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The quantum dynamics of the mesoscopic molecular magnet under the influence of external magnetic fields
is studied. We show that when the frequency and the reduced amplitude of the longitudinal magnetic field are
related in a specific manner, the magnetization tunneling will be dynamically suppressed during time evolution.
The effects of external noise and anisotropy on this dynamic spin localization are studied. In particular, we
show that the anisotropy interaction may enhance the spin localization phenomenon.
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Study of the quantum properties of the magnetic particles,
especially molecular magnets such as Fe8, Mn12, and V15,
has been an active research focus for the past decade.1 These
molecular magnetic clusters possess several advantages that
make them ideal candidates to study quantum phenomena at
the mesoscopic level. Quantum tunneling,2–7 quantum
interference,8,9 and quantum coherence10–12 had been ob-
served in these nanoscale molecular magnet systems. Quan-
tum resonance tunneling is characterized by the observation
of discrete steps in the magnetic hysteresis loops at low tem-
peratures, whereas quantum interference is featured by the
tunneling splitting that oscillates as a function of the static
external magnetic field. Study of these mesoscopic quantum
phenomena is not only for academic interest but also for the
future applications, e.g., in quantum computation.13,14

In this paper we investigate quantum tunneling dynamics
of the molecular magnet in the presence of external magnetic
fields with longitudinal and transverse field strengthsHzstd
and Hx, respectively. Here the longitudinal magnetic field
lifts the energy degeneracy of the spin states through Zeeman
effect, while the transverse field appears as a coupling be-
tween different spin components. We assume the longitudinal
field to be time-dependent and that the transverse field is
static. Using perturbation theory, a general formula for the
oscillation period to describe the passing across the initial
spin state is obtained. Another aspect we are interested is the
effects of the external noise and anisotropy on the quantum
coherent behavior of the molecular magnet.

The molecular structure of Mn12 contains four Mn4+ ions
in a central tetrahedron surrounded by eight Mn3+ ions. The
Mn3+ and Mn4+ ions are antiferromagnetically coupled, so
that these molecules possess a high-spin ground state ofS
=10.15 The coupling between the eight Fe2+ ions in Fe8 re-
sults, like in Mn12, in a net total spinS=10. Both compounds
can be well described by a single-spin Hamiltonian,

Hstd = − bzstdŜz − bxŜx − DŜz
2, s1d

where bzstd=mBgHzstd, bx=mBgHx, g.2 and mB is Bohr

magneton;Ŝisi =x,y,zd are the components of spin spin op-
erators;D is the anisotropy constant defining an Ising-type

anisotropy. In the absence of a magnetic field, the anisotropy
stabilizes the degenerate spin states ofm= ±10.16 These
states correspond to opposite directions of the magnetization
in the classical sense. Given the initial state conditioncs0d
=om=−S

S cms0duS,ml, the subsequent evolution of the state is
determined by the time-dependent Schrödinger equations"
=1d

i
d

dt
cstd = Hstdcstd. s2d

A quantity tailored to the dynamics of the system is the lon-
gitudinal magnetization given by

Mzstd = kcstduŜzucstdl. s3d

Throughout this paper the initial state is assumed to be one
of the ground statesuS,Sl in the absence of magnetic fields.

Rabi oscillations and dynamic spin localization with no
anisotropy. In this section, we analyze time evolution of the
magnetization in the absence of anisotropysD=0d. The ef-
fect of anisotropy will be discussed afterwards. Assuming

that cstd=eie0
t dt bzstdŜzwstd, we obtain

i
d

dt
wstd = HIstdwstd, s4d

where HIstd=−bx exp(−ie0
t dt bzstdŜz)Ŝx exp(ie0

t dt bzstdŜz).
Making use of the identity

expsilŜzdŜx exps− ilŜzd = Ŝx cosl − Ŝy sinl,

the formal solution of Eq.(4) is obtained,

wstd = T̂eie0
t dtfXstdŜx+YstdŜygws0d, s5d

whereXstd=bx cosfe0
t dt bzstdg, Ystd=bx sinfe0

t dt bzstdg, and

T̂ denotes time ordering. Considering the situation in which
the transverse magnetic fieldbx is weak, we may approxi-
mate Eq.(5) by the following solution:
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wstd = eie0
t dtfXstdŜx+YstdŜygws0d. s6d

This solution is valid to the first order inbx and preserves
unitarity. After a straightforward calculation, we obtain the
time evolution of the population of the spin-m state as

Pmstd = ucmstdu2 = U o
n=−S

S

dm,n
S sp/2ddS,n

S sp/2de−iae0
t dt bzstdeinlU2

,

s7d

where l=Î(e0
t dtXstd)2+(e0

t dtYstd)2, and the matrix ele-
ment is defined as

dm.n
S sud = kS,mue−iuŜyuS,nl, sm,n = S, . . . ,−Sd.

From Eq.(7), we obtain the population of the initial spin-S
state at timet as follows:

PSstd = ucSstdu2 = cos2UE
0

t

dt1 bxe
ie0

t1dt2 bzst2dU . s8d

Thus to the first-order approximation inbx we obtain the
analytical expression of the evolution probability for the mo-
lecular magnet remaining in the initial spin state. Expression
(8) is valid for arbitrary time-dependent external magnetic

fields. Obviously,eie0
t dt bzstd can be expanded as a discrete

Fourier series, and the time integral is either bounded or
increases linearly in time(on top of an oscillatory piece). In
the former case,PS remains close to unity at all times be-
cause of the smallness ofbx. This high population of the
initial spin state is just the spin localization. In the latter case,
PS oscillates between 0 and 1, implying population transfer
between initial stateuS,Sl and other spin states. Hence we
have the spin delocalization, i.e., Rabi oscillation. The oscil-
lation periodT is given by

T =
p

limt→`U1

t
E

0

t

dt1 bxe
iE

0

t1

dt2 bzst2dU s9d

Below we give two examples of special time-dependent ex-
ternal magnetic fields.

(a) Sinusoidal fieldbzstd=b cossvtd. According to Eq.(9),
the oscillation period is

T =
p

bxJ0sb/vd
, s10d

whereJ0 is the zeroth-order Bessel function of the first kind.
From this result, it can be seen that whenJ0sb/vdÞ0, there
exists a finite oscillation period, indicating that the popula-
tion weight can transit from an initial spin-ground state to
other spin states within the driving process. Whenb=0, the
longitudinal field-free oscillation has periodT0=p /bx. The
fact uJ0sb/vduø1 implies thatTùT0. This shows that the
invasion of the longitudinal magnetic field will suppress the
coherent spin tunneling. The extreme case occurs whenb/v
is a root ofJ0. In this case, we haveT→`, which implies
that the spin tunneling is totally suppressed. Hence the sys-
tem will mostly stay in the initial spin-minimum state during

the whole driving process. This is just the phenomenon of
spin localization.

(b) A combination of static and sinusoidal magnetic fields
bzstd=b0+b cossvtd. In this case, the oscillation period is

T =
p

UbxlimN→`

sinsb0pN/vd
N sinsb0p/vd

J̃b0/vsb/vdU , s11d

whereJ̄ is the Anger function17 defined by

J̄asbd =
1

p
E

0

p

dxcossax− b sinxd.

Whenb0/vÞk (k is an integer), T tends to be infinite. When
b0/v=k, the oscillation period becomes

T =
p

bxJksb/vd
, s12d

where Jk are k-th-order Bessel functions. Whenb/v be-
comes a root ofJk, again, the oscillation period approaches
infinity, and we have the spin localization.

The phenomenon of dynamic spin localization closely re-
lated to the property of the dressed energy spectrum of the
system. In the presence of an oscillating magnetic field, the
time periodicity of the Hamiltonian(1) enables us to describe
quantum evolution of the system in terms of Floquet formal-
ism. Supposebzstd=b0+b cossvtd; we plot the quasienergy
spectrum versus rescaled oscillating amplitudeb/v for two
values ofb0. The results are shown in Fig. 1(a) sb0=0d and
Fig. 1(b) sb0=vd, respectively. In Fig. 1(a) one can see that
the quasienergies collaspes to a point atb/v=2.4, which is a
root of the zeroth order Bessel functionJ0. This energy col-
lapse completely suppresses quantum coherent tunneling,
consistent with the prediction from Eq.(10). If the longitu-
dinal magnetic field consists of both static and oscillating
components, then when static-component strengthb0 is re-
lated to the frequencyv of the oscillating component via the
relationb0=kv (k is an integer), the quasienergies will col-
lapses into a point at the values of oscillating-component
amplitudeb satisfying Jksb/vd=0, which is shown in Fig.
1(b).

FIG. 1. Anisotropy-free quasienergies as a function ofb/v for
the value of(a) b0=0 and(b) b0=v.
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We emphasize that this spin localization effect is purely a
consequence of the collapse of quasienergies, which fully
suppresses interference among Floquet states. So it does not
depend on whether the initially populated level feels the
“ends” of the spin ladder or not.18

Effect of the external noise. In practice, since the external
magnetic field may have a fluctuation component, the effect
of external noise has to be considered. Another motivation
for the introduction of an external noise is to provide the
fluctuations required to destroy the coherence of the quantum
tunneling process and, in suitable cases, leads to a rate pro-
cess for the decay of the population. Leuenbergeret al.19

have generalized the Landau-Zener theory20 of coherent tun-
neling transitions to an incoherent region by taking into ac-
count the thermal relaxation effect. Remarkably, this inco-
hent transition has been detected by Wernsdorferet al.21 in
Fe8 molecular nanomagnets. In this section, we study the
dynamics of the magnetization when the external magnetic
field has a fluctuating component. Compared to the previous
thermal relaxation studies,19,21 the introduction of external
fluctuation permits the investigation of the role of the
strength and size of the noise on the time evolution of the
molecular magnets. As a versatile choice for the noise, an
Ornstein-Uhlenbeck(OU) process22 is used: the longitudinal
magnetic fieldbzstd is assumed to contain two components, a
stochastic partfstd and a systematic partb0+b cossvtd, i.e.,

bzstd = b0 + b cossvtd + fstd s13d

The noise fstd is assumed to be characterized by an OU
process whereby it has a zero average value and correlation
function,

kfstdfssdl = D2 exps− ut − su/tcd s14d

Here the quantitiesD andtc are the strength and decay con-
stant of the noise, respectively. When the noise is external to
the system, and therefore not necessarily thermal in charac-
ter, D and tc can be varied in a controlled manner, and are
not restricted by the physical properties of the system. The
population distribution in thes2S+1d spin components with
the external noise are solved numerically by generating
trajectories23 for the different realization of the noise.

Figure 2 shows the time dependence of the magnetization
Mzstd in the longitudinal magnetic field with the systematic
part bz=b cossvtd. The field parameters are chosen asb

=0.2v and bx=0.1v, corresponding to the Rabi oscillation
with periodT=T0/J0s0.2d, as shown in Fig. 2(a). In the case
of a weak noiseD /bx=0.2 [the solid curve in Fig. 2(b)], the
magnetization is still oscillatory in our scope of time, but its
oscillation amplitude decreases with time. When the strength
of the noise increases toD /bx=1.0 (dotted curve), the Rabi
oscillation breaks down completely and the system decays
fast towards equilibrium. This suggests that the coherent
Rabi oscillation for a molecular magnet is sensitive to the
external noise and is destroyed even in a weak coupling re-
gime. Figure 3 plots the time evolution ofMzstd for the value
of b/v=2.4, corresponding to the dynamic localization con-
dition in the absence of noise, as shown in Fig. 3(a). In Fig.
3(b), we can see that in the case of intermediatesDtc,1d
noise modulation(solid curve), the magnetization still re-
mains its initial value for an extremely long time. This in-
sensitivity to the presence of weak noise reflects the strength
of the systematic field. When the strength of noise increases
to a strong coupling regime, a more rapid and less oscillatory
decay is observed in the population evolution, as shown in
Fig. 3(b) (dotted curve).

Anisotropy effect. In the above discussions we have not
taken the spin anisotropy effect into account. In this case, the
dynamics of the magnet system is nothing but the equivalent
of a driving charge moving in a finite lattice with a tight-
binding description. Thus the dynamic spin localization is
simply reminiscent of the charge localization reported by
Dunlap and Kenkre.24 However, this similarity is broken by
the presence of the anisotropy term in Eq.(1), which shuffles
the equally-spaced spin ladders. How this nonlinear spin in-
teraction influences the driving dynamics is what we concern
in the following.

Figure 4 shows the quasienergies in the presence of a
weak anisotropy. The other system parameters are the same
as used in Fig. 1(a). Compared to Fig. 1(a), two prominent

FIG. 2. Time evolution of the magnetization with and without
external noise in the sinusoidal magnetic field,b=0.2v, bx=0.1v.
(a) The case without the noise;(b) the case with the noiseD
=0.02v (solid line), D=0.04v (dashed line), and D=0.1v (dotted
line). bxtc is fixed to be 1.0 for the case with the noise.

FIG. 3. The time evolution of the magnetization with and with-
out external noise in the sinusoidal magnetic field,b=2.4v, bx

=0.1v. (a) The case without the noise;(b) the case with the noise
D=0.1v (solid line), D=0.5v (dashed line), andD=v (dotted line).

FIG. 4. Quasienergy spectrum in the presence of weak aniso-
tropy D=0.004v. Other parameters are the same as in Fig. 1(a).
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features can be seen from Fig. 4:(i) The anisotropy removes
the exact level crossing amongs2S+1d spin states and thus
induces avoided crossings. This breakdown of the exact
crossing is due to the fact that the quadratic anisotropy dis-
arranges the spin levels which are equally spaced without
anisotropy;(ii ) with increasing the value of the amplitude of
the driving field, the quasienergies evolve into many dou-
blets and every doublet has an exact degeneracy in the field
parameter space. To label these doublets, we note that in the
absence of longitudinal magnetic field, the spin statesuS,ml
anduS,−ml are nearly degenerate, with mixed by weak trans-
verse magnetic field. Therefore, we can label the doublet
formed by these two states with a notationsm,−md. In the
presence of a time-dependent longitudinal magnetic field, the
corresponding Floquet states developed from the doublet
sm,−md will evolve into an exact crossing with increasing
driving amplitudeb, as shown in Fig. 4. Note that the differ-
ent doublets feel different coupling strength induced by the
transverse magnetic field, so every doublet crossing occurs in
the parameter space with different parameter values. In par-
ticular, the crossing of doubletsS,−Sd is indicated explicitly
in Fig. 4

Due to the fact shown in Fig. 4 that the quasienergies are
scattered by the anisotropy, the spin localization phenom-
enon cannot persist at parameter points that correspond to
otherwise level crossings. As a result, the magnetization will
oscillate during its time evolution. However, we find that if
the system parameters are chosen at the exact degeneracy of
the doubletsm,−md, then the dynamic spin localization re-
vives again. As an example, we show in Fig. 5 time evolu-
tion of Mzstd for the value ofb/v=2.52, andD /v=0.004,
corresponding to the degeneracy of the doubletsS,−Sd in
Fig. 4. The initial state is chosen to beuS,Sl. As a compari-
son, we also show the case without anisotropy[dashed line
in Fig. 5]. Interestingly and surprisingly, compared to the
case without anisotropy, the localization effect is enhanced
by the presence of anisotropy. To make the mechanism of
this enhancement of the localization more clear, by projec-
tion to the spin-state space, we find the two Floquet states

which compose the doubletsS,−Sd are dominated by the spin
statesuS,Sl and uS,−Sl, respectively. Thus in contrast to the
anisotropy-free case, the initial spin stateuS,Sl can be ap-
proximated by one Floquet state of the doubletsS,−Sd, sub-
sequent time evolution. This is different from the case for a
double-well trap,25 wherein an initial localized state always
can be described by a superposition of two delocalized and
degenerate Floquet states. In the present case, both of two
Floquet states in doubletsS,−Sd is spin localized at the level
crossing. Therefore, we arrive at a conclusion that the aniso-
tropy may enhance the localization, as shown in Fig. 5.

In summary, by application of the external magnetic fields
which may contain a random component, we have shown
magnetization dynamics of the molecular magnet. A general
formula is obtained for the oscillation period to describe the
quantum transition from the initial spin stateuS,Sl to other
spin states. In particular, when the frequency and reduced
amplitude of the longitudinal magnetic field are related in a
specific manner, the magnetization tunneling is dynamically
suppressed during time evolution. In addition, the effects of
external noise and nonlinear anisotropy are studied. It has
been shown that while the Rabi oscillation is sensitive to the
external noise, the dynamic spin localization may remain for
experimentally relevant times in the presence of a weak
noise field. We have also found that the dynamic spin local-
ization may be enhanced by the spin anisotropy interaction.
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