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The analysis of detailed magnetization measurements, supplemented by zero-field ac susceptibility data, on
single-crystal La0.73Ba0.27MnO3 indicates the occurrence of a continuous ferromagnetic-to-paramagnetic phase
transition at 245 K. This transition is characterized by exponent valuesg=1.39s2d±0.005,b=0.364±0.003,
andd=4.83±0.04, and these, along with estimates for the critical amplitudes, suggest that this transition falls
into the universality class of the near-neighbor, three-dimensional Heisenberg model. Such a result has been
predicted by simulations for double-exchange coupled systems in which anisotropy does not play a major role.
Low temperature magnetization data indicate that any effects due to spin canting are minimal.
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I. INTRODUCTION

Transition metal oxides have been the subject of a wide
range of investigations—both experimental and theoretical—
for many years. The focus of such studies has more recently
become particularly intense in the case of the highTC cu-
prates and colossal magnetoresistive(CMR) manganites.
These materials share considerable structural similarities,
and while members of both classes of materials often display
semiconducting behavior at high temperatures, the supercon-
ductivity of the cuprates is replaced, typically, by a magneti-
cally ordered ground state in the manganese perovskites.
While the highTC cuprates have been studied for close to
two decades, an explanation of this behavior—particularly
the fundamental physics as it relates to the mechanism yield-
ing such elevated transition temperatures—remains contro-
versial. CMR behavior in the manganese perovskites, by
contrast, was first reported1 over half a century ago, but de-
spite these earlier studies and the revival of interest2 in this
phenomenon due to its more recent “rediscovery,” the under-
lying physical mechanism is, likewise, the subject of ongo-
ing debate. In both classes of materials, however, the pos-
sible role played by (spontaneous) electronic phase
separation has emerged as the focus of much discussion.3,4

The present paper does not concentrate on this latter issue,
per se, but on a related, perhaps more specific issue, but one
which is equally controversial; specifically, the nature of the
magnetic phase transition that is frequently observed in close
proximity to the metal-insulator transition(and the attendant
CMR) in the doped Mn perovskites(general formula
L1−xAxMnO3, whereL is a rare earth, including La, andA a
divalent alkaline earth ion). While this paramagnetic-to-
ferromagnetic transition can be first order/discontinuous5 or
second order/continuous,6 what is perplexing is the result
that in La1−xSrxMnO3 with x,0.25 where a consensus exists
on the occurrence of a continuous paramagnetic-to-
ferromagnetic transition, quite different values for the asso-
ciated critical exponents have been reported,7–9 a point re-
turned to in more detail below. Within the broader
perspective of the intrinsically inhomogeneous phase separa-

tion scenario, it is expected that transitions displaying first
order characteristics can be driven toward second order by
the effects of disorder.10 Indeed, in competing theories of
CMR based on bipolaron pair breaking effects,11 both first
order and continuous magnetic transitions are possible, with
the nature of the magnetic transition reflecting a critical po-
laron density at the transition temperature. Either of these
approaches—as indeed do others12—presents a general
(rather than a system specific) explanation of the behavior of
CMR materials. As a corollary, given the current consensus
that the magnetic interactions in these materials are predomi-
nantly double exchange and superexchange, then one would
certainly expect that the magnetic transitions—the
paramagnetic-to-ferromagnetic transition in particular—
should be described by the same universality class. This
makes the careful estimates of critical exponents describing
continuous magnetic transitions in these systems particularly
important sinceif such exponents are indeed different, it
might indicate some further subtlety in the physics of these
materials that has previously been overlooked.

Below we present detailed measurements of the field and
temperature dependent magnetization of a bulk single crystal
sample(the most appropriate form for the characterization of
critical behavior9) of La0.73Ba0.27MnO3. Analysis of these
data yields exponent values consistent with those predicted
for the three-dimensional, near-neighbor Heisenberg model.
Available transport data on this system support these conclu-
sions. Specifically, the trend that the magnitude of the
(colossal) magnetoresistance nearTC in mixed valence
manganites displays not only an inverse dependence onTC
but may also reflect the order of the attendant paramagnetic-
to-ferromagnetic phase transition.2 For example,
La1−xSrxMnO3 s0.2øxø0.5d exhibits some of the highest
TC’s among Mn perovskites9 and displays, correspondingly, a
relatively weak magnetoresistance13 accompanying a
second-order/ continuous magnetic phase transition. By con-
trast, systems such as Pr1−xCaxMnO3 s0.1øxø0.3d undergo
a first-order/discontinuous magnetic transition at signifi-
cantly lower TC’s, with an associated magnetoresistance
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which is substantially enhanced.14 In the La1−xBaxMnO3 sys-
tem, transport data on polycrystalline/thin film samples with
x<1/3 indicate15 a moderate magnetoresistance(40–50 %),
possibly enhanced in polycrystalline materials by grain-
boundary effects. It is our intention to check the latter via
transport measurements on single crystals. The results of the
latter notwithstanding, the previously reported moderate
magnetoresistance of this system is consistent with the trends
mentioned above and the current conclusions regarding the
magnetic response.

II. EXPERIMENTAL DETAILS

The sample used in the present study was a single crystal
of mass 0.163 g, a semicylindrical rod of length of 6 mm
with an average radius of 1.6 mm. This sample, of nominal
composition La0.73Ba0.27MnO3, was grown at the Moscow
State Steel and Alloys Institute using the floating zone
technique;16 it was of high quality both structurally—
displaying a mosaicity of less than 1°—and magnetically—
the coercivity field did not exceed 10 Oe at any temperature
below TC, falling to less than 1 Oe some 10 K belowTc.

Measurements of the dc magnetization in applied fields up
to 5 T (oriented along the sample’s cylindrical axis) were
acquired using a Quantum Design Model PPMS 6000 mag-
netometer using five-scan averaging. Prior to measuring at
any given temperature the sample was demagnetized by
warming to 300 K—well above the ordering temperature—
and then cooling to a preselected measuring temperature in
zero field. At each such temperature a sufficient waiting pe-
riod was adopted(typically 30 min) to allow the sample to
reach thermal equilibrium.

III. RESULTS AND DISCUSSION

A. General features

The inset in Fig. 1 reproduces the temperature depen-

dence of the zero-field susceptibilityxs0,Td measured at 300
Hz in a 0.1 Oe rms driving field(applied parallel to the
cylindrical axis of the sample) on warming between 200 and
300 K following zero-field cooling. There was no discernible
hysteresis in this susceptibility within experimental uncer-
tainty (typically 0.1 K). The data in this inset enable two
initial but important estimates to be made. From the mini-
mum slope ofdx /dT one obtains a preliminary value for the
ordering temperature ofTC<248 K, while the relatively flat
region in xs0,Td below 240 K—particularly the maximum
susceptibility value(identified withN−1) of 0.089 emu/g Oe
in this region—provides an estimate of the demagnetizing
factor N f=11.2s4dg Oe/emug. However, even in relatively
soft magnetic systems the use of very low ac driving fields
means that the maximum measured susceptibility represents
a lower limit on N−1 (i.e., anupper limit 17 on N). This ap-
pears to be confirmed by calculation;18 treating the specimen
as an ellipsoid with principal axes equal to the listed
dimensions—clearly an approximation for the sample used
here—and evaluating the corresponding elliptic integral,
yields a lower value ofN=9.94 g Oe/emu(based on a theo-
retical density of 6.76 g/cm3).

The main body of Fig. 1 shows a selected series of mag-
netic isotherms measured in the vicinity of the Curie tem-
peratureTC, estimated above. Such data were collected over
the temperature interval 240 to 251 K in 0.5 K intervals, and
in 1 K intervals immediately outside this range, using the
procedure described in the preceding section.

Before discussing the detailed analysis of these data in the
critical regime, some comments of a general nature are ap-
propriate.

First, an obvious point, the magnetization curves in the
critical region donot display metamagnetic(i.e., S-shaped)
characteristics generally associated with a first-order mag-
netic transition(as has been reported5 in La1−xCaxMnO3 for
x<0.3). Further evidence that the transition evident in Fig. 1
is of a continuous nature is provided by Arrott-like plots19 of
the type reproduced in the inset in Fig. 2. Here plots ofM2 vs
H /M (whereH=Ha−NM is the internal field,Ha the applied
field, andM the magnetization) show no indication whatso-
ever of a negative slope[i.e., a term of the form-asTdM4 in
the free energy], particularly in the limit of smallH. Such a
term has been cited5 as evidence supporting the presence of a
first-order/discontinuous transition in the manganites. It also
follows from this inset that conventional Arrott scaling does
not apply to this sample(these plots do not form a set of
parallel straight lines), a result discussed in more detail be-
low. What the isotherms shown in Fig. 1 do reveal is that this
system has a technically soft magnetic character(as was also
revealed by the zero-field susceptibility approaching the de-
magnetizing factor limit), with the rapid increase in the mag-
netization from theHa=0 state being typical of the effects of
domain wall motion in soft systems. Close examination of
the behavior of these isotherms nearTC also reveals that they
approach a shearing curve limited behavior(i.e., approach a
maximum slope ofN−1). Using data over an applied field
range −50øHaø50 Oe for temperatures at and immediately
below TCs,10 Kd yields a final estimate of N
=10.62 g Oe/emu, some 5% smaller than that obtained from

FIG. 1. Magnetization isotherms between 240 and 251 K(in 1 K
steps). Inset: the zero-field ac susceptibility(measured on
warming).
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susceptibility data; this represents good agreement overall
considering the nonideal(ellipsoidal) specimen shape.

Finally, from estimates of the saturation moment
(86.25 emu/g)—obtained from the 2 K isotherm using anM
vs Ha

−1 plot for data between 6 and 8 T—the Ba composition
of this sample is estimated to bex=0.27s0d±0.003, assuming
a spin-only Mn moment. The extent of any spin noncol-
linearity at 2 K in high applied fields is therefore minimal.

B. Critical behavior

In the immediate vicinity of a second-order phase transi-
tion with Curie/ordering temperatureTC, the correlation
length j diverges according to the power lawjsTd
=j0sT/TC−1d−v and the static scaling law equation20 relates
the (reduced) magnetizationmsh,td to the linear scaling
fields t=sT−TCd /TC and h,H /TC, whereH is the internal
field, via

msh,td = utubF±S h

utug+bD . s1d

While the general behavior of the scaling functionF above
s+d and below s−d the transition remains unspecified, its
asymptotic behavior for small and large values of its argu-
ment leads to the following well established power laws for
the spontaneous magnetizationfMSsTd=MsT,H=0dg and its
reduced counterpart:

MSsTd = MSs0dS1 −
T

TC
Db

, ms0,td , Butub sT , TCd

s2d

and the initial susceptibilityfxisTd=s]M /]HdH=0g:

xisTd = x0S T

TC
− 1D−g

, xistd =
] m

] h
, Ct−g sT . TCd.

s3d

Further, at the Curie temperature itselfsT=TC,t=0d

msh,0d , Dh1/d s4d

with g=bsd−1d according to the Widom relation. While the
transition temperatureTC can beestimatedusing the ap-
proach mentioned above, it and the critical exponentsg ,b,
andd have to be determined in a self-consistent manner from
detailed analysis of the magnetization data. This analysis
usually begins by recognizing that, whereas Eq.(1)–(4) are
based on the contribution arising from magnetic critical fluc-
tuations alone(the singular magnetic response), the mea-
sured magnetization contains both the singular and additional
terms resulting from technical or regular components(i.e.,
domain wall motion, coherent rotation, etc.). In order to
eliminate such technical contributions and complications
arising from crystalline anisotropy, the spontaneous magne-
tization and initial susceptibility appearing in Eq.(2) and(3)
are estimated by extrapolation from the “high” field regime
(the technically saturated regime) assuming an Arrott-
Noakes equation of state21

S H

M
D1/g

= ST − TC

TC
D + S M

M1
D1/b

s5d

whereM1 is a material specific constant. In the above equa-
tions H represents the internal field, about which comments
are relevant at this point. Three different estimates for the
demagnetization factorN have been obtained, as outlined
above, and in the calculation of the internal field an average
of the two experimentally estimated values has been used.
However, given the nonuniform shape of the sample inves-
tigated(in spite of which the estimates forN are in relatively
good agreement) data for which the demagnetizing field
sNMd is a significant fraction of the applied fieldsHad (typi-
cally around 50%, or more—essentially forHa
,350–400 Oe) have been excluded from this analysis to
limit uncertainties from this source.

Modified Arrott plots based on Eq.(5) were made for a
range of exponent values 0.9øgø1.5,0.25øbø0.55 en-
compassing the range of extremes between mean-fieldsg
=1.0,b=0.5d and near-neighbour three-dimensional Heisen-
berg model predictions22 sg=1.396,b=0.369,d=4.783d.
When the appropriate values ofg andb are chosen, isother-
mal magnetisationsmd vs (internal) field sHd curves form a
series of parallel straight lines in such modified plots. To
achieve truly self-consistent estimates, however, the inter-
cepts of these straight lines on the vertical and horizontal
axes yield MSsTd1/b sT,TCd and s1/xid1/g sT.TCd, re-
spectively. Specifically, these straight line extrapolations
eliminate the so-called technical contributions, enabling the
critical components to be isolated which, in turn, can be
(re)tested against the power-law predictions listed above.
Self-consistency is achieved when the modified Arrott plots
and the ensuing power laws yield the same exponent values.
Such power-law tests, of course, require an estimate forTC to

FIG. 2. Modified Arrott plots[M1/b vs sH /Md1/g] using Heisen-
berg model exponents for a selection of magnetic isotherms at tem-
peratures of 242(top), 243, 244, 244.5, 245, 245.5, 246, 247, and
248 K (bottom). Inset: conventional Arrott plots(M2 vs H /M) of
the magnetization data displayed in Fig. 1.
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be made, and this is obtained from the isothermal line ex-
trapolating through the origin—the critical isotherm(in prac-
tise this usually involves an extrapolation between the tem-
peratures of two or so curves having smallest positive and
negative intercepts). Double-logarithmic plots testing Eq.(2)
and (3) are then constructed, the slopes of which yield
(slightly) modified exponent estimates, and the whole pro-
cess is iterated until self-consistency is achieved. As detailed
below, this is possible for Heisenberg model exponents alone
in this system.

The main body of Fig. 2 reproduces modified Arrott plots
for data acquired in the range 241øTø246 K,450øHa
ø30 000 Oe using Heisenberg model exponents. These data
do indeed fall on a set of parallel straight lines and yield an
improved estimate ofTC=245 s±0.5d K. By contrast, the in-
set in Fig. 2 reproduces these data in modified form using
mean-field exponents(“conventional” Arrott plots); the sig-
nificant curvature evident in this inset indicates the inappli-
cability of such exponents to describe the critical behavior of
this single crystal. The self-consistency of Heisenberg expo-
nent estimates is confirmed in Figs. 3 and 4. The first of these
figures exhibits the spontaneous magnetizationMSsTd (de-
duced from the vertical intercepts in Fig. 2) as a function of
temperaturesT,TCd, while the second of these displays the
temperature dependencesT.TCd of the inverse initial sus-
ceptibility fxisTd−1g (found from the horizontal intercepts in
Fig. 2). The insets in these figures show these same data
replotted against the reduced temperaturet, using TC
=245.0 K, on a double-logarithmic scale; these insets con-
firm directly the power-law predictions of Eqs.(2) and (3)
and the associated slopes yield

b = 0.364 ± 0.003, 23 10−3 ø utu ø 2 3 10−2,

g = 1.39s2d ± 0.005, 23 10−3 ø t ø 3 3 10−2,

both very close to Heisenberg model predictions. WithTC so
chosen, Fig. 5 reproduces the field dependence of the mag-
netization along the critical isotherm; the double-logarithmic
plot reproduced in the inset confirming the power-law rela-
tionship of Eq.(4) yielding

d = 4.83 ± 0.04, 200ø H ø 50 000 Oe,

again close to the Heisenberg model value.

FIG. 3. The spontaneous magnetizationMs (found from the or-
dinate intercept in Fig. 2) plotted against temperature. The insert
reproduces a double logarithmic plot ofMs vs reduced temperature
t (usingTC=245 K); the straight line drawn confirms the power-law
prediction of Eq.(2) and its slope yields the value for the exponent
b shown.

FIG. 4. The initial susceptibilityxi (found from the abscissa
intercept in Fig. 2) plotted against temperature. The inset displaysxi

plotted on a double-logarithmic scale against the reduced tempera-
ture t (with TC=245 K); the straight line drawn confirms the power-
law prediction of Eq.(3) and its slope yields the value for the
exponentg shown.

FIG. 5. The critical isotherm—the zero intercept line in Fig. 2
(which givesTC=245 K). The inset shows these data on a double-
logarithmic plot, the straight line nature of which confirms the
power-law prediction of Eq.(4); the slope of this line yields the
critical exponent valued shown.

LI et al. PHYSICAL REVIEW B 70, 214413(2004)

214413-4



Complete scaling of all these data in the intervals 242.0
øTø247.5,200øHø50 000 Oe is demonstrated in Fig. 6
through plots ofMutu−b vs Ht−sg+bd with the above listed ex-
ponent values. This same plot is reproduced on a double-
logarithmic scale in the inset in this figure, again convinc-
ingly demonstrating scaling of these data onto the two
“branches” of the scaling functionsF+,t.0;F−,t,0d. The
significance of the solid lines drawn in this inset are next
discussed. While the functional form of the scaling functions
F± are not known in general, the asymptotic behavior at large
and small values of the argumentsh/ utug+bd is established:

F−s0d = MSs0d sH → 0, T , TCd, s6d

F+S h

tg+bD , x0
h

tg+b sH → 0, T . TCd, s7d

F±s`d , S 1

D

h

tg+bD1/d

st = 0, H . 0d, s8d

i.e., in Eq. (8) the dependence on reduced temperature is
eliminated along the critical isotherm if the Widom equality
is satisfied. The latter is certainly satisfied here, with the
right-hand side of the equalityg=bsd−1d yielding a value of
1.394±0.02, which compares very well with the measuredg
value listed earlier. The values forMSs0d ,x0, and D deter-
mined from the insets in Figs. 3–5(and listed in Table I)
correspond to these three solid lines; these asymptotic values
for the scaling function represent the corresponding data
well, further demonstrating a high degree of self-consistency.

Having established the exponent values for this system, a
number of comparisons appear to be in order. In recent stud-
ies of the critical behavior of single-crystal La1−xSrxMnO3,
Kim et al.9 and Ghoshet al.7 report exponent values
(g=1.27±0.06,b=0.40±0.02,d=4.12±0.33, and
a=0.05±0.07 for x=0.25; g=1.22±0.03,b=0.37±0.04,
d=4.25±0.2 forx=0.3) intermediate between mean-field and
three-dimensional Ising model predictions23 sg=1.237,b
=0.326,d=4.789,a=0.11d. With this result in mind we have
also carried out a detailed analysis, along the lines summa-
rized above, to investigate the applicability of Ising andXY
model exponents to single-crystal La0.73Ba0.27MnO3. Given
the reasonable proximity of theg and b values for the
Heisenberg andXY models24 sg=1.318,b=0.349,d=4.780d,
not surprisingly a modified Arrott representation of the
present data produces plots with comparable quality to those
shown in Fig. 2; indeed, an essentially identical estimate of
TC=245.0±0.5 K ensues. By contrast to the behavior re-
ported for Heisenberg exponent values, however, the corre-
sponding power-law plots usingMSsTd and xisTd deduced
from such modified Arrott plots arenot self-consistent. They
iterate towardhigher (i.e., Heisenberg model) exponent val-
ues. The situation resulting from the use of Ising exponents
is more marked, as expected, as this model predicts expo-
nents further removed from the Heisenberg model. These
results provide strong support for our assertion of the appli-
cability of Heisenberg-like behavior for this Ba-substituted
system.

While the cubic structure of the Sr-substituted single crys-
tals studied by Kimet al.9 and Ghoshet al.7 might have led
to the expectation that they display Heisenberg model
exponents,25 Kim and co-workers argue that the presence of
a shape induced uniaxial anisotropy causes a crossover be-
tween universality classes. In particular, through measure-
ments (albeit at room temperature) of the easy-sKEd and
hard- sKHd axis anisotropy constants they estimate that a
crossover to three-dimensional Ising model exponents should
occur neart,2310−2; furthermore, as the temperature in-
terval over which three-dimensional Heisenberg model expo-
nents are expected to be extracted is very limited, Kimet al.9

argue that a crossover from mean-field to three-dimensional
Ising exponents should occur essentially directly, as indeed
they report. No such crossover effects have been seen in the
present study. Unfortunately no direct means—such as
torque magnetometry—is currently available to us, so that

FIG. 6. A scaling plot ofM / tb vs H / tg+b with the exponent and
TC values from the previous three figures. The different symbols
represent different temperatures. While the linear plot—the main
body of this figure—makes evident differences in higher fields, the
double-logarithmic plot of the inset emphasizes differences in lower
fields and also demonstrates the collapse of magnetization iso-
therms in the critical regime onto the two branches of the scaling
function. The solid lines drawn in this inset represent the asymptotic
forms of the scaling function discussed in the text.

TABLE I. Parameters deduced by fitting Eqs.(2)–(4) to the
appropriate data. The considerably larger uncertainty inD reflects
(Ref. 29) the marked dependence of this parameter on the final
choice forTC and the ensuing value ford. The uncertainty listed
below was estimated by examining isotherms closest toTC sDT
ø0.5 Kd and assuming a temperature stability of ±0.03 K(i.e.,
DT/T,10−5) in addition to the “best fit” uncertaintiess±0.04d in d
found from the critical isotherm itself. This results in a combined
uncertainty of ±0.06 ind.

MSs0dsemu/gd x0semu/g Oed Dsemu/Oe1/dd

120.8±1.6 s6.8±0.2d310−5 s1.8±0.4d310−4
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comparisons of the type provided by Kimet al.9 cannot be
effected. Notwithstanding this limitation, the dimensions of
the sample used in the current experiment should result in
any shape induced anisotropy rendering the cylindrical axis
as the easy axis. Furthermore, thelackof any observed cross-
over behavior would require the productKHj3 to be at least
an order of magnitude smaller than in the corresponding Sr-
substituted system(and this, indirectly, would require the
productKEj3 to also be smaller, but not necessarily by such
a significant amount).

Kim et al.9 also discussed the possible origin of the mean-
field-like behavior reported by Mohanet al.8 for polycrystal-
line La0.8Sr0.2MnO3—likely the result of the correlation
lengthj=j0utu−n exceeding the grain size. Previous studies of
critical behavior in the La1−xBaxMnO3 system have also re-
ported varying results. A polycrystalline specimen withx
=0.33 yieldedg=1.29 andb=0.464 over an undefined(re-
duced) temperature range,26 values intermediate between
mean-field and three-dimensional Heisenberg model predic-
tions. By contrast, measurements on an epitaxial film27 with
x=0.3 yielded mean-field exponentssg=1.04±0.04,b
=0.54±0.02,d=3.08±0.04d over a comparable reduced tem-
perature range to that covered in the present investigation.
These latter exponent values might possibly arise as a result
of a change from Heisenberg to Ising behavior induced by a
tetragonal distortion in the film, accompanied by enhanced
dipole-dipole interactions28 (emanating from large spin mo-
ments). It is also possible that the correlation length ex-
ceeded the film thickness of 150 nm close toTC causing
complications due to reduced dimensionality; a detailed
check, however, on this possibility has yet to be made.

Additional evidence supporting the assignment of the uni-
versality class of a bulk single crystal(the most appropriate
to establish the true critical behavior) to that of the three-
dimensional near-neighbor Heisenberg model comes from a
consideration of the critical amplitudes. The critical indices
(g ,b, andd) discussed above, while differing between uni-
versality classes, donot exhibit a dependence on spin values
within these classes. By contrast, critical amplitudes display
both a model and a spin dependence. In mean-field theory,
for example, it is well established that:

MSs0d
M0

= H 10sS+ 1d2

3s2S2 + 2S+ 1dJ1/2

,

M0 being the zero-temperature saturation magnetization

meffH0

kBTC
= H 30S2

s2S2 + 2S+ 1dJ1/2

wherex0H0=MSs0d andmeff is the associated fluctuating mo-
ment, while

DMSs0dd

H0
= 1.

Table II lists values for these critical amplitudes for some of
the most widely encountered universality classes and a range
of spin values.29 The corresponding experimental values ob-
tained from the data shown in Table I are also shown in this
table.

While numerical values for the various critical amplitudes
also display a dependence on the lattice structure, we have
chosen to list amplitudes deduced for fcc lattices. The prin-
cipal reason for this choice is the wider range of spin values
for which amplitudes have been estimated on this lattice.
La1−xBaxMnO3sx,0.3d is, however, frequently indexed by a
rhombohedral unit cell; the relationship between this and the
primitive (pseudocubic) unit cell has been made clear by a
number of authors.30 More importantly, available data31 in-
dicate that the(pseudo)“cubic” unit cell has dimensionsa
=b=3.9120 Å, some 0.25% larger thanc=3.9001 Å; indeed
it is recognized that among optimally dopedsx=1/3d man-
ganites LaAMnO3 (A=Ca, Sr, Ba), Ba doping produces the
largest meanA site radius31,32 krAl=1.292 Å with lattice pa-
rameters close to those of the ideal cubic structure(as indi-
cated above) and associated Mn-O-Mn bond angle closest to
180°.

A comparison then between the reduced critical ampli-
tudes displayed in Table II for single-crystal
La0.73Ba0.27MnO3 and theoretical estimates shows satisfac-
tory agreement with Heisenberg model predictions for the
ratio MSs0d /M0 in the caseS.1/2, but clear disagreement
with mean-field predictions for bothS=1/2 andS=3.73/2
(the average spin value deduced from the low-temperature
saturation magnetization). The meff value deduced from the
experimental amplitudemeffH0/kBTC using the Heisenberg
model result(admittedly not completely self-consistent as
the model utilizesS=1/2) is meff=3.22mB, a difference of
some 14% from the experimentally determined saturation
moment. Using the “best estimate” forD deduced from the
critical isotherm(along with the associatedd estimate) re-
sults in the ratioDMSs0dd /H0>1.2, significantly higher than
the mean-field prediction, but just marginally less than the
lowest estimate(1.23) for this ratio for theS=`, fcc Heisen-

TABLE II. Deduced critical amplitudes in various models for a range of spin values, and the correspond-
ing experimental estimates.

Reduced
critical amplitude

Mean field
S=1/2,S=1.87

fcc Heisenberg
S=1/2,S=`

fcc Ising
S=1/2,S=3/2 Expt.

MSs0d /M0 1.73, 1.53 1.69, 1.22–1.44 1.49, 1.31 1.40±0.01

meffH0/kBTC 1.73, 2.99 1.58 1.52 s0.49±0.01dmeff

DMSs0dd /H0 1.0 1.55, 1.23–2.07 1.88 1.2−0.04
+0.26
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berg model. Moreover, as indicated in the caption to Table I,
asD has significant uncertainty associated with it, the upper
limit on the ratio in question(1.46) falls well within the
range of Heisenberg model predictions forS.1/2.

IV. SUMMARY AND CONCLUSIONS

The analysis of detailed measurements of the field and
temperature dependent magnetization of a single crystal of
La0.73Ba0.27MnO3 reveals the occurrence of a continuous
magnetic phase transition atTC=245.0±0.5 K. The critical
exponents characterizing this transition—estimated self-
consistently from modified Arrott plots—are g

=1.39s2d±0.005,b=0.364±0.003, andd=4.83±0.04, very
close to those predicted for the three-dimensional near-
neighbor Heisenberg model. The critical amplitudes are also
in overall agreement with the same model. These results con-
firm predictions for the universality class of the double-
exchange model25 when anisotropy effects are not important.
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