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Phase transitions in the pseudogap Anderson and Kondo models:
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The pseudogap Kondo problem, describing quantum impurities coupled to fermionic quasiparticles with a
pseudogap density of statpéw) «|w|" shows a rich zero-temperature phase diagram, with different screened
and free moment phases and associated transitions. We analyze both the particle-hole symmetric and asym-
metric cases using renormalization group techniques. In the vicinity=6f which plays the role of a lower-
critical dimension, an expansion in the Kondo coupling is appropriate. In contrastjs the upper-critical
dimension in the absence of particle-hole symmetry, and here insight can be gained using an expansion in the
hybridization strength of the Anderson model. As a by-product, we show that the particle-hole symmetric
strong-coupling fixed point for <1 is described by a resonant level model, and corresponds to an
intermediate-coupling fixed point in the renormalization group language. Interestingly, therwdlu2 plays
the role of a second lower-critical dimension in the particle-hole symmetric case, and there we can make
progress by an expansion performed around a resonant level model. The different expansions allow a complete
description of all critical fixed points of the models and can be used to compute a variety of properties near
criticality, describing universal local-moment fluctuations at these impurity quantum phase transitions.
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[. INTRODUCTION is unscreened even at lowest temperatures. Also, the behav-
ior depends sensitively on the presence or absence of
Nontrivial fixed points and associated phase transitions ifparticle-hole(p-h) asymmetry, which can arise, e.g., from a
quantum impurity problems have been the subject of consideand asymmetry at high energies or a potential scattering
erable interest in recent years, with applications for impuri-term at the impurity site. A comprehensive discussion of pos-
ties in correlated bulk systems, in transport through nanosible fixed points and their thermodynamic properties has
structures, and for strongly correlated lattice models in théeen given in Ref. 6 based on the NRG approach.
framework of dynamical mean-field theory. Many of those Until recently, analytical knowledge about the critical
impurity phase transitions occur in variations of the well- properties of the pseudogap Kondo transition was limited.
known Kondo modél which describes the screening of lo- Previous works employed a weak-coupling renormalization
calized magnetic moments by metallic conduction electronsgroup (RG) method, based on an expansion in the dimen-
A paradigmatic example of an intermediate-coupling impu-sionless Kondo coupling=NgyJk. It was found that an un-
rity fixed point can be found in the two-channel Kondo ef- stable RG fixed point exists @tr, corresponding to a con-
fect. tinuous phase transition between the free and screened
Nonmetallic hosts, where the fermionic bath density ofmoment phasesThus, the perturbative computation of criti-
states(DOS) vanishes at the Fermi level, offer a different cal properties within this approach is restricted to small
route to unconventional impurity physics. Of particular inter- Interestingly, the NRG studiéshowed that the fixed-point
est is the Kondo effect in so-called pseudogap systefns, structure changes atr* ~0.375 and also at:% rendering
where the fermionic bath density of states follows a powetthe relevant case of=1 inaccessible from weak coupling. In
law at low energiesp(w) = No|w|" (r>0). Such a behavior the p-h symmetric case, for=3 the phase transition was
arises in semimetals, in certain zero-gap semiconductors, arfidund to disappear, and the impurity is always unscreened
in systems with long-range order where the order parameténdependent of the value df. In contrast, in the asymmetric
has nodes at the Fermi surface, e. and d-wave super- case the phase transition is present for arbitrary0. Nu-
conductors(r=2 and 1. Indeed, ind-wave highT; super- merical calculatiorfs’ indicated that the critical fluctuations
conductors nontrivial Kondo-like behavior has been ob-in the p-h asymmetric case change their character =at:
served associated with the magnetic moments induced byhereas for <1 the exponents take nontrivieldependent
nonmagnetic Zn impuritie$!° Note that the limitr —c cor-  values and obey hyperscaling, exponents are trivial rfor
responds to a system with a hard gap. >1 and hyperscaling is violated. These findings suggest to
The pseudogap Kondo problem has attracted substanti@entify r=1 as upper-critical “dimension” of the problem,
attention during the last decade. A number of stiddiesm-  whereasr =0 plays the role of a lower-critical “dimension.”
ployed a slave-boson lardétechnique; significant progress As known, e.g., from the critical theory of magnétshe
and insight came from numerical renormalization groupdescription of the transitions using perturbative RG requires
(NRG) calculationd~ and the local moment approaght different theoretical formulations near the upper-critical and
was found that a zero-temperature phase transition occurs ktwer-critical dimensions, i.e., thé* theory and the nonlin-
a critical Kondo couplingl,, below which the impurity spin  ear sigma model in the magnetic case.
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In this paper, we provide a comprehensive analytical acing in (1+r) dimensions cannot be simply evaluated. This
count of the phase transitions in the pseudogap Anderson arnghplies that the pseudogap Kondo model donesmap onto
Kondo models, including the proper theories for the criticala one-dimensiondk.g., Ising model with long-ranged inter-
“dimensions.” This is made possible by working with the actions, in contrast to, e.g., the spin-boson métiéhdeed,
Anderson instead of the Kondo model—the degrees of freethe phase transitions in the pseudogap Kondo model and the
dom of the Anderson model turn out to provide a naturalsub-Ohmic spin-boson model are in different universality
description of the low-energy physics at the quantum phasglassed® Therefore we believe that our combined RG analy-
transitions near:% as well as close to and abovel. We sis provides a unique tool for analyzing the pseudogap
shall consider epsilon-type expansions in the hybridizationKondo problem.
the on-site energy, and the interaction strength. Those expan-
sions lead to different theories for theh symmetric and A. Models
asymmetric cases. Interestingly, in the pseudogap Kondo The starting point of our discussion will be the single-
model the phase transitions near the lower-critical and uppeimpurity Anderson model with a pseudogap host density of
critical dimension are not adiabatically connected, as thetatesH =H+H,:
fixed point structure changes bothratr* and r =%. Thus the

present quantum impurity problem has a more complicated Ha= eofpf o + Ugnging + Vol fic,(0) +Hel, (1)
flow structure than the critical theory of magnets, where the

(2+¢) and (4-¢) expansions are believed to describe the A -

same critical fixed point. Hy= f N dklK| kG, o

In the p-h symmetric case of the pseudogap Kondo prob-
lem the line of nontrivial phase transitions terminates at twowvhere we have represented the bath by linearly dispers-
lower-cirtical dimensions=0 andr:%. Nearr:% we find an  ing chiral fermionsc,,, summation over repeated spin indi-
expansion around a non-interacting resonant level model, tees o is implied, andc,(0)=/dkkc,, is the conduction
gether with perturbative RG, to provide access to the criticaklectron operator at the impurity site. The spectral density of
fixed point, with the expansion being controlled in the smallthe c,(0) fermions follows the power laWw|" below the
parameter(%—r), see Sec. IV. Interestingly, the weak- ultraviolet (UV) cutoff A; details of the density of states at
coupling expansion for the Kondo model, presented in Sediigh energies are irrelevant for the discussion in this paper.
lll, provides a different means to access the same critical he four possible impurity states will be labeled with, || )
fixed point, but with the small parameter beingthe two  for the spin-carrying statese) for the empty, andd) for the
expansions can be expected to match. doubly occupied state. Provided that the conduction band is

In the p-h asymmetric case an expansion can be done ip-h symmetric, the above model obepsh symmetry for
the hybridization around the valence-fluctuation point of theUy=-2¢q—this p-h symmetry can be considered as (3J
Anderson model. Bare perturbation theory is sufficient for allpseudospin, i.e., the full symmetry of the model is
r>1; for r<1 a perturbative RG procedure is required to SU(2)gpinX SU(2)charge ASymmetry of the high-energy part
calculate critical properties, with the expansion being con-of the conduction band has the same net effect as asymmetry
trolled in the small parametéfl —r). In particular, this iden-  of the impurity states; we will always assume that the low-
tifies r=1 as the upper-critical dimension of tii@symmet- energy part of the band is asymptotically symmetric, i.e., the
ric) pseudogap Kondo problem, and consequentlyprefactor of|w|" in the DOS is equal for positive and nega-
observables acquire logarithmic correctionsiferl. A brief  tive w.
account on thep-h asymmetric case and the expansion The transformation
aroundr=1 has been given in a recent papeWe note that

s
the flow of the asymmetric Anderson model in the metallic fo— 1o

caser =0 was discussed by Haldah&here all initial param-

eter sets with finite hybridizations flow towards the strong- Cko — CLT (2

coupling (singley fixed point. . . .

For all cases listed above, we show that the critical prop-C onverts all particles into hples and vice versa, formally
erties of the Anderson and Kondo models are identical, ang’ (ot Vo), Vo— =V, Physically, the roles of the Statﬁ?
we calculate various observables in renormalized perturba"’}nd|l> are mte_rchanged, as well as the_sté&andld). Itis
tion theory. To label the fixed points, we will follow the useful to consider another transformation
notation of Ref. 6. fo—fy f— fI,

Before continuing, we emphasize that standard tools for
metallic Kondo models, such as bosonization, Bethe ansatz,
and conformal field theory, are not easily applicable in the
present case of a pseudogap density of states, as the problevhich transformg 1)« |d), || )« |e). Here, the spinful dou-
cannot be described using linearly dispersing fermions in onélet of impurity states is transformed into the spinless dou-
dimension. Furthermore, integrating out the fermions fromblet and vice versa, i.e., the two &) sectors are inter-
the problem, in order to arrive at an effective statistical me-changed.
chanics model containing impurity degrees of freedom only, In the so-called Kondo limit of the Anderson model

cannot be performed easily: the fermionic determinants arischarge fluctuations are frozen out, and the impurity site is

Ckt — Ckp» Ci — CL, (3
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mainly singly occupied. Via Schrieffer-Wolff transformation ayr=0 v
one obtains the standard Kondo mo@et H +H,, with SC
Hg =JIS-s(0), (4)
where the impurity spir is coupled to the conduction elec- LM LM’
tron spin at site Osa(O)=c:§(0)aja,c(,,(0)/2, ando? is the o g % = —ul?
vector of Pauli matrices. The Kondo coupling is related to 5
the parameters of the Anderson mod@bl through b)0<r<1/2

2( 1 1 )
=2Vl —+— . (5)
ol [Uo+&dl
The Kondo limit is reached by takingy— =, gg— -, V, M LM
— oo, keepingJy fixed. In the absence gi-h symmetry the —o 0 o g=—uf2
Schrieffer-Wolff transformation also generates a potential 2
scattering term in the effective Kondo model. olizsr<i
In the absence of an external magnetic field all above
models preserve S@) spin symmetry. Spin anisotropies turn SSC
out to be irrelevant at the critical fixed points, see Appendix
C. The effect of a magnetic field will be briefly discussed in LM LM”
Sec. VIII. —o 0 o g=—uf2
B. Summary of results dyr21 v

Our main results are summarized in the RG flow diagrams
in Figs. 1 and 2 for th@-h symmetric and asymmetric cases,
respectively. In the symmetric case, the ranges of exponent
valuesr =0, O<r<%, %$r<1, andr=1 lead to quite dif- LM FImp LM’
ferent behavior, and are shown separately in Fig. 1. No tran- o g=-uf2
sition occurs forr =0: for any nonzero hybridization the flow ‘ ‘ .
is towards the metallic Kondo-screened fixed pai8O). FI_G. 1 Sch_emat!c RG flow diagrams fo_r the particle-hole sym-
This well-known fixed point can be identified as the stableMetric single impurity Anderson model with a pseudogap DOS,
fixed point of a resonant level model; we argue below thap(w)oc\wr. The horizontal axis de_notes th(? renormalized on-site
this is actually an intermediate-coupling fixed point. level energye (related to the on-site repulsianby u==2), the
For 0<r<2 small values of the hybridization leave the vertical axis is the_ renormalized hybridization T_he thick lines
impurity spin Zunscreened provided thag<0, i.e., there is correspond to continuous boundary phase transitions; théofugin

table | | LM fixed int di i circles are stabléunstable fixed points, for details see text. All
a stable local-momentLM) fixed point corresponding t0 g, oy noints at nonzere have a mirror image ate: related by the
e=-, p=0. Atransition line at negative, with an unstable

. . e particle-hole transformatio(B). (a) r=0, i.e., the familiar metallic
fixed point(SCR at finite v, |e|, separates the flow towards case For any finite the flow is towards the strong-coupling fixed

LM from the flow to the symmetric strong-couplin®SQ  point (SC), describing Kondo screeningb) 0<r<3: The local-
fixed point. The strong-coupling fixed point displays its mement(LM) fixed point is stable, and the transition to symmetric
intermediate-coupling properties now in a finite residual enstrong coupling'SSQ is controlled by the SCR fixed point. For
tropy and a finite magnetic moment, see Sec. IV B. As_,(, SCR approaches LM, and the critical behavior at SCR is ac-
r—0 the SCR fixed point merges with LM, in a manner cessible via an expansion in the Kondo coupljndgn contrast, for
characteristic for a lower-critical dimension, i.e., with diverg- r — %, SCR approaches SSC, and the critical behavior can be ac-
ing correlation length exponent. A second critical fixed pointcessed by expanding in the deviation from SCR, i.es3ru/2. ()
SCR exists fore >0 which separates the symmetric strong-%sr< 1: v is still relevant au=0. However, SSC is now unstable
coupling (SSQ phase from one with a free charge doubletwith respect to finiteu. At finite v, the transition between the two
(LM "), stable fixed points LM and LMis controlled by SSQwhich is now

As r—>% the symmetric critical fixed points merge with a critical fixed poin. (d) r=1:v is irrelevant, and the only transi-
the strong-coupling one, again in a manner characteristic fo#on is a level crossingwith perturbative correctionsoccurring at
a lower-critical dimension. For=1 the fixed points SCR v=U=0:1€. at the free-impurity fixed poitEImp).
and SCR cease to exist; the strong-coupling SSC fixed pointangeg =0, 0<r<r*, r* <r<1, andr=1. In the metallic

becomes infrared unstable, and controls the LM:Lk&nsi-  caser=0 any nonzero hybridization generates flow to strong
tion. Finally, the structure of the flow changes agaim=al:  coupling with complete screening—the strong-coupling fixed
for r—1 the unstable strong-coupling fixed poiSQO  point is the same as in the-h symmetric situation, ag-h
moves towardsy=0, i.e., the free-impurity(FImp) fixed  symmetry is marginally irrelevant at strong coupling. For all
point, and forr =1 no nontrivial fixed point remains. r >0 the situation is drastically different: smad} leaves the
For maximal p-h asymmetry, realized in the Anderson moment unscreened, whereas lakggdirects the flow to-
model throughUgy=«, one has to distinguish exponent wards a newp-h asymmetric, strong-couplinASC) fixed

—0 0
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art<r<l V correlation length exponent diverges and the second-order
transition turns into a Kosterlitz-Thouless transitionr at0.
Interestingly, in the symmetric case the correlation length

AC exponent also diverges as- %‘, and the transition between

LM and SSC disappears for=3:r=3 is a second lower-

critical dimension for thep-h symmetric problem. In the

asymmetric case, there is a transition between LM and ASC

byr=1 v for all r>0, andr=1 is equivalent to the upper-critical di-
mension, above which the critical fixed point is noninteract-
ing (actually a level crossing

LM ASC

C. Outline
LM ASC

—o0 0 o g

The rest of this paper is organized as follows. Section Il
introduces the observables to be evaluated in the course of

FIG. 2. Schematic RG flow diagram for the maximally particle- the paper, together with their expected scaling behavior near
hole asymmetric pseudogap Anderson impurity model. The horicriticality. In Sec. Il we briefly review the standard weak-
zontal axis denotes the on-site impurity enesgihe vertical axis is  coupling perturbative RG for the Kondo model, which is
the fermionic coupling, the bare on-site repulsion is fixed @  suitable to describe the quantum phase transition for small
=, The symbols are as in Fig. (@) r* <r<1:visrelevant, and Section IV discusses the particle-hole symmetric Anderson
the transition is controlled by an interacting fixed poiACR). As model. Starting from the noninteracting casg=U,=0, we
r—r*~0.375,p-h symmetry at the critical fixed point is dynami- first discuss the physics of the resulting noninteracting reso-
cally restored, and ACR merges into the SCR fixed point of Fig.nant |evel model—interestingly this can be identified with a
1—thi§ car_mot be d_escribed using the RG of Sec. V. In the metalligigple intermediate-coupling fixed point. We then use a per-
r=0 situation, studied by Haldan@ef. 13, the flow from any v, /hative expansion i, to access the critical fixed points
Eo'm with v # Ols .towards the screened S'.n.glet. fixed point Wﬂh forr=2.In Sec. V we turn to the situation with maximadh
=oo, (b) r=1: v is irrelevant, and the transition is a level crossing 2 - _ o
with perturbative corrections, occuringw@te=0, i.e., the valence- asymmetW’ "e'UO._OO’ and show that an expansmn in the
fluctuation fixed poin(VET). hybridization provides access to the crltlcal propertiesrfor

>1 as well as for <1. In Sec. VI we consider the case of

point. The character of the critical fixed point separating thegeneralp-h asymmetry. Section VIII briefly describes the
two phases depenti®n r: for 0<r<r* p-h symmetry is effect of a magnetic field: the pseudogap model is shown to
restored, and the critical fixed point is the one of f{a  permit a sharp transition as function of a field applied to the
symmetric model. For* <r <1 there is a separate critical impurity for couplings larger than the zero-field critical cou-
(ACR) fixed point which isp-h asymmetric, i.e., located at pling. In Sec. VIl we compare the physics of the Anderson
finite v and e. For r—1 the critical fixed point moves to- and Kondo models, arguing that the transitions in both mod-
wardsv—0, and forr=1 the phase transition becomes ag|s fall in the same universality classes. A brief discussion of
level crossing(with perturbative correctionscontrolled by  gppjications concludes the paper. All renormalization group
the valence-fluctuatiovFl) fixed point, see Fig. 2. calculations will employ the field-theoretic RG schéfii®-

We finally discuss the general case of finité asymme-  gather with dimensional regularization and minimal subtrac-

try, more details will be given in Sec. VI. Power counting tion of ; He A ; e

. poles, with details given in the appendixes; one-loop
sn?v;z trr:]ar;el_t,;/l(s‘rsh% ??n?rllvz\a/?r)ilggmféglbEcvgtrf]iiggpegitnttois RG results can equivalently be obtained using the familiar
P M Y- y P momentum-shell method.

stable with respect tp-h asymmetry for smalt. In contrast,
for rs% SCR is unstable towardg-h asymmetry, as it is Il. OBSERVABLES AND SCALING
close to SSC in this regime. Thisquiresthe existence of a . )
specificr value where this change in character occurs: this is 10 establish notations and to pave the way for the RG
precisely r=r* ~0.375 wherep-h asymmetry at SCR is ana_llyss below, We_mtroducea_few observables together with
marginal® Upon increasing beyondr* the p-h asymmetric ~ their expected scaling properties.
critical (ACR) fixed point splits off from SCR. In other
words, upon approaching* from large r the ACR fixed
point moves towards small effectiygeh asymmetry, and at Magnetic susceptibilities are obtained by coupling an ex-
r=r* ACR merges into SCR, implying-h symmetry is dy- ternal magnetic field to the bulk electronic degrees of free-
namically restored. As stated above, the description of ACRlom in H,,
using an expansion around VFI consequently breaks down as toa
r—r’*. Neither from numeric&nor from the present RG are = Hyo(X)(C4075,/Cor) (X) (6)
there indications for the existence of a second asymmetri
critical fixed point in addition to ACR; thus, the critical prop-
erties for finitep-h asymmetry are always equivalent to the = Himp a(fz_a-ggrfa,), ~Himp aéa (7)
ones of a model with maximad-h asymmetry. ' '

Taken together, the above observations show tl@  for the Anderson(1) and Kondo(4) models, respectively.
plays the role of a lower-critical dimension: as-0", the  The bulk field H, varies slowly as function of the space

A. Susceptibilities

&nd to the impurity part,, Hg
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coordinate, andHy,, is the magnetic field at the location of , By w T

the impurity. Xioc(@,T) = —=~ 1(?’T> (12)
With these definitions, a spatially uniform field applied to

the whole system corresponds H),=H;n,=H. Response which describes critical local-moment fluctuations, and the

functions can be defined from second derivatives of the therdocal static susceptibility obeys

modynamic potentia)=-T In Z, in the standard wa¥* x,,,

ol

1/v
measures the bulk response to a field applied to the bulk, (T) = &q) Ll (13)
. . . . . Xloc 1-7, ©2 -
Ximp.imp IS the impurity response to a field applied to the T t
!mpur!ty, f”deU'imp is the cross response of the bulk to an Here, 7, is a universal anomalous exponent, which controls
impurity field. X

the anomalous decay of the two-point correlations of the
impurity spin, andP; , are universal crossover functio(fsr
the specific critical fixed point and for fixad, whereass; ,

_ . _ _ bulk are nonuniversal prefactors. Furthermarés the correlation
Ximp(T) = Ximp,imp+ 2Xu,imp+ (Xuu = Xuu) (8) length exponent, describing the flow away from criticality:
wherex?“ is the susceptibility of the bulk system in absencewhen the system is tuned through the transition, the charac-
of the ih’]purity_ For an unscreened impurity Spin of SizeteristiC energy scalé*, above which critical behavior is ob-
S=% we expectyim,(T—0)=1/(4T) in the low-temperature served, vanishes &s
limit, and this is precisely the result in the whole LM phase. T* o |t|”; (14)

A fully screened moment will be characterized Byim,=0;

note that the SSC fixed point displaysimite value of Ty,  the dynamical critical exponentcan be set to unity in the
for r>0. At criticality xim, doesnot acquire an anomalous present(0+1)-dimensional problem. Note that at criticality,
dimensiof® (in contrast toy;,. below), because it is a re- t=0, the relation(13) reduces toyoc(T) = T+,

The impurity contribution to the total susceptibility is de-
fined as

sponse function associated to the conserved quaBiity Hyperscaling can be used to derive relations between
Thus we expect a Curie law critical exponents. The susceptibility exponent and the
correlation length exponentof a specific transition are suf-
M ximo(T) = Cimp 9) ficient to dett_arm_ine all criti_cal exponents associated Wi_th a
T P T local magnetic field.In particular, theT— 0 local suscepti-

o o ) bility away from criticality obeys
where the prefacto€y, is in general a nontrivial universal

constant different from the free-impurity valugS+1)/3. Xoct>0) =7, y=1(1-7),
Apparently, Eq(9) can be interpreted as the Curie response
of a fractional effective spi? Txidt<0) = (=07, ¥ =wp,, (15)

The local impurity susceptibility is given by ) , . , )
which can be derived from a scaling ansatz for the impurity

Xioc(T) = Ximp,imp» (10)  part of the free energyThe last relation implies the order

parameter vanishing as
which is equivalent to the zero-frequency impurity spin au- 5
tocorrelation function. In the unscreened phase we have Mymp % (= )72, (16)
Xioc* 1/T asT—0; we can consider this as arising from the nqte that hyperscaling holds for all critical fixed points of

overlap of the local impurity moment with the total, freely 4 pseudogap Kondo problem with<@ < 1.
fluctuating, moment 06=1/2, and sowrite

2 B. Impurity entropy
M yiog(T) = Smp (11) o
T—0 4T In general, zero-temperature critical points in quantum

impurity models can show a finite residual entrdjay con-

The quantity my,, turns out to be a suitable order trast to bulk quantum critical points where the entropy usu-
parameté’ for the phase transitions between an unscreenedlly vanishes with a power |a®T) = TY]. For the models at
and a screened spin: it vanishes continuouslytas0™,  hand, the impurity contribution to the low-temperature en-
wheret is the dimensionless measure of the distance to crititropy is obtained by a perturbative evaluation of the thermo-
cality; in the Kondo modek=(Jx-J,)/J;, whereas in the dynamic potential and taking the temperature derivative.
Anderson modet=(Vo—=Vp )/ Vo . Thus, Txic is not pinned  This will yield epsilon-type expansions for the ground-state
to the value of 1/4 fot <0 (in contrast toT xiyn,). Remark-  entropySy,,(T=0), with explicit results given below.
ably, my,,=0 at the SSC fixed point for <1, although Note that the impurity part of the thermodynamic poten-
TXimp=1/8 there. tial will usually diverge with the cutoff, i.e., we hav@n,,

The phase transitions occurring forx@ <1 are described =E;y,~ TSy, Where Ei, is the nonuniversal(cutoff-
by interacting fixed points, and thus obey strong hyperscaldependentimpurity contribution to the ground-state energy.
ing properties, including /T scaling in dynamical However, the impurity entrop§,, is fully universal, and the
quantities?® For instance, the local dynamic susceptibility UV cutoff can be sent to infinityfter taking the temperature
will follow a scaling form derivative of()iy,.
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Thermodynamic stability requires that the total entropy of SCR, which is located close to LM for small DOS exponents
a system decreases upon decreasing temper&i8(€) >0. .
This raises the question of whether the impurity part of the
entropySp, has to decrease under RG flewhich is equiva- A. Lower critical dimension: Expansion around the local-
lent to decreasing’). The so-calledg theorem! provides moment fixed point
proof of this conjecture for systems with short-ranged inter- . .
actions; for most quantum impurity problems this appears to _1he RG flow equation for the renormalized Kondo cou-
apply. Interestingly, the pseudogap Kondo problem provide®!ing j, to two-loop order, read$

an explicit counterexample, as the two critical fixed points 3

obey Sgcr< Sacr, With the RG flow being from SCR to B(j) =rj —j2+J—. (18)
ACR, see Sec. V for detailgFor another counterexample 2
see Ref. 22. This yields an infrared unstable fixed point at
r2
C. T matrix jr=r+ ot o(r¥) (19

An important quantity in an Anderson or Kondo model is . .
the conduction electrol matrix, describing the scattering of Which controls the transition between the decoupled LM and

the c electrons off the impurity. For an Anderson model, thethe Konc_io-s_creene_d SSC phases. The _sjnak-pansion

T matrix is just given byT(w):VSGf(w) whereG; is the full (18—which is npthlng but the generalization of Anders_on
impurity f electron Green’s function. For a Kondo model, it poor mans scalingf to the pseudo_gap case—cannot give
is useful to define a propagatGr of the composite operator information about the strong-coupling behavior, and it can

T,=f'f,c,, such that theT matrix is given by T(«) only describe critical properties for small(In the p-h sym-

ol ) . X -
_ Ji Gr(w). As with the local susceptibility, we expect a scal- metric case, the fixed p0|lnt structure does not char!ge .Wlt[hll’l
the exponent range<Or < 3, thus the present expansion is in

ing form of the T matrix spectral density near the principle valid up tor=1.)
intermediate-coupling fixed points similar to Ed2). In par- . s . . -
! : upiing fIxed pol m H82). Inp Adding a potential scattering terivi, gives a finitep-h

ticular, at criticality & power law occurs: asymmetry. Under RG, we find th&t renormalizes to zero
for r >0, B(V)=rV. Thus, within the range of applicability of
the weak-coupling RG,p-h asymmetry is irrelevant.
(Strictly, this applies for <r*, see Ref. 6.

T(w) o

T (17
Remarkably, we will find thexactresult y=1-r for r <1,
i.e., for allinteractingcritical fixed points considered in this
paper theT matrix follows T(w)><w™. NRG calculations
have found precisely this critical divergence, for both the We quote a few properties of the critical regime which
symmetric and asymmetric critical poirit$? have been determined in Ref. 26. Expanding the beta func-
Notably, theT matrix can be directly observed in experi- tion (18) around the fixed point valugl9) yields the corre-
ments, due to recent advances in low-temperature scannidgtion length exponent:
tunneling microscopy, as has been demonstrated, e.g., with

B. Observables near criticality

2
high-temperature superconducté?s?® 1 -l o(rd). (20)
v 2
D. Phase shifts The low-temperature impurity susceptibility and entropy at

iticalit i b
Fixed points which can be described in terms of free fer—CrI callty are given by

mions can be characterized by tkevave conduction elec-
tron phase shiftfy(w), which can be related to the conduc-
tion electronT matrix throughdy(w)=argT(w). A decoupled
impurity simply has a phase shi#y=0, whereas g-h sym- 372
metric Kondo-screened impurity in a metallic host has a low- Smp=1In 2(1 + —r3> +0(rd). (22
energy phase shift ofy(w)=(7/2)sgn~w). A detailed dis- 8

cussion for the pseudogap model has been given in Ref. 6, Mhe anomalous exponent of the local susceptibility evaluates
the body of the paper we will simply quote the results. to

Thinp= 3(1-1)+0(), 21

7, =12 +0(rd). (23)

A comparison of the above results with numerical data is
In this section we briefly summarize the weak-couplinggiven in Figs. 3, 5, 6, and 7 below.
RG for the pseudogap Kondo modé), as first discussed by Most importantly, the continuous transition controlled by
Withoff and Fradkir? Perturbative RG is performed around the fixed point(19), which exists only forr>0, evolves
Jk=0, i.e., the local-moment_M) fixed point: this will al-  smoothly into the Kosterlitz-Thouless transition rat0, j
low us to access thép-h symmetrig critical fixed point =0, which separates the antiferromagnetic and the ferromag-

IIl. WEAK-COUPLING RG FOR THE KONDO MODEL
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netic metallic Kondo model. This is also indicated by theThis noninteracting system is known as resonant level
divergence of the correlation length expond@b) as r model, as the two spin species are decoupled. The problem
—0*. Thus,r=0 can be identified as a lower-critical “dimen- can be solved exactly: thieelectron self-energy is

sion” of the pseudogap Kondo problem. It is interesting to 5

compare the present expansion with (Be-€) expansion for %= VG, (25)

the nonlinear sigma model, appropriate for magnets close t@hereG,, is the bare conduction electron Green’s function at
the lower-critical dimension. The expansion is done abouthe impurity locationR=0. In the low-energy limit thef

the ordered magnet, thus the LM phase with In 2 residuaglectron propagator is then given by

entropy takes the role of therderedstate in the pseudogap

Kondo problem. Giliwp) ™t =iwy —iAg sgw)|wy|", (26)

where thd w,|" self-energy term dominates for 1, and the

IV. PARTICLE-HOLE SYMMETRIC ANDERSON MODEL prefactorA, is

In the following sections of the paper we shift our atten-

2
tion from the Kondo model to the impurity Anderson model A= W—VO_ (27
with a pseudogap density of states. This formulation will Cosﬂ
provide new insights into the RG flow and the critical behav- 2

ior of both the Anderson and Kondo models.

The coupling between impurity and bath is now the
Anderson hybridization terriv,, which turns out to be mar-
ginal in a RG expansion aroungy=0 for the DOS exponent
r=1 (in contrast to the Kondo couplingx which is marginal
for r=0). As we will show in Sec. V, the Anderson model B
provides the relevant low-energy degrees of freedom for the 8=f
p-h asymmetric pseudogap transition near its upper-critical

Before stating results for observables it is interesting to
tackle the problem using RG techniques, with an expansion
in the hybridization strength/, around the free-impurity
fixed point(FImp, Vy=0). We study the action

drl{f_aff(, + Vol f,c,(0) +c.cl}
0

dimension. A
Interestingly, thep-h symmetric version of the Anderson +f dKKCey(d, = K)Ciy | » (298
model also allows us to uncover highly nontrivial physics, in -A

Ea;rticular the special role played by the DOS exporent \herec (0) is the bath fermion field at the impurity position
=3, where the transition disappears in the presencg-bf 55 ap6ve. Power counting with respect to #g=0 fixed
symmetry. Thus we start our analysis with the partlcle-holepoim using dirfif]=0, din{c(0)]=(1+r)/2, yields
symmetric Anderson modél), i.e., we keepJ,=—2¢, and ’ ' ’
discuss the physics as function \¢§ and g, , 1-r _
dimVy]=——=rr, 29
- . [Vol 2 r (29
A. Trivial fixed points

_— e . i.e., the hybridization is relevant only for< 1.

For vanishing hybridizatioV/y=0, the symmetric Ander- To penyorm RG within the field—t}rlleoretic scherfewe
son model(1) featu_res th“?e rivial fixed points: faro<0 introduce a renormalized hybridizatian according toV,
}he Iground state |fs adspmful dOUblet_th'fS geprgseglts th‘%(z Mr_/v’E)v wherepu is a renormalization energy scale and
ocal-momeniLM) fixed point. Fore;>0 we find a doublet v o . ) 9
of states(empty and doubly occupig¢ddenoted as LMand _ﬁ]:nlgé %:)ewthee Lnéﬁgicigl izr}gjlﬁédtgeggrmallzatlon factors,
related to LM by thep-h transformation(3). Both LM and q
LM’ have a residual entropy &,=In2. At £4=0 a level Bv)=-Tv+v°. (30)
crossing between the two doublets occurs, i.e., all four im- ) . ) ]
purity states are degenerate—this is the free-impuFitynp) Remar.kably, this result iexactto all orders in perturbation
fixed point, with residual entropy In4. The impurity spin theory: the cubic term arises from tioaly self-energy dia-

susceptibilities are gram of thef fermions, and no vertex renormalizations occur
(Z,=1). This implies that the low-energy physics of the non-
1/4 LM, interacting resonant level model is controlled by the stable
TXimp =1 1/8 FImp, (24) intermediate-coupling fixed point located at
0L 2=zt (31)
The conduction electron phase shift is zero at all these fixed 2

points. The hybridization ternVy, is irrelevant at both the for 0=<r <1, which also applies to the familiar metallic case
LM and LM’ fixed points forr>0, whereas for=0 itis  _j ’ PP

marginally relevant, as shown by the RG in Sec. Il A. The intermediate-coupling nature of the stable fixed point,

with associated universal properties, is consistent with the

results known from the exact solution of the problem, e.g., a
It proves useful to discuss they=Uy,=0 case, i.e., the universal conduction electron phase shift, a universal cross-

physics on the vertical axis of the flow diagrams in Fig. 1.over in the temperature-dependent susceptibility, etc.

B. Resonant level model: Intermediate-coupling fixed point

214427-7
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We proceed with calculating a number of observables folEq. (37)]; we conclude that it can be identified with the SSC
the pseudogap resonant level model. Interestingly, this can Hexed point of Ref. 6.
done in two ways: eithefi) via the exact solution of the Numerical results® indicate that the quantum phase tran-
problem, i.e., by integrating out treefermions exacthflead-  sition between LM and SSC disappears @sincreased té,
ing to the propagatai26)] or, equivalently(ii) by evaluating  where thep-h symmetric critical(SCR) fixed point merges
perturbative corrections to the FImp fixed point using the RGwith the SSC fixed point. We shall show that an expansion
result (31), utilizing standard renormalized perturbation around the SSC fixed point captures the physics of the SCR
theory, and noting that all corrections beyond second order ifixed point forr < % Thus, this expansion describiee same
v vanish exactly within this scheme. Details of the calcula-critical fixed point as the weak-coupling expansion of Sec.
tiOfc/Vare:n ;“\PF_’tﬁndiX i“ ; _ i - tIII, but applroaching it front =2 instead ofr =0. (Ther val-

e start with evaluating spin susceptibilities—note tha 1 _Crifi i i .

we have kept two spin species in the model. The zerog;ersr']rge?r?gzp:éﬁégg;gvﬁ%rn%rglgitﬂ;‘nénSIons or therh
temperature dynamic local susceptibility is proportional to * The RG expansion below will be performed around an
the bubble formed with twd propagatorg26) intermediate-coupling fixed point, in contrast to most ana-
Iytical RG calculations which expand around trivi@le.,

o™ (0sr<1), > . .
Y weak or strong-coupling fixed points. Strategically, one
Xioc(@) 5((0)9 r=1), (32) could think about a double expansion M3 and U,. How-
T ever, this is not feasible, as the marginal dimensions for both

1

couplings are different,=1 andr =3, respectively. Therefore

we choose to first integrate out tleefermions exactly, and

then use standard RG tools for the expansiotJjn
Consequently, the starting point is the action

where the case af=3 receives logarithmic corrections, see
below. The low-temperature limit of the impurity susceptibil-
ity is found to be

r _
TximplT) = 2 (33 S= 2 flwp[iAg sgriwy)| @y 1f (o)
the impurity entropy is B —  1\/— 1
drlo| f,f == )|, f, -2, 36
Smp=2rIn 2, (34) +L 0( i 2)( Hh 2) (36)

where the two last equations are valid fo@<1; for r  \here thef fermions are now “dressed” by the conduction
=1 the resonant level model flows to the free-impurity |ines. A, is the nonuniversal number given in E&7), and
(FImp) fixed point with properties listed in Sec. IV A. The e have assumed<Or<1. The interaction term has been
conduction electron phase shift near the Fermi level, detefyritten in ap-h symmetric form. A note is in order regarding
mined in Ref. 6, is the cutoff: The original model had a UV cutaff, and this
sets the upper bound for the,|"” behavior of thef propaga-
tor (26), i.e., A is now the energy cutoff for the spectral
density of thef fermions. The RG to be performed below can
be understood as progressive reduction of this cualff
2 In|Aw)| though we will use the field-theoretic scheme where the cut-
-1 off is implicitly sent to infinity at an early stage
\ Oe"™) (r>1). Dimensional analysis with respect to thig=0 situation,
Interestingly, the resonant level model describes aising dimif]=(1-r)/2, results in
screened impurity only in the metallic case. For the . B _
pseudogap case>0, Eqs.(33) and(34) show that the im- dim{Uo]=2r-1=-e, (37
purity is only partially screened: in a model of free fermionshence, forr >1/2 the interaction term is relevant and the
we have a residual entropy. We will see below that the resogsc fixed point is unstable.

r

(1—r)g O<=r<1),

So(w) _
sgn- )

o

(r=1), (35)

nant level model fixed point31) can be identified with the
symmetric strong-coupling fixed poit6SQO of Gonzalez-
Buxton and Ingersenft,introduced for thep-h symmetric
Kondo and Anderson models.

C. Expansion around the resonant level fixed point

After having analyzed the behavior of the Anderson
model in the noninteracting case, we proceed to study the
stability of the resonant level fixed point with respect to a

finite interaction strengthl,, keepingp-h symmetry. Impor-

We continue with the RG analysis ¢86). To perform a
perturbative expansion inUy, using the field-theoretic
schemé?® we introduce a renormalized field and a dimen-
sionless coupling according to

fo=\Zfre, (39)
B ATy
Ug= TU, (39

where p is a renormalization energy scale as usual, and

tantly, this fixed point, characterized by a finite hybridization(—¢) is the bare scaling dimension bf;; we have absorbed

strength between impurity and bath, is stable for smgdlee

the nonuniversal numbek, appearing in the dynamic term
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of the action(36) in order to obtain a universal fixed point 1 y " " " 4

value ofu. A~
The complete RG analysis, needed to determine the flow 08F v./’ ]

of u, is presented in Appendix B, here we restrict ourselves 06F e ]

to the final resultsp-h symmetry prohibits the occurence of d 7

even powers ofu in the beta function ofu, therefore the ™ o4} VT .

lowest contributions arise at two-loop order. Remarkably, no ob

singular propagator renormalizations occur, thus 02r @oog ;\% ]

z=1 (40) % 02 04 06 08 1
to all orders in perturbation theory. The RG flow equation for r

the renormalized mtgrac_tlou, arnsing now only from two- FIG. 3. Inverse correlation length exponentyldbtained from
loop vertex renormalizations, is found to be NRG, at both the symmetritsquares and asymmetrigtriangleg
3(m-21In4) critical points, together with the analytic?l RG results from the ex-
Bu) =eu— Tug’. (41) pansions irr [Sec. I, Eq.(20), solid], in (z—r) [Sec. IV, Eq.(43),
dashedl and in(1-r) [Sec. V, Eq.(72), dash-dot The numerical
Next-to-leading order contributions would require a four- datal have been partially gxtracted from Ref. 7 using hyperscaling
loop calculation which we do not attempt here. For positive'€/ations: for the symmetric model data are from Ref. 5.
g e, r< % EqQ.(41) yields a pair of unstable fixed points at . - o .
finite |u (in addition to the stable one at=0); the correla- does not yield additional nontrivial fixed points. As LM and
tion length exponent of the transitio@3) diverges asr LM’ are stable, we can conclude tha_lt' the flow i§ from SSC
—1- Thus, the behaviobelow =3 is similar to the stan- directly towards LM (LM’) for positive (negativg Uo.
dard behaviombovea lower-critical dimensiorfe.g., in the Hence, SSC has become a critical fixed point, controlling the

nonlinear sigma model for bulk magnet case transition between LM and LM which occurs atUy=0 for
any finite Vy. We shall not consider this transition in greater
D.r=0 detail, apart from stating its correlation length exponent,

1/v=-e. Figure 1c) displays the flow diagram arising from

perturbative RG equatio@1) do not necessarily exist for the tIQ(I; déscussmn, being consistent with the numerical results of
metallic caser=0, ase=1 is possibly outside the conver- T

gence radius of the expansion. Indeed, the Kondo RG of Sec.

[l A shows that, atr=0, the LM and LM fixed points are G.r=l

unstable with respect to finite impurity coupling. As the  The physics of the symmetric Anderson modelifer1 is
resonant-level fixed point at=0 is stable, we conclude that easily discussed: the hybridization teM is irrelevant for

the flow is directly from LM(LM") to SC, and SC represents all U,, Eq. (29). The free-impurity fixed pointFimp) is the

the familiar strong-coupling Kondo fixed point, with com- only remaining fixed point all,=0. It is unstable with re-

Clearly, the unstable finita-fixed points predicted by the

plete screening of the spin. The RG flow is in Figa)l spect to finiteU,, and controls the transition between the two
L stable fixed points LM and LM The resulting flow diagram
E.0<r<3 is in Fig. 1(d).
For r values smaller thag, both thev=v*, u=0 fixed
point(SSQ and thev=0, |¢|=c° fixed points(LM, LM ") are H. Observables near criticality

stable, and should be separated by critical fixed points. The Here we discuss critical properties of the SCR fixed point,
RG equation(41) yields a pair of infrared unstable fixed the properties of SCRare identical when translated from

points at spin to charge degrees of freedom. The correlation length
- exponent follows from expanding the beta functiofil)
U2 = me+ 0(é (42)  around its fixed-point value
with e=1-2r. These two fixed points represent SCR and 1:2 -4 +0O(é). (43
SCR, see the flow diagram in Fig(li). Note thatp-h sym- v

metry also dictates that the flow trajectories out of the SSGy comparison with results from NRG is shown in Fig. 3.

i i i i -2 di ) . .
fixed point are horizontal in the-v< diagram. Therefore, )5se tor:%, the analytical expression nicely matches the

close 'tor:% the SCR and SCRfixed points are completely nymerical results, however, higher-order corrections in the

described by the fixed point coupling valugs (31) and u* expansion quickly become important.

(42). We continue with the quantities introduced in Sec. Il. As

usual for an expansion where the nonlinear coupling has an

infrared unstablefixed point (as occurs above the lower-
For r>% (r=%) the self-interactionu is a (marginallyy  critical dimension in standard situationghe UV cutoff

relevant perturbation at the SSC fixed point, and &4) needs to be kept explicitly, and intermediate quantities will

Fisr<i
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FIG. 4. F di for th tric Anderson impurit 02 o T ]
. 4. Feynman diagrams for the symmetric Anderson impurity ~.
model, where the expansion is dondJg around the resonant level 0.,....4:.:9"?/ . . RS
0 0.2 04 0.6 0.8 1

model fixed point. Full lines areressed § propagators with the
self-energy arising from the conduction electrons already taken into
account, i.e., with the propagator given in &26). (2) Bare inter- FIG. 5. NRG datgRef. 7) for the local susceptibility exponent
action vertexUy. (b) Correlation function involving a composite 7, defined throughye.= T2, at both the symmetri¢squares
(f) operator(wiggly line), together with the first perturbative cor- and asymmetrigtriangleg critical points, together with the renor-
rection. (¢) Uq correction to the local susceptibilityimp imp=Xioc: malized perturbation theory results from the expansions [iBec.
open circles are source@l) U, correction toy, ., which contributes 1] Eq. (23), solid], in (%—r) [Sec. IV EQ.(47), dashedi and in(1
to the Curie term of the impurity susceptibilify,,. Dashed lines  -r) [Sec. V Eq.(75), dash dottef

are conduction electron lines, and the full dots are\thevertices.

(e) U3 contribution to the impurity free energy.
=2~ 2+2688\/——r+0(e) (47)

diverge with the UV cutoff(see, e.g., the calculation of the
impurity entropy. However, these divergences will cancel in \yhere the first term contains the tree level expression, and
the final expressions for universal observables, and this is afyrther O(e) terms arise from higher-order perturbative cor-
important check for the consistency of our calculations.  rections. A comparison with NRG results is given in Fig. 5,
o where good agreement nerax% can be observed.
1. Local susceptibility

The local susceptibility at the SSC fixed point, i.e., at tree 2. Impurity susceptibility

1_2r_ € i - . . . . . . e
level, follows the power [awoe> & =w*. To obtain cor For the impurity contribution to the uniform susceptibility

reclt!on? tofthi trzee-flevel risurllt, one grpdu;:f:ag,o@ renoT- we expect a Curie law, as discussed in Sec. Il. At tree level,
malizalion factorz,, from which one obtains theé anomalous 5 o of Curie form does only arise from,,, with Ty,

exponent according to =r/8. Both Ximp,imp @nd ximp are less singular for <1,
dinz consistent withT y;,.=0, see also Appendix A. Also note that
=Bu) —=| . (44)  xuu is the only of the three terms where the non-universal
du [ numberA, drops out.

We are interested in corrections Ty, to lowest non-
tr|V|aI order in Uy, and consequently those corrections can
only occur iny, . A single diagram contributes to first order

Note that 1-, —e+7] with », defined in Eqs(12) and
(13), due to the nontrivial structure of the problem already at

tree level.

Different ways can be used to determidg. Realizing in Uo [Fig. 4d)], which gives
that yjoc is @ correlation function of a compositéf) operator A U ﬁ A dekI“TE | o 2 .
leads toZX:Z_g, whereZ, is the renormalization factor asso- Ximp = Al ~ (iwp, 2

ciated with (ff). Z, can be calculated from the correlation
function shown in Fig. &), which receives a perturbative
correction to first order itJ,. Alternatively, y;o. can be cal-

Thek integral can be performed first, with the UV cutoff sent
to infinity, and the frequency summation then leads to

culated directly, and a single diagram gives a contribution of {(1+1)2UgTe
order U, [Fig. 4(c)]. Both ways lead to AXimp= (1 2t r)2 20 A2 (49)
z,= 1+@, (45) In the Iow—e_nergy limit, the combina’gio(UOTf/Aé) ap-
(g proaches a universal value, the nonuniversal prefadigrs

, . . , ) are seen to cancel, and the result has the expected universal
with details given in Appendix B. The result fQfo iS Pro-  cyrie form. Introducing the renormalized coupling we
portional to the nonuniversal numbegz, however, the eX- pave to leading order ie:
ponent is universal:

(3/2)2
2 - A(T)(lmp) = (1 - _> 2 u. (50
7, =—u* =2[3(m-2In 4] He. (46) 2\2) 27
ar
Using the fixed point value aofi (42), the result for the im-
The local susceptibility thus follows,.(T) & T~1*7x with purity susceptibility at the SCR fixed point reads
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FIG. 6. Numerical data for the impurity susceptibility;m, at FIG. 7. As Fig. 6, but for the impurity entrop§y,; the NRG
both the symmetriqsquares and asymmetriqtriangles critical values at the SSC fixed point are hardly distinguishable from In 2.
points, together with the renormalized perturbation theory result§he perturbative expansions are in E@2) (solid), Eq. (55
from the expansions in [Sec. Ill, Eq.(21), solid], in (%—r) [Sec. (dasheg, and Eq.(89) (dash-dox; the thin line is the value of the
IV, Eq. (51), dashed and in(1-r) [Sec. V, Eq(85), dash-dot The  SSC fixed poinfT xjmp=2r In 2.
thin line is the value of the SSC fixed poiffif;m,=r/8. The nu-
merical data are partially taken from Ref. 6; we have recalculated u2
the data points near=1, as the logarithmically slow flow at=1 ASmp: 0.159—.
complicates the data analysis. 2

r 1
TXimp = é +0.194 5 -r+0(e),

wherer/8 is the tree level contribution ard(e) represents The two expansions for the entropy of the SSC fixed
higher perturbative terms as above. This result can be nicelgoint, (22) and (55), predict a small positive correction to
compared to NRG data of Ref. 6, see Fig. 6. In2 for 0<r<%, as shown in Fig. 7, consistent with the
notion that entropy should decrease under RG fi&Results
from NRG (Ref. 6 as well as ouyjsshow that the deviation

. . . . from In 2 is tiny for all 0<r<%, which is in principle con-
The impurity entropy can be straightforwardly determined o\ itk the analytical resultsAlthough we identified

from a perturbative expansion of the impurity part of thesignatures of a® correction 10Smp=In 2 in the smalk re-

thermodynamic potential. The lowest correction to the tree=. . -
level val)l/JeS :gr In2 is of orderU% The corresponding gime, the accuracy of our NRG procedure was insufficient to
mp .

contribution to the thermodynamic potentigifig. 4(e)] is determine the prefactd)
given by

(54)

Adding the tree-level result and th8 correction we obtain

(51) smp=|n2+(o.03¢0.oo5(%—r> +0(e?). (59

3. Impurity entropy

4. Conduction electron T matrix

In the Anderson model formulation of the impurity prob-
lem, the conduction electrohmatrix is directly proportional
to the physicalf electron propagator. As shown in Appendix
B, there are no singular propagator renormalizations in the
present problenz=1 (40). Thus, from Eq(26) we have the
exactresult for the exponent of th€ matrix

U3 (*
AQimp: ?Of dTG%(T)GfZ(_ 7). (52
0

Here G;(7) is the fourier-transformed Green’s functidBy
(26) in the presence of an UV cutoff. Taking the tempera-
ture derivative we can write the entropy result as

Im T(w) = |o|™, (56)

212¢ B . o
ASpp= %l&f dr GX(DGZ(~ D|y=12|, (53)  which holds at the SCR and SCRxed points, andtrivi-
2A, 0 ally) also at the SSC fixed point. A result similar to E§6)

B was deriveéd® for the SCR fixed point within the small-
whereG;=A,G;. The prefactor can be expressed in terms ofexpansion of Sec. Il in agreement with the notion that both
the renormalized coupling? and will be proportional tazat ~ €xpansions describe the same critical fixed point.
the fixed point. Thus, to leading order the square bracket
term can be evaluated at%, and is expected to be a uni-
versal, finite number in the limit ok — . Unfortunately, we
were not able to analytically prove the convergence of the
integral as\A — . We have therefore resorted to a numerical In this section we consider a different limit of the
evaluation for finiteA and T, with an extrapolation of the pseudogap Anderson modél), namely, the model with
result to A/T—o, and obtained dr---]=0.1590+0.0005, maximal p-h asymmetry. This means that one of the four
ie., possible impurity states will be excluded: withly— oo

V. MAXIMALLY PARTICLE-HOLE ASYMMETRIC
ANDERSON MODEL
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(keepingg,, finite) this is the doubly occupied one, whereas @6)}

with eq— — (keepingUy finite) the empty state is excluded. (O)= lim — AO, (59)

As these two situations are related by fhé transformation M= (Q)y

(2), we will formulate the following fordy— oc. The Hamil- 0

tonian can be written as where (- --), denotes the thermal expectation value calcu-
A lated using pseudoparticles in the presence of the chemical

H = ggo|o)a] + V[|o)(elc,(0) + H.c] + f dk|k|rkClUCkm potential\y. Clearly, in the limitAy— o the term<Q>>\0 rep-

-A resents the partition function of the physical sector of the

(57) Hilbert space times exp\oB). As detailed in Ref. 26, both

. _numeratorand denominator of Eq(59) have to be expanded
where|[1), 1), and|e) represent the three allowed impurity  the nonlinear couplings to the required order when calcu-
states. lating observables; however, the denominator does typically

We shall show that this infinite} pseudogap Anderson not develop logarithmic singularities at the marginal dimen-
model has a phase transition between a free-moment andggy,

Kondo-screened phase, which is accessible to perturbative Fﬁrthermore we need to introduce chemical-potential
RG techniques near=1. In particularr =1 plays the role of  counterterms which cancels the shift of the critical point oc-
the upper-critical dimension. Furthermore, we will argue incyrring in perturbation theory upon taking the limit of infi-
Secs. VI and VII that the transitions in both the Andersonyite UV cutoff. Technically, this shift arises from the real
and the Kondo model witfinite p-h asymmetry are in the parts of the self-energies of tie andf,. particles. We intro-

same universality class, and are described by the RG prepyce the counterterms as additional chemical potential for
sented below, provided that>r*. the auxiliary particles

pblbs, NI, (60)

The 6\, ¢ have to be determined order by order in an expan-
sion in V,. Note that counterterm contributions in observ-
ables in general enter both numerator and denominator in Eqg.

A. Trivial fixed points

For vanishing hybridizatioi/,, the maximally asymmet-
ric Anderson model features three trivial fixed points: for
£0< 0 the ground state is the spinful doub{eM) with In 2 (59
entropy. Foreg> 0 we have an empty-state singlet, which we : . . .
can ig)éntify 3Vith the ASC state Fc))fythe Kondgo modske The model(57) can then be written in the path integral
below). The doubly occupied singlet stat@beled ASC) is form
related to ASC by the-h transformation(2). For ¢;=0 we B
have three degenerate impurity states, we refer to this as theSzf

dT|:f_0'((9T_ £0=No= O\, + b0, = Ao = SNp)bs
valence-fluctuatiorfVFI) fixed point, with entropy In 3. The

0

impurity spin susceptibilities are — fA —
+ V[ f b, (0) +c.c|+ dkk|"c, (9, = K)Cry | »
Ya LM, ol fobsc,(0) J _Ak||k( )Ck
TXimp=11/6 VFI, (58) (62)
0 ASC.

where \ is the chemical potential enforcing the constraint
Again, the conduction electron phase shift is zero at thesgxactly, and the rest of the notation is as above. The coun-
fixed points due to the vanishing fixed point value of theterterms(60) are determined from the real parts of the self-
hybridization. The hybridization terny,, is irrelevant at the ~ energies of both thé, andb; particles at zero temperature
ASC fixed point for allr, and irrelevant at LM for > 0. according to

(S)\f = Rezf()\o tegt 5)\f,T = 0),
B. Upper-critical dimension: Expansion around the
valence-fluctuation fixed point S\p=ReZp(\g+ O\, T=0), (62

~ In the following we perform an expansion around the VFl note that these real parts diverge linearly with the UV cutoff
fixed point, i.e., aroundy=0, Vy=0. This will give accessto A
the properties of the ASC fixed point, i.e., a critical fixed  The model(61) shows a transition driven by variation of

point different from the one accessed by the RG calculationg, for finite values ofV,. Tree level scaling analysis shows
in Secs. lll and IV. that

To represent the three impurity states in the infitite-
Anderson model it is useful to introduce auxiliary fields for dim[Vy] = i-r -7 (63)
pseudoparticled, (for the empty-state singletand f,. (for 0 2 '
tt?rf) ipf)lTr;fu_l Stzulb\lltjit”g;emr]eTuwed H(;Iber.t spac::; Co.n stlram-t This establishes the role o1 as upper-critical dimension
bst+f f,=Q= plemented using a chemical po whereV, is marginal.
tential A\g— <0, such that observablg®©) have to be calcu- We now proceed with an RG analysis of E§1) which
lated according t&§-3° will allow to determine the critical properties far<1—a
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brief account on this appeared in Ref. 12. The RG will treatACR fixed point[Fig. 2(b)] shifts to larger values 02,

the auxiliary fieldsf, and b, as usual particles and conse- |* | with decreasing, and the expansion can be expected to
quently determine their propagator renormalizations, anomasreak down for smalt. The numerical results of Ref. 6 show
lous dimensions, etc., but all diagrams are evaluated witlthat this is the case at* =~0.375, where ACR merges with
No— % which ensures the nontrivial character of the expanSCR, andp-h symmetry is dynamically restored. Then, Eq.
sion. Renormalized fields and dimensionless couplings aré1) together with an expansion in, r yields the correct

introduced according to description of the critical properties for 0.3#5* <r<1.
— Using NRG we have numerically confirmed this expectation,
fo=VZifRe, (64) i.e., the properties of the critical fixed point of the mo¢kl)
o vary continuously as function af for r* <r<1.
bS: V’beRv (65)
B D.r=1
r
Vo= 'L,iv. (66) For allr=1, a phase transition still occurs in the asym-
NZiZy, metric Anderson and Kondo models, but it is controlled by

No renormalizations are needed for the bulk fermions aéhe noninteracting VF fixed point at=s=0. For the mar-

their self-interaction is assumed to be irrelevant in the chglnallcase_rrz]lz "f?" at thﬁ ufpp|>|er-(;r|t|cal d|m?n§||01;, we EX'
sense. pect logarithmic flow. In the following we explicitly keep the

In contrast to the field theories analyzed in Secs. IIIAandUV cutoff A, e_md discuss RG _u_ndgr cutoff reductioh

IV C (where the nonlinear coupling is used to tune the sys-_) )\A_. We restrict ourselves to criticality, where the RG beta
tem through the phase transitjprihe theory(61) contains function to one-loop order is

two parameters, namely, the tuning parametgrand the _dv 3,

nonlinear couplingVy. The RG is conveniently performext B) = dnx 2 (69
criticality, i.e., we assume that, is tuned to the critical line,

and RG is done for the coupling—this naturally results in i.e., the hybridization is marginally irrelevant. The RG equa-
an infrared stable fixed point. To two-loop order we obtaintion can be integrated to give

the following RG beta function:

2
_ 3 V() =
Blo)==To + Jv*+ 3° (67) 1=3v5InA
with v(A=1)=V,. This result will be used below to deter-
with the calculation given in Appendix C. Generally, the mine logarithmic corrections for a number of observables.
higher-order corrections to the one-loop result appear to be
small in the present expansion. One can also consider the Er>1
flow away from criticality, i.e., the flow of the tuning param-
etere, either usings? insertions in the field-theoretic formu- ~ For bath exponents>1 the couplingV, in the theory
lation or explicitly within momentum-shell RG. The result- (61) is irrelevant in the RG sense. The critical system flows
ing correlation |ength exponent is in E@Z) below. to the VFI fixed pOint, Flg a:)), and the transition becomes
The structure of the above RG is very similar to the one of2 level crossing with perturbative corrections.
the (4-¢) expansion of thes* model for magnets, where the ~ Observables can then be obtained by straightforward per-
mass term drives the transition, and the nonlinear couplingurbation theory. Consider, e.g., the boson self-en¢Fag.
has a nontrivial stable fixed point at criticality below four 14(C) below]:
dimensions. Thus, the fixed point with finite (68) corre-
sponds to the Wilson-Fisher fixed point, wherea0 is the S(ive) = VAT, f
analog of the Gaussian fixed point in the magnetic context, n
see Fig. 2. The parametarsande play the role of the inter-
action and the mass, respectively.

(70)

Akl 1

iw,—Kivy—iw,—Ng— &’

the expression for the fermion self-energy is similar. At the
transitioney=0, the self-energies show threshold behavior at
T=0, -Im3((w+in/ 7=V’ ®(w) with @=w-\y. The

C.rx<r<1 low-energy behavior of thé, propagator follows as
Forr <1 the trivial fixed pointv* =0 is unstable, and the —ImG{w+in)/m=(1-A)8o) +Blo]?0(w) (71)
critical properties are instead controlled by an interacting ) o
fixed point at with A, B« V(. The bs propagator has a similar form—we
will use these results below to explicitly calculate the local
p*2= - g?z 68) susceptibility.

At this asymmetric critical fixed poin{ACR), we find F. Observables near criticality

anomalous field dimensiong,=2v"2+2v™, 7=v"2+2v™. We start with the correlation length exponentof the
The resulting RG flow diagram is shown in Figia2 The  asymmetric critical fixed point. In the field-theoretic RG
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scheme it has to be determined via composite operator inser-  a)
tions into the actior{61), which take the role of mass terms
driving the system away from criticality. The lowest-order
result forv is

1
“=r+0(r» (<, (72
14

with details of the derivation given in Appendix C. For d)

=1 the transition is a level crossing, formabiz=1.
In the calculation of observables like susceptibilities, etc.,

the UV behavior depends on whether we are above or below

O
SO
@

the upper-critical dimension=1. Forr =1 the cutoffA has €) ) §)

to be kept explicitly, as integrals will be UV divergent. This =~ LT
also implies that hyperscaling is violated, andavrl scaling <§ o + o »
in dynamics occurs, as usual for a theory above the upper- -7 \'" e’

critical dimension.

For r <1 the UV cutoff A can be sent to infinity after FIG. 8. Feynman diagrams for the infiniteAnderson model.
taking into account the contributions of the countertermg-ull/wiggly/dashed lines denotk,/bs/c, propagators, the cross is
(60), as the remaining integrals are UV convergent. This is irfhe counterterni60). (a) Bare interaction verteXo. (b) V§ contri-
contrast to the expansions for=0 (Sec. Ill) and for r bution to the partition function, which also appears in the denomi-
<1/2 (Sec. IV), which are effectively both above a lower- nator of Eq.(59). (c) (d) Dlagrams entering the local susceptlblllty
critical dimension, and where intermediate quantities carkimpimp 10 OrderVg. (e) Vg contribution toxymp (f) V5 contribu-
display UV divergencies. Notably, for afl<1 expansions UOnS ©0Xuu
the low-energy observables are fully universal, i.e., cutoff
independent and hyperscaling is fulfilled. Nodio Vo A) :ZX(?\A)_1X|OC()I\—(Z,U(?\),A _ 1). 77

1. Local susceptibility
. . To analyze the frequency dependenceygf we choosen
The anomalous exponent, associated with the local sus- =\*=w/A and employ Eq(76) together with Eq(70) to

ceptibility is calculated as above by determining tg.  eypress the renormalization factor in termshofThis leads
renormalization factorZ,, using minimal subtraction of

to
poles, and then employing
-1
dinz Xiocli®,Vo,A) = 2/3Xloc[iav(7\)a 1].
Ny = plo) x| (73) 1322

dv |« oIn A
Here we havey,.=1/w at tree level, in contrast to theh 14 gptain the leading.e., multiplicative logarithms, the last
symmetric problem of Sec. IV. term can be approximated by its fixed point value, which

_ The leading contributions @, arise from the diagrams in - gimply gives a constant—this neglects sub-leading additive
Fig. 8(c), see Appendix C for details. From tlg expression  |ogarithmic corrections. We finally obtain the result

1
Zy=1- = (74) Xioo(®) olin o2 (r=1) (79

we find 7, in an expansion im, valid at criticality for o< A. Note that the structure of the
logarithms in our problem is different from, e.g., that of the
Hertz-Millis theory at the upper-critical dimension studied in
Ref. 32. In our problem both andZ, flow to zero according
to Eq.(76); whereas in Ref. 32 the renormalization factor
This result is again in good agreement with numericaltends to a nonuniversal constantas-0—this leads to the
findings, with a comparison given in Fig. 5. absence of multiplicative logarithms.

We now describe the evaluation of the logarithmic correc-  Above the upper-critical dimensiar>1 we have simply
tions present at=1. Using the lowest-order resulig(v) 7,=0 and thusyj,c 1/T or «1/w. We shall explicitly dem-

2
M= 5(1 -1N+0(? (r<1). (75)

:§v3 and 77X(v):21)2 we can integrate Eq.73) to yield onstrate the calculation of the local impurity susceptibility
using bare perturbation theory. To lowest nontrivial order,

7 = (m)m (76) Xioc 1S given by the convolution of twd,, propagatorg71),

X\ v, ' calculated with the self-energy to second ordeijn Note

that no vertex corrections occur to this order due to the struc-
The explicit scaling relatioft for y,,. at T=0 reads ture of the interaction. When calculating,. the T— 0 limit
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has to be taken with care, as the exponentially small tail in - V% 5 A r k
Im G{(w) at w<0 contributes toy;,.. One obtains for the (Qh,=3 —A +4Vof dkk tanhE (82
imaginary partyj,. for T—0 and 1<r<2: 0

to be multiplied withe™0#, Now we are in the position to

collect all contributions tg(imp to second order iV
JA’T dxx sinhx-x

Moving away from criticality, one of thd, by propagators x® 1+ coshx

loses itsé(w—\g) contribution—fore >0 (t>0) this is GfU, AT gyl h

indicating that free-moment behavior is absent in this re- +J L<ﬂ_1>]. (83)

gime. Consequently, the zero-temperature static local suscep- o 3x \1+coshx

tibility is finite, but diverges upon approaching the critical

point according toyjo. =t 2. Fort<O0, xj,c>*1/T. Thus, the

order parametem,,. jumps at the transition point far> 1.

1-2A 5(w)w B

% 1 T3 "2sgnlw).  (79)

Xioc(@)/ 7=

AXimp =

Note that intermediate terms of the foffn? have cancelled

in numerator and denominator of E&9). Forr <1 the mo-

mentum integrals are UV convergent, and do not develop

poles inr, i.e., the poles present in th&np,imp diagrams have

been cancelled by contributions from Figge@and &f). In
The evaluation of the impurity susceptibility requires the the low-energy limit, the produdf;T™" approaches a univer-

summation of the diagrams in Figs(c8-8(f), appearing in sal value. ThUS)(imp has indeed Curie form, with a fully

the numerator of the corresponding E§9), and also a care- universal prefactor depending enonly. Forr>1 the inte-

ful treatment of the denominator, as we are interested igrals require an eXD“C't UV cutoff, but no correction to the

2. Impurity susceptibility

terms being nonsingular as a functionrof Curie term arises, ad/3T™) vanishes aJ — 0.
The diagrams are conveniently evaluated in imaginary Performing the integral for<1 and expressing the result
time, e.g., the first correction tg, imp in Fig. 8c) gives in terms of the renormalized coupling the impurity suscep-
tibility reads
Loz [“ar [ "o, [ driGeg(, - 80 1_(1_In2
2 0 o T o 72 0 71Geo(72 = 71), (80) TXimp:6_<g_ 5 )v +0(v%). (84)

where the limit\,— % has been taken in thfg. andb, propa- ~ With the value of the coupling at the ACR fixed poi(@8)
gators.Gy, is the conduction electron Green’s function at thewe finally find, to leading order ifi1-r),

impurity site, which contains a momentum integral. The 1
other diagrams in Fig. 8 can be written down similarly. Per- =-0.029881-1)+0O(r) (r<1),
forming the 7 integrals first, one obtains 6

TXimp: 1 (85)
1 A K| 2k K2 k = (r=1)
(8c)=——V§f dk—3[—+(4+—2>tanh—], 6
T o KLT T 2T . , -
to be compared with the numerical results in Fig. 6.
V2A 3. Impurity entropy
(8d)=- %1 The impurity contribution to the entropy can be derived
from the free energy as above. At the VFI fixed point the
entropy isSy,=In 3, and the lowest-order correction is com-
2 A 2[3 + coshk/T) Jk/T — 4 sinHk/T) puted by expanding the free energyuvnNote that this cor-
(88) = Vo 0 dkKk K3[1 + costik/T)] ' rection vanishes for=1, asv*=0 there.

The calculation of the impurity entropy in the presence of
a constraint for pseudoparticles has been discussed in Appen-
) A Kk dix C of Ref. 26. The limit\¢— c suppresses all contribu-
(8f) ‘Vof dk@ 4 tanh_— tions from the unphysical part of the Hilbert space, in par-
0 ticular disconnected diagrams in the partition function.
2k K k L,k Remarkably, this leads to the appearance of disconnected
- (? + 72 tanhZT)cosh o7l (81)  diagrams in higher-order terms of the expansion for the ther-
modynamic potential). The second-order diagram fét,

where all terms have to be multiplied By*0%/2. Figure 8d) ~ Shown in Fig. &), evaluates to
are the contributions from the counterterr(ﬁO) which _2V§ IK["
evaluate tod\,=26\;=2V3A. The denommato(Q)A , being AQipp= 3 dk—~
3eMof to zeroth order inV,, receives corrections from the A

diagram in Fig. 8) and from the countertern®0), result-  There is also a contribution tQ;,,, from the counter-terms,
ing in but this is temperature independent and does not contribute

tanh— 86
k 2T (86)
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to the entropy. Taking the temperature derivative we find NN ' ' ' '
\
02 \ 8
V2 (AT X I \
ASpp=- —OT‘Z‘J dxx|" cosh? =. (87) o o
3 -AIT 2 ;.5 -
[~‘ 4

o1k + ‘
This integral can be performed in the limit of infinite UV [ ,’l ]
cutoff. [In contrast, the integral in E¢86) is UV divergent, [ /! ]

as discussed in Sec.]IExpressing the result in terms of the
renormalized hybridization and taking the limit-1 we

0 1 1 1
102 102 102 10 10" 10 10 10* 10°

have O8F T LB T J T
- ——" l’

8In2 06 ! b

Smp=In3- 3 v2. (88) . 5 ,.' ]

ta'g 041 ! b

As expected, the entropy correction is fully universal and [ / ]

finite in the limit T— 0. Inserting the fixed point value of the 02F /! ]
couplingv into Eq.(88), we find the impurity entropy as it . L L

0
102 102 10% 10? 10" 10" 10® 10* 10°
Temperature T

8In2
InB—T(l—r)+O(F2) (r<1, (89
me In3 - FIG. 9. NRG results for a slightlp-h asymmetric Anderson
n (r=1). model atr=0.45 close to criticalitf ACR). Parameter values are a
hybridization strength wvgp(o):l, go=-0.5, and Uy=0.9949,

NRG calculation® have determine for r values below
Bimp 0.99493(dashey] 0.9949213, 0.994921Golid). The thin lines are

unity; a comparison is shown in Fig. 7. As with most of thef : L .
observables obtained within thi@—r) expansion the agree- '*' 2 P symmetiic model very close to criticali§SCR), with
. o - £0=-0.487,U,=0.974. The NRG runs were done using a discreti-
ment of the lowest-order result with NUMENICS 1S Su_rprlsmglyzation parameter oA =9, keepingNs=650 levels. The two-stage
g,OOd even for valu.es well away from unity, indicating that flow described in the text can be clearly seen, i.e., there is a small
higher-loop corrections are small. , energy scald™* where the system flows from ACR to ASC or LM
The results for the RG flow and the impurity entropy have ggjig: T+ ~1028 dashed:T* ~1023), and a larger scal@acq
an interesting corollary: Stability analysis shows that for~ 1012 yhere the system flows from SCR to ACR) Impurity
r*<r <% the RG flow at criticality and smalt-h asymme-  susceptibility T ximp. (b) Impurity entropySy,,. The behavior of the
try is from SCR to ACR. The entropy of SCR approachesentropy illustrates the point made in Sec. V F3;,(T) decreases
In2 asr— 3. Both NRG and the above expansion indicateas function ofT, i.e., increasesalong the RG flow, forT* <T
that the entropy of ACR ifarger than In 2 forr < 3, Fig. 7. <Tacr due t0Smp,ack= Simp,scr This “uphill flow” does not vio-
Thus we haVESmp,ACR> Smp,SCRfor [* <r< % i.e., the im- late thermodynamic stablll_ty criteria, as the total entréipypurity
purity part of the entropy increases under RG fiee also  Plus bath of the system still decreases under RG.
Fig. 9 below, in contradiction to the so-calleg theorem!

(This is not a fundamental problem, as the present model has . zf
effectively long-ranged interactions, and is not conformally = (91
invariant, such that the proof of thgetheorem does not ap- o
ply.) This equation can be plugged into E6). Taking the loga-
_ _ rithmic derivative at fixed bare coupling and usipgv)/v
4. Conduction electron T matrix =0 at any fixed point with finite*, one obtains the exact
The T matrix in the Anderson model is given bi(w)  'esult
=V3G;(w). The physicalf propagatoiG; is a convolution of _
oGilw). The physicalf propagatoiGy | Vot =200 I T(w) « || (92)

the auxiliaryf,, andbSTpropagators, i.e., the propagator of the

cqmposne operatoff_bg). The anomalous exponent is ob- Whereas Eq(92) applies to thep-h asymmetric fixed point

tained from (ACR), and is valid forr* <r<1, the results of Sec. IV H

dinZ; and Ref. 28 have established the same critical behavior for
(90)  the T matrix for the symmetric fixed pointSCR) for 0<r

do - <2. Thus, we conclude that all critical fixed points for 0
As in Ref. 28 we are able to determine exactresult for ~<r <1 in the pseudogap Anderson and Kondo models dis-

the anomalous exponent, valid to all orders in perturbatioPlay aT matrix behavior of InT(w) = |w|™".

theory. The argument is based on the diagrammatic structure The logarithmic correction to thd matrix atr=1 are

of the T matrix, namely the relevant diagrams can be com-£valuated in a manner similar to the one for the local suscep-

pletely constructed from fulb interaction vertices and full tibility above. With ,B(U):gv3 and »(v)=3v?>—note that

f/b propagatorg® This leads to the relation betwe@nfac-  #7y=7;+ 7, only holds at one-loop level becaugg=1 at this
tors order—we can integrate E¢OO0) to find

7= PB)
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2
ZT:(M) .

Vo (93)

With the general scaling relation
iw

T(iw,Vo,A) = ZT()\A)‘lT()\—A,v()\),A = 1) (94)

and Eq.(70) we find
-1
T(iw,Vo,A) = T[i,v(\), 1].
1-32In~
0 nA

PHYSICAL REVIEW B 70, 214427(2004)

Suppose we start near criticality from small hybridization
and smallp-h asymmetry. For >r*, the scaling dimension
of p-h symmetry breaking term is largest: at tree level we
have dinj2eq+Uy]=1 and diniVy]=(1-r)/2. Thus the ini-
tial model parameters flow towards largeh asymmetry
first. This flow drives the system into the regime described
by the maximallyp-h asymmetric Anderson model of Sec. V,
thereby renormalizing the parameterandv. Then, the RG

of Sec. V takes over, with a flow towards ACR, and finally to
one of the two stable phasés the system is not exactly at
criticality). Thus, a low-energy scal& and a higher scale
Tacr €Xist, whereTcr characterizes the approach of the
effective p-h asymmetry towards the ACR fixed point. Note

As above, the leading logarithms are of multiplicative char-that forr > 2 the fastest flow is the one ofto zero, i.e., the

acter, with the final resulf(w)«1/(w|In w|). This implies
for the T matrix spectral density the behavior

1
Im T(w) o Tw|2 (r=1). (95)

o|

Above the upper-critical dimension;>1, we have again

77=0 and ImT(w) = §(w).

VI. GENERAL PARTICLE-HOLE ASYMMETRY

Here we comment on the general case of fipie asym-

system quickly approaches the VFI fixed point. The de-
scribed behavior is nicely borne out by NRG calculations for
the Anderson model, see Fig. 9.

Finally, for r<r* the initial flow is dominated by the
decrease op-h asymmetry—this cannot be captured by our
Anderson model RG, but is contained in the Kondo
treatment—and the system approaches SCR, before it finally
departs to one of the two stable phases. If the system is on
the strong-coupling side of the transitigh>0), then the
behavior near SCR is multicriticgsee also Fig. 1®&) of
Ref. €): two low-energy scales exist which describe the de-
parture of the flow from SCR, namely; (for the deviation

metry. Starting with the trivial fixed points, tree-level power of j from j*) and alower scale Tysc (for the subsequent

counting shows that LM is stable with respectpdn asym-

growth of p-h asymmetry when flowing towards the ASC

metry, with a scaling dimension ofr-In contrast, SSC is fixed poin.

unstable towards ASC, arth asymmetry grows near SSC

We note that a recent investigation of the pseudogap

with a scaling dimension of. Finally, at the free-impurity Anderson modéP using the local-moment approdchas
fixed point(FImp) p-h asymmetry grows under RG with a found indications of a line of critical fixed points in the
scaling dimension of unity and the systems flow towards-h asymmetric case, parametrized iy asymmetry. We be-
VFI. VFI itself is stable with respect to a deviation from lieve that this is an artifact of the employed approximation

maximal p-h asymmetry.

scheme, agi) NRG calculations strongly hint towards a

In ther ranges where the RG expansions of this paper arsingle asymmetric critical fixed poir(for fixed r), i.e., the
perturbatively controlled, we can immediately come to con-fixed-point level spectrum at criticality does not depend on
clusions about the stability of the critical fixed points: SCRthe initial p-h asymmetry(e.g., the ratidJ,/eq) and(ii) our

will be stable with respect to finitp-h asymmetry for close

to 0, but unstable for close to%. Similarly, forr close to or

analytical RG shows that, at least nearl, the scaling di-
mension ofp-h asymmetry is largest, and the sketched two-

larger than unity, ACR is stable with respect to a deviationstep RG (which directly leads to consider an infinit¢-
from maximal p-h asymmetry, in other words it is safe to Anderson model to describe the critical behayisra con-

discard one of the two impurity statéd) or |e) for the dis-

cussion of the critical properties, and to work with the per-

trolled approach for arbitrary initigh-h asymmetry.

turbative expansion of Sec. V. One has to keep in mind that RELATION BETWEEN ANDERSON AND KONDO

ACR moves towards smaller effectipeh asymmetrylarger

values of|e*|) upon decreasing, and the perturbative ex-

pansion around VFI breaks down &s>r™* wherep-h sym-
metry is dynamically restored.

MODELS

This section shall highlight the relation between the
pseudogap Anderson and Kondo impurity models. On the

The numerics of Ref. 6 gives no indications for additionalone hand, it is well-known that the Anderson model reduces

fixed points in the case of finife-h asymmetry which would

to the Kondo model in the so-called Kondo limit, see Sec.

not be present in the maximally asymmetric model; our RG A. This mapping covers the far left-hand side of the flow
results are consistent with this. Thus, the critical propertiesliagrams in Figs. 1 and 2, and suggests that the phase tran-

of a pseudogap Kondo or Anderson model with genprhl

sition at smallr in the Anderson model in this Kondo limit is

asymmetry are always identical to the ones of the maximallydescribed by the Kondo RG of Sec. lll.

asymmetric model of Sec. V.
For the RG treatment of a model with genepah asym-

On the other hand, we have argued that the flow of the
Kondo model can be naturally understood in terms of the

metry close to criticality one has to envision a two-step RGvariables of the Anderson model. In particular, the RG ex-
procedure, as usual in problems with different energy scalepansions of Secs. IV and V describing transitions of the
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Anderson model near=% andr=1, also apply to the Kondo
model. Clearly, in thinking about this “mapping” of the
Kondo to the Anderson model one has to view the Anderson
model as an effectivieew-energytheory of the Kondo model.
The impurity states of this effective Anderson model are thus
many-body states obtained after integrating out high-energy
degrees of freedom from the Kondo model, i.e., dressed im-
purity states.

A formal way to obtain an Anderson model from a Kondo SSC/ASC
model is a strong-coupling expansion: Thgand||) states =4 7
of the Anderson model are bare impurity states, whej@as LM c
and|d) represent the impurity with either a hole or an elec- Kondo coupling J
tron of opposite spin tightly bound to the impurity.

The above can also be made plausible in a slightly differ- FIG. 10. SchematicT=0 phase diagram of the pseudogap
ent way, in the following for @-h asymmetric situation: Let Kondo model in a local magnetic fiel. At B=0, there is a phase
us consider the Kondo problem with a hard-gap DO transition atJx=J, between LM and a strong-coupling phase SSC
the presence op-h asymmetry it shows a first-order quan- or ASC. Upon application of a field, an unscreened spin becomes
tum transition, i.e., a level crossing, between a Kondo=Strongly polarized(POL), whereas a screened spin in a strong-
screened singlet and a spirdoublet state. As we can under- coupling phase is only weakly polarized. Increasing the field at
stand the asymmetric pseudogap DOS as consisting of a1+$>‘]0 drl\_/esaphase transmon—s_uch a transitiondas present in
asymmetric high-energy part andasymptotically symmet- € metallic case=0. The phase diagram for a pseudogap Ander-
ric low-energy part, we can obtain an effective theory for theSOn model is similar. As discussed in the text, the zero-field critical

seudogap Kondo model by coupling the above mentionegxeoI point is always uns.table W'th. respect to f'n.Bem the RG

Fhree (many-body impurity states, obtained by integrating Sense; thus the two transitions are in general in different universal-

. ity classegqwhich is already clear from symmetry consideratijons
out high-energy degrees of freedom from the band, to they < y y ;4 o

remaining low-energy part of the conduction electron spectemperature phase transition as function of the local field
trum. A crucial ingredient is now thp-h asymmetry of the  petween one phase with weak and one with strong impurity
original model. Itis clear that upon integrating out the high-spin polarization, see Fig. 10. We briefly discuss this phase
energy part of the batlwo many-body singlet states arise, transition in the following—it turns out that the variables of
namely,|e) and|d) as discussed above. Due to {r asym-  the Anderson model provide a natural language to analyze
metry of the underlying model these two singlet states willthe problem. Remarkably, all ingredients needed for the dis-
have very different energies, such that we can discard thgyssjon of the critical properties have already been calculated
high-energy state in the low-energy theory. With this we di-jn the previous sections.
rectly arrive at an infinitdJ pseudogap Anderson model. Strategically, we first discuss the decoupled impurity, and
We conclude that the phase transitions of the pseudogapen analyze the modifications arising from the presence of
Anderson and Kondo models are in the same universalityhe hybridization term. For the decoupled impurity, the local
classes—this is supported by the numerical calculations ofie|d is trivially a relevant perturbation, with scaling dimen-
Ref. 6. For smalf the phase transition is naturally described gjon unity. Thus, in the low-energy limit the field is effec-
in the Kondo language of Sec. Ill implying that the critical tively infinite, and one of the two impurity statés, ||} can
fixed point of the Anderson model is located in the Kondope discardedwe will discard||) in what follows.
limit. In contrast, for larger the formulation in terms of the

Local field B

Anderson model provides the relevant degrees of freedom, in A. Asymmetric Anderson model
other words, both spinful and spinlegsany-body impurity In the p-h asymmetric case two impurity states have to be
states play a role in the critical dynamics. considered, namely]) and|e). We discuss a level crossing
transition of these two, tunable, e.qg., by varying the magnetic
VIII. EINITE MAGNETIC FIELD field, and being Coupled to conduction electrons. At the tran-

sition we are left with gspinless resonant level model, and
Interesting physics obtains in the pseudogap Kondo an¢he analysis for a pseudogap host density of states is in Sec.
Anderson models in the presence of a finite magnetic fieldiv B. In particular, forr>1 the phase transition is a level
We concentrate here on the effect olbaal field, applied to  crossing with perturbative corrections, and for ak <1
the impurity only. Note that a finite field applied to the bulk we have a continuous transition with a critical fixed point
can modify the low-energy behavior of the bath DOS due tddentical to the intermediate-coupling fixed point of the reso-
Zeeman splitting; then, pseudogap Kondo physics survivegant level model31). Thus, the properties of the transition
only for energy scales above the Zeeman energy. evolve smoothly as function affor 0<r <1, in contrast to
For T=0 and a metallic density of stateiss0, a local the zero-field situation.
field B only leads to a crossover as function®fTy, and all
observables evolve smoothly froB=0 (screened spinto B. Symmetric Anderson model
large B (polarized spin In contrast, for any >0 andt>0 In the presence op-h symmetry and magnetic field, the
(i.e., Jx>J; in the Kondo model there will be a zero- decoupled impurity has three low-energy statés:|e), |d).
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The resulting level-crossing transition is technically identicalWe have established that0 andr:% play the role of two

to the one of the zero-field infinitd-Anderson model of Sec. lower-critical dimensions in thp-h symmetric case, i.e., the
V: the two situations can be mapped onto each other via theontrivial phase transition disappears both ras 0* and

p-h transformation(3). From Sec. V we can read off the rH%‘ with diverging correlation length exponent. In con-
properties of the field-tuned phase transition: Forl we  trast,r=1 is an upper-critical dimension for theh asym-
have again a level crossing with perturbative corrections. Anetric model. The transitions for<Or <1 are described by
RG expansion around the level-crossing fixed point can béteracting field theories witluniversallocal-moment fluc-
used to calculate the critical properties belowl. This ex- tuations and strong hyperscaling properties including
pansion describes the physics for it r*. scaling of dynamical quantities. In contrast, for 1 we find

It is interesting to ask what happens forr*. At r* the @ level crossing with perturbative corrections, and hyperscal-

broken level symmetry is dynamically restored at the criticaliNd iS violated.

fixed point, meaning that for <r* the transition is con- In the p-h symmetric case, we found two different expan-

trolled by a zero-field critical fixed point. From Secs. Il and SIons, one around=0 and one around=3, to describe the
IV we know that forr <% such an Anderson model transition S3M€ critical fixed point. In the presencepsh asymmetry, a

with four degenerate impurity states is the same as describeqiﬁerent critical fixed point emerges, which can be analyzed
in an expansion around=1.

by the Wegk-coupling RG in the Kondo Iangur_;lge. However, Apart from the small expansion of Sec. lll, all our theo-
thedmlaplplng(g) shows tk:jat we Eave to cor;suder a Konc(ijc_; ries were formulated using the Anderson model language.
model of a charge pseudospin here, 1.e., the correspondingyis shows that the quantum phase transition between a
Schrieffer-Wolff transformation will project out thf) and  gcreened and an unscreened moment in Kondo-type models
||) states. In other words, in pch symmetric situation with  can pe nicely interpreted by saying that the system fluctuates
0<r<r* where the zero-field transition is controlled by the petween “possessing a moment” and “possessing no
SCR fixed point, the finite-field transition will be asymptoti- moment"—this is precisely what is described by the effective

cally controlled by the SCRfixed point. Anderson model at its valence-fluctuation fixed point.
We have calculated a number of observables, with results
C. Kondo model being in excellent agreement with numerical data. In particu-

lar, we have found an exact exponent for the conduction
BlectronT matrix, valid for all expansions used in this paper.
We have also discussed the physics of the pseudogap Kondo
problem in a local magnetic field, where we have shown
that—in contrast to the metallic Kondo effect—a sharp tran-
sition occurs as a function of the field.

Applications of our results include impurity moments in
unconventional superconduct®#8232%and other pseudogap
systems, such as, e.g., graphite. On the theoretical side, we
D. Symmetries and pseudospin field expect that the analysis of quantum impurity models using

In the Anderson model language, the local field lifts theAnderson instead of Kondo model variables may be useful in

degeneracy of the magnetic doublé}, ||). It breaks the a variety of problems. Thus, field theories similar to ours can

SU(2) symmetry in the spin sector, and the effect is clearlyPossibly be constructed for other impurity quantum transi-

independent of the field direction. tions, and will also be useful for the study of lattice models
As discussed in Sec. | A, thp-h symmetric Anderson in dynamical mean-field theot§yand its extension¥, where

model displays S{2) symmetry also in the charge sector local quantum criticality can be captured using effective

(charge pseudospinThis can be broken by choositgp#  Single-impurity models.
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terized by a bath density of statpéw) = |w|". Using various

perturbative RG expansions, formulated in the degrees of APPENDIX A: THE NON-INTERACTING RESONANT

freedom of either the Kondo or the Anderson impurity LEVEL MODEL

model, we have developed critical theories for the phase Here we provide a few details about the non-interacting

transitions in both thg-h symmetric and asymmetric cases. resonant level model with a pseudogap density of states. The

The above statement is consistent with a simple general
zation of the weak-coupling RG of Sec. Il to the case of
finite field. One easily finds that the field is a relevant per-
turbation at the SCR fixed point with a scaling dimension of
unity, and the finite-field transition isot accessible in a de-
scription using the Kondo model spin variablés. contrast,
the magnetic field is irrelevant at SCR

IX. CONCLUSIONS

214427-19



L. FRITZ AND M. VOJTA PHYSICAL REVIEW B 70, 214427(2004)
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FIG. 12. Diagrams occurring in the perturbative RG for the

FIG. 11. Feynman diagrams for the spin susceptibility of thenoninteracting resonant level model of Sec. IV B. Here, full lines
noninteracting resonant level model of Sec. IV B. Dashed/full lines?'€are i, propagators(a) Bare interaction verteXy, (b) f, self
denotec,/dressed § propagators, respectively; the full dots akg ~ ©nergy.(c) Diagram for thev® entropy correction(d) Diagrams
vertices, and the open circles are Sour€@Bximp.imp- (b) Xu,imp: (©) entering the local susceptibility to ordet. Within the renormalized
Yuu. Note that the displayed diagrams give thectresults for the  Perturbation theory scheme all corrections beyond second order in
susceptibilities, as all self-energies are contained in the drefssedVanish.
propagator.

Interestingly, the above exact universal results can also be

model is exactly solvable, and all properties can be directiy?Ptained in the framework of a RG expansion in the hybrid-
evaluated using the dresséclectron propagatof26). The ization, i.e., in a formal expansion aroume:1. Here one
local susceptibility has been quoted in Sec. IV B. Thma- exploits the intermediate-coupling nature of the fixed point,
trix is given by T(w)=V3G;(w); a brief discussion of spectral by calculating observables using renormalized perturbation
properties can also be found in the appendix of Ref. 6. theory and employing the fixed-point val(@l) of the cou-
We now sketch the calculation dfyip, and Spp. The pling v. The necessary diagrams, Fig. 12, now contzire

diagrams contributing t@xin, are in Fig. 11; note that these (instead of dressed propagators. Technically, higher-order
contain full f propagators, and no higher-order diagrams ap!€'ms appear in this expansion, but upon interpreting the

pear. Power counting shows that terms of ¥érm do only lowest-order result of renormalized perturbation the@ry.,
arise fromyy, ; bOth Ximp imp @Nd Xy imp @re less singular. The reexponentiating logarithmsthese terms are completely
evaluation of the diagrams in Fig. (t} gives summed up. Thus, within the RG framework the information

5 N - about the nontriviaf scaling dimension is contained in the
(T) = ETE Ak || coupling valuev* instead of in the propagatds;. We briefly
Xuut )= Ay T A (iw,— k)3 demonstrate the idea by evaluating the impurity entropy. As
N B 5 we expand around=0 (the Fimp fixed pointwe obtain a
+£TE Ak |d (A1) perturbative correction to the impurity thermodynamic po-
2A§ ~\J_s (P tential which is of ordek/% [Fig. 12b)]. Taking the tempera-
ture derivative leads to
All factors of V, cancel exactly against thk),, and we obtain )
. . . : AIT
a quantity with a universal prefactor. Tleintegrals can be AS, = - loT_zr dx|x|" cosh? X (A5)
performed in the limit of infinite UV cutoff, followed by the mp 2
Matsubara summations. The result is of Curie form, with

-AIT

with T=(1-r)/2 as above. Performing the integral in the
Yuu(T) = I (A2) limits A—o andr— 1 and introducing the renormalized hy-
' 8T bridizationv yields

Note that we have used the dresdegropagatorg26) in Smp:(1—202)|n 4. (A6)
their low-energy form—due to their singular nature their ] ) S .
high-energy properties are unimportant for the leading lowWith the fixed point value of the hybridization we obtain the
temperature behavior of the susceptibility. resultSmp=2r In 2 as above.

The impurity entropyS,,, is directly calculated from the
full f propagator(26). Performing the tr In in the partition

. . APPENDIX B: RG FOR THE INTERACTING RESONANT-
function gives

LEVEL MODEL

Qimp=- 2T§ In[i sgrwn)|w|']. (A3) In this appendix we present details of the renormalization
group treatment for the symmetric Anderson model in the
One can easily see that thie=0 entropy contributions of vicinity of r:%. It is based on an expansion around the SSC

In(iw,) and Ifiw,| are identical, thus we have fixed point, i.e., around a noninteracting resonant-level
) ) - model, wi e interaction strength being the expansion pa-
B 0.0 del, with the int t t th being th p p
Simp = _l'm) 07T<_ 2”—2“‘4 In(i wp) € ) (A4) " rameter. Thus the expansion is done around an intermediate-

coupling fixed point.
This is nothing but 2 times the entropy of a free spinless  The starting point is the actiof86) derived in Sec. IV C,
fermion, resulting inSy,,=2r In 2. for 0<r < 1. Importantly, the “bareli.e., Uy=0) f propaga-
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b) do; do,

X Gi(—iwy + iV)Gf(iwz_ iwtiw), (B4

c) G G
m m G where the prefactor 2 accounts for the different arrangement
-G -G . . .

of the vertices ana is a (third) external frequency. The,
- o integral can be performed directly and leads to the same
v g - tﬁ g expression that occurred in the brackets in B82). The
4 4 remainingw, integral can also be performed after splitting
the interval into four parts. Straightforward algebra, using
FIG. 13. Diagrams for the RG of the symmetrlc Anderson im-the identity arcsmx jarctanh1—-1/x=m/2, wherex=w/v

purity model, with notation as in Fig. 4a) U0 self-energy contri- <1 |eads to
bution, which vanishes(b) One-loop vertex renormalizations,

. . 2 -

which vanish due top-h symmetry. (c) Two-loop vertex (134 = U3 1 3(m-2In49 L0 |.
renormalizations—these are the only contributions to the beta func- 02 2 & 2¢

tion (41).

(BS)

tor in Eq.(36) behaves as 1Ayw") at low energies, Eq26), Upon adding the contributions from Eq$13c1)—13cH),
as the conduction electrons have already been integrated ownly single poles ine remain—asZ=1, the cancellation of
The prefactord, will be kept explicitly in the renormaliza- the double poles is a consistency check of our calculation.
tion steps. We employ the field-theoretic RG scheme in ordeMinimal subtraction of poles at external frequencies sei to
to determine the flow of the coupling renormalized couplingyields the renormalization factor for the quartic coupling
u, introduced in Eq.(39), with dimensional regularization )
and minimal subtraction of poles. As will be seen below, the Z,=1 +w_
lowest nontrivial renormalizations arise at two-loop order. 2m€

The needed diagrams arising in the RG treatment are dis- . .
played in Fig. 13. A number of observations can be méde: Srhe .RG beta function can be evaluatgd by taking hde-
Hartree diagrams vanish due to the ovemh symmetry of rivatives of Eq.(39) at fixed bare coupling
the model.(ii) E_xpli_cit calculation _shows that th(_e one-loop du ( 3(m-21In4) u2>
vertex renormalization diagrams, i.e., tecorrections tau Bu=p —| =eull- 2z ) (B7)
in Fig. 13b), do not develog poles. This also follows from duly €
the fact that the beta function cannot contain even powers i
u due top-h symmetry.(iii ) Explicit evaluation shows that
the f self-energy up to two-loop order, Fig. &3, does not
contribute singular propagator renormalizations. In othe
words, the field renormalization factor is

(B6)

Which is the result in Eqi4l).
We now provide the proof foiz=1, i.e., no singular
ropagator renormalizations occur in the present problem.
hat is needed ip-h symmetry and the form of the bare
propagatmeoccu‘l’2 or G¢(7) = 72 in the low-energy limit
Z=1 (B1)  for r—— We argue that no logarithms arise when evaluating
to two-loop order. As we will argue below, this resuliisact :jhe self energhy a(tj— . By power courlmng, alf self- le”e;,gly
to all orders in perturbation theory. It implies that théeld Llagrarr:js In ther om:;n give al result proporrt:ona tf)
does not acquire an anomalous dimensiga 0. e:]_u?l ISClléSS mc}ern | mtelgrahs afmsmg In the eva uatllon
The two-loop diagrams for the renormalization wfcan ]EW ich could produce logs|n the Irst step, those involve.
be divided into two groups of three each, displayed in thdour Gr propagators due to the quartic interaction—here it is
two lines of Figs. 1&). The diagrams in each group can be important that tadpoles do not contribute duesz{b symme-
easily seen to be equal. Explicitly, try. Therefore, the integrand will behave &%, and logs
, cannqlt occur. Irl; f;J:thher steps, fourt_propagatorstdohnot rlﬁc;
dog . . . essarily occur, but the power counting argument shows tha
(13ch = Ug[f 5, Ciliwy)Gyliwy ”’)] (B2 each internal time still has to occur with a powerrof. This
shows that the integrands will always b®re singularthan
where v is the sum of two external frequencies. Using thei/7, and no logarithms arise. Clearly, such an argument can-
explicit form of G; (26), the frequency integral can be split not be constructed for the vertex diagrams, as they behave as
according to the absolute value @, and then performed 1/ atr=1, and Fourier transformation generically yields an
directly with UV cutoff sent to infinity. The result contairs ¢ pole.
poles and reads Let us turn to the local susceptibility renormalization fac-
241 5-2In4 tor Z,. As described in Sec. IV H, one can either determine
(13¢D) = U3 2|2t +0() |. (B3)  the composite operator renormalization facEy and use
€ ZX:Z§, or evaluateZ, directly with the help of the perturba-
The second group of diagrams in Fig.(&Bis slightly more tive correction tgy in Fig. 4(c). In both cases, thEbubble
complicated. All three of them can be brought into the formdiagram is needed. To leading orderdiit evaluates to
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a) RN presses contributions from positike The remainingk inte-

,’>“\ 7 - \ -7~

N s N ral is UV convergent, and we finally obtain
i o i . \. Srndirne g g y

_ Vs, . v?
b . . L-T T~ . (14a) = 2r_(IV Ao = AMZT(W \). (C2

v \ I - ~ \\ -, N
—>—o Swwit—0 é—%—0 In the second line we have expressed the result in terms of

renormalized quantities, withA,=u?(iv—N\o)2Z2/(ZZy).

c) d) Demanding cancellation of poles in the expressions for the
P N 7T renormalizedf Green’s function at external frequendy
/ B e —u—o —\o=p We obtain the one-loop result for tiferenormaliza-
-- v tion factor as
\
2
zi=1-2. (C3)
2r

FIG. 14. Diagrams for the RG of the infinitd-Anderson model. ~ The other diagrams in Figs. (@-14(c) are evaluated in a
Notations are as in Fig. &a), (b) Self-energies foif,, and bs to similar manner. In the two-loop self-energies, the real part of
two-loop order. The crosses denotes the counterterms which cancgie inner self-energy insertions, which diverges linearly with
the real parts of the self-energy insertiorts) Two-loop vertex  the UV cutoff, is exactly cancelled by the corresponding
renormalization; there is no contribution to one-loop or¢@yr.Dia- counterterm.

grams with mass insertiorisquarey needed to determine the cor-  Collecting all expressions yields the renormalization fac-

relation length exponent. tors, defined in Eq(66), to two-loop order as
: S L z=1-L (L L)
TE Gi(iwn)Gyliw, +iv) = e (B8) f o \4r2 o)
n
in the zero-temperature limit. For the correlation function v? 1 1),
G(fz'l) in Fig. 4b) we introduce a renormalization factor as Zy= T \ar” o v
follows: Giz'l):ZZZ‘leFf). Demanding that the renormal-
ized Gﬁ’f) is free of poles at scalg, and usingZ=1 we find 1
y Z,=1+ 4—_y4. (C4)
Z,=1+—, (B9) r
e With these results, we can take the logarithmiderivative
which givesZ, in Eq. (45). of Eq. (66) at fixed bare coupling, we obtain the beta func-
tion
APPENDIX C: RG FOR THE INFINITE- U ANDERSON Bv) = p d_U (C5)
MODEL duly,

~ The infinitelU Anderson model can be analyzed in the 35 quoted in Eq(67). The anomalous field dimensions are
vicinity of r=1 using an expansion in the hybridization gptained from

strength. Here we describe details of the field-theoretic RG,

with the results appearing in Sec. V. Starting point is the _dinz; dinz;  , _,
action(61), written in terms of auxiliary field$, andbs. The P ) W Ut (C6)
RG proceeds by perturbatively calculating renormalizations

to the propagators and vertices appearing in (&dj), which dinz dinz

yields expression for the renormalization factors defined in o= M ® = B(v) D = 22+ 2%, (C7)
Eq. (66). du dv

The relevant diagrams are displayed in Fig. 14. Note that T4 determine the flow away from criticality and the cor-
there is no one-loop contribution to the vertex renormalizaye|ation length exponent, we follow the standard schéme
tion. At one-loop order we have the graphs for thendb iz insertions of composite operators, representing mass
self-energies. Evaluation of the first diagram for fheelf-  toyms. Physically, only the difference between the masses of
energy in Fig. 14a) gives the f andb auxiliary fields is relevant, and introducing one
dkK" 1 type of composite operator is sufficient. In the following we

(CD  work with ff insertions, which acquire a corresponding
renormalization factoZ,;. To determineZ,; we consider a
We work at criticality, i.e.£,=0. First the frequency sum can correlation function G&"=((b*(nb(7'),(f'f)(+"))). The

be performed, here th&,—c limit is important: it sup- renormalization factoZ,; is then defined through

(14a) = V2T, | -

iw,—Kiv—iw,—\g

iwn
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Z
2,1 _ “2f 2,1
GiyV= ZZbGEf,R) :

(C8)
Evaluating the diagram in Fig. 1d) and demanding cancel-
lation of poles inGsz:;) gives, to one-loop accuracy

2

Zy=1+ UT_ (C9)

The correlation length exponent can be related tozlac-

tors via the RG equatidh for the renormalizeds\>”, ac-
cording to
1 d Z
Sl=p—InHA (C10)
v du  Z;
which yields
1 2
Z=1-3%2, (C11)
14

The result forv is in Eq.(72), and is of course identical to
the one obtained in Ref. 12 using the familiar momentum
shell method.

The local susceptibility exponent is determined via a

renormalization factoZ, for the two-point correlations of
the impurity spin. The leading diagrams are in Figc)8the

v? diagrams are identical, with a leading singular contribu-

tion of

1 T 7'2 V2 o
Eng def d7G(1o— 1) = —7
0 0 4r

PHYSICAL REVIEW B 70, 214427(2004)

APPENDIX D: SPIN ANISOTROPIES

Thus far our discussion has been restricted to impurity
models with full SY2) spin symmetry. In this appendix we
show that spin anisotropies, e.g., in the Kondo interaction,
are irrelevant at all critical points considered.

For the weak-coupling RG of Sec. Il A, formulated in the
variables of the Kondo model, we introduce Kondo cou-
plings J, andJ, for the transverse and longitudinal part of
the Kondo interaction. The RG equatigh8), to one-loop
order, generalizes to

BG)=rj =Lz

Bl =ri. =i (D1)
For the metallic case,=0, there is a line of fixed points at

j . =0, j,<0, representing an unscreened moment. In con-
trast, forr>0 only SU2) symmetric fixed points survive,
namely, LM with j, =j,=0 and SCR withj, =j,=r. Thus,

the symmetric critical fixed point of the Anderson and Kondo
models is stable with respect to 8) symmetry breaking.
Turning to thep-h asymmetric model, we start from the
infinite-U Anderson mode(57) and introduce a spin depen-
dence in the hybridizatioVy, # V. As is easily seen via
Schrieffer-Wolff transformation, for a generneh asymmet-
ric conduction band this is equivalent to an anisotropic ex-
change interaction plus a local magnetic field. Without loss
of generality we restrict the following analysis tgeh sym-
metric conduction band, where the field term is absent. The

each. Note that the counter-term contributions can be ignoreBG equation67), to one-loop order, generalizes to

here, as they do not develop polesrinDemanding cancel-
lation of poles yields

(C12)

Taking the logarithmic derivative with respect toone ob-
tains then, value quoted in Sec. V F.

The renormalization factor for thE matrix (diagrams not
shown) is obtained as

(C13

to two-loop order. The resulting anomalous expongptul-
fills the exact equationy=2r.

— v
Blvy)=-rv; + §(2v$ +v9),

ﬁ(Ul) = _r_Ul + %(2vf+v%) (DZ)

Apart from the SW2) symmetric fixed poinwv? =3r, there

are two other fixed points with? =T, v =0, andv? =T, v,
=0—these are, however, infrared unstable with respect to
finite v| (vy). Thus, the only stable critical fixed point is the
SU(2) symmetric one, which corresponds to the ACR fixed
point analyzed in Sec. V.
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