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Upward renormalization of the antiferromagnetic mode in the paramagnetic phase of CsMnByg
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We study the renormalization of the excitation energy in the paramagnetic phase of a hexagonal Heisenberg
model with strong exchange interaction along thaxis and weak exchange interaction in thelane by a
Green function approach. We compare our results with experiments of inelastic neutron scattering on
CsMnBp;, a quasi-one-dimensional antiferromagnet with5/2. The upwardenormalization of the antifer-
romagnetic mode observed in a neutron scattering experiment in the paramagnetic phase is obtained by our
approach which is based on the absence of long-range order. On the contrary, downward renormalization of the
long-wavelength modes is predicted in agreement with experimental data on GsMnBr
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It is well known that an increase of temperature cause8=Ni,S=3/2 for B=V, and S=5/2 for B=Mn—makes
downward renormalization of the elementary excitation enthese compounds good candidates to check the Haldane
ergy of a magnetic system in the ordered phase. It is intereonjecturé according to which the integer-spin antiferro-
esting to check whether the same occurs in the disorderegiagnetic Heisenberg chains have a gapped excitation spec-
phase but the quick increase of the energy width makes theum, while the half-integer-spin chains have ungapped spec-
experiment usually very hard. _ _tra. The upward renormalization of short-wavelength modes

An attempt was made a long time ago to perform inelastigpserved in CsNiGI(Ref. 5 for T>Ty=4.84 K was traced
neutron scattering on a single crystal of Praseodymium, gack to the existence of the Haldane gap because of the
rare-earth metal without long-range order above0.4 K jieq6r-spin value on the Ni ion. However, an analogous up-

(Ref. 1). The experiment showed upward renormalization Ofward renormalization observed in CsMnBRef. 6 for T

the magnetic excitations at increasing temperature above 1 _g 3'k cannot be explained in the same way because of
T=7 K. A self-consistent random phase approximation

(RPA) that accounted for the strong crystal field anisotropyg;eQxalflginr:e?ﬁ;Vzl:ueeng:ighebsmt?]gnrt:r?o';/lr:]!;i);é (?nsy ?r:t-svma\%
and the long-range nature of the spin-spin interactions det—h P . A y lized spi P th
scribed well the observed upward renormalization of the eory was In vain since any renormalized spin-wave theory

magnetic excitation enerdyThe dominant character of the aPPlied to the Heisenberg Hamiltonian even taking dipolar

crystal field potential in rare-earth metals implies the use of 40Ng-fange interactions into accofinprovides downward

standard basis operator representdtionthe use of spin- renormalization for any wave vector. . _

tensor-operator Green functiohs. Here we present an extension to a three-dimensional
Only recently was high-resolution inelastic neutron scat-Heisenberg model with a gene&wmf an approach developed

tering made to investigate the thermal renormalization of thé long time agd for a Heisenberg chain wit$=1/2. Our

magnetic excitations in the paramagnetic phase of comapproach is very sound fdr> Ty and cannot be pushed into

pounds of theABX; family whereA is an alkali element3 a  the ordered phase because it is based on the absence of LRO.

transition-metal ion, anX a halogen. Indeed the experimen- The results we obtain agree very well with the upward renor-

tal data on CsNiGl (Ref. 5 and CsMnBj (Ref. 6 have  malization of the mode&, £, 1) at increasing temperature in

shown that the energy width of the excitations remains smalCsMnBr,. Indeed a good overall agreement for all wave vec-

compared to the excitation energy so that measurements c&ors tested in experiment is achieved. In particular, a down-

be pushed well beyond the critical temperature. A commonvard renormalization at increasing temperature is found for

feature of the ABX; compounds is their quasi-one- wave vectorg0,0¢) with {=2/3 in contrast to an upward

dimensional character due to the interchain coupling whiclienormalization found fog=2/3. We stress that this sce-

is more than two orders of magnitude weaker than the intranario differs from that observed in Praseodymium where up-

chain coupling. Moreover, the single-ion easy-axis or easyward renormalization was found for all investigated wave

plane anisotropy is of the same order of magnitude as theectors.

interchain coupling, so that thABX; compounds may be The Hamiltonian for the Heisenberg model is

regarded as a good realization of quasi-one-dimensional

Heisenberg antiferromagnets. The interchain exchange and

single-ion anisotropy play a key role in determining the kind H=- E J5Sj * Sjess (1)

of long-range ordeLRO) characterizing the phase below 12

the critical temperaturé, which is of few kelvin degrees for

the most part of thé\BX; compounds. whereJ; is the exchange interaction between spéhapart.
Finally, the variety of the spin exhibited by the Periodic boundary conditions are assumed. The Green func-

magnetic ions of theABX; family—for instance,S=1 for  tion equation of motion reads
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where the angular momentum operat§s=S'+iS’ satisfy . 1
the commutation rules[S,S]=256; and [S,S] 'Gk(“’_'ﬂ)]ewTT_l* (10)
= :Stﬁi,j. The frequency-dependent Green function
{(S"; ) is the time-Fourier transform of the advanced or
retarded double-time Green function depending whether th
imaginary part of the complex frequency is positive or
negative’ In the paramagnetic phase LRO is absent—that is
(§)=0—and Eq.(2) becomes

Egs.(9) and (10) give the high-temperature behavior of the
ﬁwagnetic excitations of a Heisenberg model on any lattice.
For CsMnBg the spin isS=5/2 and thenearest-neighbor
(NN) intrachain exchange interaction is);2-1.78 meV.
The NN interchain interaction is assumed to be

. J, =~0.002), and th k ani i lecfeDefini
CEEEVEREORIICEFEERICAE ERIC B it

The equations of motion for the three-operator Green func—eiz (1 - cosck,)[g(0) + g(2c) - 2g(c)cosck,]
tions appearing on the right-hand side of E8) lead to a R
four-operator Green function equation of motion. A high-  +6(J,/3){(1 - cosck,)[g(va?+c?) = g(c) yi] + (1 = %)

temperature decouplingiTD) approximation is used: X[g(\e"m) ~ g(a)coscky]} + 33, 19)%(1 - y)

<<SZ§ZS+§55>> =g(r - rj|)<<5+;55>> (4) x[g(0) +g(2a) + 2g(a) + zg(\;’ga) - 60(a) i, (12)

and
with a=7.61 A andc=3.26 A which are the distance be-

(S'SS:) =29(r - rDUS N +29(r - 1PDUS ). tween NN spins in and out of plane, respectively, and
(5)
where g(|ri—rj |)=(SZ§Z)=%(S§*):%<S+§'> is the isotropic V= %[cosakx+ 2 co{%ak)()co<\—23aky)} . (12

correlation function between spins located at sié@dj, and

g(0)=S(S+1)/3. With these approximations the Green func-
tion equation of motion becomes The self-consistent equations for the correlation functions are

9(0)(1 - cosck,) +3g(a) (1 - %)

€k

S 5)= S 4018) (30 8us0

1
g(c) = - =2 cosck,
N

+82 2 35100+ F)US SN .
s 5 xcoth;k, (13)

—{(She M — 9N (S, 5N

~(Sss . 6 )
(oo S © 20) = 12 . Q(C)(l—cosckz)+3g(a)JJ—H(1—yk)
Defining the momentum-Fourier transform of the Green 9(20) =~ N4 cos Zk, €
function,
XCOth%(, (14)

(S = %% Gil(w)e*n, )

. . . . 1
the solution of the equation of motion f@,(w) is 9(c)(1 - cosck,) + 3g(a)J_H(1 — %) thﬂ
co

1
9(@) =~ 12 %

12 ,;43,9(8)(1-€*9) €
Gy(w) = - o , (8) (15)
where _
. A “5 __ 12 1 “E +2 3 \’3
0}=83 3 305 (1 - g( o+ &) - gllai)e? . 903 =7 2 gl cosv3akyr 2 cosyak cosyaly
o g
J
9 g(c)(1 - cosck,) +3g(a) 5 (1 - %)
© X 2 X cothi,
Using the well-known relationship between the correlation €k 4
function and the corresponding Green function, (16)
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FIG. 1. Dispersion relation for CsMnBalong the[1,1,0 direc-
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FIG. 2. Dispersion relation for CsMnBrlong[0,0,1] direction

tion for temperature3 =9, 17.5, and 40 K. Data points are taken for temperature§ =20, 30, and 40 K. Data points are taken from

from the neutron scattering experiment of RefT&9 K (circles),
17.5 K (diamondg, and 40 K(squares

1 1 —
g(2a) = - NE é(cos 2k, + 2 cosak, cos\3ak))
k

J
(c)(1 - cosck,) + 3g(a)5-(1 - v
><g D305 i coth X

€k

(17)

—— 1
g(va?+c?) =~ NE ¥ cosck,
k

g(c)(1 - cosck) + 3g(@F(L-%) ¢
X coth—

€k

(18)
where 0=kgT/2|J,/.

the neutron scattering experiment of RefT&:20 K (circles, 30 K
(diamonds, and 40 K(squares

whereas those corresponding{te 2/3 renormalize upward.
This result agrees with the renormalization obsetVever

the whole Brillouin zone aff=9 and 17.5 K. Collins and
Gaulin'! reported inelastic neutron scattering measurements
in the paramagnetic phase of CsMgRretweenT=15 and

45 K along thg0,0,]] direction. They did not find renormal-
ization for the mode aQ=(0,0,1.3 corresponding to the
mode(0,0,0.7 of Fig. 2 in agreement with our expectation
even though the experiment gives an energy of about 7 meV
to be compared with 6 meV of our calculation. On the con-
trary upward renormalization was found for the mode at
Q=(0,0,1.2 corresponding to the mod®,0,0.9 of Fig. 2.

In this case the agreement is complete since the energy ob-
tained from the experiment is about 3 meV. Weak upward
renormalization is also reported for the excitation at
Q=(0,0,1.15 (with an energy of about 4.2 mg\and at
Q=(0,0,1.2 (with an energy of about 5.2 mg\¢orrespond-

It has to be noted that the spectrugnhas a minimum at  ing to the mode$0,0,0.85 and(0,0,0.8 of Fig. 2. The au-
k=(4w/3a,0,7/c) corresponding tq%,é, 1) in reciprocal  thors were not able to explain the high value of the gap
lattice units [r.lL.u]. This minimum goes to zero at observed atQ=(0,0,1) for T=15 K (1.7+0.2 meV using
6m=0.066 26. This means that the present theory cannot bge spin-wave spectrum even accounting for dipolar interac-
pushed belowr,,=1.4 K. On the other hand, the HTD ap- tions. This is not surprising in view of our calculation where
proach is expected to hold f@r>Ty=8.3 K. At T=9, 17.5, an upward renormalization is obtained for the isotropic
and 40 K we findw(0,0,1)=1.261, 1.663, and 2.710 meV Heisenberg model neglecting any anisotropy source, in par-
and w(%,§,1)20.757, 1.331, and 2.541 meV. ticular the dipolar interaction, which is, however, responsible

In Fig. 1 we show the spectrum given by E4l) com- for the gap in the ordered phase. A similar upward renormal-
pared with the experiment on CsMnB(Ref. 6. The data ization of the spin-wave energy at wave vectors around
points for @ in Fig. 1 are obtained from Fig. 3 of Ref. 6 Q=(0,0,1) was also observed in TMM&, a quasi-one-

where Q=\w?+I'? is shown. The energy width is =0.6,
0.8, and 1.43 meV fof=9, 17.5, and 40 K, respectively.
In Fig. 2 we show the spectrum given by EG1) along

dimensional Heisenberg antiferromagnet wik5/2. For
both compounds the upward renormalization of t8¢D,1)
mode cannot be traced back to the Haldane scenario because

the[0,0,] direction forT=20, 30, and 40 K. The data points of their half-integer spin.

are obtained from Fig. 2 of Ref. 6 in the same way as in Fig. In Fig. 3 the energy of modes @,0,1) and (%% 1is

1.1° The theoretical expectation for a very high temperatureshown as a function of temperature. For comparison we have
(T=207 K) is also quoted. Note that the excitation energiesreported the experimental data taken from Ref. 6. As one can
corresponding to modes with< 2/3 renormalize downward see the agreement is very good.
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L L I ) E L LR function approach, where the absence of LRO has been taken
into account, is successful in giving the thermal renormaliza-
tion of a single-particle-like excitation energy in agreement
with experimental data.
Moreover, we observe that inelastic neutron scattering
measurements on CsVCRABX; compound withS=3/2, in
the paramagnetic phase 840 K= 3Ty along the[0,0,]
direction'® confirm our expectation of a downward renormal-
ization at intermediate wave vectors with respect to the
excitation spectrum in the ordered phaéét should be in-
teresting to investigate the excitations close to the antiferro-
magnetic modg0,0,1) where we expect an upward renor-
malization on the basis of our approach.
T e Finally, we stress that the upward renormalization of the
0 20 40 60 80 100 antiferromagnetic mode is a common feature of CsMnBr
T(K) TMMC (S=5/2), and CsNiC{(S=1). Our approach gives
- upward renormalization of the antiferromagnetic mode and
FIG. 3. Frequency of the mode®,0,) and (3,3, 1) versus  downward renormalization of the long-wavelength modes in-
temperature. Data points for CsMnB(circles and squargsare  gependent of the spin value. We expect that spin-dependent
taken from Ref. 6. quantum effects which are dramatic in genuine 1D Heisen-
berg models at zero temperature could be less important in
In the very-high-temperature limit we find that the corre- actual compounds in the paramagnetic phase where the 3D
lation functions are given byg(c)=-[S(S+1)/3]%/6, character survives well beyond the critical temperature. We
g(2c) = [S(S+1)/33/ 6%, g(a) = (3,/3)g(c), g(Va?+c?) recall that a quantum field theory in the continuum limit
=2(J3,13)9(2c), g(\s’§a)2(2/3)(JL/J”)29(20), and g(2a) (k—0) applied to a 1D Heisenberg antiferromagnet with
=(J,/J)?g(2c). This high-temperature behavior agrees=1 at zero temperatutégives a neutron cross section char-
within 10%—20% with the numerical solution of the self- acterized by a rounded peak at energy,=\6A?+v%?
consistent equationd.3)—(18) for §=10 (T=200 K) where  somewhat higher than a threshalg,=4A%+v%k? which is
there are no experimental data. In the limit of infinite tem-about_twice the gap at the antiferromagnetic wave vector

w(£,€,8)(meV)

(1/3,1/3,1)

perature the spectrum reduces to w,=\A?+v?%(k-m)? (Haldane gap This threshold excita-
o | 5 tion corresponds to the lower bound of a two-magnon band.
o = 4 |[S(S+ D/3]*V1 - cosck, + 3(3 1 /3)“(L = ). The existence of an excitation of energy, was confirmed

(19 by numerical simulations on a finite chain of 32 spins with

) ] . ~ S=1(Ref. 19. Indeed an excitation of ordet\2was found at
In one dimension we recover the first term of the exact highy- 7116, the minimum wave vector for a chain of 32 spins.
temperature expansion of the correlation function of theng indication of a two-magnon band was pointed out in such
Heisenberg quantum modé!. _a calculation. As for experiments on CsNiGRef. 5, no
~ In summary we have shown that the upward renormalizagnergy band seems to have been observed. For these reasons
tion at increasing temperature observed in the paramagnetjfe|astic neutron scattering on CsNiGbr small wave vec-
phase of CsMnBycan be explained by a HTD Green func- o5 in the paramagnetic phase should be crucial to check the
tion approach. The presence of well-defined elementary eXmportance of the quantum effects of a genuine 1D system
citations in the paramagnetic phase of the CsMniBbvi-  yith integer spin. Notice that in CsNigthe spin-wave fre-
ously relied to the strong intrachain exchange interaction tha(ﬁuencies forT> Ty show a clear dependence on the wave
sqpports short-range order at temperatures well beyon.d thesctor component perpendicular to the chairaxis) as one
critical temperature. However, the existence of well-defined-5 see from Fig. 3 of Ref. 20. This is also confirmed by a
excitations for wave vectors perpendicular to the Cha'rbomparison of the upward renormalization of the mode at

supported by the weak interchain coupling suggests that o 1 1) shown in Fig. 2 of Ref. 21 and in Fig. 8 of Ref. 22

. . - . . 3 L] 3!
be cautious in describing theBX; compounds in the para- comnared to the upward renormalization of the mode at

magnetic phasely=T=3Ty as genuine one-dimensional g1 (.81, 1as shown in Fig. 3 of Ref. 5. We are confident
(1D) spin models. In particular the magnetic susceptibility ia¢ the HTD Green function approach could be reliable also
of CsMnBi; measured at a field of 3.5 kQRef. 14 shows ¢4 integer-spin compounds because of the 3D character of
a temperature dependence in agreement with the exaffe ABx, compounds well beyond their critical temperature,

solution of a genuine 1D classicdlS—o) Heisenberg \ nich is in the region where the experiments were per-
antiferromagné? only for temperatures higher thar50 K. t5rmed.

In other words it seems well established that 3D character is
maintained for temperatures well beyond the critical tem- E.R. would like to thank P. Boni, C. Reich, and B. Roessli
perature. For these reasons it is not surprising that a Gredor useful correspondence on unpublished experimental data.
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