnetic fieldH are
present. The macroscopic Hamiltonian of the system can be
written as
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H = Jo
kabl

SaSb + Buo
a

fsSa
xd2 + sSa

yd2g

+ Bpo
a

sSa
yd2 − gmBo

a

H ·Sa. s1d

Here,Sa is the spin at theath site,g<2 is the Landé factor,
and mB is the Bohr magneton. The first term describes the
isotropic exchange interactionJ.0 and the summation in
this term is extended over the pairs of nearest neighbors. The
second and third terms give the simplest form of a rhombic
single-ion anisotropy;Bu and Bp are the constants of the
uniaxial anisotropy and the anisotropy in the basal planexy,
respectively. We assume thatBu.0 andBp.0. Thus,z is the
easy axis andx, y are the medium and hard axes, respec-
tively. The last term corresponds to the coupling spins with
the magnetic field.

We will analyze the system under the assumption that all
spin pairs are equivalent and have the same coordination
numberz. It is true for spin dimerssz=1d, spin wheelssz
=2d, and can be a good approximation for mesoscopic three-
dimensional crystalline particles withN@1, in which the
surface variation of parameters can be neglected. Assume
that the Zeeman energygmBHS, the anisotropy energyBpS

2,
and BuS

2 are much smaller than the exchange energyJzS2.
The classical approximation gives that the spins in each sub-
lattice are parallel. This assumption is a necessary condition
for using thes model as a model for describing both classic
and quantum dynamics of antiferromagnets.13 For the semi-
classical dynamics, especially for tunneling, it is convenient
to use the Euclidean formulation, which is based on the in-
troduction of imaginary timet= it.

The Euclidean action for thes model that corresponds to
the microscopic Hamiltonian(1) can be written as

AEflstdg =E
−`

+`

LEfustd,fstdgdt

= NE
−`

+`

dtH "2

4Jz
fl̇2 − 2igH · sl 3 l̇dg + wasldJ ,

s2d

whereg=gmB/" is the gyromagnetic ratio,N is the number
of magnetic ions in both sublattices, and the overdot denotes
the derivative with respect to the imaginary timet.

In this approach the total spinStot of the particle becomes
a slave variable, and it is determined through the unit Néel

vector l and its derivativel̇ with respect tot :

Stot =
"N

Jz
hgfH − lsH · ldg + isl 3 l̇dj. s3d

The functionwasld is an effective energy of anisotropy per
spin with renormalization caused by the external field

wasld = BuS
2slx

2 + ly
2d + BpS

2ly
2 +

sgmBd2

4Jz
sH · ld2. s4d

In accordance with the general rules of the semiclassical
approximation formulated in the instanton language the am-
plitude of the tunnel transition from the statel = l− to l = l+ is

proportional to exps−AE/"d, where the value ofAE is calcu-
lated from appropriate equations of motion under the bound-
ary conditions:lstd→ l− at t→−` and lstd→ l+ at t→ +`.
Tunnel splitting in the so-called dilute instanton gas approxi-
mation is determined by the modulus of the sum of such
amplitudes calculated along all instanton trajectories with a
minimal value of ReAE.

It is convenient to introduce a polar parametrization for
the unit vectorl

lz = cosu, lx = sinu cosf, ly = sinu sinf. s5d

The Lagrangian from Eq.(2) in such a parametrization takes
the form

LEfustd,fstdg = Nwasu,fd +
"2N

4Jz
su̇2 + ḟ2 sin2 u

− 2ighu̇sHy cosf − Hx sinfd + ḟfHz sin2 u

− sHx cosf + Hy sinfdsinu cosugjd. s6d

Here we omitted the term with a full derivative proportional
to NSḟ because it does not create the interference effects for
the tunneling between opposite points of the unit sphere for a
fully compensated antiferromagnet.

At zero magnetic field instanton solutions that give
minima of the action(2) with the boundary conditions
ls±`d→ ± êz can be easily found. The above-mentioned con-
ditions take the formus−`d=0, us+`d=p with arbitrary val-
ues for fs±`d. The instanton solutions correspond to the
rotation of l in the symmetry planes of the system, i.e.,f
=pk/2, wherek is integer, and

cosu = tanhsv̄td, sinu =
s

coshsv̄td
, s7d

wheres= ±1 is the polarization of the instanton. The “fre-
quency” v̄ is 2SÎJzBu/" for the instanton paths going
through the medium axisf=0,p and v̄=2SÎJzsBu+Bpd /"
for the paths going through the hard axisf= ±p /2. The
Euclidean action calculated on these instantons is simply
AE="Ns"v̄ /Jzd. Following the saddle-point approximation
that corresponds to the dilute instanton gas we take into ac-
count only paths with a minimal real part of the Euclidean
action, i.e., with the smallestv̄=2SÎJzBu/". Thus, at zero
magnetic field the only instanton pair withs= ±1 and the
rotation of l in the planexz contributes to the tunneling. The
presence of the magnetic field drastically changes the fea-
tures of the spin tunneling between two different classical
ground states in the antiferromagnetic particle.

First of all we consider the influence of the magnetic field
on the static classical properties of the antiferromagnetic par-
ticle. We will use the expression(4) and restrict ourselves to
the cases when the field is parallel to one of the symmetry
axesx, y, or z. In these cases the field simply renormalizes
the value of the appropriate anisotropy constants.

The influence of the field on the ground state is essential
when the field is directed along the easy axisz. In this case
the renormalized constant of the uniaxial anisotropyBusHd
can change its sign,BusHd=Bus1−H2/Hu

2d, where
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Hu =
2SÎJzBu

gmB
s8d

is the field of the familiar spin-flop phase transition in the
classical theory of antiferromagnetism. WhenH.Hu the
states withl i ± êz become unstable and the ground states
havel parallel to ±êx.

WhenH is parallel to the medium axisx, the constantBu
increases,BusHd=Bu+sgmBHd2/ s4JzS2d andBp decreases as
BpsHd=Bp−sgmBHd2/ s4JzS2d, with the growth of the field.
Thus, the field does not effect on the ground state, but a
strong enough field can change the type of the axesx andy
in the basal plane. WhenH.Hp, where

Hp =
2SÎJzBp

gmB
, s9d

the axisy becomes an easy direction in the basal plane(me-
dium axis) and the axisx is a hard one.

Finally, if the magnetic field is directed along the hard
axis y, both anisotropy constants increase asBu,psHd=Bu,p

+sgmBHd2/ s4JzS2d. In this case, the field does not change the
ground state, as well as the type of the axes.

The naive substitution of the renormalized constants into
the expressions(7) for an instanton and the Euclidean action
calculated on it leads to a wrong prediction that when the
field is directed along the easy axisAE→0 at H→Hu, and
for the field along the medium axis the values ofAE on the
two classes of trajectories[f=pk and f=s2k+1dp /2] be-
come equal atH=Hp. As we will show below, both sugges-
tions are wrong.

In addition to the abovementioned renormalizations of the
anisotropy constants, the field changes the dynamics of the
vector l and leads to the appearance of a gyroscopic term
linear in dl /dt in the Lagrangian. The role of gyroscopic
terms for tunneling in antiferromagnets has been discussed in
Refs. 12 and 13. The authors of these papers have shown that
the gyroscopic term caused by the magnetic field can create
the imaginary part of the Euclidean actionAE that is a linear
function of the magnetic field. As we have shown, similar
effects can also arise due to the Dzyaloshinskii-Moriya
interaction.14 The imaginary part of the Euclidean actionAE
can lead to the interference effects and to the oscillations of
the tunnel splitting as a function of the magnetic field. We
will show below that the gyroscopic term produces a dy-
namic renormalization of the real part ofAE, which is qua-
dratic in the magnetic field. It can completely suppress the
static contribution toAE coming from the renormalization of
the anisotropy constants.

II. INSTANTON SOLUTIONS

In order to describe macroscopic quantum tunneling be-
tween two classical statesl = êz andl =−êz in the saddle-point
approximation, it is necessary to find instanton solutions
of the two Euler-Lagrange equations for the Euclidean
action (2) for the independent variablesustd and fstd.
Using the identitiessd /dudedtH ·sl 3 l̇d=−2ḟsHl dsinu and

sd /dfdedtH ·sl 3 l̇d=2u̇sHl dsinu that can be obtained
through the variation of the Lagrangian(6), it is convenient
to write down the Euler-Lagrange equations with the mag-
netic fieldH directed along an arbitrary symmetry axis

ü − hvu
2 + ḟ2 + g 2sHx

2 − Hz
2d

+ fvp
2 + g 2sHy

2 − Hx
2dgsin2 fjsinu cosu

= − 2iḟgsHl dsinu, s10ad

f̈ sin2 u + 2ḟu̇ sinu cosu

− fvp
2 + g 2sHy

2 − Hx
2dgsin2 u sinf cosf

= 2i u̇gsHl dsinu. s10bd

Here vu=gHu=2SÎ2JzBu/" and vp=gHp=2SÎ2JzBp/".
The terms in the right-hand side are responsible for the gy-
roscopic dynamics of the vectorl. Note that we consider the
field directed along one of the crystalline axes only, so only
one of the componentsH in the system(10)) is nonzero.

It is important to note that in the caseH Þ0 simple planar
solutions such asf=pk/2 may not exist. If such solutions
are absent, the full system(10) is equivalent to the Lagrange
equations for a mechanical system with two degrees of free-
dom. To integrate such a system, the existence of two inde-
pendent integrals of motion is necessary. For the general case
vuÞ0 andvpÞ0 only one first integral is known

E = u̇ 2 + ḟ2 sin2 u − vu
2 sin2 u − vp

2 sin2 u sin2 f, s11d

with the valueE=0 for separatrix solutions we are interested
in. For this reason the system(10) cannot be solved analyti-
cally. However, approximate solutions can be constructed for
all cases of interest; see a detailed consideration in the fol-
lowing sections.

A. Field parallel to the easy axis

We will start from the case of the field parallel to the easy
axis, for which the gyroscopic terms in the right-hand side of
Eqs.(10) are independent off. The field does not violate the
rotational symmetry around the easy axis, and the model
with an isotropic basal planesvp=0d has a physical meaning
for this case. Its analysis leads to instructive results and we
give it completely.

If vp=0, the system(10) has one more integral of motion,
which can be written as

V = sḟ − igHdsin2 u = const. s12d

Using the two integrals of motion(11) and (12), we can
simplify the system to the ordinary differential equation for
ustd only

u̇ 2 − vu
2 sin2 u −

V2

sin2 u
= E s13d

and integrate it exactly. The instanton solutions with appro-

priate boundary conditionsu→0, p, and u̇→0 at t→ ±`
correspond to the values of the integralsV=0, E=0. Thus,
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the solution isf= igHst−t1d, wheret1 is an arbitrary con-

stant. Equation(13) simplifies tou̇2=vu
2 sin2 u, and its solu-

tion is described by the formula(7) with v̄=vu. In terms of
the vectorl, the instanton solution forH parallel to the easy
axis andvp=0 takes the form

lx = s
coshfgHst − t1dg
coshfv̄0st − t0dg

, s14ad

ly = is
sinhfgHst − t1dg
coshfv̄0st − t0dg

, s14bd

lz = tanhfv̄0st − t0dg. s14cd

This solution has correct instanton asymptoticslx,y→0 and
lz→ ±1 at t→ ±` for all H in the rangegH,vu, which
corresponds toH,Hu. It is valid in the full region of stabil-
ity of the statesl = ± êz. Though the constant of effective
anisotropyBusHd changes fromBu at H=0 to 0 atH=Hu, the
Euclidean action calculated on the solution(14) does not
depend onH, its real part is the same as atH=0 and the
imaginary part is zero. Thus, in the uniaxial caseBp=0 and
H,Hu the action is

AE = 2"NSÎBu

Jz
. s15d

This simple example shows that the gyroscopic term can
essentially suppress the static renormalization of the aniso-
tropy constant. For the casevp=0 the renormalization is
completely compensated by the gyroscopic term andAE is
real and does not depend on the field.

For the casevp=0 an exact solution of the problem of
small fluctuations around the classical instanton solution is
possible to construct, and the preexponential factor can be
explicitly written. To do so, we introduce small perturbations
q andm as

ustd = u0std + q, s16ad

fstd = f0std +
m

sinu0std
, s16bd

whereu0std and f0std correspond to the instanton solution
given by Eqs.(14). The variational part of the action isAE

−AE
s0d, whereAE

s0d is calculated on the unperturbed instanton
solution. It can be written as a sum of two independent terms
AE−AE

s0d=d2AE
sud+d2AE

sfd with the decoupled degrees of
freedomq andm. Both terms have the same form

d2AE
sad =

N"2v̄

4Jz
E

−`

+`

djsf sad,M̂ f sadd, s17d

where j=v̄t, f sad is q or m for d2AE
sud or d2AE

sfd, respec-

tively, andM̂ is the linear operator

M̂ = −
d2

dj2 + 1 −
2

cosh2 j
. s18d

This operator frequently appears in scattering problems as-
sociated with soliton theory, so its properties are well stud-

ied. The full set of its eigenvalues and normalized eigenfunc-
tions is

M̂ f0 = 0, f0 =
1

Î2 coshj
, s19ad

M̂ fk = s1 + k2dfk, fk =
stanhj − ikde−ikj

ÎLs1 + k2d
. s19bd

The modef0 is a localized eigenfunction and the modes with
f = fk form a continuous spectrum.

It is worthwhile to note that in contrast to other problems
of macroscopic quantum tunneling, for the case of antiferro-
magnets withvp=0 the zero modef0 is present forboth
kinds of fluctuations. The second zero mode is caused by the
exact rotational symmetry around the axisz. The full preex-
ponential factor for this problem is asquareof the usual
fluctuation determinantD=ÎAE

s0d / s2p "d, and the tunnel
splitting of the lowest levelsD takes the form

D = C"vuSAE
s0d

2p"
Dexps− AE

s0d/"d, s20d

whereC is a numerical constant of order of unity. The addi-
tional large factorÎAE

s0d / s2p"d is a consequence that the
instanton solution(14) in the casevp=0 contains two(not
one, as usually) continuous parameterst1 and t0. Note that
the level splittingD does not depend on the magnetic field
even if the fluctuation determinant is taken into account. This
result can be explained using exact quantum-mechanical ar-
guments. For uniaxial system the Hamiltonian of the system

commutes with thez projection of the total spinŜz, and the
eigenstates of the problem can be characterized by definite
valuesSz=0, ±1, ±2, . . . . The twolowest levels form a dou-
blet with Sz=0 and the magnetic field does not influence on
them. For this model the spin-flop transition at the fieldH
=Hu corresponds to the change of the value ofSz for the
lowest level fromSz=0 to the valueSz=1 or higher. Then,
the growth of the magnetic field leads to the growth ofSz and
a sawlike dependenceDsHd appears. Since these effects are
not associated with tunneling, we will not consider them in
the following, and restrict ourselves only to the region
H,Hu.

Now we consider a more general casevpÞ0. It is clear
that at finite nonzerovp the additional factorsAE/2p "d1/2 is
absent, and the preexponential factor is smaller than that for
the uniaxial casevp=0. The levels cannot be characterized
by the quantum numberSz=0, ±1, ±2, . . ., andtheir splitting
becomes dependent on the magnetic field.

The instanton solutions withu=ustd, f=0 exist atH=0.
It can be expected that atgH!vu the value off or, more
accurately, the appropriate projection of the vectorl, ly
.sinf sinu0 is small, and the functionustd can be given by
the solution similar to Eq.(14). If vp@vu, the out-of-plane
components ofl are small, i.e.ulyu!1. Assuming thatulyu
!1 for all values of parameters, the variational technique
can be applied for evaluating the action. Choosing as a trial
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function cosu=tanhfv̄st−t1dg with some parameterv̄ that
have to be found later, we rewrite Eq.(10b) in the linear
approximation inly as

sM̂ + edlysjd =
2igH

v̄

sinhj

cosh2 j
. s21d

Here e=svp/ v̄d2, j=v̄t, and M̂ is the linear operator(18)
introduced above with non-negative eigenvalues. Sincee

.0, the operatorM̂ +e is positively defined. It has an inverse
operator which can be written through the ordinary bra and
ket notation of eigenfunctions as

1

M̂ + e
=

uf0lkf0u
e

+ o
k

ufklkfku
1 + e + k2 , s22d

where the summation is extended over the continuous spec-
trum. Sinceksinhj /cosh2 j , f0l=0, the formal solution of
Eq. (21) does not contain a term with 1/e. The solutionlysjd
is determined by the summation over the states of the con-
tinuous spectrumfk only. After simple calculations the Eu-
clidean action as a function of the trial parameterv̄ takes the
form

AEsv̄d =
"2N

4JzF2Svu
2

v̄
+ v̄D

−
psgHd2vp

2

2v̄3 E
−`

+` dk

s1 + k2 + vp
2/v̄2dcosh2spk/2dG .

s23d

If vp=0, the minimum of the action(23) is reached atv̄
=vu and we return to Eq.(15) again. Thus, in agreement
with the previous analysis the Euclidean action depends on
the field for vpÞ0 only. If the ratio vp/vu is small, this
dependence is weak, and for the case of the field directed
along the easy axis the Euclidean action is

AEsEAd = 2"NSÎBu

JzF1 −
psgHd2vp

2

2vu
4 + ¯ G . s24d

Thus, forvp!vu the dependence of the Euclidean actionAE
on the field is weaker than it can be obtained from the naive
consideration(see Fig. 1). The problem also can be solved in
the limit casevp@vu, when the approximate solution of Eq.
(21) can be written as

ly .
2igHv̄

vp
2

sinhj

cosh2 j
! 1. s25d

The field dependence of the Euclidean action can be evalu-
ated asAE,BusHd=Î1−sH /Hud2. Thus, the naive consider-
ation of the magnetic field through the renormalization of the
anisotropy is recovered only in the limit case of high planar
anisotropyvp/vu→`.

B. Field perpendicular to the easy axis

The case of the field directed along the hard axis is the
simplest one. The planexz remains preferable for the rotation

of the vectorl for all values of the field. The right-hand sides
of the system(10) are proportional to sin2 u sinf, and the
exact solution of the system(10) is f=f0=pk, v̄=vu. It
corresponds to the rotation in the most preferable planexz.
The real part of the Euclidean action is independent of the
field, but the imaginary parts have opposite signs for the two
equivalent instanton trajectories withf=0 andf=p,

AEsHAd = 2"NSÎBu

Jz
± i

p"gmBHN

2Jz
. s26d

The nonzero imaginary part of the action(26) leads to inter-
ference of the instanton trajectories and an oscillating depen-
dence of the transition probability on the field.12,13 In this
geometry the most interesting effect arises due to the fluc-
tuation determinant.13,15The equations for small fluctuations
q andm around the instanton solution are uncoupled again,
but a complex-valued potential appears in the equation forq.
The eigenvalues and the fluctuation determinant are also
complex. Thus, the presence ofDu changes not only the tun-
neling amplitude for the instanton solution with a given
value ofs, but also a phase shift for two instanton paths with
s= ±1. At low fieldsDu is almost real. It creates a decrease
of the tunnel amplitude with the growth of the field. When
the field increases, the factorDu produces the phase shift of
oscillations ofDsHd caused by the interference. The authors
of Ref. 15 suggest that such a complicated behavior ofDsHd
caused by the fluctuation determinantDu and the interference
of instanton trajectories with ImAEÞ0 can be a universal
feature for a wide class of antiferromagnets. As we saw ear-
lier, for the field directed along the easy axis the dependence
DsHd is strongly different from the scheme proposed by the
authors of Ref. 15. For the field directed along the medium
axis the behavior is also essentially different.

The case of the field parallel to the medium axis is the
most complicated one, but it is interesting. The right-hand
sides of Eqs.(10) are proportional to sin2 u cosf. One type
of exact solutions with the rotation ofl in the planexy con-
taining the hard axisy (a planar solution) can be written as

FIG. 1. The real part of the Euclidean action in units of"2N/2Jz
as a function of the magnetic field(schematically). Data for the field
directed along the easy, medium, and hard axes are marked as EA,
MA, and HA, respectively, close to the appropriate curves. Solid
lines represent the calculations ofAE on the base of the full system
(10), dashed lines are results of the naive consideration.
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f=f0=psk+1/2d and cosu=tanhsv̄td with v̄=Îvu
2+vp

2.
For this planar solution the structure of the Euclidean action
AE

spdsMAd is the same as for the case of the field directed
along the hard axis. Particularly, the real part ofAE

spdsMAd
does not depend on the field and the imaginary part is pro-
portional to the field

AE
spdsMAd = 2"NSÎBu + Bp

Jz
± i

p "gmBHN

2Jz
. s27d

For such instanton trajectories the fluctuation determinant is
similar to the factor obtained for the case of the field directed
along the hard axis. It contains an imaginary part which leads
to an extra contribution to the interference effects. But in
contrast to the case of the field directed along the hard axis
here the planef=psk+1/2d is not the plane passing through
the medium axis. The solution withf=f0=psk+1/2d and
v̄=Îvu

2+vp
2 satisfies the system(10) exactly, but the real

part of the action is not minimal, at least at small magnetic
fields H,Hp. In order to explain this fact it is sufficient to
consider the valueH=0, when we have an exact solution
with the rotation in the planezx f=pk and a smaller real
part of the action. Thus, only for high fields the planar solu-
tion can be relevant. For the naive consideration of the field
the real part of the Euclidean action for the solution withf
=pk andu=ustd has to be proportional toÎvu

2+sgHd2, and
ReAE

spdsMAd is equal to ReAE
spdsHAd at the pointH=Hp. But

as we will see below, the situation is actually more compli-
cated.

Due to nonzero gyroscopic terms in the system(10) an
exact solution withf=pk does not exist for the caseHx
Þ0 and an appropriate approximate instanton solution is
nonplanar. Following the treatment of the preceding section,
we write the solution as cosu=tanhsv̄td, ly=sinf sinu!1
and determinely from the linear equation

sM̂ + edlysjd =
2igH

v̄

1

cosh2 j
, s28d

wheree=fvp
2−sgHd2g / v̄2, j=v̄t, and M̂ is defined by Eq.

(18). In contrast to the similar equation(21) the right-hand
side of Eq.(28) is symmetric with respect toj and a contri-
bution from the localized eigenfunction(19a) is present. This
contribution is proportional to 1/e and is mostly important
for the casegH, vp!vu. As we will see below, such an
instanton is important at low field and the abovementioned
restriction is irrelevant. The Euclidean action for this nonpla-
nar instanton as a function ofv̄ at vp,vu can be written as

AEsv̄d =
"2N

4Jz
F2

vu
2 + g 2H2

v̄
+ 2v̄ +

spgHd2v̄

2svp
2 − g 2H2dG + DAE,

s29d

whereDAE is a contribution from the continuous spectrum
that is determined through an integral overk with a structure
that similar to Eq. (23). This term contains the factor
sgH / v̄d2 and it can be omitted for the case of interestgH
,vp!v̄. After minimizing overv̄ the action for a nonpla-
nar instanton for the casevp,vu takes the form

AE
sNPdsMAd = 2"NSÎBus1 + H2/Hu

2d
Jz

Î1 +
hH2

Hp
2 − H2 ,

s30d

where numerical constanth=p2/4. The problem can be
solved in the opposite limit case, namely, atvu,vp. For this

case one can replace the operatorM̂ +e by e, and the ap-
proximate solution readslysjd=2igH / sev̄ cosh2 jd. Then, for
the Euclidean action we arrive to the same equation(30), but
with another numerical constanth=8/3<2.667. Comparing
this value found forvu,vp with p2/4<2.467 forvp,vu,
we can tell that for the two opposite limit cases the Euclidean
action AE

sNPdsMAd is approximately described by the same
equation. Thus, we can suggest the Eq.(30) is a good ap-
proximation for any relation betweenvp and vu, that is in
line with numerical data, see Sec. III.

Thus, when the field is parallel to the medium axis, the
Euclidean action is real for a nonplanar instanton, and due to
Eq. (30) it increases faster than it can be expected from the
static renormalization of the anisotropy constant. It is pos-
sible to show that both fluctuation determinantsDu and Df

are also real. The interference effects are absent, and the
tunnel splitting monotonically decreases with the growth of
the field at smallH,Hc, whereHc is a critical field, at which
the values of the Euclidean action for the nonplanar instanton
becomes equal to the real part ofAE

spdsMAd for planar instan-
tons. For small anisotropy in the basal plane,vp!vu, the
value ofHc is small, and

Hc = Hp

Bp

Bp + sp/2d2Bu
! Hp. s31d

But it is smaller thatHp even in the opposite limit casevu
!vp,

Hc = HpÎ 1

1 +Îh
< 0.6163Hp. s32d

Thus, at low magnetic fieldsH,Hc the Euclidean action for
the nonplanar instanton solutionAE

sNPdsMAd is lower than for
the planar solution. Its value reachesAE

spdsMAd at H=Hc, and
the scenario of tunneling is changed to the planar one, com-
mon to that is present for the field along the hard axis with
the tunneling exponent independent of the magnetic field and
with interference effects caused by imaginary parts of both
AE and fluctuation determinant.

III. NUMERICAL DATA

The semiclassical analysis of the coherent quantum tun-
neling between the classically degenerated ground states
demonstrates that the level splitting is highly sensitive to the
orientation of the magnetic field. Among the considered field
orientations along the axes of rhombic symmetry the cases of
the easy and medium axis are the most interesting ones. In
both cases the Euclidean action has a zero imaginary part,
and the corresponding interference effects are absent. We
also have shown that for these two cases the preexponential

B. A. IVANOV AND V. E. KIREEV PHYSICAL REVIEW B 70, 214430(2004)

214430-6



factor, which could be a source of interference, is real. Thus,
for these orientations of the magnetic field interference ef-
fects does not appear, and the level splitting is mainly deter-
mined by the dependence of the real part of the Euclidean
action on the magnetic fieldH. The character of this function
is determined by the anisotropyBp in the basal plane. The
dependence is absent for the caseBp=0 and the field parallel
to the easy axis only. The exponential factor exps−AE/"d is
an increasing function ofH for the field parallel to easy axis,
and a decreasing function ofH for the field parallel to the
medium axis. This behavior strongly differs from that is
present for the field directed parallel to the hard axis.

In order to check the semiclassical results found in as-
sumption of some inequalities such asBp!Bu or Bu!Bp and
to estimate the role of the fluctuation determinant, which was
not investigated here, we diagonalize numerically30 the
Hamiltonian(1) for the two-spin quantum model with high
enough values of the spin(up to S=100), a small uniaxial
anisotropyBu/J=0.01–0.1 that guarantees reasonable values
of the level splitting, and for several values ofBp/Bu, see
figures below in this section. The numerical results show a
satisfactory agreement with the instanton approximation
even for moderate values of the spinS=10–20 even without
taking into account the preexponential factor. But some dis-
crepancies, which cannot be attributed to the approximations
used in the analytical consideration, are also seen.

For the case of the field directed along the easy axis at
Bp=0 the tunnel splitting is independent of the field up to the
point of the spin-flop transition. This behavior is exactly re-
produced by means of a numerical diagonalization, see Fig.
2. Due to the results of the instanton approach, forBpÞ0 the
Euclidean action decreases, and the level splitting increases
with the growth of the fieldH. The effect becomes more
pronounced at largeBp. This behavior well corresponds to
the numerical data represented in Fig. 2. The only difference

between the numerical data for the level splittingE1-E0 and
the semiclassical results is that the field of the spin-flop tran-
sition identified as a field of the cusp on curves in Fig. 2
slowly depends on the ratioBp/Bu for the quantum model.
This dependence is completely absent in the semiclassical
approximation, in particular, in the instanton approach. Prob-
ably, close the point of the spin-flop transition, where the
sharp decrease of the Euclidean action is present, the value
of AE/" becomes comparable with unity even for largeS,
and the quantum fluctuations treated beyond the semiclassi-
cal approximation become important.

In the case of the field directed along the hard axis as well
as in the case of high fields,H.Hc, along the medium axis
the instanton approach predicts that the tunneling occurs
through the planar instanton paths. For these cases the level
splitting DsHd oscillates as a function of the field with a
constant period. If the field is directed along the hard axis,
the behavior ofDsHd coincides with the results of Refs. 13
and 15. The amplitude of oscillations is determined by the
preexponential factor only, and it weakly depends onBp.
This kind of behavior is clearly seen in Fig. 3. In the case of
high fields,H.Hc, directed along the medium axis the tun-
neling is also determined by planar instantons with a nonzero
imaginary part of the action and interference effects appear.
But when the ratioBp/Bu increases, the main exponential
factor drastically decreases, and the amplitude of oscillations
DsHd decreases also. This feature is in a good agreement
with the numerical calculations depicted in Fig. 3.

At low fields, H,Hc, parallel to the medium axis the
tunneling is determined by nonplanar instantons. The real
part of the Euclidean action ReAE

sNPdsMAd monotonically in-
creases, and the instanton approach predicts a strong mono-
tonic decrease ofDsHd up toH=Hc. For any values ofBp/Bu

FIG. 2. Splitting of the lowest level for the quantum model with
Hamiltonian (1), spin S=5, andBu/J=0.1 for three values of the
ratioBp/Bu=0.0(solid lines), 0.2(circles), 0.4(triangles). The mag-
netic field is directed along the easy axis and normalized to the
exchange fieldHex=JzSN/ sgmBd with z=1 andN=2. The cusps on
the curves correspond to the change of the ground state that is a
quantum counterpart of the spin-flop transition.

FIG. 3. Splitting of the lowest level for the quantum model with
Hamiltonian (1), spin S=5, andBu/J=0.1 for three values of the
ratio Bp/Bu=0.0 (solid lines), 0.2 (circles), 0.4 (triangles), and
the magnetic field directed along the hard axis(open symbols) or
medium axis (full symbols). The field is normalized to the
exchange value.
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at H,Hc the instanton approach also predicts that oscilla-
tions caused by interference are absent. The effect of the axes
reorientation in the basal plane atH=Hp does not clearly
manifest itself as the spin-flop transition in Fig. 2, but it can
be understood as a shift of a point, where oscillations start, to
the region of high fields. Both factors, as well as the growth
of the characteristic field of transition to the high-field tun-
neling pictureHc, are in a qualitative agreement with data of
numerical calculations presented in Fig. 3.

In order to give a more detail comparison of the analytical
and numerical data for small fields,H,Hc, parallel to the
medium axis, we investigated numerically the value of spin
S=10, for which the role of the field dependence of the
fluctuation determinant is expected to be less important. The
data together with the simple theoretical estimate of the level
splitting, see Eq. (30), in the form DsHd /Ds0d
=exph−fAsHd−As0dg /"j, where AsHd is the value of the
Euclidean action for nonplanar instantons, are present in Fig.
4. Here we can say about at least a semiquantitative agree-
ment.

In order to check quantitatively the analytical expressions
(24) and (30) for the real part of the Euclidean action, we
propose the method of extracting the value ofAE from the
level splitting data without using an explicit expression for
the preexponential factor. This method is based on the gen-
eral theoretical formula for the level splitting

D = DSb exps− SAd, s33d

whereD, b, andA are functions independent of the spin with
normalized values of the magnetic fieldH /Hp or H /Hu. In
the semiclassical approximation the functionA means the
real part of the action per unit of spin,D is the preexponen-
tial factor and b is associated with the number of zero
modes:b=2 for the case of the purely uniaxial symmetry,
that isBp=0 and the magnetic field parallel to the easy axis,

see also Eq.(20) and discussion there;b=3/2 for all rest
models with biaxial symmetry.

The parameterb is also chosen floating in order to absorb
corrections to thes model and its semiclassical treatment.
This method could, in principle, be applied for any semiclas-
sical problem, but it is mostly useful for problems, where the
imaginary part of the action, as well as the preexponential
factor, are zero, and interference effects with oscillations are
absent. For the tunneling in the external field this is just the
problem we are interested in. This condition is realized at
H,Hu for the field directed along the easy axis andH
,Hp for the case of the field parallel to the medium one.

In order to obtain the values of interest, a numerical cal-
culation of splitting of the lowest level is performed for few
(at least, three) large values of spin. The real part of the
action can be easily extracted from the numerical data such
as qualitatively presented in Figs. 5 and 6. The functions
AEsHd in these figures are obtained by fitting the numerical
data for the spin 10,S,20 and each value of the field using
Eq. (33).

For the simplest uniaxial caseBp=0 and the field directed
along the easy axis we found that the expected valueb=2
appears, and the Euclidean action is independent of the field
up to the point of the spin-flop transition. Then, with growth
of Bp we found a very sharp transition to the regime with one
zero mode, for which the value ofb=3/2 is reproduced.
Thus, checking thatb does not differs significantly from 3/2
(the range 1.5±0.1 is taken) side by side with more trivial
conditions that the obtained values ofD, b, andA are stable
with respect to varyingS and the exponentSA is large
enough, we select sets of the parameters for the quantum
model (1).

The actionA obtained by fitting of Eq.(33) with the fixed
valueb=1.5 is plotted as functionsAsHd in Figs. 5 and 6 for
the fields directed along the easy and medium axes. Note that
the actionAs0d at zero field is subtracted from the functions
AsHd. The analytical theory gives the valueAs0d=4ÎBu/J
independent onBp, but numerical calculations demonstrate a

FIG. 5. Real part of the Euclidean action per unit spin obtained
from the quantum model with Hamiltonian(1), Bu/J=0.1 for three
values of the ratioBp/J=0.02 (circles), 0.04 (squares), 0.08 (tri-
angles), and the magnetic field directed along the easy axis. Solid
lines are analytical predictions, Eq.(24). The field is normalized to
the exchange value.

FIG. 4. Numerical data for the logarithm of the level splitting
normalized by the value atH=0 versus the magnetic field directed
along the medium axis for the spinS=10 andBu/J=0.1 and three
values of the anisotropy constant in the basal plane:Bp/J=0.05
(circles), 0.15(squares), 0.25(triangles). The magnetic field is nor-
malized to the reorientation fieldHp. The solid line describes the
theoretical dependence(30) for a nonplanar instanton.
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weak dependence ofAs0d on Bp. In details,Aths0d=1.26 for
Bu/J=0.1 andAnums0d is 1.22, 1.19 and 1.14 for the same
valueBu/J=0.1 andBp/J equal to 0.05, 0.10, 0.20, respec-
tively.

The only way to describe the numerical data is to consider
the fieldsHu and Hp in Eqs. (24) and (30) as phenomeno-
logical parameters that predicted by the classical expressions
(8) and(31). For simplicity, we rescale the fields in Fig. 6 as
H→H /Hp. The numerical data are fitted by Eqs.(24) and
(30) using these fields in the rangeH,0.1Hu and H

,0.2Hp. Obtained values for a trial parameterH̃p/Hp
=1.164,1.144,1.145 forBp/J=0.05,0.10,0.20 are in a good

agreement with the classical result, where obviouslyH̃p
=Hp. Appropriate analytical curves are plotted as solid lines
in Figs. 5 and 6. In the case of the medium axis the theory
predicts the shape of the curves obtained from the quantum
model with a good accuracy up to fields close toHc. For the
easy axis the action decreases more significantly that it
would be expected from the perturbative treatment of the
semiclassical model. In both cases we can pretend on the
quantitative agreement of the proposed theory and numerical
data.

It is important to note one more discrepancy between the
developed analytical theory and the presented numerical
data. The analytical expression for the level splitting in the
field directed along the hard axis does not contain any de-
pendency onBp, but in Fig. 4, as well as in the numerical
data of Refs. 13 and 15, this dependency is present. It is
more important for higher values ofBp/Bu. To explain it, as
well as the observed dependence of the parametersHp and
Hu, we note that thes model treats antiferromagnets in the
first approximation over small ratios of the anisotropy con-
stants or the magnetic field to the exchange integralJ. Here,
the values of these ratios was taken in the range 0.1–0.2, and
the deviation of thes model results that is of order of 10%
from the numerical calculations are not surprising.

IV. CONCLUDING REMARKS

In conclusion, the antiferromagnetic particles can show a
reach variety of tunneling behaviors that depend on the di-
rection of the magnetic field. In addition to the oscillation
behavior for the field directed along the hard axis,13,15 we
found the growth of the tunnel splittingD for the field di-
rected parallel to the easy axis and a steep decrease ofD for
the field along the medium axis. Both mentioned behaviors
are connected to the tunnel exponent dependence on the
field. It is important to note that such effects cannot be di-
rectly associated with the decrease or increase of the tunnel
barrier, respectively, that governed by the static renormaliza-
tion of the anisotropy energy.

Let us briefly discuss the possibility for experimental in-
vestigations of the tunneling effects predicted in the paper.
The main point consists in kinds of antiferromagnets that
could be used for experiments. The traditional antiferromag-
netic samples such as small ferritin particles have unpaired
spins and behave as noncompensated antiferromagnets. For
this reason the destructive interference for them is mainly

dictated by the excess spin in the way common to
ferromagnets.16,17 Moreover, the presence of a nonzero total
magnetic moment drastically changes the structure of the
ground state. It is enough to say that the degeneracy is absent
except some fixed directions of the field with respect to the
crystalline axis.12,18 We proposed a way to overcome this
problem,19 but limitations caused by noncompensated spins
seams to be more serious. Note that the same problem ap-
pears for ferromagnetic particles where the effects of the
barrier reduction20 and the oscillation behavior of the
ground-state tunnel splitting21,22 was predicted many years
ago, but observed only recently.23

The key point in this important experimental success is
based on the synthesis of high-spin molecules packed in the
well-oriented monocrystals. Up to our understanding, the
first possibility to investigate purely antiferromagnetic fea-
tures is to use high-spin molecules with a well-defined spin
structure. The molecules with ferromagnetic and antiferro-
magnetic couplings, uniaxial and rhombic anisotropies have
been synthesized in the recent years.24 For known ferromag-
netic molecules such as Fe8 the splitting is small, but the
technique developed by Wernsdorfer and Sessolli23 allows
one to measure a very small tunnel splitting of order of
10−8 K. The first possibility discussed by many authors con-
sists in using spin rings with antiferromagnetic coupling. For
well-known antiferromagnetic molecular magnets such as
Fe10, Fe6, V8 the problem is opposite to that for ferromag-
netic molecules: the anisotropy is too small, and the barrier is
too low to see clear semiclassical effects such as MQT.25,26

On the other hand, antiferromagnetic rings of eight chro-
mium ions with a high anisotropy have been recently
synthesized.27 One more possibility is to use spin dimers
containing two coupled high-spin molecules(molecular
magnets) with a ferromagnetic coupling inside the molecule
and an antiferromagnetic intermolecular coupling. For in-
stance, the observation of the well-structured dimers of high-

FIG. 6. Real part of the Euclidean action per unit spin obtained
from the quantum model with Hamiltonian(1), Bu/J=0.1 for three
values of the ratioBp/J=0.05 (circles), 0.1 (squares), 0.2 (tri-
angles), and the magnetic field directed along the medium axis. The
magnetic field is normalized toHp for each value ofBp. Solid lines
are analytical predictions, Eq.(30), with Hp as a trial parameter.
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spin molecules Mn4 (spinS=9/2) with the antiferromagnetic
coupling between two Mn4 molecules has been recently
reported.28 Quantum tunneling in the Mn4 dimers was inves-
tigated experimentally.29 Such dimers of high-spin molecules
such as Fe8 with the macroscopic spinS=10 and well pro-
nounced rhombic anisotropy could be a good candidates for
observation of the effects considered in our paper.31 It is
worth to note also that the predicted possibility of enlarging
the value of the Euclidean action(to suppress the tunneling)

by means of the magnetic field directed parallel to the me-
dium axis can be useful for following investigations.
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