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A high-order series expansion is employed to study the thermodynamical properties of aS=1/2 chain
coupled to dispersionless phonons. The results are obtained without truncating the phonon subspace since the
series expansion is performed formally in the overall exchange couplingJ. The results are used to investigate
various parameter regimes, e.g., the adiabatic and antiadiabatic limit as well as the intermediate regime, which
is difficult to investigate by other methods. We find that dynamic phonon effects become manifest when more
than one thermodynamic quantity is analyzed.
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I. INTRODUCTION

In solid-state physics, all electronic degrees of freedom,
such as charge or spin, are coupled to vibrations. Mostly,
however, such a coupling does not influence the system’s
properties in a decisive way. This is different if the electronic
degrees of freedom are essentially one dimensional. Then the
phenomenon of a Peierls transition occurs: the system breaks
translational invariance spontaneously by forming dimers.1–6

The interest in a model of quantum phonons coupled to one-
dimensional spin degrees of freedom in particular has been
rekindled by the discovery of the inorganic spin-Peierls sub-
stance CuGeO3.

7 Single crystals of high quality made inves-
tigations possible that were not possible for the long known
organic spin-Peierls substances.2

Besides the spin-Peierls phenomenon a very strong cou-
pling of spins and phonons can influence the quantitative
physics of Mott insulators significantly if the superexchange
coupling is small due to geometrical reasons. Examples are a
90° angle in the exchange path or a complicated superex-
change process via large ligand groups. In these cases, a
small change of the geometry implies a certain change of the
coupling, which is very largerelative to the unchanged cou-
pling. Hence, the influence of phonons is much larger than
usual. Examples for this mechanism, besides CuGeO3 (Refs.
8 and 9), are SrCu2sBO3d2 (Refs. 10 and 11) or sVOd2P2O7

(Refs. 12–14).
For the above reasons, it is of significant interest to pro-

vide reliable theoretical predictions for spin systems coupled
to phonons. It is also clear that acoustic phonons will not
have a significant influence because they alter the exchange
paths relatively weakly. Thus we focus on optical phonons,
which have a strong impact on the local geometry so that
they can influence the exchange coupling significantly. For
simplicity, we will consider dispersionless Einstein phonons.
The aim of the present work is to compute the two funda-
mental thermodynamic quantities of spin systems, namely,
the magnetic susceptibility and the specific heat, and to com-
pare the results in the presence of a spin-phonon coupling to
the results of static spin models. This comparison serves as a
guideline to experimental analyses that attempt to identify
the signatures of spin-phonon couplings.

The generic spin-phonon model introduced in Sec. II can-
not be solved analytically. To the authors’ knowledge, there
are no analytical exact methods to treat extended systems of
coupled spins and phonons if all energy scales shall be con-
sidered. Many numerical and approximate methods have
been applied, such as density-matrix renormalization,15 con-
tinuous unitary transformations,16–18 exact diagonalization,19

linked cluster expansion,20 renormalization group,21 and
quantum Monte Carlo(QMC).18,22–26

Two limits can be analyzed in more detail. In the adiabatic
limit v!J the spin system is assumed to be “fast” compared
to the “slow” phonon system. Using approaches analogous to
the ones applied by Pytte1 and to the more detailed one by
Cross and Fisher,3 the model in Eq.(1) can be mapped to a
statically dimerized model.

The antiadiabatic limitv@J can be handled by an appro-
priate mapping of the starting Hamiltonian to a frustrated
spin model. Thereby, interactions of larger range are induced
and the phonon frequency is renormalized.15–19,27. Above a
critical frustration(e.g., a certain next-nearest-neighbor inter-
action), the system becomes gapped. This regime is reached
for large values of the spin-phonon coupling. For small val-
ues of the spin-phonon coupling the system remains gapless.
Note that we are dealing with a purely one-dimensional
problem so that quantum fluctuations may prevent spontane-
ous symmetry breaking.

Concerning thermodynamic properties it could be shown
that the magnetic susceptibility can be fitted by a frustrated
spin model with temperature-independent couplings. But this
approach fails for increasing valuesJ/v (Refs. 18 and 23).

Investigations of the regime between the adiabatic and the
antiadiabatic limit withv<J are difficult. So far, a renor-
malization group analysis21 and quantum Monte Carlo
simulations18,23 have been done.

In the present paper, a spin-phonon model is studied using
a linked-cluster expansion to derive thermodynamical prop-
erties, such as the specific heatC and the susceptibilityx.
Zero temperature properties were determined previously.20

The paper is organized as follows. Section II presents the
model, some of its known properties, and the basic elements
of the method employed. In Sec. III the results are analyzed.
They are summarized in Sec. IV, where also open issues are
identified.
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II. MODEL AND METHOD

The isotropic spin-12 Heisenberg chain is extended by the
coupling to local, dispersionless phononic degrees of free-
dom. The Hamilton operator reads

H = Jo
i

f1 + gsbi
† + bidgSiSi+1 + vo

i

bi
†bi s1ad

=HSB + HB. s1bd

The magnetic exchange coupling is denoted byJ, the cou-
pling between the phononic subsystem and the magnetic sub-
system is given bygJ, and the energy of the phonons isv.
The abbreviationsHB andHSB are used in the following. The
Hamiltonian in Eq. (1) represents the so-called bond-
coupling model depicted schematically in Fig. 1. The
phonons can be viewed to sit between the spin sites. They
influence only one bond. Such a coupling can be motivated
microscopically28 for CuGeO3. But the main reason to
choose the coupling as in Eq.(1) for our study is its simplic-
ity.

In the antiadiabatic limitJ/v→0, the critical spin-phonon
couplinggc for a phase transition from a gapless to a gapped
phase is given bygc/v<0.4682 using the flow equation
approach.18 Assuming a dimerized phase, the model was in-
vestigated atT=020 by a linked-cluster expansion which
avoided any truncation of the phononic Hilbert space. But
the starting point was the symmetry-broken dimerized phase
at zero temperature. In the present paper, we emphasize the
thermodynamical aspects of the model without broken sym-
metry. A series expansion about the limit of vanishingJ/T is
performed. The phononic subspace is treated exactly. No cut-
off in the the phonon subspace is necessary. The resulting
quantities are given as truncated series inJ/T with full de-
pendence on the remaining parameters, such asv /T.

First we calculate the partition functionZ of the spin-
phonon system. Then, quantities, such as the free energy, the
specific heat, or the susceptibility, can be derived easily. A
traditional high-temperature series expansion is not possible
because the expansion in the inverse temperature would lead
to divergences in the phononic degrees of freedom. The limit
of infinite temperature is not a well-defined starting point for
bosons because the phonon occupation number diverges. For
this reason, we choose to perform the formal expansion in
the exchange couplingJ. In this way, the phonon subspace is
treated exactly for each given temperature. No truncation is
necessary, and the full phonon dynamics is taken into ac-
count. To our knowledge, this is the first approach of a clus-
ter expansion about the limitJ=0 at finite temperatures,
which avoids approximations in the phonon subspace.

We stress that the formal series inJ coincides with the
series for the magnetic subsystem in the inverse temperature
if we set the spin-phonon coupling to zero:g=0. So it is not
surprising that the obtained series bears many similarities to
a high-temperature series. It is most reliable at high tempera-
tures. The limit to vanishing temperature is difficult to de-
scribe.

The Hamilton operator from Eq.(1) is split into its diag-
onal partH0=HB and a perturbationV with

s2ad

s2bd

The diagonal partH0 is trivially solvable; it describes free
dispersionless(Einstein) phonons. The perturbationV in-
cludes the isolated magnetic part and the spin-phonon inter-
action. The standard way to treat such a problem is to change
to the interaction representation where the off-diagonal per-
turbation governs the nontrivial part of the dynamics of the
system. In this framework the partition function is given as
an infinite series in the expansion parameterJ by

Z = trhe−bHj s3ad

=Z0S1 + o
n=1

`

s− JdnE
0

b

dt1 ¯ E
0

tn−1

dtnkṼst1d ¯ ṼstndlD ,

s3bd

where the following abbreviations are used. The unperturbed
part H0 in (2) leads to the contributionZ0 of the partition
function

Z0 = trhe−bH0j = 2NHp
i
So

ni=0

`

e−bvniDJ = 2Nz0
N s4d

with z0=1/s1−e−bvd and the phonon occupation numberni

=bi
†bi. The system size is denoted byN. The perturbationV

given in the interaction representation asṼ reads

Ṽstd = etH0Ve−tH0 s5ad

=o
i

SiSi+1f1 + getH0sbi
† + bide−tH0g s5bd

=o
i

SiSi+1f1 + gsbi
†evt + bie

−vtdg. s5cd

The angular brackets in Eq.(3) are an abbreviated notation
for

kṼst1d ¯ Ṽstndl =
1

Z0
trhe−bH0Ṽst1d ¯ Ṽstndj. s6d

As can be seen from the above equations the calculations for
the partition functionZ of the magnetic system and of the

FIG. 1. (Color online) Schematic picture of the spin-phonon
model as defined by Eq.(1).
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phononic system factorize. In each order of expansion inJ
the contribution from the spin system can be evaluated sepa-
rately from the phononic contributions.

Calculating the partition function in Eq.(3) requires re-
peated integrations over functions of the type

Isk,l ;xnd = xn
kelxn with k P N0, l P Z, xn P R. s7d

The resulting integrals can be solved exactly with

E
0

xn−1

dxnxn
kelxn = k!S−

1

l
Dk+1

+ o
i=0

k

s− 1di

3
1

l i+1

k!

sk − id!
xn−1

k−i elxn−1 for l Þ 0,

s8ad

E
0

xn−1

dxnxn
k =

1

k + 1
xn−1

k+1 for l = 0. s8bd

These equations allow an iterative evaluation of the multiple
integrals entering the partition functionZ.

A useful check of the calculations is the limitg=0. This
special case yields

Zg=0 = Zisol. phononsZisol. spins= z0
NZisol. spins. s9d

Due to the one-dimensionality of the system under study a
simple cluster algorithm will be used(for an instructive re-
view see Ref. 29). Therein not only the connected clusters
are calculated, but also the disconnected clusters. The unnec-
essary calculations of the disconnected cluster are not very
costly, and we can save the bookkeeping overhead that
would otherwise be required. The problem of subtracting
subclusters occurring in the linked cluster expansion algo-
rithm is replaced by the evaluation of the lattice constants for
a given cluster.

III. RESULTS

Here the results for the specific heatC and for the suscep-
tibility x are presented in Secs. III A and III B. Section III C
is dedicated to the comparison of the results from static spin
models and those from the spin-phonon model.

The bare truncated series provides a first impression of
the behavior of the considered quantities for various sets of
parameters. But for quantitative predictions the truncated se-
ries are not sufficient, as will be seen in the following. Ex-
trapolation techniques are necessary to improve the represen-
tation of the results for larger values ofJ. It turns out that the
description of higher temperatures is easily possible whereas
the extrapolation becomes ambiguous at low temperatures.
We attribute this behavior to the fact that the phononic and
magnetic subsystems behave at higher temperatures more
and more independently. Then our series is essentially a
high-temperature expansion for the magnetic system, which
is known to work well for higher temperatures. For low tem-
peratures, however, possible long-range effects set in, which
elude our approach.

We benchmark our results relative to QMC data for se-
lected sets of parameters.25

The results for the spin-phonon model are compared to
those of pure spin systems. As a reference, the exact result of
the isotropic Heisenberg model30–32 is depicted in the figures
for the susceptibility. The specific heat is compared to the
specific heat of free phonons plus the exactly known result
for CsTd for the Heisenberg model.32

The coefficients of the series expansion results are avail-
able upon request.

A. Specific heat

A detailed study of the magnetic properties of the system
under consideration also includes the investigation of the
specific heat. Besides the magnetic susceptibility the specific
heat is an observable that can be experimentally easily mea-
sured and theoretically easily calculated. A direct comparison
between theory and experiment is often hindered by the fact
that the phononic degrees of freedom dominate the specific
heat. Our model(1) takes the influence of a strongly coupled
optical phonon into account. The additional contribution of
acoustic phonons is beyond the scope of the present investi-
gation. We assume that the contribution of the acoustic
phonons is indeed additive so that it can be accounted for if
the lattice vibrations are known, e.g., from a dynamic lattice
model.

The specific heatCsTd is obtained from the results for the
free energy per sitef obtained from the partition functionZ
using standard relations from statistical physics

f = F/N = −
1

b

1

N
ln Z. s10d

The free energy could be computed to order 13 inJ. To this
end, the contribution of 214 connected and 470 disconnected
clusters had to be evaluated. To illustrate the result the first
orders of the free-energy series are given

− bf =
1

N
lnsZd

= ln z0 + J2S 3

32
b2 +

3

16

g2b

v
D

+ J3S 1

64
b3 +

3

32

g2b2

v
D + J4 1

256
H−

5

4
b4 + 6

g2b3

v

+ Fs24z0
2 − 24z0 + 6d

g4

v2 + s− 48z0 + 24d
g2

v2Gb2

+ Fs12 − 24z0d
g4

v3 + 48
g2

v3GbJ + OsJ5d. s11d

To obtain a detailed insight in the behavior of the specific
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heat, Dlog-Padé extrapolations are used. The truncated series
alone are not appropriate for temperatures belowT,J (not
shown). Figure 2 depicts the extrapolation results of the spe-
cific heat compared to a superposition of the free phonon
part of the specific heat given by

CB = sbvd2 e−bv

s1 − e−bvd2 s12d

and the exactly known resultCS for the isotropic Heisenberg
model. Various parameter sets are shown. Simple Dlog-Padé
extrapolations inJ are used for each temperature point. To
this end, the exactly known result of the free phonons is
subtracted from the series obtained. The resulting expression
is extrapolated; it starts in second order inJ. Starting from
results for the partition function in order 13 inJ, the maxi-
mum order of extrapolation of the remaining specific heat is
10. Ordinary Padé extrapolations would allow a maximum
order of 11, but due to the differentiation for the Dlog-Padé
extrapolations, one additional order is lost. After the extrapo-

lation, the free-phonon contribution is added again. This pro-
cedure is chosen to deal with series that behave qualitatively,
such as the high-temperature series for pure spin systems.

In Fig. 2 the results for three different sets of parameters
v=1J, g=0.7 (upper panels), v=1J, g=1.5 (middle panels),
and v=5J, g=1 (lower panels) are shown. The left plots
depict thefn,2g, and the right plots thefn,4g extrapolations.
In the fn,mg scheme the logarithmic derivative is approxi-
mated by a rational function, where the polynomial in the
numerator has the degreen while the one in the denominator
has the degreem.

The fn,2g and thefn,4g schemes converge very well. The
fn,4g extrapolations are more stable in the low-temperature
regime for both parameter sets. Hence, this scheme is used in
the following. The range of validity can be specified byT
*0.15J as long as the spin-phonon coupling is smaller or of
the same order asv. For values ofgJ/v.1 the extrapola-
tions suffer often from spurious poles. In the middle panels
the defective extrapolations are visible. The schemes[5, 2],
[6, 2], and[3, 4] yield extrapolations that differ significantly

FIG. 2. (Color online) Dlog-Padé extrapola-
tions of the specific heat. Various extrapolations
are compared for three different sets of
parameters.
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from the other schemes considered. This is due to spurious
poles in the integration interval with respect toJ. For [6, 2]
even temperatures aboveT<J are not described reliably.

For small spin-phonon couplingg the specific heat is well
described by the sum of the phononicCB and the magnetic
specific heatsCS of the isolated subsystems(cf. first row of
panels in Fig. 2). Increasing the spin-phonon coupling shifts
the specific heat to larger values(cf. second row of panels in
Fig. 2). In this temperature regimesT.Jd already the trun-
cated series yield trustworthy results.

Fixing the spin-phonon couplingg and increasing the
phonon frequencyv weakens the visible effect of the phonon
dynamics(cf. third row of panels in Fig. 2). This is to be
expected because the phononic subsystems becomes more
rigid, so that it will not be influenced significantly by the
spin systems and vice versa.

Finally, we compare the extrapolated results from the
cluster expansion inJ to data obtained by QMC. Figure 3
depicts two sets of parameters of the[6, 4] scheme and the
corresponding QMC data. The left panel shows the result for
g=0.66 andv=0.66J. This parameter set implies that the
system is gapped.18

In the right-panel results are depicted forg=0.44 andv
=0.88J, which implies a gapless phase. The statistical error
of the QMC data can be estimated from the spread of the
data points. The extrapolated series yield smooth, continuous
results that agree very well with the QMC data. For tempera-
tures belowT/J<0.15 the dotted lines refer to defective
extrapolations, which are depicted for illustration. These ex-
trapolations are known to yield unreliable results beforehand
because the extrapolants display spurious poles in the inte-
gration interval ofJ. Note that each temperature requires an
extrapolation. The extrapolations at higher temperatures turn
out to be very stable and not defective so that reliable results
can be obtained for temperaturesT*0.15J. For lower tem-
peratures, the extrapolations are contaminated by spurious
poles and should not be trusted.

B. Susceptibility

The magnetic susceptibilityx is of special interest be-
cause it is most easily accessible experimentally. Very often
static models, such as the dimerized and/or frustrated spin

chain, can already yield a good description of the suscepti-
bility of one-dimensional systems. Two cases are conceiv-
able: either the appropriate model is indeed a static spin
model or the static spin model should be seen as an effective
model that incorporates the effects of the spin-phonon cou-
pling. Of course, it only makes sense to distinguish both
cases if there are other experimental probes to discriminate
between them. This will be elucidated in Sec. III C.

In the antiadiabatic limitv.J, detailed investigations of
the susceptibility were done. The spin-phonon chain could be
mapped to a frustrated spin chain with temperature-
dependent exchange couplings.18 The corresponding suscep-
tibility could be obtained from a high-temperature series
expansion.33 It was shown thatx is only little affected by the
temperature dependence of the coupling constants. Thus it
can be neglected and a static model is indeed well justified.
This finding agrees with previous results.14 It explains, for
instance, why the magnetic susceptibility of CuGeO3 can be
fitted so surprisingly well by a static frustrated Heisenberg
model.34–36

We expect that the mapping to a static spin model works
less well in the crossover regime to the adiabatic limitv
&J. There the effects of the phonon dynamics should be
more clearly visible. We will return to this question in Sec.
III C.

The series expansion of the susceptibility is obtained from
the previous considerations by incorporating an external
magnetic field. In a first step, the coupling of this field to the
spins is added to the unperturbed Hamilton operatorH0 that
leads to a modified free-energy series expansion. In a second
step, the susceptibility can be derived from the free-energy
series.

The unperturbed partH0 of the Hamilton operator(2) is
extended by a magnetic field term leading to

H0 = vo
i

bi
†bi − ho

i

Si
z = HB − hM s13d

with the magnetic fieldh given in units ofgmB. The addi-
tional term proportional to the magnetizationM commutes
with the free phonon partHB and with the perturbationV as

given in Eq.(2). Thus, the expression forṼstd in Eq. (5) is

FIG. 3. (Color online) Dlog-Padé extrapola-
tions of the specific heat compared to QMC data.
The left plot shows data for the valuesg=0.66,
v=0.66J, and the right plot depicts the param-
etersg=0.44,v=0.88J.
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unchanged compared to the calculation of the specific heat.
The magnetic field is included inH0.

The formal expression Eq.(3) for the partition function is
unchanged. From Eq.(13) we deduce the zeroth-order con-
tribution Z0, which now reads

Z0 = trse−bH0d = trse−bHBebhMd s14ad

=z0
NF2 coshSbh

2
DGN

. s14bd

Taking the logarithm of the partition functionZ yields

1

N
ln Z = ln z0 + lnF2 coshSbh

2
DG s15ad

+ o
n=1

`

s− JdnHE
0

b

dt1 ¯ E
0

tn−1

dtnkṼst1d ¯ ṼstndlJ
s15bd

with z0 as given in Eq.(4). The angular bracketsk¯l denote
the coefficients proportional toN in the trace[see Eq.(6)].
To derive the susceptibility, the above equation has to be
differentiated twice with respect to the magnetic fieldh. Fi-
nally h is set to zero

Tx =
1

b2U ]2

]h2S 1

N
ln ZDU

h=0
. s16d

The susceptibility could be computed up to order 12 inJ.
The contribution of 2242 connected and 2810 disconnected
clusters had to be evaluated. To illustrate the result the first
orders of the susceptibility series are given

Tx =
1

4
−

1

8
Jb −

1

16
J2b

g2

v
+

1

96
J3b3

+ J4 1

1536
H5b4 + 24

g2b3

v

+ Fs− 72z0
2 + 72z0d

g4

v2 + s− 96 + 192z0d
g2

v2Gb2

+ Fs72z0 − 36d
g4

v3 − 192
g2

v3GbJ + OsJ5d. s17d

In Fig. 4, the truncated susceptibility series are depicted
for various parameter sets. The energy scales are given in
units of the magnetic exchange couplingJ. The exact result
of the Heisenberg model serves as a reference to illustrate the
effects of the additional coupling to the phonons. The general
feature that the results diverge for temperatures belowT
&1.5J is expected for the truncated series. But the qualita-
tive behavior of the susceptibility is already discernible.

The left panels depict the adiabatic regime and the right
panels illustrate the antiadiabatic limit. The following con-
clusions can be drawn from the truncated series in the tem-
perature regimeT*1.5J. Fixing the phonon frequencyv the
overall height of the susceptibility is lowered for increasing
spin-phonon couplingg. Such a behavior can be understood
in a mean-field treatment of the spin-phonon coupling. For
increasingg the effective couplingJeff=Js1+gkb†+bld in-
creases. This shifts the whole susceptibility to lower tem-
peratures compared to the result of the Heisenberg model
with the bare magnetic exchangeJ, cf. discussion in Ref. 18.

For fixed spin-phonon coupling and increasing phonon
frequencyv this effect becomes less pronounced. For in-
creasing phonon frequency the magnetic and phononic de-
grees of freedom decouple more and more because the pho-
non system becomes increasingly rigid so that it is influenced
less and less by the magnetic subsystem. Concomitantly, the
spin system is less influenced by the phononic subsystem.
Thus, for fixed g and v→` the magnetic properties are
dominated by the antiferromagnetic Heisenberg model.

FIG. 4. (Color online) Truncated series of the
susceptibility. Various sets of parameters are
shown. The exactly known result for the Heisen-
berg model serves as a reference. The left panels
illustrate the adiabatic limit whereas the right
panels show the results in the antiadiabatic limit.
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The truncated series fails to reproduce the very significant
maximum of xsTd (cf. Fig. 4). This maximum serves as a
landmark for many experimental analyses. Thus the height
and the position of the maximum are of great interest. Ex-
trapolations are necessary to extend the representation of the
results beyond the radius of convergence of the truncated
series so that the maximum can be captured reliably. For the
susceptibility the same extrapolation techniques are applied
as for the pure spin models described in Ref. 33. Basically,
the truncated series is extrapolated using Dlog-Padé approxi-
mants in an Euler-transformed variable. In contrast to the
pure spin models, the extrapolations of the results of the
spin-phonon model are not performed in the inverse tem-
peratureb, but in the magnetic exchange couplingJ. For
each temperature a separate extrapolation inJ has to be done.
Using standard routines from computer algebra programs,
this does not pose any more problems than the previous ex-
trapolations inb.

A more serious restriction concerns the behavior at large
values ofJ. For the pure spin systems it was very efficient to
bias the extrapolations in the inverse temperature such that
the known low-temperature behavior was captured(see, e.g.,
Ref. 33). For the spin-phonon system, however, much less is
known about the excitations at low energies. From the phase
diagram depicted in Ref. 18, it can be deduced whether the
system is gapped or gapless. But the precise value of the gap,
let alone the form of the dispersion, are not available in the
limit J→`. Note that for the present expansion it is this limit
that we need to understand, not the limitT→0 as in the
high-temperature series. Hence, we do not attempt to bias
our expansions in their behavior at large values ofJ. But an
improved understanding of the limitJ→` will certainly help
to obtain even better extrapolations.

Figure 5 shows an overview over the susceptibilities ob-
tained from unbiased Dlog-Padé extrapolations for three dif-
ferent sets of parameters. The upper two rows correspond to

FIG. 5. (Color online) Dlog-Padé extrapola-
tions of the susceptibility. Various extrapolation
schemes are compared for three different sets of
parameters. The parameters in the first two rows
of panels correspond to the gapped regime
whereas the lowest row depicts results in the gap-
less regime.
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results in the gapped regime whereas the parameters in the
last row correspond to the gapless regime(see the phase
diagram in Ref. 4). The left panels depict the extrapolations
of the form fn,2g and the right panels the extrapolations of
the form fn,4g.

The position and the height of the maximum are described
reliably by both extrapolation schemesfn,2g andfn,4g. This
conclusion is based on the agreement of the results for dif-
ferent ordersn in Fig. 5. We observe that thefn,4g extrapo-
lations converge better than thefn,2g extrapolations for in-
creasing order. Higher values ofm in the generalfn,mg
scheme or odd values ofm are likely to imply spurious poles.
Thus, thefn,4g scheme is used in the following to represent
the susceptibility for all parameter sets shown in this paper.

For temperaturesT,0.2J no results are depicted due to
spurious poles in the extrapolations inJ. The range of valid-
ity of the fn,4g extrapolations can be estimated to be at least
T*0.25J independent of the parameter sets that we analyzed
in our investigations.

Finally, we illustrate the reliablity of our extrapolations by
a comparison to QMC data. For two different sets of param-
eters, Fig. 6 displays thef7,4g extrapolations of the series
and the corresponding QMC data. The valuesg=0.66 and
v=0.66J in the left panel imply that the system is gapped.
The valuesg=0.44 andv=0.88J in the right panel corre-
spond to the gapless regime. The agreement between the
extrapolated series results and the QMC data is very good.
For temperatures aboveT/J*0.2 the results coincide. Below
T&0.2J the QMC data and the series data deviate from each
other. At present, we cannot decide whether the deviations
for 0.1J,T,0.2J are due to problems in the QMC simula-
tion, such as statistical errors or finite-size effects, or whether
they are due to problems in the series extrapolations. Below
T<0.1J, spurious poles occur in the extrapolated integrands
leading to defective extrapolations. For illustration, these de-
fective extrapolations are shown as dotted lines in Fig. 6.

We emphasize that the convincing agreement of the
QMC, and the series results in the regimeT*0.2J supports
the reliability of these results. In particular, the position and
the height of the important maximum of the susceptibility are
described quantitatively.

C. Comparison to static spin models
Here, the importance of the spin-phonon dynamics shall

be highlighted. As mentioned before it is often possible to
describe the properties of a spin-phonon model by a static
spin model alone, in particular in the antiadiabatic regime. It
is to be expected that the effects of the dynamic nature of the
spin-phonon coupling are most prominent in the regime
where all energies are of similar magnitude. To provide evi-
dence for this hypothesis we perform the following “theoret-
ical” experiment.

We start from the extrapolated series data forg=1 and
v0=J (see symbols in Fig. 7). These data shall serve as “ex-
perimental” input, which we will then analyze using static
spin models. The static spin model considered here is the
frustrated and dimerized spin chain given by

H = Jo
i

hf1 + ds− 1digSiSi+1 + aSiSi+2j. s18d

In this way, we imitate the standard procedure one would
apply to experimental data. The objective is to see to which

FIG. 6. (Color online) Dlog-Padé extrapola-
tions of the susceptibility compared to QMC data.
The left plot shows data for the valuesg=0.66
and v=0.66J (gapped phase), and the right plot
depicts data for the valuesg=0.44 andv=0.88J
(gapless phase).

FIG. 7. (Color online) “Theoretical” experiment: The data for
g=1 andv0=J (symbols) are taken as(mock) experimental input. It
is fitted by the susceptibility of static spin model(solid lines). The
temperatureTmax denotes at which temperature the susceptibility
has its maximum; this value sets the natural energy scale of the
problem.
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extent such an analysis yields agreement. In particular, we
are interested to see where such a description remains unsat-
isfactory. Such an unsatisfactory description based on static
spin models is the signature of the dynamic nature of the
spin-phonon coupling.

In Fig. 7 the experimental susceptibility is analyzed by the
susceptiblity of static spin models[i.e., the isotropic Heisen-
berg model(HM)], the purely frustrated spin chain, and the
dimerized and frustrated chain. Obviously, the HM is not
appropriate to describe the data depicted by the symbols. But
the other two parameter setssa=0.1,d=0d and sa=0.12,d
=0.05d describe the experiment data very well for not too
low temperatures(i.e.,T.0.5Tmax). This temperature regime
corresponds to the range of temperatures where the extrapo-
lated high-temperature series for the dimerized and frustrated
spin chain are reliable.33

Of course, it is possible to distinguish between different
models if reliable(experimental) data down to low tempera-
tures are available. In practice, however, this is often not the
case because the data at low temperatures can be contami-
nated by impurity effects or other imperfections, such as in-
clusions of other phases, or simply the presence of other
structural elements in the sample. In such a situation, the
determination of the appropriate microscopic model is diffi-
cult and ambiguities are hard to avoid.

One way to make progress is to use the parameter set
determined from the susceptibility data and to examine
whether other properties can be understood with the same
parameter set as well. Here we choose to study the specific
heat. In the upper panel of Fig. 8 the phonon frequencies are
assumed to be knowna priori; therefore, the free phonon
contribution added is the one for this known frequencyv
=v0. Clearly, none of the static spin models describes the
susceptibility dataand the specific data satisfactorily. From
the knowledge of both quantities, compelling evidence can
be deduced that a dynamic spin-phonon coupling must be
present.

But the situation can be less advantageous in practice. Let
us assume that we do not possess knowledge about the fre-
quency of the phonon to which the spin system may or may
not be coupled. Then this frequency could be seen as an
additional fit parameter. This view point was adopted in the
lower plot in Fig. 8. The parameter setsa=0.1;d=0d of the
dashed-dotted curve can be clearly discarded. The parameter
set(a=0;d=0, the Heisenberg model HM) of the solid curve
can be discarded because it does not describe the suscepti-
bility (cf. Fig. 7). The parameter setsa=0.12;d=0.05d of the
dashed curve seems to fit the data down toT<0.7J. For
lower values, however, the agreement is poor. So this data set
must also be discarded. Note that we refer only to the tem-
perature regime where the extrapolated series yield reliable
results.

Thus, we have shown for the above example that it isnot
possible to describe the data of a dynamic spin-phonon sys-
tem in the intermediate regime, where all energy scales are
of similar magnitude, in the framework of static spin models
plus (decoupled) phonons. But it is not sufficient to consider
only one quantity at(relatively) high temperatures. In order
to obtain unambiguous evidence of the presence of a dy-
namic spin-phonon coupling, one has to dispose of either

data down to low temperatures(not considered here) or to
consider at least two independent thermodynamic quantities.
Otherwise, one may easily be misled by a good agreement in
one quantity alone to conclude that a simpler static model is
sufficient for a microscopic description.

IV. SUMMARY AND OUTLOOK

The problem of a one-dimensional spin system coupled to
phononic degrees of freedom is investigated. A cluster ex-
pansion is applied to obtain a series expansion in the mag-
netic couplingJ. Results are computed at finite temperatures
for the free energy, the specific heat, and the magnetic sus-
ceptibility. No truncation in the phononic subspace is neces-
sary because the expansion is performed inJ about the limit
J=0, not in the inverse temperature. This is the realization of
a cluster expansion at finite temperatures for an extended
spin-phonon problem. The implementation of the expansion
in a computer program yields high orders in the expansion
parameter.

The comparison of the results obtained from the extrapo-
lated series to data from quantum Monte Carlo simulations

FIG. 8. (Color online) Comparison of the specific heat for the
parameter sets determined from the susceptibility in Fig. 8. For the
upper plot the phonon frequency is assumed to be known before-
hand. For the lower plot noa priori knowledge is assumed for the
phonon frequency; thus, it is also fitted. The line styles are the same
as those used in Fig. 7; that means, the exchange couplings used are
those from the corresponding curves in Fig. 7.
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shows very good agreement. This supports the reliability of
the approach. Hence, our results can serve as input for quan-
titative data analysis because the features of the magnetic
susceptibility and the specific heat at moderate and at high
temperaturesT*0.15−0.25J are described reliably.

A possible route to improve the extrapolations is to un-
derstand the limitJ→` in the Hamilton operator(1) better.
At first glance, this limit looks simple because it corresponds
to the adiabatic situation withv /J→0. But this limit is not
straightforward because the nature of the excitations is un-
clear at present. Note that in this limit static displacements
can be made at no energetic cost. This suggests that the ex-
citations are domain walls. Whether these objects are static
(becausev /J→0) or dynamic(because the magnetic sub-
system retains its fluctuations) is unclear at present and con-
stitutes an interesting theoretical issue in itself.

Finally, we analyzed the data of a spin-phonon system in
the intermediate coupling regime, where all energies are of
similar magnitude, in great detail. As expected, we could
show that the effects of the dynamic spin-phonon coupling

cannot be imitated by a static spin model and decoupled
phonons. But it is necessary to study low temperatures or at
least two quantities, such as the susceptibility and the spe-
cific heat, carefully. Otherwise, one may be easily misled by
a good agreement in one quantity alone to conclude that a
static microscopic model is sufficient. We think that this con-
clusion is helpful for future experimental analyses of low-
dimensional spin systems.
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