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We study the renormalization of the excitation energy in the paramagnetic phase of a hexagonal Heisenberg
model with strong exchange interaction along thec axis and weak exchange interaction in thec plane by a
Green function approach. We compare our results with experiments of inelastic neutron scattering on
CsMnBr3, a quasi-one-dimensional antiferromagnet withS=5/2. The upwardrenormalization of the antifer-
romagnetic mode observed in a neutron scattering experiment in the paramagnetic phase is obtained by our
approach which is based on the absence of long-range order. On the contrary, downward renormalization of the
long-wavelength modes is predicted in agreement with experimental data on CsMnBr3.

DOI: 10.1103/PhysRevB.70.214407 PACS number(s): 75.30.Ds, 75.10.Jm, 75.50.Ee

It is well known that an increase of temperature causes
downward renormalization of the elementary excitation en-
ergy of a magnetic system in the ordered phase. It is inter-
esting to check whether the same occurs in the disordered
phase but the quick increase of the energy width makes the
experiment usually very hard.

An attempt was made a long time ago to perform inelastic
neutron scattering on a single crystal of Praseodymium, a
rare-earth metal without long-range order aboveT=0.4 K
(Ref. 1). The experiment showed upward renormalization of
the magnetic excitations at increasing temperature above
T=7 K. A self-consistent random phase approximation
(RPA) that accounted for the strong crystal field anisotropy
and the long-range nature of the spin-spin interactions de-
scribed well the observed upward renormalization of the
magnetic excitation energy.2 The dominant character of the
crystal field potential in rare-earth metals implies the use of a
standard basis operator representation3 or the use of spin-
tensor-operator Green functions.4

Only recently was high-resolution inelastic neutron scat-
tering made to investigate the thermal renormalization of the
magnetic excitations in the paramagnetic phase of com-
pounds of theABX3 family whereA is an alkali element,B a
transition-metal ion, andX a halogen. Indeed the experimen-
tal data on CsNiCl3 (Ref. 5) and CsMnBr3 (Ref. 6) have
shown that the energy width of the excitations remains small
compared to the excitation energy so that measurements can
be pushed well beyond the critical temperature. A common
feature of the ABX3 compounds is their quasi-one-
dimensional character due to the interchain coupling which
is more than two orders of magnitude weaker than the intra-
chain coupling. Moreover, the single-ion easy-axis or easy-
plane anisotropy is of the same order of magnitude as the
interchain coupling, so that theABX3 compounds may be
regarded as a good realization of quasi-one-dimensional
Heisenberg antiferromagnets. The interchain exchange and
single-ion anisotropy play a key role in determining the kind
of long-range order(LRO) characterizing the phase below
the critical temperatureTN which is of few kelvin degrees for
the most part of theABX3 compounds.

Finally, the variety of the spin exhibited by the
magnetic ions of theABX3 family—for instance,S=1 for

B=Ni,S=3/2 for B=V, and S=5/2 for B=Mn—makes
these compounds good candidates to check the Haldane
conjecture7 according to which the integer-spin antiferro-
magnetic Heisenberg chains have a gapped excitation spec-
trum, while the half-integer-spin chains have ungapped spec-
tra. The upward renormalization of short-wavelength modes
observed in CsNiCl3 (Ref. 5) for T.TN=4.84 K was traced
back to the existence of the Haldane gap because of the
integer-spin value on the Ni ion. However, an analogous up-
ward renormalization observed in CsMnBr3 (Ref. 6) for T
.TN=8.3 K cannot be explained in the same way because of
the half-integer value of the spin on the Mn ion. Any attempt
to explain this scenario by the renormalized spin-wave
theory was in vain since any renormalized spin-wave theory
applied to the Heisenberg Hamiltonian even taking dipolar
long-range interactions into account6 provides downward
renormalization for any wave vector.

Here we present an extension to a three-dimensional
Heisenberg model with a genericSof an approach developed
a long time ago8 for a Heisenberg chain withS=1/2. Our
approach is very sound forT.TN and cannot be pushed into
the ordered phase because it is based on the absence of LRO.
The results we obtain agree very well with the upward renor-
malization of the modes(j ,j, 1) at increasing temperature in
CsMnBr3. Indeed a good overall agreement for all wave vec-
tors tested in experiment is achieved. In particular, a down-
ward renormalization at increasing temperature is found for
wave vectors(0,0,z) with z&2/3 in contrast to an upward
renormalization found forz*2/3. We stress that this sce-
nario differs from that observed in Praseodymium where up-
ward renormalization was found for all investigated wave
vectors.

The Hamiltonian for the Heisenberg model is

H = − o
j ,d

JdSj ·Sj+d, s1d

whereJd is the exchange interaction between spinsd apart.
Periodic boundary conditions are assumed. The Green func-
tion equation of motion reads
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vkkSi
+;S0

−ll =
1

p
di,0kS0

zl + kkfSi
+,Hg;S0

−ll, s2d

where the angular momentum operatorsSi
±=Si

x± iSi
y satisfy

the commutation rules fSi
+,Sj

−g=2Si
zdi,j and fSi

± ,Sj
zg

= 7Si
±di,j. The frequency-dependent Green function

kkSi
+;S0

−ll is the time-Fourier transform of the advanced or
retarded double-time Green function depending whether the
imaginary part of the complex frequency is positive or
negative.9 In the paramagnetic phase LRO is absent—that is,
kS0

zl=0—and Eq.(2) becomes

vkkSi
+;S0

−ll = − 2o
d

JdskkSi
zSi+d

+ ;S0
−ll − kkSi+d

z Si
+;S0

−lld. s3d

The equations of motion for the three-operator Green func-
tions appearing on the right-hand side of Eq.(3) lead to a
four-operator Green function equation of motion. A high-
temperature decoupling(HTD) approximation is used:

kkSl
zSj

zSi
+;S0

−ll = gsur l − r judkkSi
+;S0

−ll s4d

and

kkSl
+Sj

−Si
+;S0

−ll = 2gsur l − r judkkSi
+;S0

−ll + 2gsur i − r judkkSl
+;S0

−ll,

s5d

where gsur i −r j u d=kSi
zSj

zl= 1
2kSi

−Sj
+l= 1

2kSi
+Sj

−l is the isotropic
correlation function between spins located at sitei and j , and
gs0d=SsS+1d /3. With these approximations the Green func-
tion equation of motion becomes

v2kkSi
+;S0

−ll =
1

p
o
d

4Jdgsududsdi,0 − di+d,0d

+ 8o
d

o
d8

JdJd8fgsud + d8udskkSi
+;S0

−ll

− kkSi+d
+ ;S0

−lld − gsududskkSi+d8
+ ;S0

−ll

− kkSi+d+d8
+ ;S0

−lldg. s6d

Defining the momentum-Fourier transform of the Green
function,

kkSi
+;S0

−ll =
1

N
o
k

Gksvdeik·r i , s7d

the solution of the equation of motion forGksvd is

Gksvd =
1

p

od
4Jdgsududs1 − eik·dd

v2 − vk
2 , s8d

where

vk
2 = 8o

d
o
d8

JdJd8s1 − eik·ddfgsud + d8ud − gsududeik·d8g.

s9d

Using the well-known relationship between the correlation
function and the corresponding Green function,9

gsudud =
1

2N
o
k

eik·d lim
h→0

iE
−`

+`

dvfGksv + ihd

− Gksv − ihdg
1

ev/kBT − 1
, s10d

Eqs. (9) and (10) give the high-temperature behavior of the
magnetic excitations of a Heisenberg model on any lattice.
For CsMnBr3 the spin isS=5/2 and thenearest-neighbor
(NN) intrachain exchange interaction is 2Ji=−1.78 meV.
The NN interchain interaction is assumed to be
J'.0.002Ji and the weak anisotropy is neglected.6 Defining
vk=2uJiuek one has

ek
2 = s1 − cosckzdfgs0d + gs2cd − 2gscdcosckzg

+ 6sJ'/Jidhs1 − cosckzdfgsÎa2 + c2d − gscdgkg + s1 − gkd

3fgsÎa2 + c2d − gsadcosckzgj + 3sJ'/Jid2s1 − gkd

3fgs0d + gs2ad + 2gsad + 2gsÎ3ad − 6gsadgkg, s11d

with a=7.61 Å andc=3.26 Å which are the distance be-
tween NN spins in and out of plane, respectively, and

gk =
1

3
Fcosakx + 2 cosS1

2
akxDcosSÎ3

2
akyDG . s12d

The self-consistent equations for the correlation functions are

gscd = −
1

N
o
k

cosckz

gscds1 − cosckzd + 3gsad
J'

Ji
s1 − gkd

ek

3coth
ek

u
, s13d

gs2cd = −
1

N
o
k

cos 2ckz

gscds1 − cosckzd + 3gsad
J'

Ji
s1 − gkd

ek

3coth
ek

u
, s14d

gsad = −
1

N
o
k

gk

gscds1 − cosckzd + 3gsad
J'

Ji
s1 − gkd

ek
coth

ek

u
,

s15d

gsÎ3ad = −
1

N
o
k

1

3
ScosÎ3aky + 2 cos

3

2
akx cos

Î3

2
akyD

3
gscds1 − cosckzd + 3gsad

J'

Ji
s1 − gkd

ek
coth

ek

u
,

s16d
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gs2ad = −
1

N
o
k

1

3
scos 2akx + 2 cosakx cosÎ3akyd

3
gscds1 − cosckzd + 3gsad

J'

Ji
s1 − gkd

ek
coth

ek

u
,

s17d

gsÎa2 + c2d = −
1

N
o
k

gk cosckz

3
gscds1 − cosckzd + 3gsad

J'

Ji
s1 − gkd

ek
coth

ek

u
,

s18d

whereu=kBT/2uJiu.
It has to be noted that the spectrumek has a minimum at

k=s4p /3a,0 ,p /cd corresponding to(1
3 , 1

3, 1) in reciprocal
lattice units [r.l.u.]. This minimum goes to zero at
um=0.066 26. This means that the present theory cannot be
pushed belowTm=1.4 K. On the other hand, the HTD ap-
proach is expected to hold forT.TN=8.3 K. At T=9, 17.5,
and 40 K we findvs0,0,1d=1.261, 1.663, and 2.710 meV
andvs 1

3 , 1
3 ,1d=0.757, 1.331, and 2.541 meV.

In Fig. 1 we show the spectrum given by Eq.(11) com-
pared with the experiment on CsMnBr3 (Ref. 6). The data
points for v in Fig. 1 are obtained from Fig. 3 of Ref. 6
whereV=Îv2+G2 is shown. The energy widthG is .0.6,
0.8, and 1.43 meV forT=9, 17.5, and 40 K, respectively.10

In Fig. 2 we show the spectrum given by Eq.(11) along
the [0,0,1] direction forT=20, 30, and 40 K. The data points
are obtained from Fig. 2 of Ref. 6 in the same way as in Fig.
1.10 The theoretical expectation for a very high temperature
sT=207 Kd is also quoted. Note that the excitation energies
corresponding to modes withz&2/3 renormalize downward

whereas those corresponding toz*2/3 renormalize upward.
This result agrees with the renormalization observed10 over
the whole Brillouin zone atT=9 and 17.5 K. Collins and
Gaulin11 reported inelastic neutron scattering measurements
in the paramagnetic phase of CsMnBr3 betweenT=15 and
45 K along the[0,0,1] direction. They did not find renormal-
ization for the mode atQ=s0,0,1.3d corresponding to the
mode(0,0,0.7) of Fig. 2 in agreement with our expectation
even though the experiment gives an energy of about 7 meV
to be compared with 6 meV of our calculation. On the con-
trary upward renormalization was found for the mode at
Q=s0,0,1.1d corresponding to the mode(0,0,0.9) of Fig. 2.
In this case the agreement is complete since the energy ob-
tained from the experiment is about 3 meV. Weak upward
renormalization is also reported for the excitation at
Q=s0,0,1.15d (with an energy of about 4.2 meV) and at
Q=s0,0,1.2d (with an energy of about 5.2 meV) correspond-
ing to the modes(0,0,0.85) and (0,0,0.8) of Fig. 2. The au-
thors were not able to explain the high value of the gap
observed atQ=s0,0,1d for T=15 K s1.7±0.2 meVd using
the spin-wave spectrum even accounting for dipolar interac-
tions. This is not surprising in view of our calculation where
an upward renormalization is obtained for the isotropic
Heisenberg model neglecting any anisotropy source, in par-
ticular the dipolar interaction, which is, however, responsible
for the gap in the ordered phase. A similar upward renormal-
ization of the spin-wave energy at wave vectors around
Q=s0,0,1d was also observed in TMMC,12 a quasi-one-
dimensional Heisenberg antiferromagnet withS=5/2. For
both compounds the upward renormalization of the(0,0,1)
mode cannot be traced back to the Haldane scenario because
of their half-integer spin.

In Fig. 3 the energy of modes at(0,0,1) and (1
3 , 1

3, 1) is
shown as a function of temperature. For comparison we have
reported the experimental data taken from Ref. 6. As one can
see the agreement is very good.

FIG. 1. Dispersion relation for CsMnBr3 along the[1,1,0] direc-
tion for temperaturesT=9, 17.5, and 40 K. Data points are taken
from the neutron scattering experiment of Ref. 6:T=9 K (circles),
17.5 K (diamonds), and 40 K(squares).

FIG. 2. Dispersion relation for CsMnBr3 along[0,0,1] direction
for temperaturesT=20, 30, and 40 K. Data points are taken from
the neutron scattering experiment of Ref. 6:T=20 K (circles), 30 K
(diamonds), and 40 K(squares).
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In the very-high-temperature limit we find that the corre-
lation functions are given bygscd.−fSsS+1d /3g2/u ,
gs2cd . fSsS +1d /3g3/u2, gsad . sJ' /Jidgscd , gsÎa2+c2d
.2sJ' /Jidgs2cd , gsÎ3ad.s2/3dsJ' /Jid2gs2cd, and gs2ad
.sJ' /Jid2gs2cd. This high-temperature behavior agrees
within 10%–20% with the numerical solution of the self-
consistent equations(13)–(18) for u*10 sT*200 Kd where
there are no experimental data. In the limit of infinite tem-
perature the spectrum reduces to

vk = 4uJiufSsS+ 1d/3g1/2Î1 − cosckz + 3sJ'/Jid2s1 − gkd.

s19d

In one dimension we recover the first term of the exact high-
temperature expansion of the correlation function of the
Heisenberg quantum model.13

In summary we have shown that the upward renormaliza-
tion at increasing temperature observed in the paramagnetic
phase of CsMnBr3 can be explained by a HTD Green func-
tion approach. The presence of well-defined elementary ex-
citations in the paramagnetic phase of the CsMnBr3 is obvi-
ously relied to the strong intrachain exchange interaction that
supports short-range order at temperatures well beyond the
critical temperature. However, the existence of well-defined
excitations for wave vectors perpendicular to the chain
supported by the weak interchain coupling suggests that one
be cautious in describing theABX3 compounds in the para-
magnetic phaseTN&T&3TN as genuine one-dimensional
(1D) spin models. In particular the magnetic susceptibility
of CsMnBr3 measured at a field of 3.5 kOe(Ref. 14) shows
a temperature dependence in agreement with the exact
solution of a genuine 1D classicalsS→`d Heisenberg
antiferromagnet15 only for temperatures higher than,50 K.
In other words it seems well established that 3D character is
maintained for temperatures well beyond the critical tem-
perature. For these reasons it is not surprising that a Green

function approach, where the absence of LRO has been taken
into account, is successful in giving the thermal renormaliza-
tion of a single-particle-like excitation energy in agreement
with experimental data.

Moreover, we observe that inelastic neutron scattering
measurements on CsVCl3, aABX3 compound withS=3/2, in
the paramagnetic phase atT=40 K.3TN along the[0,0,1]
direction16 confirm our expectation of a downward renormal-
ization at intermediate wave vectors with respect to the
excitation spectrum in the ordered phase.17 It should be in-
teresting to investigate the excitations close to the antiferro-
magnetic mode(0,0,1) where we expect an upward renor-
malization on the basis of our approach.

Finally, we stress that the upward renormalization of the
antiferromagnetic mode is a common feature of CsMnBr3,
TMMC sS=5/2d, and CsNiCl3sS=1d. Our approach gives
upward renormalization of the antiferromagnetic mode and
downward renormalization of the long-wavelength modes in-
dependent of the spin value. We expect that spin-dependent
quantum effects which are dramatic in genuine 1D Heisen-
berg models at zero temperature could be less important in
actual compounds in the paramagnetic phase where the 3D
character survives well beyond the critical temperature. We
recall that a quantum field theory in the continuum limit
sk→0d applied to a 1D Heisenberg antiferromagnet withS
=1 at zero temperature18 gives a neutron cross section char-
acterized by a rounded peak at energyvm=Î6D2+v2k2

somewhat higher than a thresholdvth=Î4D2+v2k2 which is
about twice the gap at the antiferromagnetic wave vector
vp=ÎD2+v2sk−pd2 (Haldane gap). This threshold excita-
tion corresponds to the lower bound of a two-magnon band.
The existence of an excitation of energyvth was confirmed
by numerical simulations on a finite chain of 32 spins with
S=1 (Ref. 19). Indeed an excitation of order 2D was found at
k=p /16, the minimum wave vector for a chain of 32 spins.
No indication of a two-magnon band was pointed out in such
a calculation. As for experiments on CsNiCl3 (Ref. 5), no
energy band seems to have been observed. For these reasons
inelastic neutron scattering on CsNiCl3 for small wave vec-
tors in the paramagnetic phase should be crucial to check the
importance of the quantum effects of a genuine 1D system
with integer spin. Notice that in CsNiCl3 the spin-wave fre-
quencies forT.TN show a clear dependence on the wave
vector component perpendicular to the chain(c axis) as one
can see from Fig. 3 of Ref. 20. This is also confirmed by a
comparison of the upward renormalization of the mode at
(1

3 , 1
3, 1) shown in Fig. 2 of Ref. 21 and in Fig. 8 of Ref. 22

compared to the upward renormalization of the mode at
(0.81, 0.81, 1) as shown in Fig. 3 of Ref. 5. We are confident
that the HTD Green function approach could be reliable also
for integer-spin compounds because of the 3D character of
the ABX3 compounds well beyond their critical temperature,
which is in the region where the experiments were per-
formed.

E.R. would like to thank P. Böni, C. Reich, and B. Roessli
for useful correspondence on unpublished experimental data.

FIG. 3. Frequency of the modes(0,0,1) and (1
3 , 1

3, 1) versus
temperature. Data points for CsMnBr3 (circles and squares) are
taken from Ref. 6.
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