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Interplay between orbital and spin degrees of freedom is theoretically studied for the phase transition to the
spin-singlet state with lattice dimerization in pyroxene titanium oxidesATiSi2O6 sA=Na,Lid. For the quasi-
one-dimensional spin-1/2 systems, we derive an effective spin-orbital-lattice coupled model in the strong
correlation limit with explicitly taking account of thet2g orbital degeneracy and investigate the model by
numerical simulation as well as the mean-field analysis. We find a nontrivial feedback effect between orbital
and spin degrees of freedom; as temperature decreases, development of antiferromagnetic spin correlations
changes the sign of orbital correlations from antiferro- to ferro-type, and finally, the ferro-type orbital corre-
lations induce the dimerization and the spin-singlet formation. As a result of this interplay, the system under-
goes a finite-temperature transition to the spin-dimer and orbital-ferro-ordered phase concomitant with the
Jahn-Teller lattice distortion. The numerical results for the magnetic susceptibility show a deviation from the
Curie-Weiss behavior and well reproduce the experimental data. The results reveal that the Jahn-Teller energy
scale is considerably small and the orbital and spin exchange interactions play a decisive role in the pyroxene
titanium oxides.
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I. INTRODUCTION

The orbital degree of freedom has attracted much atten-
tion because it plays key roles in electronic properties of
transition metal compounds.1,2 The orbital degree of freedom
couples with the Jahn-Teller(JT) lattice distortion, and in
many compounds the energy scale of the JT stabilization
energy is larger than that of the spin and orbital exchange
interactions.3 A typical example is the mother compound of
colossal magnetoresistive(CMR) manganites, LaMnO3: The
JT energy scale is,0.1–1 eV and the spin-exchange energy
scale is,10 meV. Consequently, the orbital-lattice transition
occurs at a much higher temperatures,800 Kd than the an-
tiferromagnetic(AF) transition temperatures,140 Kd.4 In
these systems, the orbital-lattice physics is dominant, and the
orbital and lattice orderings modify effective spin-exchange
interactions to lead a magnetic ordering in a secondary ef-
fect. Moreover, the JT distortion suppresses fluctuation ef-
fects in orbital and spin degrees of freedom. Hence, a large
JT coupling masks bare interplay between spin and orbital in
many real materials.

Quantum and thermal fluctuations in the competition be-
tween the spin and orbital exchange interactions may yield
exotic phenomena, and therefore, it is highly desired to ex-
plore systems in which the genuine spin-orbital interplay ap-
pears explicitly. One of promising candidates is thet2g elec-
tron system such as titanium and vanadium oxides. In thet2g
systems, the JT coupling becomes smaller than in theeg
systems such as CMR manganites, because spatial shapes of
t2g orbitals avoid directions of surrounding ligands in the
octahedral positions. For instance, in vanadium perovskite
oxidesAVO3 sA=La,Ced, the orbital-lattice transition tem-
perature becomes even lower than the AF one,5 and peculiar
interplay between spin and orbital is proposed
theoretically.6,7

Pyroxene titanium oxidesATiSi2O6 sA=Na,Lid are typi-
cal examples of thet2g electron systems where such interplay

between spin and orbital is expected.8 The lattice structure of
these compounds consists of characteristic one-dimensional
(1D) chains of skew edge-sharing TiO6 octahedra as shown
in Fig. 1(a). The TiO6 chains are bridged and well separated
by SiO4 tetrahedra, and therefore, interchain couplings are
considered to be much weaker than intrachain interactions.
In each TiO6 chain, as shown in Fig. 1(b), the edges of
octahedra in thexy and yz planes are alternatively shared
between neighboring octahedra, which leads to the zig-zag
structure. Each magnetic Ti3+ cation has oned electron in
these insulating materials. Hence, we may consider that a
quasi-1D spin-1/2 system is realized.

Pyroxene titanium oxides show a peculiar phase transi-
tion. The magnetic susceptibility shows a sharp drop atTc
=210 K and 230 K in NaTiSi2O6 and LiTiSi2O6, respec-
tively, which indicates the transition to a spin-singlet state
with a finite spin gap.8 Below Tc, a dimerization of Ti-Ti
distances along the chain was observed by the x-ray
scattering.9 These remind us of a spin-Peierls transition.10

However, aboveTc, the magnetic susceptibility shows an un-
usual temperature dependence which clearly deviates from
that of other spin-Peierls compounds. In spin-Peierls sys-
tems, the dimerization is caused by the magnetoelastic cou-
pling, and therefore, the transition occurs when short-range
spin correlations develop enough to drive the lattice dimer-
ization. This development of spin correlations is manifested
in a broad peak of the magnetic susceptibility aboveTc, and
the peak temperature gives a rough estimate of the spin-
exchange energy scale. Contrary to this conventional behav-
ior, the magnetic susceptibility of the pyroxene compounds
at high temperatures increases as temperature decreases and
suddenly drops atTc without a clear formation of the broad
peak.8 This suggests a breakdown of the simple spin-Peierls
picture in these pyroxene compounds.

For the peculiar transition to the spin-singlet state, an im-
portance of thet2g orbital degree of freedom has been
pointed out.8 Theoretically, a scenario of the orbital-driven
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spin-singlet formation has been explored in spin-orbital
coupled models fort2g electron systems.11 It was proposed
that the orbital ordering may modify effective spin-exchange
interactions and induce the spin-singlet formation. However,
models were considered only for systems with corner-
sharing octahedra, and hence, it is unclear that the argument
is applicable to the present pyroxene systems with the edge-
sharing octahedra. A similar scenario has been proposed for
the present systems,12 however, the analysis was heuristic
and not sufficient to conclude the mechanism of the finite-
temperature transition. In order to clarify the nature of the
transition and the low-temperature phase, we need more
elaborate analysis. In particular, it is indispensable to inves-
tigate thermodynamic properties on the basis of a micro-
scopic model.

In the present study, we will theoretically explore the
mechanism of the unusual phase transition in the pyroxene
titanium oxidesATiSi2O6 explicitly taking account of thet2g
orbital degree of freedom. We derive an effective spin-
orbital-lattice coupled model in the strong correlation limit
and investigate thermodynamics as well as the ground-state
properties of the model by applying the numerical quantum
transfer matrix method and mean-field-type arguments. As a
result, we find that interesting interplay between orbital and
spin degrees of freedom occurs in the system, and the inter-
play gives a comprehensive understanding of the peculiar
properties of the pyroxene compounds: Although both orbital
and spin correlations are antiferro-type and compete with
each other at high temperatures, development of AF spin

correlations with decreasing temperature yields a sign
change of orbital correlations from antiferro- to ferro-type.
After the sign change, the ferro-type orbital correlations
grow with the antiferro-type spin correlations, and finally,
induce the spin-singlet formation with a dimerization. Fur-
thermore, the nontrivial temperature dependence of orbital
correlations modifies an effective magnetic coupling and re-
sults in a non-Curie-Weiss behavior of the magnetic suscep-
tibility. We show that our model with realistic parameters
reproduces the peculiar temperature dependence of the mag-
netic susceptibility in experiment.

The organization of this paper is as follows. In the follow-
ing Sec. II, applying the strong-coupling approach, we derive
an effective spin-orbital-lattice coupled model for thet2g py-
roxene compoundsATiSi2O6. In Sec. III, we discuss proper-
ties of the system in the ground state and in the high-
temperature limit using mean-field-type arguments. In Sec.
IV, we study thermodynamic properties of the effective
model by numerical simulations. We describe the method in
Sec. IV A. Section IV B shows the numerical results includ-
ing quantitative comparisons with the experimental data. Fi-
nally, Sec. V is devoted to summary and concluding remarks.

II. MODEL HAMILTONIAN

In this section, we derive an effective spin-orbital-lattice
coupled model for the pyroxene oxidesATiSi2O6, whose
Hamiltonian reads

H = Hso+ HJT + H'. s1d

The first term describes the intersite exchange interactions in
spin and orbital degrees of freedom, and the second term
includes the Jahn-Teller type orbital-lattice coupling. These
two are defined within each 1D chain. The third term de-
scribes the interchain coupling.

The spin-orbital exchange HamiltonianHso is derived
from a t2g multiorbital Hubbard model by using the pertur-
bation in the strong correlation limit.3,13 The skew structure
shown in Fig. 1(b) distorts TiO6 octahedra in the form that
four Ti-O bonds in which the oxygen ions are shared with
neighboring TiO6 octahedra are longer than the remaining
two Ti-O bonds in each octahedron.9 The distortion leads to
the splitting of threefoldt2g levels into a low-lying doublet
with dxy anddyz orbitals and a singledzx level when we take
the coordinates as shown in Fig. 1(b). The splitting is esti-
mated as,300 meV in a pyroxene vanadium oxide, which
has a similar lattice structure.14 Because of this level split-
ting, it is reasonable to start from the 1D Hubbard model
with twofold degeneracy ofdxy anddyz orbitals with tracing
out the higherdzx level. The Hamiltonian is given in the form

HHub = o
i,j

o
a,b

o
t

stij
abciat

† cjbt + H.c.d

+ 1
2o

i
o

ab,a8b8
o
tt8

Uab,a8b8ciat
† cibt8

† cib8t8cia8t, s2d

wherei, j are site indices within the 1D chain,t, t8 are spin
indices, anda ,b=1 sdxyd and 2sdyzd are orbital indices. The
first term describes the electron hopping, and the second

FIG. 1. (Color online) (a) Lattice structure of pyroxene oxides
ATiSi2O6 sA=Na,Lid. Chains of TiO6 octahedra are separated by
SiO4 tetrahedra.(b) Skew edge-sharing chain structure of TiO6 oc-
tahedra. Balls in the center of each octahedron denote Ti cations,
and oxygen ions are on the corners of the octahedra. The octahedra
share their edges in thexy andyzplanes alternatively. White objects
with four lobes denotedxy anddyz orbitals of t2g electrons, andt11

st22d is thes-bond transfer integrals betweendxy sdyzd orbitals. See
the text for details.
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term denotes the onsite Coulomb interactions where we use
the standard parametrizations,

Uab,a8b8 = U8daa8dbb8 + JHsdab8dba8 + dabda8b8d, s3d

U = U11,11= U22,22= U8 + 2JH. s4d

Here, we neglect the relativistic spin-orbit coupling.
The perturbation calculation is performed in the strong

correlation limit tij
ab!U ,U8 ,JH by taking an atomic eigen-

state with one electron at each site. In the edge-sharing con-
figuration as shown in Fig. 1(b), the most relevant contribu-
tion in the transfer integralstij

ab is the overlap between the
nearest-neighbor(NN) pairs with the same orbitals lying in
the same plane, which is called thes bond. Thes-bond
transfer integrals areti,i+1

11 for NN pairs in thexy plane and
ti,i+1
22 for those in theyz plane as shown in Fig. 1(b). These

two types of the transfer integrals take the same value, and
we denote them byts in the following. Other transfer inte-
grals are much smaller thants; in particular, ti,i+1

12 = ti,i+1
21 =0

between NN sites from the symmetry. In the present study,
we take account of thes-bond contributions only and neglect
other transfer integrals.15 The approximation is known to
give reasonable results for spinel oxides, which also have an
edge-sharing network of octahedra.16

The second-order perturbation ints gives the effective
spin-orbital Hamiltonian in the form

Hso= − Jo
i

shi,i+1
oAF + hi,i+1

oF d, s5d

hi,i+1
oAF = sA + BSi ·Si+1ds 1

2 − 2TiTi+1d , s6d

hi,i+1
oF = Cs 1

4 − Si ·Si+1ds 1
2 ± Tids 1

2 ± Ti+1d , s7d

whereSi is the S=1/2 spin operator at sitei and Ti is the
Ising isospin which describes the orbital state at sitei asTi
= +1/2s−1/2d when thedxy sdyzd orbital is occupied. Note
that thes-bond transfer integralts, which is orbital diagonal
and does not mix different orbitals, leads to the Ising nature
of the orbital isospin interaction. The signs in Eq.(7) take1
(2) for the bonds within thexy syzd plane. The coupling
constants in Eqs.(5)–(7) are given by parameters in Eq.(2)
as

J =
stsd2

U
, s8d

A =
3

4s1 − 3hd
+

1

4s1 − hd
, s9d

B =
1

1 − 3h
−

1

1 − h
, s10d

C =
4

3
S 1

1 + h
+

2

1 − h
D , s11d

h =
JH

U
, s12d

where we use Eq.(4). The realistic value ofh will be esti-
mated ash,0.1 later. Therefore, we consider thatA, B, and
C are all positive in the following.

We note that a part of the spin-orbital interactions, i.e.,
hi,i+1

oF in Eq. (7), takes a similar form to the model proposed
in Ref. 12. Our model derived from the multiorbital Hubbard
model contains both ferro- and antiferro-types of orbital in-
teractions as well as the nontrivial contributions which are
missed in the previous model in Ref. 12. We will show that
these factors play important roles in the thermodynamics. We
also note that a spin-orbital model similar to Eq.(5) was
studied in Ref. 11. The model was derived for the corner-
sharing configuration of the octahedra, while our model is
for the edge-sharing configuration.

The orbital-lattice coupling termHJT in Eq. (1) is given in
the form

HJT = go
i

QiTi + 1
2o

i

Qi
2. s13d

The first term describes the JT coupling, whereg is the
electron-lattice coupling constant andQi is the amplitude of
the JT distortion which couples to the remaining twofold
degeneracy of thedxy anddyz orbitals. The second term de-
notes the elastic energy of the JT distortion. For simplicity,
we neglect the kinetic energy of phonons and regardQi as a
classical variable. Here, we note that besides the onsite term
there may be intersite interactions of JT distortions such as
oi jQiQj. However, in the self-consistent scheme described in
Sec. IV A, which we will employ in the present numerical
study, the intersite interactions do not affect the results ex-
cept for a shift of the critical temperature. Such effect can be
renormalized into theg term in Eq.(13), and therefore, we
do not explicitly include the intersite term in the present
Hamiltonian.

In addition to the above two termsHso andHJT, we also
consider the interchain coupling termH' in Eq. (1). We may
consider two contributions toH'. One is the spin-orbital
exchange interaction arising from the interchain transfer in-
tegrals of electrons, and the other is the interchain interaction
of JT distortions. The former is expected to be negligibly
small due to a rapid decay and a large spatial anisotropy of
the t2g wave functions. We therefore ignore it and take ac-
count of the latter JT contribution only. The explicit form of
the JT coupling depends on the details of the lattice structure
among 1D chains and may be very complicated. In the
present study, we assume the following simple form:

H' = lo
ki,jl

QiQj , s14d

where the summation is taken over the NN sites in four
neighboring chains. Since the TiO6 chains are well separated
by SiO4 tetrahedra in the pyroxene compounds, the coupling
constantl is expected to be small. In the following numeri-
cal calculations, we will treat the interchain JT coupling in a
mean-field approximation, which is well justified for weakly
coupled 1D systems.18
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Finally, we discuss the realistic values of the parameters.
Thes-bond transfer integral is estimated asts,−0.3 eV for
pyroxene vanadium oxides.14 Typical estimates for Coulomb
interaction parameters are U,5–6 eV and JH
,0.6–0.7 eV.17 Hence,h in Eq. (12) is a small parameter of
the order of 0.1. From the estimates ofts and U, the ex-
change energy scaleJ in Eq. (8) is estimated asJ,200 K.
As for the JT couplingsg and l, since to our knowledge
there is no experimental estimates, we treat them as param-
eters that are determined by the comparison between the nu-
merical results and the experimental data in Sec. IV B 2.

III. MEAN-FIELD ANALYSIS

Before going into the numerical study of the thermody-
namics of the model(1), we apply mean-field arguments to
capture the behavior in the ground state and in the high-
temperature phase. For simplicity, we consider only the spin-
orbital partHso in this section.

A. Ground state

In the ground state, we here consider four different types
of ordered states as shown in Fig. 2 schematically:(a) the
spin-ferro and orbital-ferro(sF-oF), (b) the spin-ferro and
orbital-antiferro(sF-oAF), (c) the spin-antiferro and orbital-
ferro, and(d) the spin-antiferro and orbital-antiferro(sAF-
oAF) states. For simplicity, we consider the fully polarized
states for the spin-ferro, the orbital-ferro, and the orbital-
antiferro orderings, where quantum fluctuations do not play a
crucial role.(Note that the orbital isospin is the Ising spin in
the present model.) The important point is that as easily
shown by Eqs.(6) and (7), the orbital-ferro ordering, i.e.,
kTiTi+1l=1/4 andkTil=1/2 (or −1/2) for all i, disconnects
every other bond. Hence, when the spin coupling is antifer-
romagnetic, the orbital-ferro ordering leads to the spin-
singlet formation, i.e.,kSi ·Si+1l=−3/4 for remaining isolated
NN pairs. Therefore, the ordered state(c) is denoted as the
spin-dimer and orbital-ferro(sD-oF) state. We note that a
similar mechanism of the singlet formation driven by orbital
ordering has been proposed for a related model.11

The ground-state energy for each ordered state is calcu-
lated by replacing the spin and orbital-isospin operators in
Eq. (5) by the following expectation values:

kSi ·Si+1l = 1
4 for sF pairs, s15d

kSi ·Si+1l = − 3
4 for sD pairs, s16d

kSi ·Si+1l = − s for sAF pairs, s17d

wheres is a positive parameter less than 3/4(we do not need
the precise value ofs), and

kTiTi+1l =
1

4
, kTil = ±

1

2
for oF pairs, s18d

kTiTi+1l = −
1

4
, kTil = ±

s− 1di

2
for oAF pairs, s19d

respectively. The obtained ground-state energies per site for
the states(a)–(d) are

EsF-oF= 0, s20d

EsF-oAF= − JSA +
B

4
D , s21d

EsD-oF= − J
C

2
, s22d

EsAF-oAF= − JsA − sBd, s23d

respectively.
We compare Eqs.(20)–(23) by using Eqs.(8)–(11) and

obtain

sEsF-oAF or EsD-oFd , EsAF-oAF, EsF-oF. s24d

Hence, the ground state is either(b) sF-oAF or (c) sD-oF
state. From the equation ofEsF−oAF=EsD−oF, we obtain the
critical value ofh for the transition between the two phases
as

FIG. 2. Spin- and orbital-ordering patterns in(a) the spin-ferro
and orbital-ferro(sF-oF), (b) the spin-ferro and orbital-antiferro
(sF-oAF), (c) the spin-dimer and orbital-ferro(sD-oF), and(d) the
spin-antiferro and orbital-antiferro(sAF-oAF) states. Circles denote
the lattice sites, and two separated spaces inside them denote two
different orbital statesdxy anddyz as indicated in(a). Arrows denote
spins, and gray ovals in(c) represent the spin-singlet pairs. Crosses
in (a) and (c) denote the disconnected bonds by the ferro-type or-
bital ordering. See the text for details.
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hc = 1
3sÎ73 − 8d . 0.18. s25d

Namely, we have the ground-state phase transition between
the sD-oF and sF-oAF phases by changingh; the sD-oF
(sF-oAF) phase is stable forh,hc sh.hcd. Hence, for a
realistic value ofh,0.1, the ground state is predicted to be
the sD-oF phase within the mean-field argument. This will be
confirmed by the numerical calculations in Sec. IV. We will
also show that the sF-oAF state is realized forh.hc in
Appendix B.

The h-controlled phase transition is understood by the
competition between the spin superexchange interaction and
the Hund’s-rule coupling. The former comes from the pertur-
bation process within the same orbitals and favors the spin-
singlet state.19 The latter enhances the energy gain from the
perturbation process between different orbitals and stabilizes
the sF-oAF state. It is known that the sF-oAF state is favored
by a finite Hund’s-rule couplingsh.0d in multiorbital sys-
tems with transfer integralst11= t22Þ0 between all the NN
sites.20,21 In the present systems, the specific form of the
transfer integrals due to the zig-zag lattice structure gives a
chance to stabilize the sD-oF state in the smallh regime.

B. High-temperature para phase

At high temperatures, both spin and orbital are disordered.
We here examine spin and orbital correlations in the para
phase by a mean-field type argument.

First, to focus on the spin degree of freedom, we replace
the orbital isospin operators in the effective model(5) with
their mean values, i.e.,Ti → kTil=0 andTiTi+1→ kTiTi+1l. The
resultant effective spin Hamiltonian reads

Hs
MF = o

i

sJi,i+1
s Si ·Si+1 − Ki,i+1

s d, s26d

where

Ji,i+1
s = JF1

4
sC − 2Bd + sC + 2BdkTiTi+1lG , s27d

Ki,i+1
s =

J

4
F1

4
sC + 8Ad + sC − 8AdkTiTi+1lG . s28d

In the high-temperature limit,kTiTi+1l becomes zero and the
effective spin-exchange constant becomes

Ji,i+1
s sT → `d =

J

4
sC − 2Bd, s29d

which is positive forh,0.1 and independent ofi. Hence, we
end up with a 1D AF spin Heisenberg model.

On the other hand, we can also consider a reduced Hamil-
tonian for the orbital degree of freedom by replacing the spin
operators in the model(5) with their mean values. The result
is

Ho
MF = o

i

fJi,i+1
o TiTi+1 − Li,i+1

o sTi + Ti+1d − Ki,i+1
o g, s30d

where

Ji,i+1
o = JFS2A −

C

4
D + sC + 2BdkSi ·Si+1lG , s31d

Li,i+1
o = s− 1diJ

C

2
S1

4
− kSi ·Si+1lD , s32d

Ki,i+1
o =

J

4
FS2A +

C

4
D − sC − 2BdkSi ·Si+1lG . s33d

In the high-temperature limit,kSi ·Si+1l=0 and the effective
isospin coupling constant becomes

Ji,i+1
o sT → `d = JS2A −

C

4
D . s34d

This coupling constant is also positive forh,0.1, and there-
fore, we obtain a 1D antiferro-type Ising isospin model.
[Note that the second term in Eq.(30) cancels out when
kSi ·Si+1l=0.]

The above arguments indicate that both spin and orbital
correlations are antiferro-type in the high-temperature limit
in our effective model(1). On the contrary, as discussed in
Sec. III A, the ground state is either the sF-oAF or sD-oF
state. This suggests that either spin or orbital correlation has
to change from antiferro- to ferro-type as temperature de-
creases. It is implied by Eq.(27) that development of
antiferro-type orbital correlationskTiTi+1l,0 may change
the sign ofJi,i+1

s from positive(antiferro) to negative(ferro).
In a similar way, Eq.(31) suggests that development of AF
spin correlationskSi ·Si+1l,0 may induce the sign change of
Ji,i+1

o . In this manner, the spin and orbital correlations com-
pete with each other. The mean-field-level argument is
clearly insufficient to clarify the competition, and we will
employ the more powerful numerical analysis in Sec. IV.

IV. NUMERICAL ANALYSIS

A. Method

To study thermodynamic properties of the model(1), we
apply the quantum transfer matrix(QTM) method22 com-
bined with the mean-field treatment of the JT distortions.
Here, we describe the scheme of our analysis.

Since the present model(1) is highly 1D anisotropic, it is
justified to treat the weak interchain couplingH' as the
mean field18 in the form

H̃' = lo
ki,jl

QiQ̃j = − zuluo
i

Qi
2, s35d

whereQ̃j is the mean-field value of the JT distortion at sitej
and z is the number of NN chains, i.e.,z=4 in the present

materials. As a result, the total Hamiltonian,Hso+HJT+H̃',
is reduced to an effective 1D spin-orbital-lattice coupled
model in the form
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H̃ = Hso+ go
i

QiTi +
1 − 2zulu

2 o
i

Qi
2

= Hso+ ḡo
i

Q̄iTi +
1

2o
i

Q̄i
2, s36d

where the JT coupling and distortion are rescaled asḡ

=g /Î1−2zulu and Q̄i =Î1−2zuluQi, respectively. For later
use, we define the JT stabilization energy as

DJT = ḡ2/8, s37d

which is the energy gain by the JT distortion in the absence
of Hso.

The optimal values of the JT distortionshQ̄ij are deter-
mined in a self-consistent way. We start from an initial guess

of hQ̄ij and calculate the expectation values of the isospin
kTil by applying the QTM method to the effective 1D model

H̃. Note that the QTM calculation is numerically exact and
includes all the fluctuations in spin and orbital degrees of

freedom for a given set ofhQ̄ij. See Appendix A for the
details of the QTM method. The obtained values ofkTil are

used to determinehQ̄ij self-consistently. The self-consistent

equation is obtained by the energy minimizationdkHl /dQ̄i

=0 which gives

Q̄i
new= − ḡkTil. s38d

The values ofhQ̄i
newj are used as inputs for the next QTM

calculation. We iterate the procedure untilhQ̄ij converge to
optimal values.

Thermodynamic properties are obtained for the optimal

values ofhQ̄ij. We calculate the magnetization per site,

m=
1

L
o

i

kSi
zl, s39d

and the average values of NN spin and orbital correlations,

Cs =
1

L
o

i

kSi ·Si+1l, s40d

Co =
1

L
o

i

kTiTi+1l, s41d

respectively, whereL is the length of the chain. We also
define the NN spin correlations on odd and even bonds as

Cs
odd=

2

L
o

iPodd
kSi ·Si+1l, s42d

Cs
even=

2

L
o

iPeven
kSi ·Si+1l, s43d

respectively, to detect the spin dimerization. See Eqs.
(A6)–(A10) for the calculation of these quantities. Besides,
to calculate the magnetic susceptibilityx, we perform the
calculation within the same framework for the system under

the external magnetic field whose Hamiltonian reads

H̃ − gmBHo
i

Si
z, s44d

whereg is theg-factor, mB is the Bohr magneton, andH is
the external magnetic field. The susceptibility is obtained
from the numerical derivative ofm as

x =
msDHd − ms0d

DH
, s45d

where we useDH=0.001J/ sgmBd.
The QTM method allows us to treat the system in the

thermodynamic limitL→` directly (see Appendix A). In-
stead, the results contain a systematic error due to a finite
Trotter numberM. We need to check carefully the conver-
gence of the results with increasingM. The values ofM used
in the following calculations are up toM =4 for the case of
ḡ=0 while up toM =3 for ḡ.0. Although these values ofM
appear to be rather small, we will show that theM conver-
gence is excellent for the temperature range in the present
study,T*0.1J.

B. Results

In this section, we show our numerical results for thermo-
dynamic properties of the model(1) obtained by the method
in the previous section. In Sec. IV B 1, we clarify nontrivial
feedback effects between orbital and spin degrees of freedom
in the absence of the JT coupling. In Sec. IV B 2, we switch
on the JT coupling and compare our numerical results with
the experimental data.

1. Interplay between orbital and spin

First, we show our results in the absence of the JT cou-
pling sḡ=0d. In this case, the model is reduced to the 1D
spin-orbital modelHso [Eq. (5)], and we can obtain thermo-
dynamic properties by performing the QTM calculation
without any self-consistent iteration.

Figure 3 shows the results of the magnetic susceptibilityx
in Eq. (45) for several values ofh. Note that the results for
different values of the Trotter numberM =2, 3, and 4 almost
coincide with each other as shown in the figure, which en-
sures the convergence of the QTM results in this parameter
range. The magnetic susceptibility at high temperatures in-
creases as temperature decreases and exhibits a broad peak at
some temperature. At lower temperatures, it decays rapidly
and approaches zero asT→0. While the peak becomes
sharper and shifts to a lower temperature region ash in-
creases, the rapid decay ofx at low temperatures is com-
monly observed. This indicates that our spin-orbital model
Hso in Eq. (5) exhibits the spin-singlet ground state in the
small h regime as predicted in Sec. III A.(See Appendix B
for the largerh regime.)

To clarify the nature of the system in more detail, in Fig.
4, we show the results of NN spin and orbital correlationsCs
and Co defined in Eqs.(40) and (41), respectively. TheM
dependence of the results is negligible also for these quanti-
ties. We note that at finite temperatures no true long-range

T. HIKIHARA AND Y. MOTOME PHYSICAL REVIEW B 70, 214404(2004)

214404-6



order appears in the 1D spin-orbital modelHso, and hence,
the NN spin correlations are uniform, i.e.,Cs=Cs

odd=Cs
even.

As T→0, the spin and orbital correlations converge toCs=
−3/8 andCo=1/4, respectively. These are indeed the values
expected in the sD-oF ground state shown in Fig. 2(c), where
kSi ·Si+1l takes the value of −3/4 or 0 alternatively from
bond to bond whilekTiTi+1l=1/4 for all bonds. Hence, we
conclude that the ground state of the system is the sD-oF
state in Fig. 2(c) for the realistic values ofh,0.1, and the
rapid decay ofx at low temperatures in Fig. 3 is due to the
spin-singlet formation in the ground state.

Let us examine the finite-temperature behavior ofCs and
Co in Fig. 4. At high temperatures, both the spin and orbital
correlations are negative, i.e., antiferro type, being consistent
with the mean-field prediction in Sec. III B. Here, the spin
and orbital antiferro correlations compete with each other
since the spin-antiferro correlation favors the orbital-ferro
correlation and vice versa as indicated in the form ofHso in
Eq. (5). We find that in this range ofh the spin-antiferro
correlation grows more rapidly than the orbital correlation as
T decreases. This growth ofCs suppressesCo and causes the
sign change ofCo from antiferro- to ferro-type. OnceCo
becomes ferro-type,Cs and Co develop cooperatively, and
eventually, the ferro-type orbital correlation induces the spin-
dimer formation in the ground state. These results clearly
indicate that our modelHso shows a nontrivial feedback ef-
fect between orbital and spin degrees of freedom at finite
temperatures.

The strong interplay between orbital and spin also shows
up in the temperature dependence of the magnetic suscepti-
bility at high temperatures. There, we expect a deviation
from the Curie-Weiss behavior due to the interplay because
Ji,i+1

s depends on the NN orbital correlationkTiTi+1l as men-
tioned in Sec. III B. The deviation can be monitored by the
temperature dependence of the effective spin exchange cou-
pling Ji,i+1

s in Eq. (27), since it gives an effective Curie-Weiss
temperatureQCW. (In the mean-field approximation,QCW
=Ji,i+1

s /2 in the 1D spin-1/2 system with NN interaction.)
In Fig. 5, we show the temperature dependence ofJi,i+1

s in
Eq. (27) scaled by the value in the high-temperature limit.

The results clearly show thatJi,i+1
s is temperature dependent

even in the temperature range where the Curie-Weiss fitting
to the experimental data has been attempted in Ref. 8.(The
energy scale ofJ will be estimated as 200–300 K from the
fitting in the next section.) We need further careful consider-
ations in the fitting of the experimental data of the magnetic
susceptibility to estimate the model parameters.

2. Comparison with experimental results

Next, we show our results in the presence of the JT cou-
pling, i.e., for the case ofḡ.0 in Eq. (36), and compare
them with experimental data quantitatively. The numerical
results shown in the following are obtained from the self-
consistent iteration of the QTM calculation withM =3, and
we have confirmed theM-convergence of the results.

Figure 6 shows the results of the magnetic susceptibility
x. The results show a singularity at some temperature and a
sudden drop below there, which corresponds to the phase
transition to the low-temperature sD-oF phase as discussed
later. For comparison, we plot the experimental data for
NaTiSi2O6,

23 which increase asT decreases at high tempera-
tures and exhibit a sharp drop atTc=210 K. The numerical

FIG. 3. (Color online) Temperature dependence of the magnetic
susceptibilityx for h=0.0, 0.05, 0.10, and 0.12. Symbols represent
the results forM =4 while solid and dotted curves are those for
M =3 andM =2, respectively.

FIG. 4. (Color online) Temperature dependences of(a) the
nearest-neighbor spin correlationCs and (b) the nearest-neighbor
orbital correlationCo for h=0.0, 0.05, 0.10, and 0.12. Symbols
represent the results forM =4 while solid and dotted curves are
those forM =3 andM =2, respectively.
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results are obtained for several typical parameter sets esti-
mated by the following fitting procedure: In our model, there
are four parameters, i.e., the effective exchange couplingJ,
the ratio of Coulomb interactionsh=JH/U, the g-factor g,
and the JT coupling parameterḡ. For a certain value ofh, we
perform the two-parameter fitting by usingJ and g in the
high-temperature regime of 400 K,T,700 K, where the
JT couplingḡ is irrelevant in the present scheme of the cal-
culation. Using the optimal values ofJ andg, we determine
ḡ to reproduce the critical temperatureTc=210 K. We
thereby obtain the optimal set ofJ, g, and ḡ for a certain
value ofh.

In Fig. 6, we show the results of the fitting for
h=0.05, 0.10, and 0.12 as typical examples. The estimates
of the parameters aresJ,g,DJTd=s213 K,1.85,86 Kd,
s250 K,1.87,90 Kd, and s296 K,1.90,89 Kd for h=0.05,
0.10, and 0.12, respectively. As shown in the figure, the nu-
merical results well reproduce the experimental data, except
for a small deviation nearTc (discussed below). Although we
cannot determine the best set of the parameter values only
from the present fitting, we find that the estimates are quite
reasonable in thist2g compound: The estimates ofJ
,200–300 K are comparable to the estimate based on mi-
croscopic parameters in Sec. II. As for theg factor, although
there is no estimate for the present compound as far as we
know, it is known thatg becomes slightly smaller than two in
somet2g compounds,24,25 and therefore, we believe that our
estimates ofg are reasonable. Furthermore, the estimates of
DJT,90 K, which are smaller than the exchange energyJ,
also appear to be reasonable fort2g electron systems.(We
will comment on the magnitude ofDJT in the end of this
section.) Therefore, we believe that our effective model(1)
with realistic parameters can describe successfully the pecu-
liar properties of the pyroxene compound NaTiSi2O6.

We note that the small deviation nearTc can be attributed

to the approximation in the treatment of the JT distortionQ̄i:

Our method to determineQ̄i is not able to include effects of
the short-range correlations and thermal fluctuations of lat-
tice distortions, which tend to enhance the spin-singlet fluc-

tuation and suppress the magnetic susceptibilityx. It is there-
fore reasonable that our method overestimatesx around the
critical point, where the effects become significant. We be-
lieve that better agreement nearTc may be obtained by in-
cluding such effects, however, this interesting problem is left
for further study.

As shown in Fig. 6, the magnetic susceptibility of our
model shows an exponential decay at low temperatures well
belowTc. We estimate the spin gapDs from the results below
0.5 Tc by the fitting function

x ~ exps− Ds/Td. s46d

The estimates ofDs are 665, 640, and 638 K forh=0.05,
0.10, and 0.12, respectively. In experiment, the spin-gapDs is
estimated as,500 K,8 which is comparable to our numerical
results.

Next, we show the results of the spin and orbital correla-
tions in Fig. 7. Here, we plot only the results for the param-
eter set ofsJ,h ,DJTd=s250 K,0.10,90 Kd as a typical ex-
ample since essentially the same behavior is obtained for
other parameter sets in Fig. 6.26 The correlations take the
same values as those forDJT=0 aboveTc. Below Tc, the NN
spin correlations on odd and even bonds,Cs

odd andCs
even, take

different values and converge to −3/4 or 0 asT→0. This
indicates that the translational symmetry is broken in the
spin-dimer phase.(Note that one of the doubly-degenerate

ordered states is selected depending on the initial set ofhQ̄ij
used in the self-consistent calculation.) On the other hand,
the NN orbital correlationCo is uniform and goes to the
value of 1/4 asT→0. As shown in the inset of Fig. 7(b), the
isospin polarizationkTil becomes finite belowTc, indicating
the long-range orbital ordering. These results explicitly show
that the system belowTc is in the sD-oF phase in Fig. 2(c).

In Fig. 8, we plot the effective spin-exchange coupling
Ji,i+1

s , corresponding to Eq.(27) in the case ofDJT=0. For a
finite DJT, we have to keep the linear terms ofkTil in the

FIG. 5. (Color online) Effective spin exchange couplingJi,i+1
s in

Eq. (27) for h=0.0, 0.05, 0.10, and 0.12. The results are scaled by
their values in the high-temperature limit,Ji,i+1

s sT→`d.

FIG. 6. (Color online) Comparison between numerical and ex-
perimental results of the magnetic susceptibilityx. Solid, dotted,
and dashed curves represent the numerical results forsJ,h ,g,DJTd
=s213 K,0.05,1.85,86 Kd, s250 K,0.10,1.87,90 Kd, and
s296 K,0.12,1.90,89 Kd, respectively. Bold gray curve represents
the experimental data in Ref. 8.
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reduced spin Hamiltonian in Eq.(26), which give rise to an
additional term −Js−1diCskTil+kTi+1ld /2 to Ji,i+1

s in Eq. (27).
As shown in Fig. 8, the value ofJi,i+1

s deviates from that for
DJT=0 belowTc, and takes two alternative values from bond
to bond. This clearly shows the alternating behavior of the
magnetic coupling in the spin-dimer state. At low tempera-
turesT&150 K, the dimerization is almost perfect, i.e.,Ji,i+1

s

on the weak bonds are almost zero. Hence, there the system
consists of almost independent spin-singlet pairs. Note that
Ji,i+1

s on the strong bonds is surprisingly enhanced up to
,1000 K. The almost perfect dimerization and the enhanced
exchange coupling are remarkable aspects of the present
spin-orbital-lattice coupled system.

Our estimates of the JT stabilization energyDJT,90 K
are considerably smaller thanTc=210 K as well asJ=200
−300 K. This suggests that the critical temperatureTc is not
determined mainly by the JT coupling, and that the balance
of the JT coupling and the spin-orbital intersite interaction is
important in thist2g electron system. Moreover, we note that
the phase transition occurs below the temperature where the
orbital correlation Co changes its sign from negative
(antiferro-type) to positive(ferro-type) as shown in Fig. 7(b).
This indicates an importance of the interplay and the feed-
back effect between spin and orbital in the present system.

Therefore, we conclude that the pyroxene compounds are
typical t2g electron systems where the JT energy scale is
relatively small and the bare interplay between spin and or-
bital degrees of freedom plays a central role in the thermo-
dynamic properties.

V. SUMMARY AND CONCLUDING REMARKS

In this paper, we have studied the effective spin-orbital-
lattice coupled model that we derived to understand the pe-
culiar phase transition to the spin-singlet state inATiSi2O6
(A=Na, Li). Using the mean-field-type analysis and the nu-
merical quantum transfer matrix method, we have clarified
that the interplay between spin and orbital degrees of free-
dom plays a central role in thermodynamic properties of the
system. At high temperatures, both spin and orbital correla-
tions are antiferro-type and compete with each other. As tem-
perature decreases, the antiferromagnetic spin correlation
grows rapidly and yields the sign change of the orbital cor-
relation from antiferro- to ferro-type so that the frustration is
released. This ferro-type orbital correlation with the Jahn-
Teller coupling finally causes a transition to the spin-dimer
and orbital-ferro ordered phase. The feedback effect between
orbital and spin degrees of freedom results in peculiar tem-
perature dependence of the magnetic susceptibility. We have
shown that the magnetic susceptibility data for NaTiSi2O6
can be explained by our effective model with realistic values
of parameters.

The transition to the spin-singlet state in the present sys-
tem shows several different aspects from conventional spin-
Peierls systems. One is the temperature dependence of the
magnetic susceptibility. In the present system, the rapid de-
cay of the susceptibility due to the spin-singlet formation
occurs even without a broad peak as a fingerprint of well-
developed spin correlations. This is because the driving force
of the transition is not the magnetoelastic interaction but the
orbital-ferro correlations assisted by the Jahn-Teller distor-
tion. However, this does not mean that the orbital-lattice
physics is dominant as ineg electron systems such as CMR
manganites. In the presentt2g electron system, the Jahn-

FIG. 7. (Color online) Temperature dependences of(a) the
nearest-neighbor spin correlationsCs, Cs

odd, andCs
even, and (b) the

nearest-neighbor orbital correlation Co for sJ,h ,DJTd
=s250 K,0.10,90 Kd. Circles show the data forDJT=0 for com-
parison. Inset in(b): Polarization of orbital isospin.

FIG. 8. (Color online) Temperature dependence of the effective
spin-exchange couplingJi,i+1

s for sJ,h ,DJTd=s250 K,0.10,90 Kd.
Circles show the data forDJT=0 for comparison.
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Teller energy scale is considerably smaller than the orbital
and spin-exchange interactions, and the orbital-ferro correla-
tion is induced by the keen competition between the orbital
and spin degrees of freedom. These illuminate a peculiar
feature of the presentt2g system, namely, there the interplay
between orbital and spin appears explicitly without being
dominated by Jahn-Teller physics.

Another peculiar aspect of the spin-dimer state in our
model is that the spin-singlet pairs are formed on the longer
Ti-Ti bonds rather than the shorter ones. In the present sys-
tem, say, thedxy orbital ordering is concomitant with the
flattening of TiO6 octahedra in thez direction, which elon-
gates Ti-Ti bonds in thexy plane. Since the spin-exchange
interaction is strong between the nearest-neighbor sites in the
xy plane in thisdxy-ordered state, the spin-singlet dimers are
formed on the longer Ti-Ti bonds. This aspect is clearly
different from the conventional spin-Peierls systems in
which the spin-singlet pairs are on shorter bonds. In our
model, however, we take account of only the tetragonal Jahn-
Teller mode which couples todxy and dyz orbitals. For de-
tailed comparisons with the experimental data, which show
much complicated lattice structure at low temperatures, it is
necessary to include more general lattice distortions in our
theory. In particular, we note that the magnetoelastic cou-
pling can be substantial in the low-temperature orbital-
ordered phase since the orbital-ferro ordering largely en-
hances the effective spin-exchange coupling on strong bonds
up to,1000 K as shown in Sec. IV B 2. The magnetoelastic
coupling will cause an opposite effect on the Ti-Ti bond
lengths since it tends to shorten the spin-singlet Ti-Ti bonds.
Further study is necessary to conclude the low-temperature
lattice structure. Note that the inclusion of such a magneto-
elastic effect does not alter our conclusions on the mecha-
nism of the phase transition because it becomes important
only when the orbital-ferro ordering is well established far
below the critical temperature.

In the present study, we have compared our results of the
magnetic susceptibility with the experimental data for the Na
compound NaTiSi2O6. There is another compound in this
pyroxene family, i.e., LiTiSi2O6. The Li compound also
shows the phase transition atTc=230 K showing a sudden
decay of the magnetic susceptibility belowTc.

8 However, the
susceptibility data show some extra anomalies probably due
to impurity phases. We believe that our model describes es-
sential physics in both the Na and Li compounds. Further
experimental study including the sample refinement is de-
sired to compare the data of Li compounds to our results.

As shown in Sec. III A and in Appendix B, the low-
temperature phase of our effective model turns into the spin-
ferro and orbital-antiferro ordered state for larger values ofh
than the critical value ofhc.0.18. The parameterh is the
ratio of the Hund’s-rule coupling to the intraorbital Coulomb
repulsion and considered to beh,0.1,hc in the present
compounds. Unfortunately, it is difficult to control the pa-
rameterh experimentally, however, it may vary for different
compounds to some extent. Ifh becomes close tohc in some
compound, there would occur interesting phenomena related
to the criticality of the phase transition athc. One interesting
example is the phase transition from the spin-dimer and
orbital-ferro state to the spin-ferro and orbital-antiferro state

by applying the external magnetic field. We have investi-
gated this issue in our effective model and indeed observed
the field-induced phase transition. The results will be re-
ported elsewhere. The experimentalal study of this issue is
left for future study.
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APPENDIX A: QUANTUM TRANSFER MATRIX
(QTM) METHOD

In this appendix, we briefly review the algorithm of the
QTM method.22 The QTM calculation is applied to the ef-
fective 1D model(36) in the self-consistent scheme as de-
scribed in Sec. IV A.

After the Suzuki-Trotter decomposition, the partition
function is represented in terms of the transfer matrix as

Z = Tre−bH̃ = lim
M→`

Tr p
n=1

L/2

TM sA1d

whereb=1/T (we set the Boltzmann constantkB=1), M is
the Trotter number, andL is the system size. The transfer
matrix TM is given by

TM = fe−bh̃2n−1,2n/Me−bh̃2n,2n+1/MgM , sA2d

where H̃ is decomposed into the summation of the local

Hamiltonianh̃i,i+1 for bond si , i +1d. We omitted the indexn
on the transfer matrixTM sinceTM for the present system is
invariant under the two-site translation.

The advantage of the QTM method is that we can calcu-
late thermodynamic quantities directly from the largest ei-
genvaluelmax and the corresponding rightuvrl and left kvlu
eigenvectors ofTM.27 (Note that the eigenvectorsuvrl andkvlu
are different, in general, sinceTM is an asymmetric matrix.)
The partition function of the infinite system is found to be
Z=limL→`lmax

L/2 , and consequently, the free energy per site
can be obtained as

f = −
1

2b
ln lmax. sA3d

Hence, once the value oflmax is obtained, we can calculate
any bulk quantity in the thermodynamic limit by taking the
appropriate derivative of the free energyf.

Furthermore, we can calculate expectation values of site
and bond operators.28 For instance, an expectation value of a
product of operatorsO2n−1,2nO2n,2n+1 defined at sitess2n
−1,2n,2n+1d is obtained from the formula

kO2n−1,2nO2n,2n+1l = lim
M→`

kvluT M
O uvrl

lmax
, sA4d

where
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TM
O = O2n−1,2nO2n,2n+1TM . sA5d

In the present study, we diagonalize the transfer matrixTM
numerically using the simple power method, which is known
to be stable in the diagonalization of asymmetric matrix.29

Then, using Eqs.(A4) and (A5), we calculate the magneti-
zationm [Eq. (39)] and the NN spin and orbital correlations
Cs andCo [Eqs.(40) and (41)] by

m=
kS2n−1

z l + kS2n
z l

2
, sA6d

Cs =
kS2n−1 ·S2nl + kS2n ·S2n+1l

2
, sA7d

Co =
kT2n−1T2nl + kT2nT2n+1l

2
, sA8d

respectively. The NN spin correlations on odd and even
bonds[Eqs.(42) and (43)] are given by

Cs
odd= kS2n−1 ·S2nl, sA9d

Cs
even= kS2n ·S2n+1l, sA10d

respectively. In the spin-dimer phase,Cs
odd and Cs

even may
take different values.

APPENDIX B: TRANSITION TO SPIN-F
AND ORBITAL-AF PHASE

In this appendix, we discuss thermodynamic properties of
the model(1) for larger values ofh than those studied in Sec.
IV B. There, the sF-oAF ground state is expected to be stable
from the mean-field-type analysis in Sec. III A.

We first discuss our numerical results for the spin-orbital
modelHso, i.e., the effective model(36) without the JT cou-
pling ḡ=0, corresponding to the results in Sec. IV B 1. Fig-
ure 9(a) shows the results of the magnetic susceptibilityx.
The result forh=0.16 exhibits a sharp drop asT→0 simi-
larly to the results in Fig. 3, indicating the spin-singlet
ground state. On the contrary, forh=0.18 and 0.20,x exhib-
its a divergent behavior asT→0, suggesting that the ground
state is magnetic. These suggest that there is a ground-state
phase transition between nonmagnetic and magnetic phases
at h=hc,0.18.

To clarify the nature of the transition in more detail, we
show the results of NN spin and orbital correlationsCs and
Co in Figs. 9(b) and 9(c), respectively. The results forh
=0.16 show similar features to those for smallerh shown in
Sec. IV B and indicate that the system exhibits the sD-oF
ground state. Forh=0.20, on the other hand, the antiferro-

type orbital correlationCo develops rapidly, yielding the sign
change of the spin correlationCs. After the sign change, the
two correlations grow cooperatively and approach the values
of Cs=1/4 andCo=−1/4 asT→0. These are the values
expected in the sF-oAF ground state shown in Fig. 2(b).
Hence, the system withh=0.20 exhibits the sF-oAF ground
state. Forh=0.18, Cs and Co are both antiferro-type and
compete with each other down to the lowest temperature
studied here. This suggests thath=0.18 is close to the phase
boundary between the sD-oF and sF-oAF phases. Therefore,
we conclude that the ground state of the spin-orbital model
Hso undergoes a phase transition between the sD-oF and sF-
oAF phases ath=hc,0.18. The critical value is in good
agreement with the mean-field prediction in Sec. III A.

In the case of a finite JT coupling, we have found that
there occurs a finite-temperature phase transition to the low-
temperature sF-oAF phase forh.hc or to the sD-oF phase
for h,hc. The details will be reported elsewhere.

FIG. 9. (Color online) Temperature dependences of(a) the mag-
netic susceptibilityx, (b) the nearest-neighbor spin correlationCs,
and(c) the nearest-neighbor orbital correlationCo for h=0.16, 0.18,
and 0.20. Symbols represent the results forM =4 while solid and
dotted curves are those forM =3 andM =2, respectively.

ORBITAL AND SPIN INTERPLAY IN SPIN-GAP… PHYSICAL REVIEW B 70, 214404(2004)

214404-11



*Present address: Division of Physics, Graduate School of Science,
Hokkaido University, Sapporo 060–0180, Japan. Electronic ad-
dress: hikihara@phys.sci.hokudai.ac.jp

1Y. Tokura and N. Nagaosa, Science288, 462 (2000).
2M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys.70, 1039

(1998).
3K. I. Kugel and D. I. Khomskii, Sov. Phys. Usp.25, 231 (1982).
4E. O. Wollan and W. C. Koehler, Phys. Rev.100, 545 (1955); J.

B. Goodenough,ibid. 100, 564 (1955).
5S. Miyasaka, Y. Okimoto, M. Iwama, and Y. Tokura, Phys. Rev. B

68, 100406(R) (2003).
6Y. Motome, H. Seo, Z. Fang, and N. Nagaosa, Phys. Rev. Lett.

90, 146602(2003).
7G. Khaliullin, P. Horsch, and A. M. Oleś, Phys. Rev. Lett.86,

3879 (2001).
8M. Isobe, E. Ninomiya, A. Vasil’ev, and Y. Ueda, J. Phys. Soc.

Jpn. 71, 1423(2002).
9E. Ninomiya, M. Isobe, Y. Ueda, M. Nishi, K. Ohoyama, H.

Sawa, and T. Ohama, Physica B329–333, 884 (2003).
10J. W. Bray, L. V. Interrante, I. S. Jacobs, J. C. Bonner, inEx-

tended Linear Chain Compounds, edited by J. C. Miller(Ple-
num, New York, 1983), Vol. 3, p. 353; J. P. Boucher and L. P.
Regnault, J. Phys. I6, 1939 (1996); K. Uchinokura, J. Phys.:
Condens. Matter14, 195 (2002).

11N. Katoh, J. Phys. Soc. Jpn.68, 258 (1999).
12M. J. Konstantinović, J. van den Brink, Z. V. Popović, V. V.

Moshchalkov, M. Isobe, and Y. Ueda, Phys. Rev. B69,
020409(R) (2004).

13K. I. Kugel and D. I. Khomskii, Sov. Phys. Solid State17, 285
(1975).

14P. Millet, F. Mila, F. C. Zhang, M. Mambrini, A. B. Van Oosten,
V. A. Pashchenko, A. Sulpice, and A. Stepanov, Phys. Rev. Lett.

83, 4176(1999).
15We note that the transfer integrals may be modified by the JT

distortion. We neglect the small corrections in the present study.
16H. Tsunetsugu and Y. Motome, Phys. Rev. B68, 060405(R)

(2003); Y. Motome and H. Tsunetsugu, cond-mat/0406039
(unpublished).

17T. Mizokawa and A. Fujimori, Phys. Rev. B54, 5368(1996).
18Y. Imry, P. Pincus, and D. Scalapino, Phys. Rev. B12, 1978

(1975); H. J. Schulz, Phys. Rev. Lett.77, 2790(1996).
19P. W. Anderson, Phys. Rev.115, 2 (1959).
20L. M. Roth, Phys. Rev.149, 306 (1966).
21S. Inagaki and R. Kubo, Int. J. Magn.4, 139 (1973); S. Inagaki,

J. Phys. Soc. Jpn.39, 596 (1975).
22H. Betsuyaku, Phys. Rev. Lett.53, 629 (1984); Prog. Theor.

Phys. 73, 319 (1985).
23The experimental data shown in Fig. 6 correspond toxm in Ref. 8

which contain only the intrinsic contributions after the subtrac-
tions of a Curie contribution from magnetic impurities and a
constant term due to core-electron diamagnetism and the Van
Vleck paramagnetism.

24V. Kataev, J. Baier, A. Möller, L. Jongen, G. Meyer, and A.
Freimuth, Phys. Rev. B68, 140405(2003).

25I. Yamada, H. Manaka, H. Sawa, M. Nishi, M. Isobe, and Y.
Ueda, J. Phys. Soc. Jpn.67, 4269(1998).

26Note that the results of the correlations are independent of the
value ofg.

27M. Suzuki and M. Inoue, Prog. Theor. Phys.78, 787 (1987); M.
Inoue and M. Suzuki, Prog. Theor. Phys.79, 645 (1988).

28X. Wang and T. Xiang, Phys. Rev. B56, 5061(1997).
29E. Carlon, M. Henkel, and U. Schollwöck, Eur. Phys. J. B12, 99

(1999).

T. HIKIHARA AND Y. MOTOME PHYSICAL REVIEW B 70, 214404(2004)

214404-12


