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The pseudogap Kondo problem, describing quantum impurities coupled to fermionic quasiparticles with a
pseudogap density of statesrsvd~ uvur shows a rich zero-temperature phase diagram, with different screened
and free moment phases and associated transitions. We analyze both the particle-hole symmetric and asym-
metric cases using renormalization group techniques. In the vicinity ofr =0, which plays the role of a lower-
critical dimension, an expansion in the Kondo coupling is appropriate. In contrast,r =1 is the upper-critical
dimension in the absence of particle-hole symmetry, and here insight can be gained using an expansion in the
hybridization strength of the Anderson model. As a by-product, we show that the particle-hole symmetric
strong-coupling fixed point forr ,1 is described by a resonant level model, and corresponds to an
intermediate-coupling fixed point in the renormalization group language. Interestingly, the valuer =1/2 plays
the role of a second lower-critical dimension in the particle-hole symmetric case, and there we can make
progress by an expansion performed around a resonant level model. The different expansions allow a complete
description of all critical fixed points of the models and can be used to compute a variety of properties near
criticality, describing universal local-moment fluctuations at these impurity quantum phase transitions.
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I. INTRODUCTION

Nontrivial fixed points and associated phase transitions in
quantum impurity problems have been the subject of consid-
erable interest in recent years, with applications for impuri-
ties in correlated bulk systems, in transport through nano-
structures, and for strongly correlated lattice models in the
framework of dynamical mean-field theory. Many of those
impurity phase transitions occur in variations of the well-
known Kondo model1 which describes the screening of lo-
calized magnetic moments by metallic conduction electrons.
A paradigmatic example of an intermediate-coupling impu-
rity fixed point can be found in the two-channel Kondo ef-
fect.

Nonmetallic hosts, where the fermionic bath density of
states(DOS) vanishes at the Fermi level, offer a different
route to unconventional impurity physics. Of particular inter-
est is the Kondo effect in so-called pseudogap systems,2–8

where the fermionic bath density of states follows a power
law at low energiesrsvd~N0uvur sr .0d. Such a behavior
arises in semimetals, in certain zero-gap semiconductors, and
in systems with long-range order where the order parameter
has nodes at the Fermi surface, e.g.,p- and d-wave super-
conductors(r =2 and 1). Indeed, ind-wave high-Tc super-
conductors nontrivial Kondo-like behavior has been ob-
served associated with the magnetic moments induced by
nonmagnetic Zn impurities.9,10 Note that the limitr →` cor-
responds to a system with a hard gap.

The pseudogap Kondo problem has attracted substantial
attention during the last decade. A number of studies2–4 em-
ployed a slave-boson large-N technique; significant progress
and insight came from numerical renormalization group
(NRG) calculations5–7 and the local moment approach.8 It
was found that a zero-temperature phase transition occurs at
a critical Kondo couplingJc, below which the impurity spin

is unscreened even at lowest temperatures. Also, the behav-
ior depends sensitively on the presence or absence of
particle-holesp-hd asymmetry, which can arise, e.g., from a
band asymmetry at high energies or a potential scattering
term at the impurity site. A comprehensive discussion of pos-
sible fixed points and their thermodynamic properties has
been given in Ref. 6 based on the NRG approach.

Until recently, analytical knowledge about the critical
properties of the pseudogap Kondo transition was limited.
Previous works employed a weak-coupling renormalization
group (RG) method, based on an expansion in the dimen-
sionless Kondo couplingj =N0JK. It was found that an un-
stable RG fixed point exists atj =r, corresponding to a con-
tinuous phase transition between the free and screened
moment phases.2 Thus, the perturbative computation of criti-
cal properties within this approach is restricted to smallr.
Interestingly, the NRG studies6 showed that the fixed-point
structure changes atr =r * <0.375 and also atr = 1

2, rendering
the relevant case ofr =1 inaccessible from weak coupling. In
the p-h symmetric case, forr ù

1
2 the phase transition was

found to disappear, and the impurity is always unscreened
independent of the value ofJK. In contrast, in the asymmetric
case the phase transition is present for arbitraryr .0. Nu-
merical calculations6,7 indicated that the critical fluctuations
in the p-h asymmetric case change their character atr =1:
whereas forr ,1 the exponents take nontrivialr-dependent
values and obey hyperscaling, exponents are trivial forr
.1 and hyperscaling is violated. These findings suggest to
identify r =1 as upper-critical “dimension” of the problem,
whereasr =0 plays the role of a lower-critical “dimension.”
As known, e.g., from the critical theory of magnets,11 the
description of the transitions using perturbative RG requires
different theoretical formulations near the upper-critical and
lower-critical dimensions, i.e., thef4 theory and the nonlin-
ear sigma model in the magnetic case.
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In this paper, we provide a comprehensive analytical ac-
count of the phase transitions in the pseudogap Anderson and
Kondo models, including the proper theories for the critical
“dimensions.” This is made possible by working with the
Anderson instead of the Kondo model—the degrees of free-
dom of the Anderson model turn out to provide a natural
description of the low-energy physics at the quantum phase
transitions nearr = 1

2 as well as close to and abover =1. We
shall consider epsilon-type expansions in the hybridization,
the on-site energy, and the interaction strength. Those expan-
sions lead to different theories for thep-h symmetric and
asymmetric cases. Interestingly, in the pseudogap Kondo
model the phase transitions near the lower-critical and upper-
critical dimension are not adiabatically connected, as the
fixed point structure changes both atr =r* and r = 1

2. Thus the
present quantum impurity problem has a more complicated
flow structure than the critical theory of magnets, where the
s2+ed and s4−ed expansions are believed to describe the
same critical fixed point.

In the p-h symmetric case of the pseudogap Kondo prob-
lem the line of nontrivial phase transitions terminates at two
lower-cirtical dimensionsr =0 andr = 1

2. Nearr = 1
2 we find an

expansion around a non-interacting resonant level model, to-
gether with perturbative RG, to provide access to the critical
fixed point, with the expansion being controlled in the small
parameter s 1

2 −rd, see Sec. IV. Interestingly, the weak-
coupling expansion for the Kondo model, presented in Sec.
III, provides a different means to access the same critical
fixed point, but with the small parameter beingr; the two
expansions can be expected to match.

In the p-h asymmetric case an expansion can be done in
the hybridization around the valence-fluctuation point of the
Anderson model. Bare perturbation theory is sufficient for all
r .1; for r ,1 a perturbative RG procedure is required to
calculate critical properties, with the expansion being con-
trolled in the small parameters1−rd. In particular, this iden-
tifies r =1 as the upper-critical dimension of the(asymmet-
ric) pseudogap Kondo problem, and consequently
observables acquire logarithmic corrections forr =1. A brief
account on thep-h asymmetric case and the expansion
aroundr =1 has been given in a recent paper.12 We note that
the flow of the asymmetric Anderson model in the metallic
caser =0 was discussed by Haldane:13 here all initial param-
eter sets with finite hybridizations flow towards the strong-
coupling (singlet) fixed point.

For all cases listed above, we show that the critical prop-
erties of the Anderson and Kondo models are identical, and
we calculate various observables in renormalized perturba-
tion theory. To label the fixed points, we will follow the
notation of Ref. 6.

Before continuing, we emphasize that standard tools for
metallic Kondo models, such as bosonization, Bethe ansatz,
and conformal field theory, are not easily applicable in the
present case of a pseudogap density of states, as the problem
cannot be described using linearly dispersing fermions in one
dimension. Furthermore, integrating out the fermions from
the problem, in order to arrive at an effective statistical me-
chanics model containing impurity degrees of freedom only,
cannot be performed easily: the fermionic determinants aris-

ing in s1+rd dimensions cannot be simply evaluated. This
implies that the pseudogap Kondo model doesnot map onto
a one-dimensional(e.g., Ising) model with long-ranged inter-
actions, in contrast to, e.g., the spin-boson model.14 Indeed,
the phase transitions in the pseudogap Kondo model and the
sub-Ohmic spin-boson model are in different universality
classes.15 Therefore we believe that our combined RG analy-
sis provides a unique tool for analyzing the pseudogap
Kondo problem.

A. Models

The starting point of our discussion will be the single-
impurity Anderson model with a pseudogap host density of
statesH=HA+Hb:

HA = «0fs
† fs + U0nf↑nf↓ + V0ffs

†css0d + H.c.g, s1d

Hb =E
−L

L

dkukurkcks
† cks,

where we have represented the bathHb by linearly dispers-
ing chiral fermionscks, summation over repeated spin indi-
ces s is implied, andcss0d=edkukurcks is the conduction
electron operator at the impurity site. The spectral density of
the css0d fermions follows the power lawuvur below the
ultraviolet (UV) cutoff L; details of the density of states at
high energies are irrelevant for the discussion in this paper.
The four possible impurity states will be labeled withu↑l, u↓l
for the spin-carrying states,uel for the empty, andudl for the
doubly occupied state. Provided that the conduction band is
p-h symmetric, the above model obeysp-h symmetry for
U0=−2«0—this p-h symmetry can be considered as SU(2)
pseudospin, i.e., the full symmetry of the model is
SUs2dspin3SUs2dcharge. Asymmetry of the high-energy part
of the conduction band has the same net effect as asymmetry
of the impurity states; we will always assume that the low-
energy part of the band is asymptotically symmetric, i.e., the
prefactor ofuvur in the DOS is equal for positive and nega-
tive v.

The transformation

fs → fs
† ,

cks → cks
† s2d

converts all particles into holes and vice versa, formally«0
→−s«0+U0d, V0→−V0. Physically, the roles of the statesu↑l
andu↓l are interchanged, as well as the statesuel andudl. It is
useful to consider another transformation

f↑ → f↑, f↓ → f↓
†,

ck↑ → ck↑, ck↓ → ck↓
† , s3d

which transformsu↑ l↔ udl, u↓ l↔ uel. Here, the spinful dou-
blet of impurity states is transformed into the spinless dou-
blet and vice versa, i.e., the two SU(2) sectors are inter-
changed.

In the so-called Kondo limit of the Anderson model
charge fluctuations are frozen out, and the impurity site is
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mainly singly occupied. Via Schrieffer-Wolff transformation
one obtains the standard Kondo modelH=HK+Hb with

HK = JKS ·ss0d, s4d

where the impurity spinS is coupled to the conduction elec-
tron spin at site 0,sas0d=cs

†s0dsss8
a cs8s0d /2, andsa is the

vector of Pauli matrices. The Kondo coupling is related to
the parameters of the Anderson model(1) through

JK = 2V0
2S 1

u«0u
+

1

uU0 + «0uD . s5d

The Kondo limit is reached by takingU0→`, «0→−`, V0
→`, keepingJK fixed. In the absence ofp-h symmetry the
Schrieffer-Wolff transformation also generates a potential
scattering term in the effective Kondo model.1

In the absence of an external magnetic field all above
models preserve SU(2) spin symmetry. Spin anisotropies turn
out to be irrelevant at the critical fixed points, see Appendix
C. The effect of a magnetic field will be briefly discussed in
Sec. VIII.

B. Summary of results

Our main results are summarized in the RG flow diagrams
in Figs. 1 and 2 for thep-h symmetric and asymmetric cases,
respectively. In the symmetric case, the ranges of exponent
valuesr =0, 0, r ,

1
2, 1

2 ø r ,1, andr ù1 lead to quite dif-
ferent behavior, and are shown separately in Fig. 1. No tran-
sition occurs forr =0: for any nonzero hybridization the flow
is towards the metallic Kondo-screened fixed point(SC).
This well-known fixed point can be identified as the stable
fixed point of a resonant level model; we argue below that
this is actually an intermediate-coupling fixed point.

For 0, r ,
1
2, small values of the hybridization leave the

impurity spin unscreened provided that«0,0, i.e., there is
a stable local-moment(LM ) fixed point corresponding to
«=−`, v=0. A transition line at negative«, with an unstable
fixed point (SCR) at finite v, u«u, separates the flow towards
LM from the flow to the symmetric strong-coupling(SSC)
fixed point. The strong-coupling fixed point displays its
intermediate-coupling properties now in a finite residual en-
tropy and a finite magnetic moment, see Sec. IV B. As
r →0 the SCR fixed point merges with LM, in a manner
characteristic for a lower-critical dimension, i.e., with diverg-
ing correlation length exponent. A second critical fixed point
SCR8 exists for«.0 which separates the symmetric strong-
coupling (SSC) phase from one with a free charge doublet
sLM 8d.

As r → 1
2 the symmetric critical fixed points merge with

the strong-coupling one, again in a manner characteristic for
a lower-critical dimension. Forr ù

1
2 the fixed points SCR

and SCR8 cease to exist; the strong-coupling SSC fixed point
becomes infrared unstable, and controls the LM-LM8 transi-
tion. Finally, the structure of the flow changes again atr =1:
for r →1 the unstable strong-coupling fixed point(SSC)
moves towardsv=0, i.e., the free-impurity(FImp) fixed
point, and forr ù1 no nontrivial fixed point remains.

For maximal p-h asymmetry, realized in the Anderson
model through U0=`, one has to distinguish exponent

rangesr =0, 0, r ø r*, r * , r ,1, andr ù1. In the metallic
caser =0 any nonzero hybridization generates flow to strong
coupling with complete screening—the strong-coupling fixed
point is the same as in thep-h symmetric situation, asp-h
symmetry is marginally irrelevant at strong coupling. For all
r .0 the situation is drastically different: smallV0 leaves the
moment unscreened, whereas largeV0 directs the flow to-
wards a new,p-h asymmetric, strong-coupling(ASC) fixed

FIG. 1. Schematic RG flow diagrams for the particle-hole sym-
metric single impurity Anderson model with a pseudogap DOS,
rsvd~ uvur. The horizontal axis denotes the renormalized on-site
level energy« (related to the on-site repulsionu by u=−2«), the
vertical axis is the renormalized hybridizationv. The thick lines
correspond to continuous boundary phase transitions; the full(open)
circles are stable(unstable) fixed points, for details see text. All
fixed points at nonzero« have a mirror image at −«, related by the
particle-hole transformation(3). (a) r =0, i.e., the familiar metallic
case. For any finitev the flow is towards the strong-coupling fixed
point (SC), describing Kondo screening.(b) 0, r ,

1
2: The local-

moment(LM ) fixed point is stable, and the transition to symmetric
strong coupling(SSC) is controlled by the SCR fixed point. Forr
→0, SCR approaches LM, and the critical behavior at SCR is ac-
cessible via an expansion in the Kondo couplingj . In contrast, for
r → 1

2, SCR approaches SSC, and the critical behavior can be ac-
cessed by expanding in the deviation from SCR, i.e., in«=−u/2. (c)
1
2 ø r ,1: v is still relevant atu=0. However, SSC is now unstable
with respect to finiteu. At finite v, the transition between the two
stable fixed points LM and LM8 is controlled by SSC(which is now
a critical fixed point). (d) r ù1: v is irrelevant, and the only transi-
tion is a level crossing(with perturbative corrections) occurring at
v=u=0, i.e., at the free-impurity fixed point(FImp).
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point. The character of the critical fixed point separating the
two phases depends6 on r: for 0, r , r* p-h symmetry is
restored, and the critical fixed point is the one of thep-h
symmetric model. Forr * , r ,1 there is a separate critical
(ACR) fixed point which isp-h asymmetric, i.e., located at
finite v and «. For r →1 the critical fixed point moves to-
wards v→0, and for r ù1 the phase transition becomes a
level crossing(with perturbative corrections), controlled by
the valence-fluctuation(VFl) fixed point, see Fig. 2.

We finally discuss the general case of finitep-h asymme-
try, more details will be given in Sec. VI. Power counting
shows that LM(SSC) are always(un)stable with respect to
p-h asymmetry. The symmetric critical SCR fixed point is
stable with respect top-h asymmetry for smallr. In contrast,
for r &

1
2 SCR is unstable towardsp-h asymmetry, as it is

close to SSC in this regime. Thisrequiresthe existence of a
specificr value where this change in character occurs: this is
precisely r =r * <0.375 wherep-h asymmetry at SCR is
marginal.6 Upon increasingr beyondr* the p-h asymmetric
critical (ACR) fixed point splits off from SCR. In other
words, upon approachingr* from large r the ACR fixed
point moves towards small effectivep-h asymmetry, and at
r =r* ACR merges into SCR, implyingp-h symmetry is dy-
namically restored. As stated above, the description of ACR
using an expansion around VFl consequently breaks down as
r → r*+. Neither from numerics6 nor from the present RG are
there indications for the existence of a second asymmetric
critical fixed point in addition to ACR; thus, the critical prop-
erties for finitep-h asymmetry are always equivalent to the
ones of a model with maximalp-h asymmetry.

Taken together, the above observations show thatr =0
plays the role of a lower-critical dimension: asr →0+, the

correlation length exponent diverges and the second-order
transition turns into a Kosterlitz-Thouless transition atr =0.
Interestingly, in the symmetric case the correlation length
exponent also diverges asr → 1

2
−, and the transition between

LM and SSC disappears forr ù
1
2 : r = 1

2 is a second lower-
critical dimension for thep-h symmetric problem. In the
asymmetric case, there is a transition between LM and ASC
for all r .0, andr =1 is equivalent to the upper-critical di-
mension, above which the critical fixed point is noninteract-
ing (actually a level crossing).

C. Outline

The rest of this paper is organized as follows. Section II
introduces the observables to be evaluated in the course of
the paper, together with their expected scaling behavior near
criticality. In Sec. III we briefly review the standard weak-
coupling perturbative RG for the Kondo model, which is
suitable to describe the quantum phase transition for smallr.
Section IV discusses the particle-hole symmetric Anderson
model. Starting from the noninteracting case«0=U0=0, we
first discuss the physics of the resulting noninteracting reso-
nant level model—interestingly this can be identified with a
stable intermediate-coupling fixed point. We then use a per-
turbative expansion inU0 to access the critical fixed points
for r &

1
2. In Sec. V we turn to the situation with maximalp-h

asymmetry, i.e.,U0=`, and show that an expansion in the
hybridization provides access to the critical properties forr
.1 as well as forr &1. In Sec. VI we consider the case of
generalp-h asymmetry. Section VIII briefly describes the
effect of a magnetic field: the pseudogap model is shown to
permit a sharp transition as function of a field applied to the
impurity for couplings larger than the zero-field critical cou-
pling. In Sec. VII we compare the physics of the Anderson
and Kondo models, arguing that the transitions in both mod-
els fall in the same universality classes. A brief discussion of
applications concludes the paper. All renormalization group
calculations will employ the field-theoretic RG scheme16 to-
gether with dimensional regularization and minimal subtrac-
tion of poles, with details given in the appendixes; one-loop
RG results can equivalently be obtained using the familiar
momentum-shell method.

II. OBSERVABLES AND SCALING

To establish notations and to pave the way for the RG
analysis below, we introduce a few observables together with
their expected scaling properties.

A. Susceptibilities

Magnetic susceptibilities are obtained by coupling an ex-
ternal magnetic field to the bulk electronic degrees of free-
dom in Hb

− Huasxdscs
†sss8

a cs8dsxd s6d

and to the impurity partHA, HK

− Himp,asfs
†sss8

a fs8d, − Himp,aŜa s7d

for the Anderson(1) and Kondo(4) models, respectively.
The bulk field Hu varies slowly as function of the space

FIG. 2. Schematic RG flow diagram for the maximally particle-
hole asymmetric pseudogap Anderson impurity model. The hori-
zontal axis denotes the on-site impurity energy« the vertical axis is
the fermionic couplingv, the bare on-site repulsion is fixed atu0

=`. The symbols are as in Fig. 1.(a) r * , r ,1: v is relevant, and
the transition is controlled by an interacting fixed point(ACR). As
r → r * <0.375,p-h symmetry at the critical fixed point is dynami-
cally restored, and ACR merges into the SCR fixed point of Fig.
1—this cannot be described using the RG of Sec. V. In the metallic
r =0 situation, studied by Haldane(Ref. 13), the flow from any
point with vÞ0 is towards the screened singlet fixed point with«
=`. (b) r ù1: v is irrelevant, and the transition is a level crossing
with perturbative corrections, occuring atv=«=0, i.e., the valence-
fluctuation fixed point(VFl).
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coordinate, andHimp is the magnetic field at the location of
the impurity.

With these definitions, a spatially uniform field applied to
the whole system corresponds toHu=Himp=H. Response
functions can be defined from second derivatives of the ther-
modynamic potential,V=−T ln Z, in the standard way:17 xu,u
measures the bulk response to a field applied to the bulk,
ximp,imp is the impurity response to a field applied to the
impurity, andxu,imp is the cross response of the bulk to an
impurity field.

The impurity contribution to the total susceptibility is de-
fined as

ximpsTd = ximp,imp+ 2xu,imp + sxu,u − xu,u
bulkd, s8d

wherexu,u
bulk is the susceptibility of the bulk system in absence

of the impurity. For an unscreened impurity spin of size
S= 1

2 we expectximpsT→0d=1/s4Td in the low-temperature
limit, and this is precisely the result in the whole LM phase.
A fully screened moment will be characterized byTximp=0;
note that the SSC fixed point displays afinite value ofTximp
for r .0. At criticality ximp doesnot acquire an anomalous
dimension18 (in contrast toxloc below), because it is a re-
sponse function associated to the conserved quantityStot.
Thus we expect a Curie law

lim
T→0

ximpsTd =
Cimp

T
, s9d

where the prefactorCimp is in general a nontrivial universal
constant different from the free-impurity valueSsS+1d /3.
Apparently, Eq.(9) can be interpreted as the Curie response
of a fractional effective spin.19

The local impurity susceptibility is given by

xlocsTd = ximp,imp, s10d

which is equivalent to the zero-frequency impurity spin au-
tocorrelation function. In the unscreened phase we have
xloc~1/T asT→0; we can consider this as arising from the
overlap of the local impurity moment with the total, freely
fluctuating, moment ofS=1/2, and sowrite

lim
T→0

xlocsTd =
mimp

2

4T
. s11d

The quantity mimp turns out to be a suitable order
parameter6,7 for the phase transitions between an unscreened
and a screened spin: it vanishes continuously ast→0−,
wheret is the dimensionless measure of the distance to criti-
cality; in the Kondo modelt=sJK−Jcd /Jc, whereas in the
Anderson modelt=sV0−V0c

d /V0c
. Thus,Txloc is not pinned

to the value of 1/4 fort,0 (in contrast toTximp). Remark-
ably, mimp=0 at the SSC fixed point forr ,1, although
Tximp=r /8 there.

The phase transitions occurring for 0, r ,1 are described
by interacting fixed points, and thus obey strong hyperscal-
ing properties, including v /T scaling in dynamical
quantities.20 For instance, the local dynamic susceptibility
will follow a scaling form

xloc9 sv,Td =
B1

v1−hx
F1Sv

T
,
T1/n

t
D s12d

which describes critical local-moment fluctuations, and the
local static susceptibility obeys

xlocsTd =
B2

T1−hx
F2ST1/n

t
D . s13d

Here,hx is a universal anomalous exponent, which controls
the anomalous decay of the two-point correlations of the
impurity spin, andF1,2 are universal crossover functions(for
the specific critical fixed point and for fixedr), whereasB1,2
are nonuniversal prefactors. Furthermore,n is the correlation
length exponent, describing the flow away from criticality:
when the system is tuned through the transition, the charac-
teristic energy scaleT*, above which critical behavior is ob-
served, vanishes as20

T * ~ utun; s14d

the dynamical critical exponentz can be set to unity in the
presents0+1d-dimensional problem. Note that at criticality,
t=0, the relation(13) reduces toxlocsTd~T−1+hx.

Hyperscaling can be used to derive relations between
critical exponents. The susceptibility exponenthx and the
correlation length exponentn of a specific transition are suf-
ficient to determine all critical exponents associated with a
local magnetic field.7 In particular, theT→0 local suscepti-
bility away from criticality obeys

xlocst . 0d ~ t−g, g = ns1 − hxd,

Txlocst , 0d ~ s− tdg8, g8 = nhx, s15d

which can be derived from a scaling ansatz for the impurity
part of the free energy.7 The last relation implies the order
parameter vanishing as

mimp ~ s− tdnhx/2. s16d

Note that hyperscaling holds for all critical fixed points of
the pseudogap Kondo problem with 0, r ,1.

B. Impurity entropy

In general, zero-temperature critical points in quantum
impurity models can show a finite residual entropy[in con-
trast to bulk quantum critical points where the entropy usu-
ally vanishes with a power lawSsTd~Ty]. For the models at
hand, the impurity contribution to the low-temperature en-
tropy is obtained by a perturbative evaluation of the thermo-
dynamic potential and taking the temperature derivative.
This will yield epsilon-type expansions for the ground-state
entropySimpsT=0d, with explicit results given below.

Note that the impurity part of the thermodynamic poten-
tial will usually diverge with the cutoff, i.e., we haveVimp
=Eimp−TSimp, where Eimp is the nonuniversal(cutoff-
dependent) impurity contribution to the ground-state energy.
However, the impurity entropySimp is fully universal, and the
UV cutoff can be sent to infinityafter taking the temperature
derivative ofVimp.
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Thermodynamic stability requires that the total entropy of
a system decreases upon decreasing temperature]TSsTd.0.
This raises the question of whether the impurity part of the
entropySimp has to decrease under RG flow(which is equiva-
lent to decreasingT). The so-calledg theorem21 provides
proof of this conjecture for systems with short-ranged inter-
actions; for most quantum impurity problems this appears to
apply. Interestingly, the pseudogap Kondo problem provides
an explicit counterexample, as the two critical fixed points
obey SSCR,SACR, with the RG flow being from SCR to
ACR, see Sec. V for details.(For another counterexample
see Ref. 22.)

C. T matrix

An important quantity in an Anderson or Kondo model is
the conduction electronT matrix, describing the scattering of
the c electrons off the impurity. For an Anderson model, the
T matrix is just given byTsvd=V0

2Gfsvd whereGf is the full
impurity f electron Green’s function. For a Kondo model, it
is useful to define a propagatorGT of the composite operator
Ts= fs

† fs8cs8, such that theT matrix is given by Tsvd
=JK

2GTsvd. As with the local susceptibility, we expect a scal-
ing form of the T matrix spectral density near the
intermediate-coupling fixed points similar to Eq.(12). In par-
ticular, at criticality a power law occurs:

Tsvd ~
1

v1−hT
. s17d

Remarkably, we will find theexactresulthT=1−r for r ,1,
i.e., for all interactingcritical fixed points considered in this
paper theT matrix follows Tsvd~v−r. NRG calculations
have found precisely this critical divergence, for both the
symmetric and asymmetric critical points.5,23

Notably, theT matrix can be directly observed in experi-
ments, due to recent advances in low-temperature scanning
tunneling microscopy, as has been demonstrated, e.g., with
high-temperature superconductors.23–25

D. Phase shifts

Fixed points which can be described in terms of free fer-
mions can be characterized by thes-wave conduction elec-
tron phase shiftd0svd, which can be related to the conduc-
tion electronT matrix throughd0svd=argTsvd. A decoupled
impurity simply has a phase shiftd0=0, whereas ap-h sym-
metric Kondo-screened impurity in a metallic host has a low-
energy phase shift ofd0svd=sp /2dsgns−vd. A detailed dis-
cussion for the pseudogap model has been given in Ref. 6, in
the body of the paper we will simply quote the results.

III. WEAK-COUPLING RG FOR THE KONDO MODEL

In this section we briefly summarize the weak-coupling
RG for the pseudogap Kondo model(4), as first discussed by
Withoff and Fradkin.2 Perturbative RG is performed around
JK=0, i.e., the local-moment(LM ) fixed point: this will al-
low us to access the(p-h symmetric) critical fixed point

SCR, which is located close to LM for small DOS exponents
r.

A. Lower critical dimension: Expansion around the local-
moment fixed point

The RG flow equation for the renormalized Kondo cou-
pling j , to two-loop order, reads26

bs jd = rj − j2 +
j3

2
. s18d

This yields an infrared unstable fixed point at

j * = r +
r2

2
+ Osr3d s19d

which controls the transition between the decoupled LM and
the Kondo-screened SSC phases. The small-j expansion
(18)—which is nothing but the generalization of Anderson
poor man’s scaling27 to the pseudogap case—cannot give
information about the strong-coupling behavior, and it can
only describe critical properties for smallr. (In the p-h sym-
metric case, the fixed point structure does not change within
the exponent range 0, r ,

1
2, thus the present expansion is in

principle valid up tor = 1
2.)

Adding a potential scattering termV0 gives a finitep-h
asymmetry. Under RG, we find thatV renormalizes to zero
for r .0, bsVd=rV. Thus, within the range of applicability of
the weak-coupling RG,p-h asymmetry is irrelevant.
(Strictly, this applies forr , r*, see Ref. 6.)

B. Observables near criticality

We quote a few properties of the critical regime which
have been determined in Ref. 26. Expanding the beta func-
tion (18) around the fixed point value(19) yields the corre-
lation length exponentn:

1

n
= r −

r2

2
+ Osr3d. s20d

The low-temperature impurity susceptibility and entropy at
criticality are given by

Tximp =
1

4
s1 − rd + Osr2d, s21d

Simp = ln 2S1 +
3p2

8
r3D + Osr5d. s22d

The anomalous exponent of the local susceptibility evaluates
to

hx = r2 + Osr3d. s23d

A comparison of the above results with numerical data is
given in Figs. 3, 5, 6, and 7 below.

Most importantly, the continuous transition controlled by
the fixed point (19), which exists only forr .0, evolves
smoothly into the Kosterlitz-Thouless transition atr =0, j
=0, which separates the antiferromagnetic and the ferromag-
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netic metallic Kondo model. This is also indicated by the
divergence of the correlation length exponent(20) as r
→0+. Thus,r =0 can be identified as a lower-critical “dimen-
sion” of the pseudogap Kondo problem. It is interesting to
compare the present expansion with thes2+ed expansion for
the nonlinear sigma model, appropriate for magnets close to
the lower-critical dimension. The expansion is done about
the ordered magnet, thus the LM phase with ln 2 residual
entropy takes the role of theorderedstate in the pseudogap
Kondo problem.

IV. PARTICLE-HOLE SYMMETRIC ANDERSON MODEL

In the following sections of the paper we shift our atten-
tion from the Kondo model to the impurity Anderson model
with a pseudogap density of states. This formulation will
provide new insights into the RG flow and the critical behav-
ior of both the Anderson and Kondo models.

The coupling between impurity and bath is now the
Anderson hybridization termV0, which turns out to be mar-
ginal in a RG expansion aroundV0=0 for the DOS exponent
r =1 (in contrast to the Kondo couplingJK which is marginal
for r =0). As we will show in Sec. V, the Anderson model
provides the relevant low-energy degrees of freedom for the
p-h asymmetric pseudogap transition near its upper-critical
dimension.

Interestingly, thep-h symmetric version of the Anderson
model also allows us to uncover highly nontrivial physics, in
particular the special role played by the DOS exponentr
= 1

2, where the transition disappears in the presence ofp-h
symmetry. Thus we start our analysis with the particle-hole
symmetric Anderson model(1), i.e., we keepU0=−2«0 and
discuss the physics as function ofV0 and«0.

A. Trivial fixed points

For vanishing hybridizationV0=0, the symmetric Ander-
son model(1) features three trivial fixed points: for«0,0
the ground state is a spinful doublet—this represents the
local-moment(LM ) fixed point. For«0.0 we find a doublet
of states(empty and doubly occupied), denoted as LM8 and
related to LM by thep-h transformation(3). Both LM and
LM 8 have a residual entropy ofSimp= ln 2. At «0=0 a level
crossing between the two doublets occurs, i.e., all four im-
purity states are degenerate—this is the free-impurity(FImp)
fixed point, with residual entropy ln 4. The impurity spin
susceptibilities are

Tximp = 5 1/4 LM,

1/8 FImp,

0 LM8.
6 s24d

The conduction electron phase shift is zero at all these fixed
points. The hybridization termV0 is irrelevant at both the
LM and LM8 fixed points forr .0, whereas forr =0 it is
marginally relevant, as shown by the RG in Sec. III A.

B. Resonant level model: Intermediate-coupling fixed point

It proves useful to discuss the«0=U0=0 case, i.e., the
physics on the vertical axis of the flow diagrams in Fig. 1.

This noninteracting system is known as resonant level
model, as the two spin species are decoupled. The problem
can be solved exactly: thef electron self-energy is

S f = V0
2Gc0, s25d

whereGc0 is the bare conduction electron Green’s function at
the impurity locationR=0. In the low-energy limit thef
electron propagator is then given by

Gfsivnd−1 = ivn − iA0 sgnsvnduvnur , s26d

where theuvnur self-energy term dominates forr ,1, and the
prefactorA0 is

A0 =
pV0

2

cos
pr

2

. s27d

Before stating results for observables it is interesting to
tackle the problem using RG techniques, with an expansion
in the hybridization strengthV0 around the free-impurity
fixed point (FImp, V0=0). We study the action

S =E
0

b

dtFh f̄]tfs + V0ffscss0d + c.c.gj

+E
−L

L

dkukurc̄kss]t − kdcksG , s28d

wherecss0d is the bath fermion field at the impurity position
as above. Power counting with respect to theV0=0 fixed
point, using dimffg=0, dimfcs0dg=s1+rd /2, yields

dimfV0g =
1 − r

2
; r̄ , s29d

i.e., the hybridization is relevant only forr ,1.
To perform RG within the field-theoretic scheme,16 we

introduce a renormalized hybridizationv according toV0
=sZvmr̄ /ÎZdv, wherem is a renormalization energy scale and
Zv andZ are the interaction and field renormalization factors.
The RG flow equation forv is found to be

bsvd = − r̄v + v3. s30d

Remarkably, this result isexactto all orders in perturbation
theory: the cubic term arises from theonly self-energy dia-
gram of thef fermions, and no vertex renormalizations occur
sZv=1d. This implies that the low-energy physics of the non-
interacting resonant level model is controlled by the stable
intermediate-coupling fixed point located at

v*2 = r̄ =
1 − r

2
s31d

for 0ø r ,1, which also applies to the familiar metallic case
r =0.

The intermediate-coupling nature of the stable fixed point,
with associated universal properties, is consistent with the
results known from the exact solution of the problem, e.g., a
universal conduction electron phase shift, a universal cross-
over in the temperature-dependent susceptibility, etc.
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We proceed with calculating a number of observables for
the pseudogap resonant level model. Interestingly, this can be
done in two ways: either(i) via the exact solution of the
problem, i.e., by integrating out thec fermions exactly[lead-
ing to the propagator(26)] or, equivalently,(ii ) by evaluating
perturbative corrections to the FImp fixed point using the RG
result (31), utilizing standard renormalized perturbation
theory, and noting that all corrections beyond second order in
v vanish exactly within this scheme. Details of the calcula-
tion are in Appendix A.

We start with evaluating spin susceptibilities—note that
we have kept two spin species in the model. The zero-
temperature dynamic local susceptibility is proportional to
the bubble formed with twof propagators(26)

xloc9 svd ~ 5 v1−2r s0 ø r , 1d,

dsvd
v

T
sr ù 1d, 6 s32d

where the case ofr = 1
2 receives logarithmic corrections, see

below. The low-temperature limit of the impurity susceptibil-
ity is found to be

TximpsTd =
r

8
, s33d

the impurity entropy is

Simp = 2r ln 2, s34d

where the two last equations are valid for 0ø r ,1; for r
ù1 the resonant level model flows to the free-impurity
(FImp) fixed point with properties listed in Sec. IV A. The
conduction electron phase shift near the Fermi level, deter-
mined in Ref. 6, is

d0svd
sgns− vd

=5 s1 − rd
p

2
s0 ø r , 1d,

p

2 lnuL/vu
sr = 1d,

Osvr−1d sr . 1d.
6 s35d

Interestingly, the resonant level model describes a
screened impurity only in the metallic case. For the
pseudogap case,r .0, Eqs.(33) and (34) show that the im-
purity is only partially screened: in a model of free fermions
we have a residual entropy. We will see below that the reso-
nant level model fixed point(31) can be identified with the
symmetric strong-coupling fixed point(SSC) of Gonzalez-
Buxton and Ingersent,6 introduced for thep-h symmetric
Kondo and Anderson models.

C. Expansion around the resonant level fixed point

After having analyzed the behavior of the Anderson
model in the noninteracting case, we proceed to study the
stability of the resonant level fixed point with respect to a
finite interaction strengthU0, keepingp-h symmetry. Impor-
tantly, this fixed point, characterized by a finite hybridization
strength between impurity and bath, is stable for smallr [see

Eq. (37)]; we conclude that it can be identified with the SSC
fixed point of Ref. 6.

Numerical results5,6 indicate that the quantum phase tran-
sition between LM and SSC disappears asr is increased to12,
where thep-h symmetric critical(SCR) fixed point merges
with the SSC fixed point. We shall show that an expansion
around the SSC fixed point captures the physics of the SCR
fixed point forr &

1
2. Thus, this expansion describesthe same

critical fixed point as the weak-coupling expansion of Sec.
III, but approaching it fromr = 1

2 instead ofr =0. (The r val-
ues 0 and1

2 are two lower-critical dimensions for thep-h
symmetric pseudogap Kondo problem.)

The RG expansion below will be performed around an
intermediate-coupling fixed point, in contrast to most ana-
lytical RG calculations which expand around trivial(i.e.,
weak or strong-coupling) fixed points. Strategically, one
could think about a double expansion inV0 and U0. How-
ever, this is not feasible, as the marginal dimensions for both
couplings are different,r =1 andr = 1

2, respectively. Therefore
we choose to first integrate out thec fermions exactly, and
then use standard RG tools for the expansion inU0.

Consequently, the starting point is the action

S = o
vn

f̄ssvndfiA0 sgnsvnduvnurgfssvnd

+E
0

b

dtU0S f̄↑f↑ −
1

2
DS f̄↓f↓ −

1

2
D , s36d

where thef fermions are now “dressed” by the conduction
lines. A0 is the nonuniversal number given in Eq.(27), and
we have assumed 0, r ,1. The interaction term has been
written in ap-h symmetric form. A note is in order regarding
the cutoff: The original model had a UV cutoffL, and this
sets the upper bound for theuvnur behavior of thef propaga-
tor (26), i.e., L is now the energy cutoff for the spectral
density of thef fermions. The RG to be performed below can
be understood as progressive reduction of this cutoff(al-
though we will use the field-theoretic scheme where the cut-
off is implicitly sent to infinity at an early stage).

Dimensional analysis with respect to theU0=0 situation,
using dimffg=s1−rd /2, results in

dimfU0g = 2r − 1 ; − e, s37d

hence, forr .1/2 the interaction term is relevant and the
SSC fixed point is unstable.

We continue with the RG analysis of(36). To perform a
perturbative expansion inU0 using the field-theoretic
scheme,16 we introduce a renormalized field and a dimen-
sionless coupling according to

fs = ÎZfRs, s38d

U0 =
m−eA0

2Z4

Z2 u, s39d

where m is a renormalization energy scale as usual, and
s−ed is the bare scaling dimension ofU0; we have absorbed
the nonuniversal numberA0 appearing in the dynamic term
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of the action(36) in order to obtain a universal fixed point
value ofu.

The complete RG analysis, needed to determine the flow
of u, is presented in Appendix B, here we restrict ourselves
to the final results.p-h symmetry prohibits the occurence of
even powers ofu in the beta function ofu, therefore the
lowest contributions arise at two-loop order. Remarkably, no
singular propagator renormalizations occur, thus

Z = 1 s40d

to all orders in perturbation theory. The RG flow equation for
the renormalized interactionu, arising now only from two-
loop vertex renormalizations, is found to be

bsud = eu −
3sp − 2 ln 4d

p2 u3. s41d

Next-to-leading order contributions would require a four-
loop calculation which we do not attempt here. For positive
e, i.e., r ,

1
2, Eq. (41) yields a pair of unstable fixed points at

finite uuu (in addition to the stable one atu=0); the correla-
tion length exponent of the transition(43) diverges asr
→ 1

2
−. Thus, the behaviorbelow r= 1

2 is similar to the stan-
dard behaviorabovea lower-critical dimension(e.g., in the
nonlinear sigma model for bulk magnet case).

D. r =0

Clearly, the unstable finite-u fixed points predicted by the
perturbative RG equation(41) do not necessarily exist for the
metallic caser =0, ase=1 is possibly outside the conver-
gence radius of the expansion. Indeed, the Kondo RG of Sec.
III A shows that, atr =0, the LM and LM8 fixed points are
unstable with respect to finite impurity coupling. As the
resonant-level fixed point atu=0 is stable, we conclude that
the flow is directly from LMsLM 8d to SC, and SC represents
the familiar strong-coupling Kondo fixed point, with com-
plete screening of the spin. The RG flow is in Fig. 1(a).

E. 0, r ,
1
2

For r values smaller than12, both thev=v*, u=0 fixed
point (SSC) and thev=0, u«u=` fixed points(LM, LM 8) are
stable, and should be separated by critical fixed points. The
RG equation(41) yields a pair of infrared unstable fixed
points at

u*2 =
p2

3sp − 2 ln 4d
e + Ose2d s42d

with e=1−2r. These two fixed points represent SCR and
SCR8, see the flow diagram in Fig. 1(b). Note thatp-h sym-
metry also dictates that the flow trajectories out of the SSC
fixed point are horizontal in theu−v2 diagram. Therefore,
close tor = 1

2 the SCR and SCR8 fixed points are completely
described by the fixed point coupling valuesv* (31) andu*
(42).

F. 1
2Ï r ,1

For r .
1
2

sr = 1
2

d the self-interactionu is a (marginally)
relevant perturbation at the SSC fixed point, and Eq.(41)

does not yield additional nontrivial fixed points. As LM and
LM 8 are stable, we can conclude that the flow is from SSC
directly towards LM sLM 8d for positive (negative) U0.
Hence, SSC has become a critical fixed point, controlling the
transition between LM and LM8, which occurs atU0=0 for
any finiteV0. We shall not consider this transition in greater
detail, apart from stating its correlation length exponent,
1 /n=−e. Figure 1(c) displays the flow diagram arising from
this discussion, being consistent with the numerical results of
Ref. 6.

G. rÐ1

The physics of the symmetric Anderson model forr ù1 is
easily discussed: the hybridization termV0 is irrelevant for
all U0, Eq. (29). The free-impurity fixed point(FImp) is the
only remaining fixed point atU0=0. It is unstable with re-
spect to finiteU0, and controls the transition between the two
stable fixed points LM and LM8. The resulting flow diagram
is in Fig. 1(d).

H. Observables near criticality

Here we discuss critical properties of the SCR fixed point,
the properties of SCR8 are identical when translated from
spin to charge degrees of freedom. The correlation length
exponent follows from expanding the beta function(41)
around its fixed-point value

1

n
= 2 − 4r + Ose2d. s43d

A comparison with results from NRG is shown in Fig. 3.
Close tor = 1

2, the analytical expression nicely matches the
numerical results, however, higher-order corrections in the
expansion quickly become important.

We continue with the quantities introduced in Sec. II. As
usual for an expansion where the nonlinear coupling has an
infrared unstablefixed point (as occurs above the lower-
critical dimension in standard situations), the UV cutoff
needs to be kept explicitly, and intermediate quantities will

FIG. 3. Inverse correlation length exponent 1/n obtained from
NRG, at both the symmetric(squares) and asymmetric(triangles)
critical points, together with the analytical RG results from the ex-
pansions inr [Sec. III, Eq.(20), solid], in s 1

2 −rd [Sec. IV, Eq.(43),
dashed] and in s1−rd [Sec. V, Eq.(72), dash-dot]. The numerical
data have been partially extracted from Ref. 7 using hyperscaling
relations; for the symmetric model data are from Ref. 5.
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diverge with the UV cutoff(see, e.g., the calculation of the
impurity entropy). However, these divergences will cancel in
the final expressions for universal observables, and this is an
important check for the consistency of our calculations.

1. Local susceptibility

The local susceptibility at the SSC fixed point, i.e., at tree
level, follows the power lawxloc~v1−2r =ve. To obtain cor-
rections to the tree-level result, one introduces axloc renor-
malization factorZx, from which one obtains the anomalous
exponent according to

hx8 = bsudUd ln Zx

du
U

u*
. s44d

Note that 1−hx=e+hx8, with hx defined in Eqs.(12) and
(13), due to the nontrivial structure of the problem already at
tree level.

Different ways can be used to determineZx. Realizing

thatxloc is a correlation function of a composites f̄ fd operator
leads toZx=Z2

2, whereZ2 is the renormalization factor asso-

ciated with s f̄ fd. Z2 can be calculated from the correlation
function shown in Fig. 4(b), which receives a perturbative
correction to first order inU0. Alternatively,xloc can be cal-
culated directly, and a single diagram gives a contribution of
orderU0 [Fig. 4(c)]. Both ways lead to

Zx = 1 +
2u

pe
, s45d

with details given in Appendix B. The result forxloc is pro-
portional to the nonuniversal numberA0

−2, however, the ex-
ponent is universal:

hx8 =
2

p
u * = 2f3sp − 2 ln 4dg−1/2Îe. s46d

The local susceptibility thus followsxlocsTd~T−1+hx with

hx = 2 − 2r + 2.688Î1

2
− r + Osed, s47d

where the first term contains the tree level expression, and
further Osed terms arise from higher-order perturbative cor-
rections. A comparison with NRG results is given in Fig. 5,
where good agreement nearr = 1

2 can be observed.

2. Impurity susceptibility

For the impurity contribution to the uniform susceptibility
we expect a Curie law, as discussed in Sec. II. At tree level,
a term of Curie form does only arise fromxu,u, with Txu,u
=r /8. Both ximp,imp and xu,imp are less singular forr ,1,
consistent withTxloc=0, see also Appendix A. Also note that
xu,u is the only of the three terms where the non-universal
numberA0 drops out.

We are interested in corrections toTximp to lowest non-
trivial order in U0, and consequently those corrections can
only occur inxu,u. A single diagram contributes to first order
in U0 [Fig. 4(d)], which gives

Dximp = U0
V0

4

2A0
4FE

−L

L

dkukurTo
n

uvnu−2r

sivn − kd2G2

. s48d

Thek integral can be performed first, with the UV cutoff sent
to infinity, and the frequency summation then leads to

Dximp =
1

T
s1 − 2−1−rd2zs1 + rd2

2p2s1+rd
U0T

e

A0
2 . s49d

In the low-energy limit, the combinationsU0T
e /A0

2d ap-
proaches a universal value, the nonuniversal prefactorsV0
are seen to cancel, and the result has the expected universal
Curie form. Introducing the renormalized couplingu we
have to leading order ine:

DsTximpd = S1 −
1

2Î2
D2zs3/2d2

2p3 u. s50d

Using the fixed point value ofu (42), the result for the im-
purity susceptibility at the SCR fixed point reads

FIG. 4. Feynman diagrams for the symmetric Anderson impurity
model, where the expansion is done inU0 around the resonant level
model fixed point. Full lines aredressed fs propagators with the
self-energy arising from the conduction electrons already taken into
account, i.e., with the propagator given in Eq.(26). (a) Bare inter-
action vertexU0. (b) Correlation function involving a composite

s f̄ fd operator(wiggly line), together with the first perturbative cor-
rection. (c) U0 correction to the local susceptibilityximp,imp=xloc,
open circles are sources.(d) U0 correction toxu,u, which contributes
to the Curie term of the impurity susceptibilityximp. Dashed lines
are conduction electron lines, and the full dots are theV0 vertices.
(e) U0

2 contribution to the impurity free energy.

FIG. 5. NRG data(Ref. 7) for the local susceptibility exponent
hx, defined throughxloc~T−1+hx, at both the symmetric(squares)
and asymmetric(triangles) critical points, together with the renor-
malized perturbation theory results from the expansions inr [Sec.
III Eq. (23), solid], in s 1

2 −rd [Sec. IV Eq.(47), dashed], and in s1
−rd [Sec. V Eq.(75), dash dotted].
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Tximp =
r

8
+ 0.1942Î1

2
− r + Osed, s51d

wherer /8 is the tree level contribution andOsed represents
higher perturbative terms as above. This result can be nicely
compared to NRG data of Ref. 6, see Fig. 6.

3. Impurity entropy

The impurity entropy can be straightforwardly determined
from a perturbative expansion of the impurity part of the
thermodynamic potential. The lowest correction to the tree-
level valueSimp=2r ln 2 is of orderU0

2. The corresponding
contribution to the thermodynamic potential[Fig. 4(e)] is
given by

DVimp =
U0

2

2
E

0

b

dtGf
2stdGf

2s− td. s52d

Here Gfstd is the fourier-transformed Green’s functionGf

(26) in the presence of an UV cutoffL. Taking the tempera-
ture derivative we can write the entropy result as

DSimp =
U0

2T2e

2A0
4 F]TE

0

b

dtuḠf
2stdḠf

2s− tdur=1/2G , s53d

whereḠf =A0Gf. The prefactor can be expressed in terms of
the renormalized couplingu2 and will be proportional toe at
the fixed point. Thus, to leading order the square bracket
term can be evaluated atr = 1

2, and is expected to be a uni-
versal, finite number in the limit ofL→`. Unfortunately, we
were not able to analytically prove the convergence of the
integral asL→`. We have therefore resorted to a numerical
evaluation for finiteL and T, with an extrapolation of the
result to L /T→`, and obtainedf]T¯ g=0.1590±0.0005,
i.e.,

DSimp = 0.159
u2

2
. s54d

Adding the tree-level result and theu2 correction we obtain

Simp = ln 2 + s0.03 ± 0.005dS1

2
− rD + Ose3/2d. s55d

The two expansions for the entropy of the SSC fixed
point, (22) and (55), predict a small positive correction to
ln 2 for 0, r ,

1
2, as shown in Fig. 7, consistent with the

notion that entropy should decrease under RG flow.2 Results
from NRG (Ref. 6 as well as ours) show that the deviation
from ln 2 is tiny for all 0, r ,

1
2, which is in principle con-

sistent with the analytical results.(Although we identified
signatures of ar3 correction toSimp= ln 2 in the small-r re-
gime, the accuracy of our NRG procedure was insufficient to
determine the prefactor.26)

4. Conduction electron T matrix

In the Anderson model formulation of the impurity prob-
lem, the conduction electronT matrix is directly proportional
to the physicalf electron propagator. As shown in Appendix
B, there are no singular propagator renormalizations in the
present problemZ=1 (40). Thus, from Eq.(26) we have the
exactresult for the exponent of theT matrix

Im Tsvd ~ uvu−r , s56d

which holds at the SCR and SCR8 fixed points, and(trivi-
ally) also at the SSC fixed point. A result similar to Eq.(56)
was derived28 for the SCR fixed point within the small-r
expansion of Sec. III in agreement with the notion that both
expansions describe the same critical fixed point.

V. MAXIMALLY PARTICLE-HOLE ASYMMETRIC
ANDERSON MODEL

In this section we consider a different limit of the
pseudogap Anderson model(1), namely, the model with
maximal p-h asymmetry. This means that one of the four
possible impurity states will be excluded: withU0→`

FIG. 6. Numerical data for the impurity susceptibilityTximp at
both the symmetric(squares) and asymmetric(triangles) critical
points, together with the renormalized perturbation theory results
from the expansions inr [Sec. III, Eq.(21), solid], in s 1

2 −rd [Sec.
IV, Eq. (51), dashed], and ins1−rd [Sec. V, Eq.(85), dash-dot]. The
thin line is the value of the SSC fixed pointTximp=r /8. The nu-
merical data are partially taken from Ref. 6; we have recalculated
the data points nearr =1, as the logarithmically slow flow atr =1
complicates the data analysis.

FIG. 7. As Fig. 6, but for the impurity entropySimp; the NRG
values at the SSC fixed point are hardly distinguishable from ln 2.
The perturbative expansions are in Eq.(22) (solid), Eq. (55)
(dashed), and Eq.(89) (dash-dot); the thin line is the value of the
SSC fixed pointTximp=2r ln 2.
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(keeping«0 finite) this is the doubly occupied one, whereas
with «0→−` (keepingU0 finite) the empty state is excluded.
As these two situations are related by thep-h transformation
(2), we will formulate the following forU0→`. The Hamil-
tonian can be written as

H = «0uslksu + V0fuslkeucss0d + H.c.g +E
−L

L

dkukurkcks
† cks,

s57d

where u↑l, u↓l, and uel represent the three allowed impurity
states.

We shall show that this infinite-U pseudogap Anderson
model has a phase transition between a free-moment and a
Kondo-screened phase, which is accessible to perturbative
RG techniques nearr =1. In particular,r =1 plays the role of
the upper-critical dimension. Furthermore, we will argue in
Secs. VI and VII that the transitions in both the Anderson
and the Kondo model withfinite p-h asymmetry are in the
same universality class, and are described by the RG pre-
sented below, provided thatr . r*.

A. Trivial fixed points

For vanishing hybridizationV0, the maximally asymmet-
ric Anderson model features three trivial fixed points: for
«0,0 the ground state is the spinful doublet(LM ) with ln 2
entropy. For«0.0 we have an empty-state singlet, which we
can identify with the ASC state of the Kondo model(see
below). The doubly occupied singlet state(labeled ASC8) is
related to ASC by thep-h transformation(2). For «0=0 we
have three degenerate impurity states, we refer to this as the
valence-fluctuation(VFl) fixed point, with entropy ln 3. The
impurity spin susceptibilities are

Tximp = 51/4 LM,

1/6 VFl,

0 ASC.
6 s58d

Again, the conduction electron phase shift is zero at these
fixed points due to the vanishing fixed point value of the
hybridization. The hybridization term,V0, is irrelevant at the
ASC fixed point for allr, and irrelevant at LM forr .0.

B. Upper-critical dimension: Expansion around the
valence-fluctuation fixed point

In the following we perform an expansion around the VFl
fixed point, i.e., around«0=0, V0=0. This will give access to
the properties of the ASC fixed point, i.e., a critical fixed
point different from the one accessed by the RG calculations
in Secs. III and IV.

To represent the three impurity states in the infinite-U
Anderson model it is useful to introduce auxiliary fields for
pseudoparticlesbs (for the empty-state singlet) and fs (for
the spinful doublet). The required Hilbert space constraint

bs
†bs+ fs

† fs=Q̂=1 will be implemented using a chemical po-

tential l0→`, such that observableskÔl have to be calcu-
lated according to29,30

kÔl = lim
l0→`

kQ̂Ôll0

kQ̂ll0

, s59d

where k¯ll0
denotes the thermal expectation value calcu-

lated using pseudoparticles in the presence of the chemical

potentiall0. Clearly, in the limitl0→` the termkQ̂ll0
rep-

resents the partition function of the physical sector of the
Hilbert space times exps−l0bd. As detailed in Ref. 26, both
numeratoranddenominator of Eq.(59) have to be expanded
in the nonlinear couplings to the required order when calcu-
lating observables; however, the denominator does typically
not develop logarithmic singularities at the marginal dimen-
sion.

Furthermore, we need to introduce chemical-potential
counterterms which cancels the shift of the critical point oc-
curring in perturbation theory upon taking the limit of infi-
nite UV cutoff. Technically, this shift arises from the real
parts of the self-energies of thebs and fs particles. We intro-
duce the counterterms as additional chemical potential for
the auxiliary particles

dlbbs
†bs, dl f fs

† fs. s60d

The dlb,f have to be determined order by order in an expan-
sion in V0. Note that counterterm contributions in observ-
ables in general enter both numerator and denominator in Eq.
(59).

The model(57) can then be written in the path integral
form

S =E
0

b

dtF f̄ss]t − «0 − l0 − dl fdfs + b̄ss]t − l0 − dlbdbs

+ V0f f̄sbscss0d + c.c.g +E
−L

L

dkukurc̄kss]t − kdcksG ,

s61d

wherel0 is the chemical potential enforcing the constraint
exactly, and the rest of the notation is as above. The coun-
terterms(60) are determined from the real parts of the self-
energies of both thefs and bs particles at zero temperature
according to

dl f = ReS fsl0 + «0 + dl f,T = 0d,

dlb = ReSbsl0 + dlb,T = 0d, s62d

note that these real parts diverge linearly with the UV cutoff
L.

The model(61) shows a transition driven by variation of
«0 for finite values ofV0. Tree level scaling analysis shows
that

dimfV0g =
1 − r

2
; r̄ . s63d

This establishes the role ofr =1 as upper-critical dimension
whereV0 is marginal.

We now proceed with an RG analysis of Eq.(61) which
will allow to determine the critical properties forr &1—a
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brief account on this appeared in Ref. 12. The RG will treat
the auxiliary fieldsfs and bs as usual particles and conse-
quently determine their propagator renormalizations, anoma-
lous dimensions, etc., but all diagrams are evaluated with
l0→` which ensures the nontrivial character of the expan-
sion. Renormalized fields and dimensionless couplings are
introduced according to

fs = ÎZf fRs, s64d

bs = ÎZbbR, s65d

V0 =
mr̄Zv

ÎZfZb

v. s66d

No renormalizations are needed for the bulk fermions as
their self-interaction is assumed to be irrelevant in the RG
sense.

In contrast to the field theories analyzed in Secs. III A and
IV C (where the nonlinear coupling is used to tune the sys-
tem through the phase transition), the theory(61) contains
two parameters, namely, the tuning parameter«0 and the
nonlinear couplingV0. The RG is conveniently performedat
criticality, i.e., we assume that«0 is tuned to the critical line,
and RG is done for the couplingv—this naturally results in
an infrared stable fixed point. To two-loop order we obtain
the following RG beta function:

bsvd = − r̄v +
3

2
v3 + 3v5 s67d

with the calculation given in Appendix C. Generally, the
higher-order corrections to the one-loop result appear to be
small in the present expansion. One can also consider the
flow away from criticality, i.e., the flow of the tuning param-
eter«, either usingS2 insertions in the field-theoretic formu-
lation or explicitly within momentum-shell RG. The result-
ing correlation length exponent is in Eq.(72) below.

The structure of the above RG is very similar to the one of
the s4−ed expansion of thef4 model for magnets, where the
mass term drives the transition, and the nonlinear coupling
has a nontrivial stable fixed point at criticality below four
dimensions. Thus, the fixed point with finitev (68) corre-
sponds to the Wilson-Fisher fixed point, whereasv=0 is the
analog of the Gaussian fixed point in the magnetic context,
see Fig. 2. The parametersv and« play the role of the inter-
action and the mass, respectively.

C. r * , r ,1

For r ,1 the trivial fixed pointv* =0 is unstable, and the
critical properties are instead controlled by an interacting
fixed point at

v* 2 =
2

3
r̄ −

8

9
r̄2. s68d

At this asymmetric critical fixed point(ACR), we find
anomalous field dimensionshb=2v*2 +2v*4, h f =v*2 +2v*4.
The resulting RG flow diagram is shown in Fig. 2(a). The

ACR fixed point [Fig. 2(b)] shifts to larger values ofv*2,
u«* u with decreasingr, and the expansion can be expected to
break down for smallr. The numerical results of Ref. 6 show
that this is the case atr * <0.375, where ACR merges with
SCR, andp-h symmetry is dynamically restored. Then, Eq.
(61) together with an expansion inv, r̄ yields the correct
description of the critical properties for 0.375< r * , r ,1.
Using NRG we have numerically confirmed this expectation,
i.e., the properties of the critical fixed point of the model(61)
vary continuously as function ofr for r * , r ,1.

D. r =1

For all r ù1, a phase transition still occurs in the asym-
metric Anderson and Kondo models, but it is controlled by
the noninteracting VFl fixed point atv=«=0. For the mar-
ginal caser =1, i.e., at the upper-critical dimension, we ex-
pect logarithmic flow. In the following we explicitly keep the
UV cutoff L, and discuss RG under cutoff reductionL
→lL. We restrict ourselves to criticality, where the RG beta
function to one-loop order is

bsvd ;
dv

d ln l
=

3

2
v3, s69d

i.e., the hybridization is marginally irrelevant. The RG equa-
tion can be integrated to give

v2sld =
V0

2

1 − 3V0
2 ln l

s70d

with vsl=1d=V0. This result will be used below to deter-
mine logarithmic corrections for a number of observables.

E. r .1

For bath exponentsr .1 the couplingV0 in the theory
(61) is irrelevant in the RG sense. The critical system flows
to the VFl fixed point, Fig. 2(b), and the transition becomes
a level crossing with perturbative corrections.

Observables can then be obtained by straightforward per-
turbation theory. Consider, e.g., the boson self-energy[Fig.
14(c) below]:

Sbsinnd = V0
2To

n
E dkukur

ivn − k

1

inn − ivn − l0 − «0
,

the expression for the fermion self-energy is similar. At the
transition«0=0, the self-energies show threshold behavior at
T=0, −ImS fsv̄+ ihd /p~V0

2v̄rQsv̄d with v̄=v−l0. The
low-energy behavior of thefs propagator follows as

− Im Gfsv̄ + ihd/p = s1 − Addsv̄d + Buv̄ur−2Qsv̄d s71d

with A, B~V0
2. The bs propagator has a similar form—we

will use these results below to explicitly calculate the local
susceptibility.

F. Observables near criticality

We start with the correlation length exponentn of the
asymmetric critical fixed point. In the field-theoretic RG
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scheme it has to be determined via composite operator inser-
tions into the action(61), which take the role of mass terms
driving the system away from criticality. The lowest-order
result forn is

1

n
= r + Osr̄2d sr , 1d, s72d

with details of the derivation given in Appendix C. Forr
ù1 the transition is a level crossing, formallyn=1.

In the calculation of observables like susceptibilities, etc.,
the UV behavior depends on whether we are above or below
the upper-critical dimensionr =1. For r ù1 the cutoffL has
to be kept explicitly, as integrals will be UV divergent. This
also implies that hyperscaling is violated, and nov /T scaling
in dynamics occurs, as usual for a theory above the upper-
critical dimension.

For r ,1 the UV cutoff L can be sent to infinity after
taking into account the contributions of the counterterms
(60), as the remaining integrals are UV convergent. This is in
contrast to the expansions forr *0 (Sec. III) and for r
&1/2 (Sec. IV), which are effectively both above a lower-
critical dimension, and where intermediate quantities can
display UV divergencies. Notably, for allr ,1 expansions
the low-energy observables are fully universal, i.e., cutoff
independent and hyperscaling is fulfilled.

1. Local susceptibility

The anomalous exponenthx associated with the local sus-
ceptibility is calculated as above by determining thexloc
renormalization factorZx, using minimal subtraction of
poles, and then employing

hx = Ubsvd
d ln Zx

dv
U

v*
. s73d

Here we havexloc=1/v at tree level, in contrast to thep-h
symmetric problem of Sec. IV.

The leading contributions toZx arise from the diagrams in
Fig. 8(c), see Appendix C for details. From theZx expression

Zx = 1 −
v2

r̄
s74d

we find hx in an expansion inr̄,

hx =
2

3
s1 − rd + Osr̄2d sr , 1d. s75d

This result is again in good agreement with numerical
findings,7 with a comparison given in Fig. 5.

We now describe the evaluation of the logarithmic correc-
tions present atr =1. Using the lowest-order resultsbsvd
= 3

2v3 andhxsvd=2v2 we can integrate Eq.(73) to yield

Zx = Svsld
V0

D4/3

. s76d

The explicit scaling relation31 for xloc at T=0 reads

xlocsiv,V0,Ld = ZxslLd−1xlocS iv

lL
,vsld,L = 1D . s77d

To analyze the frequency dependence ofxloc we choosel
=l* = v /L and employ Eq.(76) together with Eq.(70) to
express the renormalization factor in terms ofl. This leads
to

xlocsiv,V0,Ld =
v−1

S1 − 3V0
2 ln

v

L
D2/3xlocfi,vsld,1g.

To obtain the leading(i.e., multiplicative) logarithms, the last
term can be approximated by its fixed point value, which
simply gives a constant—this neglects sub-leading additive
logarithmic corrections. We finally obtain the result

xlocsvd ~
1

vuln vu2/3 sr = 1d s78d

valid at criticality for v!L. Note that the structure of the
logarithms in our problem is different from, e.g., that of the
Hertz-Millis theory at the upper-critical dimension studied in
Ref. 32. In our problem bothv andZx flow to zero according
to Eq. (76); whereas in Ref. 32 the renormalization factorZ
tends to a nonuniversal constant asl→0—this leads to the
absence of multiplicative logarithms.

Above the upper-critical dimensionr .1 we have simply
hx=0 and thusxloc~1/T or ~1/v. We shall explicitly dem-
onstrate the calculation of the local impurity susceptibility
using bare perturbation theory. To lowest nontrivial order,
xloc is given by the convolution of twofs propagators(71),
calculated with the self-energy to second order inV0. Note
that no vertex corrections occur to this order due to the struc-
ture of the interaction. When calculatingxloc the T→0 limit

FIG. 8. Feynman diagrams for the infinite-U Anderson model.
Full/wiggly/dashed lines denotefs /bs/cs propagators, the cross is
the counterterm(60). (a) Bare interaction vertexV0. (b) V0

2 contri-
bution to the partition function, which also appears in the denomi-
nator of Eq.(59). (c), (d) Diagrams entering the local susceptibility
ximp,imp to orderV0

2. (e) V0
2 contribution toxu,imp. (f) V0

2 contribu-
tions toxu,u.
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has to be taken with care, as the exponentially small tail in
Im Gfsv̄d at v̄,0 contributes toxloc. One obtains for the
imaginary partxloc9 for T→0 and 1, r ,2:

xloc9 svd/p =
1 − 2A

6

dsvdv
T

+
B

3
uvur−2 sgnsvd. s79d

Moving away from criticality, one of thefs, bs propagators
loses itsdsv−l0d contribution—for«.0 st.0d this is Gfs

,
indicating that free-moment behavior is absent in this re-
gime. Consequently, the zero-temperature static local suscep-
tibility is finite, but diverges upon approaching the critical
point according toxloc~ tr−2. For t,0, xloc~1/T. Thus, the
order parametermloc jumps at the transition point forr .1.

2. Impurity susceptibility

The evaluation of the impurity susceptibility requires the
summation of the diagrams in Figs. 8(c)–8(f), appearing in
the numerator of the corresponding Eq.(59), and also a care-
ful treatment of the denominator, as we are interested in
terms being nonsingular as a function ofr̄.

The diagrams are conveniently evaluated in imaginary
time, e.g., the first correction toximp,imp in Fig. 8(c) gives

1

2
e−l0bV0

2E
0

b

dtE
0

t

dt2E
0

t2

dt1Gc0st2 − t1d, s80d

where the limitl0→` has been taken in thefs andbs propa-
gators.Gc0 is the conduction electron Green’s function at the
impurity site, which contains a momentum integral. The
other diagrams in Fig. 8 can be written down similarly. Per-
forming thet integrals first, one obtains

s8cd =
1

T
− V0

2E
0

L

dk
kr

k3F2k

T
+ S4 +

k2

T2Dtanh
k

2T
G ,

s8dd = −
V0

2L

T2 ,

s8ed = V0
2E

0

L

dkkr 2f3 + coshsk/Tdgk/T − 4 sinhsk/Td
k3f1 + coshsk/Tdg

,

s8fd = V0
2E

0

L

dk
kr

k3F4 tanh
k

2T

− S2k

T
+

k2

T2 tanh
k

2T
Dcosh−2 k

2T
G , s81d

where all terms have to be multiplied bye−l0b /2. Figure 8(d)
are the contributions from the counterterms(60), which

evaluate todlb=2dl f =2V0
2L. The denominatorkQ̂ll0

, being
3e−l0b to zeroth order inV0, receives corrections from the
diagram in Fig. 8(b) and from the counterterms(60), result-
ing in

kQ̂ll0
= 3 − 4

V0
2L

T
+ 4V0

2E
0

L

dk
kr

kT
tanh

k

2T
, s82d

to be multiplied withe−l0b. Now we are in the position to
collect all contributions toximp to second order inV0:

Dximp = −
V0

2T−r̄

6T F2E
0

L/T dxxr

x3

sinhx − x

1 + coshx

+E
0

L/T dxxr

3x
S sinhx

1 + coshx
− 1DG . s83d

Note that intermediate terms of the formT−2 have cancelled
in numerator and denominator of Eq.(59). For r ,1 the mo-
mentum integrals are UV convergent, and do not develop
poles inr̄, i.e., the poles present in theximp,imp diagrams have
been cancelled by contributions from Figs. 8(e) and 8(f). In
the low-energy limit, the productV0

2T−r̄ approaches a univer-
sal value. Thusximp has indeed Curie form, with a fully
universal prefactor depending onr only. For r .1 the inte-
grals require an explicit UV cutoff, but no correction to the
Curie term arises, assV0

2T−r̄d vanishes asT→0.
Performing the integral forr ,1 and expressing the result

in terms of the renormalized couplingv, the impurity suscep-
tibility reads

Tximp =
1

6
− S1

6
−

ln 2

9
Dv2 + Osv4d. s84d

With the value of the coupling at the ACR fixed point(68)
we finally find, to leading order ins1−rd,

Tximp =5
1

6
− 0.02988s1 − rd + Osr̄2d sr , 1d,

1

6
sr ù 1d 6 s85d

to be compared with the numerical results in Fig. 6.

3. Impurity entropy

The impurity contribution to the entropy can be derived
from the free energy as above. At the VFl fixed point the
entropy isSimp= ln 3, and the lowest-order correction is com-
puted by expanding the free energy inv. Note that this cor-
rection vanishes forr ù1, asv* =0 there.

The calculation of the impurity entropy in the presence of
a constraint for pseudoparticles has been discussed in Appen-
dix C of Ref. 26. The limitl0→` suppresses all contribu-
tions from the unphysical part of the Hilbert space, in par-
ticular disconnected diagrams in the partition function.
Remarkably, this leads to the appearance of disconnected
diagrams in higher-order terms of the expansion for the ther-
modynamic potentialV. The second-order diagram forV,
shown in Fig. 8(b), evaluates to

DVimp =
2V0

2

3
E

−L

L

dk
ukur

k
tanh

k

2T
. s86d

There is also a contribution toVimp from the counter-terms,
but this is temperature independent and does not contribute
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to the entropy. Taking the temperature derivative we find

DSimp = −
V0

2

3
T−2r̄E

−L/T

L/T

dxuxur cosh−2 x

2
. s87d

This integral can be performed in the limit of infinite UV
cutoff. [In contrast, the integral in Eq.(86) is UV divergent,
as discussed in Sec. II.] Expressing the result in terms of the
renormalized hybridization and taking the limitr →1 we
have

Simp = ln 3 −
8 ln 2

3
v2. s88d

As expected, the entropy correction is fully universal and
finite in the limit T→0. Inserting the fixed point value of the
couplingv into Eq. (88), we find the impurity entropy as

Simp = 5ln 3 −
8 ln 2

9
s1 − rd + Osr̄2d sr , 1d,

ln 3 sr ù 1d.
6 s89d

NRG calculations6 have determinedSimp for r values below
unity; a comparison is shown in Fig. 7. As with most of the
observables obtained within thes1−rd expansion the agree-
ment of the lowest-order result with numerics is surprisingly
good even forr values well away from unity, indicating that
higher-loop corrections are small.

The results for the RG flow and the impurity entropy have
an interesting corollary: Stability analysis shows that for
r * , r ,

1
2 the RG flow at criticality and smallp-h asymme-

try is from SCR to ACR. The entropy of SCR approaches
ln 2 as r → 1

2. Both NRG and the above expansion indicate
that the entropy of ACR islarger than ln 2 forr &

1
2, Fig. 7.

Thus we haveSimp,ACR.Simp,SCRfor r * , r ,
1
2, i.e., the im-

purity part of the entropy increases under RG flow(see also
Fig. 9 below), in contradiction to the so-calledg theorem21

(This is not a fundamental problem, as the present model has
effectively long-ranged interactions, and is not conformally
invariant, such that the proof of theg theorem does not ap-
ply.)

4. Conduction electron T matrix

The T matrix in the Anderson model is given byTsvd
=V0

2Gfsvd. The physicalf propagatorGf is a convolution of
the auxiliaryfs andbs propagators, i.e., the propagator of the
composite operatorsfs

†bsd. The anomalous exponent is ob-
tained from

hT =Ubsvd
d ln ZT

dv
U

v*
. s90d

As in Ref. 28 we are able to determine anexactresult for
the anomalous exponent, valid to all orders in perturbation
theory. The argument is based on the diagrammatic structure
of the T matrix, namely the relevant diagrams can be com-
pletely constructed from fullv interaction vertices and full
f /b propagators.28 This leads to the relation betweenZ fac-
tors

ZT
−1 =

Zv
2

ZfZb
. s91d

This equation can be plugged into Eq.(66). Taking the loga-
rithmic derivative at fixed bare coupling and usingbsvd /v
=0 at any fixed point with finitev*, one obtains the exact
result

hT = 2r̄ ⇒ Im Tsvd ~ uvu−r . s92d

Whereas Eq.(92) applies to thep-h asymmetric fixed point
(ACR), and is valid forr * , r ,1, the results of Sec. IV H
and Ref. 28 have established the same critical behavior for
the T matrix for the symmetric fixed point(SCR) for 0, r
,

1
2. Thus, we conclude that all critical fixed points for 0

, r ,1 in the pseudogap Anderson and Kondo models dis-
play aT matrix behavior of ImTsvd~ uvu−r.

The logarithmic correction to theT matrix at r =1 are
evaluated in a manner similar to the one for the local suscep-
tibility above. With bsvd= 3

2v3 and hTsvd=3v2—note that
hT=h f +hb only holds at one-loop level becauseZv=1 at this
order—we can integrate Eq.(90) to find

FIG. 9. NRG results for a slightlyp-h asymmetric Anderson
model atr =0.45 close to criticality(ACR). Parameter values are a
hybridization strengthpV0

2rs0d=1, «0=−0.5, and U0=0.9949,
0.99493(dashed), 0.9949213, 0.9949215(solid). The thin lines are
for a p-h symmetric model very close to criticality(SCR), with
«0=−0.487,U0=0.974. The NRG runs were done using a discreti-
zation parameter ofL=9, keepingNs=650 levels. The two-stage
flow described in the text can be clearly seen, i.e., there is a small
energy scaleT* where the system flows from ACR to ASC or LM
(solid: T* <10−28, dashed:T* <10−22), and a larger scaleTACR

<10−12 where the system flows from SCR to ACR.(a) Impurity
susceptibilityTximp. (b) Impurity entropySimp. The behavior of the
entropy illustrates the point made in Sec. V F 3:SimpsTd decreases
as function ofT, i.e., increasesalong the RG flow, forT* ,T
,TACR due toSimp,ACR.Simp,SCR. This “uphill flow” does not vio-
late thermodynamic stability criteria, as the total entropy(impurity
plus bath) of the system still decreases under RG.
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ZT = Svsld
V0

D2

. s93d

With the general scaling relation

Tsiv,V0,Ld = ZTslLd−1TS iv

lL
,vsld,L = 1D s94d

and Eq.(70) we find

Tsiv,V0,Ld =
v−1

1 − 3V0
2 ln

v

L

Tfi,vsld,1g.

As above, the leading logarithms are of multiplicative char-
acter, with the final resultTsvd~1/svuln vud. This implies
for the T matrix spectral density the behavior

Im Tsvd ~
1

vuln vu2
sr = 1d. s95d

Above the upper-critical dimension,r .1, we have again
hT=0 and ImTsvd~dsvd.

VI. GENERAL PARTICLE-HOLE ASYMMETRY

Here we comment on the general case of finitep-h asym-
metry. Starting with the trivial fixed points, tree-level power
counting shows that LM is stable with respect top-h asym-
metry, with a scaling dimension of −r. In contrast, SSC is
unstable towards ASC, andp-h asymmetry grows near SSC
with a scaling dimension ofr. Finally, at the free-impurity
fixed point (FImp) p-h asymmetry grows under RG with a
scaling dimension of unity and the systems flow towards
VFl. VFl itself is stable with respect to a deviation from
maximalp-h asymmetry.

In the r ranges where the RG expansions of this paper are
perturbatively controlled, we can immediately come to con-
clusions about the stability of the critical fixed points: SCR
will be stable with respect to finitep-h asymmetry forr close
to 0, but unstable forr close to1

2. Similarly, for r close to or
larger than unity, ACR is stable with respect to a deviation
from maximal p-h asymmetry, in other words it is safe to
discard one of the two impurity statesudl or uel for the dis-
cussion of the critical properties, and to work with the per-
turbative expansion of Sec. V. One has to keep in mind that
ACR moves towards smaller effectivep-h asymmetry(larger
values ofu«* u) upon decreasingr, and the perturbative ex-
pansion around VFl breaks down asr → r*+ wherep-h sym-
metry is dynamically restored.

The numerics of Ref. 6 gives no indications for additional
fixed points in the case of finitep-h asymmetry which would
not be present in the maximally asymmetric model; our RG
results are consistent with this. Thus, the critical properties
of a pseudogap Kondo or Anderson model with generalp-h
asymmetry are always identical to the ones of the maximally
asymmetric model of Sec. V.

For the RG treatment of a model with generalp-h asym-
metry close to criticality one has to envision a two-step RG
procedure, as usual in problems with different energy scales.

Suppose we start near criticality from small hybridization
and smallp-h asymmetry. Forr . r*, the scaling dimension
of p-h symmetry breaking term is largest: at tree level we
have dimf2«0+U0g=1 and dimfV0g=s1−rd /2. Thus the ini-
tial model parameters flow towards largep-h asymmetry
first. This flow drives the system into the regime described
by the maximallyp-h asymmetric Anderson model of Sec. V,
thereby renormalizing the parameters« andv. Then, the RG
of Sec. V takes over, with a flow towards ACR, and finally to
one of the two stable phases(if the system is not exactly at
criticality). Thus, a low-energy scaleT* and a higher scale
TACR exist, whereTACR characterizes the approach of the
effectivep-h asymmetry towards the ACR fixed point. Note
that for r .2 the fastest flow is the one ofv to zero, i.e., the
system quickly approaches the VFl fixed point. The de-
scribed behavior is nicely borne out by NRG calculations for
the Anderson model, see Fig. 9.

Finally, for r , r* the initial flow is dominated by the
decrease ofp-h asymmetry—this cannot be captured by our
Anderson model RG, but is contained in the Kondo
treatment—and the system approaches SCR, before it finally
departs to one of the two stable phases. If the system is on
the strong-coupling side of the transitionst.0d, then the
behavior near SCR is multicritical[see also Fig. 16(a) of
Ref. 6]: two low-energy scales exist which describe the de-
parture of the flow from SCR, namely,T* (for the deviation
of j from j* ) and a lower scaleTASC (for the subsequent
growth of p-h asymmetry when flowing towards the ASC
fixed point).

We note that a recent investigation of the pseudogap
Anderson model33 using the local-moment approach8 has
found indications of a line of critical fixed points in thep
-h asymmetric case, parametrized byp-h asymmetry. We be-
lieve that this is an artifact of the employed approximation
scheme, as(i) NRG calculations strongly hint towards a
single asymmetric critical fixed point(for fixed r), i.e., the
fixed-point level spectrum at criticality does not depend on
the initial p-h asymmetry(e.g., the ratioU0/«0) and (ii ) our
analytical RG shows that, at least nearr =1, the scaling di-
mension ofp-h asymmetry is largest, and the sketched two-
step RG (which directly leads to consider an infinite-U
Anderson model to describe the critical behavior) is a con-
trolled approach for arbitrary initialp-h asymmetry.

VII. RELATION BETWEEN ANDERSON AND KONDO
MODELS

This section shall highlight the relation between the
pseudogap Anderson and Kondo impurity models. On the
one hand, it is well-known that the Anderson model reduces
to the Kondo model in the so-called Kondo limit, see Sec.
I A. This mapping covers the far left-hand side of the flow
diagrams in Figs. 1 and 2, and suggests that the phase tran-
sition at smallr in the Anderson model in this Kondo limit is
described by the Kondo RG of Sec. III.

On the other hand, we have argued that the flow of the
Kondo model can be naturally understood in terms of the
variables of the Anderson model. In particular, the RG ex-
pansions of Secs. IV and V describing transitions of the
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Anderson model nearr = 1
2 andr =1, also apply to the Kondo

model. Clearly, in thinking about this “mapping” of the
Kondo to the Anderson model one has to view the Anderson
model as an effectivelow-energytheory of the Kondo model.
The impurity states of this effective Anderson model are thus
many-body states obtained after integrating out high-energy
degrees of freedom from the Kondo model, i.e., dressed im-
purity states.

A formal way to obtain an Anderson model from a Kondo
model is a strong-coupling expansion: Theu↑l and u↓l states
of the Anderson model are bare impurity states, whereasuel
and udl represent the impurity with either a hole or an elec-
tron of opposite spin tightly bound to the impurity.

The above can also be made plausible in a slightly differ-
ent way, in the following for ap-h asymmetric situation: Let
us consider the Kondo problem with a hard-gap DOS:34 in
the presence ofp-h asymmetry it shows a first-order quan-
tum transition, i.e., a level crossing, between a Kondo-
screened singlet and a spin-1

2 doublet state. As we can under-
stand the asymmetric pseudogap DOS as consisting of an
asymmetric high-energy part and a(asymptotically) symmet-
ric low-energy part, we can obtain an effective theory for the
pseudogap Kondo model by coupling the above mentioned
three (many-body) impurity states, obtained by integrating
out high-energy degrees of freedom from the band, to the
remaining low-energy part of the conduction electron spec-
trum. A crucial ingredient is now thep-h asymmetry of the
original model. It is clear that upon integrating out the high-
energy part of the bathtwo many-body singlet states arise,
namely,uel andudl as discussed above. Due to thep-h asym-
metry of the underlying model these two singlet states will
have very different energies, such that we can discard the
high-energy state in the low-energy theory. With this we di-
rectly arrive at an infinite-U pseudogap Anderson model.

We conclude that the phase transitions of the pseudogap
Anderson and Kondo models are in the same universality
classes—this is supported by the numerical calculations of
Ref. 6. For smallr the phase transition is naturally described
in the Kondo language of Sec. III implying that the critical
fixed point of the Anderson model is located in the Kondo
limit. In contrast, for largerr the formulation in terms of the
Anderson model provides the relevant degrees of freedom, in
other words, both spinful and spinless(many-body) impurity
states play a role in the critical dynamics.

VIII. FINITE MAGNETIC FIELD

Interesting physics obtains in the pseudogap Kondo and
Anderson models in the presence of a finite magnetic field.
We concentrate here on the effect of alocal field, applied to
the impurity only. Note that a finite field applied to the bulk
can modify the low-energy behavior of the bath DOS due to
Zeeman splitting; then, pseudogap Kondo physics survives
only for energy scales above the Zeeman energy.

For T=0 and a metallic density of states,r =0, a local
field B only leads to a crossover as function ofB/TK, and all
observables evolve smoothly fromB=0 (screened spin) to
largeB (polarized spin). In contrast, for anyr .0 andt.0
(i.e., JK .Jc in the Kondo model) there will be a zero-

temperature phase transition as function of the local field
between one phase with weak and one with strong impurity
spin polarization, see Fig. 10. We briefly discuss this phase
transition in the following—it turns out that the variables of
the Anderson model provide a natural language to analyze
the problem. Remarkably, all ingredients needed for the dis-
cussion of the critical properties have already been calculated
in the previous sections.

Strategically, we first discuss the decoupled impurity, and
then analyze the modifications arising from the presence of
the hybridization term. For the decoupled impurity, the local
field is trivially a relevant perturbation, with scaling dimen-
sion unity. Thus, in the low-energy limit the field is effec-
tively infinite, and one of the two impurity statesu↑l, u↓l can
be discarded(we will discardu↓l in what follows).

A. Asymmetric Anderson model

In thep-h asymmetric case two impurity states have to be
considered, namely,u↑l and uel. We discuss a level crossing
transition of these two, tunable, e.g., by varying the magnetic
field, and being coupled to conduction electrons. At the tran-
sition we are left with a(spinless) resonant level model, and
the analysis for a pseudogap host density of states is in Sec.
IV B. In particular, for r .1 the phase transition is a level
crossing with perturbative corrections, and for all 0, r ,1
we have a continuous transition with a critical fixed point
identical to the intermediate-coupling fixed point of the reso-
nant level model(31). Thus, the properties of the transition
evolve smoothly as function ofr for 0, r ,1, in contrast to
the zero-field situation.

B. Symmetric Anderson model

In the presence ofp-h symmetry and magnetic field, the
decoupled impurity has three low-energy states:u↑l, uel, udl.

FIG. 10. SchematicT=0 phase diagram of the pseudogap
Kondo model in a local magnetic fieldB. At B=0, there is a phase
transition atJK=Jc between LM and a strong-coupling phase SSC
or ASC. Upon application of a field, an unscreened spin becomes
strongly polarized(POL), whereas a screened spin in a strong-
coupling phase is only weakly polarized. Increasing the field at
JK.Jc drives a phase transition—such a transition isnot present in
the metallic caser =0. The phase diagram for a pseudogap Ander-
son model is similar. As discussed in the text, the zero-field critical
fixed point is always unstable with respect to finiteB in the RG
sense; thus the two transitions are in general in different universal-
ity classes(which is already clear from symmetry considerations).
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The resulting level-crossing transition is technically identical
to the one of the zero-field infinite-U Anderson model of Sec.
V: the two situations can be mapped onto each other via the
p-h transformation(3). From Sec. V we can read off the
properties of the field-tuned phase transition: Forr .1 we
have again a level crossing with perturbative corrections. A
RG expansion around the level-crossing fixed point can be
used to calculate the critical properties belowr =1. This ex-
pansion describes the physics for allr . r*.

It is interesting to ask what happens forr , r*. At r* the
broken level symmetry is dynamically restored at the critical
fixed point, meaning that forr , r* the transition is con-
trolled by a zero-field critical fixed point. From Secs. III and
IV we know that forr ,

1
2 such an Anderson model transition

with four degenerate impurity states is the same as described
by the weak-coupling RG in the Kondo language. However,
the mapping(3) shows that we have to consider a Kondo
model of a charge pseudospin here, i.e., the corresponding
Schrieffer-Wolff transformation will project out theu↑l and
u↓l states. In other words, in ap-h symmetric situation with
0, r , r*, where the zero-field transition is controlled by the
SCR fixed point, the finite-field transition will be asymptoti-
cally controlled by the SCR8 fixed point.

C. Kondo model

The above statement is consistent with a simple generali-
zation of the weak-coupling RG of Sec. III to the case of
finite field. One easily finds that the field is a relevant per-
turbation at the SCR fixed point with a scaling dimension of
unity, and the finite-field transition isnot accessible in a de-
scription using the Kondo model spin variables.(In contrast,
the magnetic field is irrelevant at SCR8.)

D. Symmetries and pseudospin field

In the Anderson model language, the local field lifts the
degeneracy of the magnetic doubletu↑l, u↓l. It breaks the
SU(2) symmetry in the spin sector, and the effect is clearly
independent of the field direction.

As discussed in Sec. I A, thep-h symmetric Anderson
model displays SU(2) symmetry also in the charge sector
(charge pseudospin). This can be broken by choosingU0Þ
−2«0, corresponding to a pseudospin field in thez direction.
Clearly, a pseudospin field in perpendicular direction will
have the same effect—this field corresponds to a local pair-
ing field coupling tof↑f↓. Thus, the SU(2) pseudospin sym-
metry shows that the effect ofs-wave pairing correlations on
the Kondo problem is similar to a particle-hole asymmetry,
as argued in Ref. 35 using a completely different approach.

IX. CONCLUSIONS

In this paper, we have analyzed the zero-temperature
phase transitions in the pseudogap Kondo problem, charac-
terized by a bath density of statesrsvd~ uvur. Using various
perturbative RG expansions, formulated in the degrees of
freedom of either the Kondo or the Anderson impurity
model, we have developed critical theories for the phase
transitions in both thep-h symmetric and asymmetric cases.

We have established thatr =0 andr = 1
2 play the role of two

lower-critical dimensions in thep-h symmetric case, i.e., the
nontrivial phase transition disappears both asr →0+ and
r → 1

2
− with diverging correlation length exponent. In con-

trast, r =1 is an upper-critical dimension for thep-h asym-
metric model. The transitions for 0, r ,1 are described by
interacting field theories withuniversal local-moment fluc-
tuations and strong hyperscaling properties includingv /T
scaling of dynamical quantities. In contrast, forr .1 we find
a level crossing with perturbative corrections, and hyperscal-
ing is violated.

In the p-h symmetric case, we found two different expan-
sions, one aroundr =0 and one aroundr = 1

2, to describe the
same critical fixed point. In the presence ofp-h asymmetry, a
different critical fixed point emerges, which can be analyzed
in an expansion aroundr =1.

Apart from the small-r expansion of Sec. III, all our theo-
ries were formulated using the Anderson model language.
This shows that the quantum phase transition between a
screened and an unscreened moment in Kondo-type models
can be nicely interpreted by saying that the system fluctuates
between “possessing a moment” and “possessing no
moment”—this is precisely what is described by the effective
Anderson model at its valence-fluctuation fixed point.

We have calculated a number of observables, with results
being in excellent agreement with numerical data. In particu-
lar, we have found an exact exponent for the conduction
electronT matrix, valid for all expansions used in this paper.
We have also discussed the physics of the pseudogap Kondo
problem in a local magnetic field, where we have shown
that—in contrast to the metallic Kondo effect—a sharp tran-
sition occurs as a function of the field.

Applications of our results include impurity moments in
unconventional superconductors9,10,23,25and other pseudogap
systems, such as, e.g., graphite. On the theoretical side, we
expect that the analysis of quantum impurity models using
Anderson instead of Kondo model variables may be useful in
a variety of problems. Thus, field theories similar to ours can
possibly be constructed for other impurity quantum transi-
tions, and will also be useful for the study of lattice models
in dynamical mean-field theory36 and its extensions,37 where
local quantum criticality can be captured using effective
single-impurity models.
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APPENDIX A: THE NON-INTERACTING RESONANT
LEVEL MODEL

Here we provide a few details about the non-interacting
resonant level model with a pseudogap density of states. The
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model is exactly solvable, and all properties can be directly
evaluated using the dressedf electron propagator(26). The
local susceptibility has been quoted in Sec. IV B. TheT ma-
trix is given byTsvd=V0

2Gfsvd; a brief discussion of spectral
properties can also be found in the appendix of Ref. 6.

We now sketch the calculation ofTximp and Simp. The
diagrams contributing toTximp are in Fig. 11; note that these
contain full f propagators, and no higher-order diagrams ap-
pear. Power counting shows that terms of 1/T form do only
arise fromxu,u; bothximp,imp andxu,imp are less singular. The
evaluation of the diagrams in Fig. 11(c) gives

xu,usTd =
V0

2

A0
To

n
E

−L

L

dkukur
uvnu−r

sivn − kd3

+
V0

4

2A0
2To

n
SE

−L

L

dkukur
uvnu−r

sivn − kd2D2

. sA1d

All factors of V0 cancel exactly against theA0, and we obtain
a quantity with a universal prefactor. Thek integrals can be
performed in the limit of infinite UV cutoff, followed by the
Matsubara summations. The result is of Curie form, with

xu,usTd =
r

8T
. sA2d

Note that we have used the dressedf propagators(26) in
their low-energy form—due to their singular nature their
high-energy properties are unimportant for the leading low-
temperature behavior of the susceptibility.

The impurity entropySimp is directly calculated from the
full f propagator(26). Performing the tr ln in the partition
function gives

Vimp = − 2To
n

lnfi sgnsvnduvnurg. sA3d

One can easily see that theT=0 entropy contributions of
lnsivnd and lnuivnu are identical, thus we have

Simp = − lim
T→0

]TS− 2rTo
n

lnsivndeivn0+D . sA4d

This is nothing but 2r times the entropy of a free spinless
fermion, resulting inSimp=2r ln 2.

Interestingly, the above exact universal results can also be
obtained in the framework of a RG expansion in the hybrid-
ization, i.e., in a formal expansion aroundr =1. Here one
exploits the intermediate-coupling nature of the fixed point,
by calculating observables using renormalized perturbation
theory and employing the fixed-point value(31) of the cou-
pling v. The necessary diagrams, Fig. 12, now containbare
(instead of dressed) f propagators. Technically, higher-order
terms appear in this expansion, but upon interpreting the
lowest-order result of renormalized perturbation theory(e.g.,
reexponentiating logarithms) these terms are completely
summed up. Thus, within the RG framework the information
about the nontrivialf scaling dimension is contained in the
coupling valuev* instead of in the propagatorGf. We briefly
demonstrate the idea by evaluating the impurity entropy. As
we expand aroundv=0 (the FImp fixed point) we obtain a
perturbative correction to the impurity thermodynamic po-
tential which is of orderV0

2 [Fig. 12(b)]. Taking the tempera-
ture derivative leads to

DSimp = −
V0

2

2
T−2r̄E

−L/T

L/T

dxuxur cosh−2 x

2
sA5d

with r̄ =s1−rd /2 as above. Performing the integral in the
limits L→` andr →1 and introducing the renormalized hy-
bridizationv yields

Simp = s1 − 2v2dln 4. sA6d

With the fixed point value of the hybridization we obtain the
resultSimp=2r ln 2 as above.

APPENDIX B: RG FOR THE INTERACTING RESONANT-
LEVEL MODEL

In this appendix we present details of the renormalization
group treatment for the symmetric Anderson model in the
vicinity of r = 1

2. It is based on an expansion around the SSC
fixed point, i.e., around a noninteracting resonant-level
model, with the interaction strength being the expansion pa-
rameter. Thus the expansion is done around an intermediate-
coupling fixed point.

The starting point is the action(36) derived in Sec. IV C,
for 0, r ,1. Importantly, the “bare”(i.e., U0=0) f propaga-

FIG. 11. Feynman diagrams for the spin susceptibility of the
noninteracting resonant level model of Sec. IV B. Dashed/full lines
denotecs /dressed fs propagators, respectively; the full dots areV0

vertices, and the open circles are sources.(a) ximp,imp. (b) xu,imp. (c)
xu,u. Note that the displayed diagrams give theexactresults for the
susceptibilities, as all self-energies are contained in the dressedf
propagator.

FIG. 12. Diagrams occurring in the perturbative RG for the
noninteracting resonant level model of Sec. IV B. Here, full lines
arebare fs propagators.(a) Bare interaction vertexV0. (b) fs self-
energy.(c) Diagram for thev2 entropy correction.(d) Diagrams
entering the local susceptibility to orderv2. Within the renormalized
perturbation theory scheme all corrections beyond second order inv
vanish.
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tor in Eq.(36) behaves as 1/sA0vrd at low energies, Eq.(26),
as the conduction electrons have already been integrated out.
The prefactorA0 will be kept explicitly in the renormaliza-
tion steps. We employ the field-theoretic RG scheme in order
to determine the flow of the coupling renormalized coupling
u, introduced in Eq.(39), with dimensional regularization
and minimal subtraction of poles. As will be seen below, the
lowest nontrivial renormalizations arise at two-loop order.

The needed diagrams arising in the RG treatment are dis-
played in Fig. 13. A number of observations can be made:(i)
Hartree diagrams vanish due to the overallp-h symmetry of
the model.(ii ) Explicit calculation shows that the one-loop
vertex renormalization diagrams, i.e., theu2 corrections tou
in Fig. 13(b), do not develope poles. This also follows from
the fact that the beta function cannot contain even powers in
u due top-h symmetry.(iii ) Explicit evaluation shows that
the f self-energy up to two-loop order, Fig. 13(a), does not
contribute singular propagator renormalizations. In other
words, the field renormalization factor is

Z = 1 sB1d

to two-loop order. As we will argue below, this result isexact
to all orders in perturbation theory. It implies that thef field
does not acquire an anomalous dimensionh f =0.

The two-loop diagrams for the renormalization ofu can
be divided into two groups of three each, displayed in the
two lines of Figs. 13(c). The diagrams in each group can be
easily seen to be equal. Explicitly,

s13c1d = U0
3FE dv1

2p
Gfsiv1dGfsiv1 + indG2

, sB2d

wheren is the sum of two external frequencies. Using the
explicit form of Gf (26), the frequency integral can be split
according to the absolute value inGf, and then performed
directly with UV cutoff sent to infinity. The result containse
poles and reads

s13c1d = U0
3n2−4r

p2 F 1

e2 +
p − 2 ln 4

e
+ Ose0dG . sB3d

The second group of diagrams in Fig. 13(c) is slightly more
complicated. All three of them can be brought into the form

s13c4d = 2U0
3E dv1

2p

dv2

2p
Gfsiv1dGfsv2d

3 Gfs− iv1 + indGfsiv2 − iv1 + ivd, sB4d

where the prefactor 2 accounts for the different arrangement
of the vertices andv is a (third) external frequency. Thev2
integral can be performed directly and leads to the same
expression that occurred in the brackets in Eq.(B2). The
remainingv1 integral can also be performed after splitting
the interval into four parts. Straightforward algebra, using
the identity arcsinÎx− iarctanhÎ1−1/x=p /2, wherex=v /n
,1, leads to

s13c4d = U0
3n2−4r

p2 F−
1

e2 −
3sp − 2 ln 4d

2e
+ Ose0dG .

sB5d

Upon adding the contributions from Eqs.(13c1)–(13c6),
only single poles ine remain—asZ=1, the cancellation of
the double poles is a consistency check of our calculation.
Minimal subtraction of poles at external frequencies set tom
yields the renormalization factor for the quartic coupling

Z4 = 1 +
3sp − 2 ln 4du2

2p2e
. sB6d

The RG beta function can be evaluated by taking them de-
rivatives of Eq.(39) at fixed bare coupling

bsud ; mU du

dm
U

U0

= euS1 −
3sp − 2 ln 4d

p2

u2

e
D , sB7d

which is the result in Eq.(41).
We now provide the proof forZ=1, i.e., no singular

propagator renormalizations occur in the present problem.
What is needed isp-h symmetry and the form of the bare
propagatorGf ~v−1/2 or Gfstd~t−1/2 in the low-energy limit
for r = 1

2. We argue that no logarithms arise when evaluating
the self-energy atr = 1

2. By power counting, allf self-energy
diagrams in thet domain give a result proportional tot−3/2.
Let us discuss internalt integrals arising in the evaluation
(which could produce logs). In the first step, those involve
four Gf propagators due to the quartic interaction—here it is
important that tadpoles do not contribute due top-h symme-
try. Therefore, the integrand will behave ast−2, and logs
cannot occur. In further steps, four propagators do not nec-
essarily occur, but the power counting argument shows that
each internal time still has to occur with a power oft−2. This
shows that the integrands will always bemore singularthan
1/t, and no logarithms arise. Clearly, such an argument can-
not be constructed for the vertex diagrams, as they behave as
1/t at r = 1

2, and Fourier transformation generically yields an
e pole.

Let us turn to the local susceptibility renormalization fac-
tor Zx. As described in Sec. IV H, one can either determine
the composite operator renormalization factorZ2 and use
Zx=Z2

2, or evaluateZx directly with the help of the perturba-
tive correction toxloc in Fig. 4(c). In both cases, thef bubble
diagram is needed. To leading order ine it evaluates to

FIG. 13. Diagrams for the RG of the symmetric Anderson im-
purity model, with notation as in Fig. 4.(a) U0

2 self-energy contri-
bution, which vanishes.(b) One-loop vertex renormalizations,
which vanish due to p-h symmetry. (c) Two-loop vertex
renormalizations—these are the only contributions to the beta func-
tion (41).
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To
n

GfsivndGfsivn + ind =
unue

pe
sB8d

in the zero-temperature limit. For the correlation function
Gf

s2,1d in Fig. 4(b) we introduce a renormalization factor as
follows: Gf

s2,1d=Z2Z
−1Gf,R

s2,1d. Demanding that the renormal-
izedGf,R

s2,1d is free of poles at scalem, and usingZ=1 we find

Z2 = 1 +
u

pe
, sB9d

which givesZx in Eq. (45).

APPENDIX C: RG FOR THE INFINITE- U ANDERSON
MODEL

The infinite-U Anderson model can be analyzed in the
vicinity of r =1 using an expansion in the hybridization
strength. Here we describe details of the field-theoretic RG,
with the results appearing in Sec. V. Starting point is the
action(61), written in terms of auxiliary fieldsfs andbs. The
RG proceeds by perturbatively calculating renormalizations
to the propagators and vertices appearing in Eq.(61), which
yields expression for the renormalization factors defined in
Eq. (66).

The relevant diagrams are displayed in Fig. 14. Note that
there is no one-loop contribution to the vertex renormaliza-
tion. At one-loop order we have the graphs for thef and b
self-energies. Evaluation of the first diagram for thef self-
energy in Fig. 14(a) gives

s14a1d = V0
2To

ivn

E dkukur

ivn − k

1

in − ivn − l0
. sC1d

We work at criticality, i.e.,«0=0. First the frequency sum can
be performed, here thel0→` limit is important: it sup-

presses contributions from positivek. The remainingk inte-
gral is UV convergent, and we finally obtain

s14a1d = −
V0

2

2r̄
sin − l0dr = − Am

v2

2r̄
sin − l0d. sC2d

In the second line we have expressed the result in terms of
renormalized quantities, withAm=m2r̄sin−l0d−2r̄Zv

2/ sZfZbd.
Demanding cancellation of poles in the expressions for the
renormalizedf Green’s function at external frequencyin
−l0=m we obtain the one-loop result for thef renormaliza-
tion factor as

Zf = 1 −
v2

2r̄
. sC3d

The other diagrams in Figs. 14(a)–14(c) are evaluated in a
similar manner. In the two-loop self-energies, the real part of
the inner self-energy insertions, which diverges linearly with
the UV cutoff, is exactly cancelled by the corresponding
counterterm.

Collecting all expressions yields the renormalization fac-
tors, defined in Eq.(66), to two-loop order as

Zf = 1 −
v2

2r̄
− S 1

4r̄2 +
1

2r̄
Dv4,

Zb = 1 −
v2

r̄
− S 1

4r̄2 +
1

2r̄
Dv4,

Zv = 1 +
1

4r̄
v4. sC4d

With these results, we can take the logarithmicm derivative
of Eq. (66) at fixed bare coupling, we obtain the beta func-
tion

bsvd ; mU dv
dm
U

V0

sC5d

as quoted in Eq.(67). The anomalous field dimensions are
obtained from

h f = m
d ln Zf

dm
= bsvd

d ln Zf

dv
= v2 + 2v4, sC6d

hb = m
d ln Zb

dm
= bsvd

d ln Zb

dv
= 2v2 + 2v4. sC7d

To determine the flow away from criticality and the cor-
relation length exponent, we follow the standard scheme16

via insertions of composite operators, representing mass
terms. Physically, only the difference between the masses of
the f and b auxiliary fields is relevant, and introducing one
type of composite operator is sufficient. In the following we

work with f̄ f insertions, which acquire a corresponding
renormalization factorZ2f. To determineZ2f we consider a
correlation function Gbf

s2,1d=kkb†stdbst8d ,sf†fdst9dll. The
renormalization factorZ2f is then defined through

FIG. 14. Diagrams for the RG of the infinite-U Anderson model.
Notations are as in Fig. 8.(a), (b) Self-energies forfs and bs to
two-loop order. The crosses denotes the counterterms which cancel
the real parts of the self-energy insertions.(c) Two-loop vertex
renormalization; there is no contribution to one-loop order.(d) Dia-
grams with mass insertions(squares), needed to determine the cor-
relation length exponent.
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Gbf
s2,1d =

Z2f

Zf
ZbGbf,R

s2,1d. sC8d

Evaluating the diagram in Fig. 14(d) and demanding cancel-
lation of poles inGbf,R

s2,1d gives, to one-loop accuracy

Z2f = 1 +
v2

r̄
. sC9d

The correlation length exponent can be related to theZ fac-
tors via the RG equation16 for the renormalizedGbf

s2,1d, ac-
cording to

1

n
− 1 =m

d

dm
ln

Z2f

Zf
sC10d

which yields

1

n
= 1 − 3v* 2. sC11d

The result forn is in Eq. (72), and is of course identical to
the one obtained in Ref. 12 using the familiar momentum-
shell method.

The local susceptibility exponent is determined via a
renormalization factorZx for the two-point correlations of
the impurity spin. The leading diagrams are in Fig. 8(c); the
v2 diagrams are identical, with a leading singular contribu-
tion of

1

2
V0

2E
0

t

dt2E
0

t2

dt1Gc0st2 − t1d =
V0

2

4r̄
t2r̄

each. Note that the counter-term contributions can be ignored
here, as they do not develop poles inr̄. Demanding cancel-
lation of poles yields

Zx = 1 −
v2

r̄
. sC12d

Taking the logarithmic derivative with respect tom one ob-
tains thehx value quoted in Sec. V F.

The renormalization factor for theT matrix (diagrams not
shown) is obtained as

ZT = 1 −
3

2

v2

r̄
−

3

2

v4

r̄
sC13d

to two-loop order. The resulting anomalous exponenthT ful-
fills the exact equationhT=2r̄.

APPENDIX D: SPIN ANISOTROPIES

Thus far our discussion has been restricted to impurity
models with full SU(2) spin symmetry. In this appendix we
show that spin anisotropies, e.g., in the Kondo interaction,
are irrelevant at all critical points considered.

For the weak-coupling RG of Sec. III A, formulated in the
variables of the Kondo model, we introduce Kondo cou-
plings J' and Jz for the transverse and longitudinal part of
the Kondo interaction. The RG equation(18), to one-loop
order, generalizes to

bs j'd = rj ' − j' jz,

bs jzd = rj z − j'
2 . sD1d

For the metallic case,r =0, there is a line of fixed points at
j'=0, jz,0, representing an unscreened moment. In con-
trast, for r .0 only SU(2) symmetric fixed points survive,
namely, LM with j'

* = jz
* =0 and SCR withj'

* = jz
* =r. Thus,

the symmetric critical fixed point of the Anderson and Kondo
models is stable with respect to SU(2) symmetry breaking.

Turning to thep-h asymmetric model, we start from the
infinite-U Anderson model(57) and introduce a spin depen-
dence in the hybridizationV0↑ÞV0↓. As is easily seen via
Schrieffer-Wolff transformation, for a genericp-h asymmet-
ric conduction band this is equivalent to an anisotropic ex-
change interaction plus a local magnetic field. Without loss
of generality we restrict the following analysis to ap-h sym-
metric conduction band, where the field term is absent. The
RG equation(67), to one-loop order, generalizes to

bsv↑d = − r̄v↑ +
v↑
2

s2v↑
2 + v↓

2d,

bsv↓d = − r̄v↓ +
v↓
2

s2v↓
2 + v↑

2d. sD2d

Apart from the SU(2) symmetric fixed pointvs
2* = 2

3 r̄, there
are two other fixed points withv↑

2* = r̄, v↓=0, andv↓
2* = r̄, v↑

=0—these are, however, infrared unstable with respect to
finite v↓ sv↑d. Thus, the only stable critical fixed point is the
SU(2) symmetric one, which corresponds to the ACR fixed
point analyzed in Sec. V.
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