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Diamond and g-tin structures of Si studied with quantum Monte Carlo calculations
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We have used diffusion quantum Monte Ca(@MC) calculations to study the pressure-induced phase
transition from the diamond t@-tin structure in silicon. The calculations employ the pseudopotential tech-
nigue and systematically improvable B-spline basis sets. We show that in order to achieve a precision of 1 GPa
in the transition pressure the noncanceling errors in the energies of the two structures must be reduced to
30 meV/atom. Extensive tests on system size errors, nonlocal pseudopotential errors, basis-set incompleteness
errors, and other sources of error, performed on periodically repeated systems of up to 432 atoms, show that all
these errors together can be reduced to well below 30 meV/atom. The calculated DMC transition pressure is
about 3—4 GPa higher than the accepted experimental range of values, and we argue that the discrepancy may
be due to the fixed-node error inherent in DMC techniques.
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I. INTRODUCTION (001),2 and the energies of carbon clustéfs.

The importance of the quantum Monte Carlo technique | N€ Primary quantity calculated in this work is the total
(QMC) for computing the energetics of condensed matter i€NErJdy Per atom in the perfect crystal. This energy is subject
becoming ever more widely appreciated. Even though itdo different kinds of error. The first kind consists of errors
computational demands are much greater than those of stal{lat €an in principle be reduced below any specified toler-
dard density functional theoryDFT), its considerably —&1C€ for example statistical error, time step and population

greater accuracy for many systénmsakes the additional ef- control bias, basis-set error in the trial wave function, and
fort well worthwhile. Indeed, QMC is often seen as one oférror due to the limited size of the periodically repeated cell.

. . . Then there are errors that cannot be systematically elimi-
the key ways of assessing the madequac[es_ of'bﬁmev— nated, but whose size can at least be estimated by purely
ertheless, QMC itself is not exact, and it is important to

be it for diff t Kinds of brobl A i theoretical means. The main error of this kind comes from
probe Its accuracy Tor different kinds ot problem. A Sensitivey,e g4 cajled “pseudopotential localization approximation,”

way of doing this is to examine the r_elative energies of dif-\; .- cannot be avoided in present QMC techniques based
ferent crystal structures of a material. We present here g nonlocal pseudopotentid&Finally, there are errors that
QMC study of the energetics of the diamond gn struc- — cannot be eliminated and are also difficult to assess except
tures of silicon; we calculate their total energies as a functiorhy comparison with experiment. There is only one error of
of volume, and hence the transition pressure between thgis kind, the so called QMC “fixed-node error.” Our strategy
structures, for which there are experimental d&tiive ana-  in this work will be to demonstrate that all errors of the first
lyze in detail the sources of the QMC errors, and use thé&ind have been made negligible, do our best to estimate er-
comparison with experiment to gauge the likely size of errorgors of the second kind, and then appeal to experiment to
that cannot be eliminated. assess the fixed-node error.

The QMC calculations are performed within periodic ~ We have chosen to study the diamogein transition in
boundary conditions. Only the valence electrons are treate8i for several reasons. First, it has been investigated by sev-
explicitly, the interactions between valence and core eleceral experimental grougswith results that are consistent
trons being represented by pseudopotentials. We perform twenough for the present purpose. Second, there is already con-
type of QMC calculations: variational Monte CaffgyMC)  siderable QMC experience with diamond-structure Si, from
and diffusion Monte CarlgDMC). DMC results are consid- which it is known that the cohesive energy is correct to
erably more accurate, but VMC plays an indispensable rolevithin the experimental error of +80 meV/atom, and the
because it provides the optimized trial many-electron wavequilibrium lattice parameter and bulk modulus are also ac-
functions needed in DMC. This set of techniques is describedurately reproduce#i?*?>The third and most important rea-
in detail in a recent reviewand implemented in theasiNo  son for studying this transition is that it is likely to be theo-
cod€ used in this work. The techniques are known to giveretically troublesome, because of the significant change of
cohesive energies for group IV elements in the diamoncklectronic structure. In the fourfold coordinated diamond
structure in very close agreemegwithin 100 meV/atom  structure, Si is a semiconductor, whereas in the sixfold coor-
with experimental values. They have also indicated substardinateds-tin structure it is a semimetal. The difference in the
tial DFT errors in, for example, the formation energy of self- electronic exchange and correlation energies between the
interstitials in SE the energetics of K dissociation on Si  two phases is likely to lead to noncancelling errors. This is
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manifested in the serious underprediction of the transitionng walkers. In practice, it is essential to use “importance
pressure by the local density approximati@A), the pre- sampling,” which means computing the evolution of the
dicted value of 5.7—6.7 GPa'®being only about half of the functionf definedf =®¥, where the trial wave functioW,
experimental value of 10.3-12.5 GP@n fact, a value of is a good approximation to the true many-electron wave
8.8 GPa for the transition pressure has also been reported liynction, taken from the VMC calculations. The time evolu-
one experimental groul§,but this is thought to be an under- tion of f is given by:
estimatg. This error is considerably reduced by the general-
ized gradient approximatiotGGA), which gives transition _HRY _ }sz(R 0+ V - [Vo(RF(R,D]
pressure between 12.2 and 14.6 GPEssentially the same ot 2 ’ P '
DFT errors lead to a LDA underprediction of the Si melting
temperature by 23%/'8reduced to 12% by the GGK.The *ER) -EJIRD, 2)
reason why such transitions are a sensitive test of QMC  wherevp(R)=V In|¥(R)| is the N-dimensional drift ve-
any other total-energy methpis that rather small changes in |ocity andE, (R), as before, is the local energy. In principle,
relative energies give substantial changes in the transitiofhe DMC scheme yields the exact ground state energy, but
pressure: in Si, an energy change of 100 meV/atom gives fyr fermion systems there is a fundamental problem. This is
change in transition pressure 6f3 GPa. that® changes sign &R varies, so that it can only be treated
The content of this paper is as follows. In Sec. Il, weas a probability in regions oR space where it does not
summarize briefly the QMC techniques and describe in morghange sign. These regions, and the nodal surfaces that de-
detail the sources of error and the measures we have takenfifies their boundaries, are necessarily those of the trial wave
eliminate or reduce them. Section IIl reports our numericakynction W;. The consequence is that the energy given by
results, presenting our extensive tests on the different kindg\c is not the true ground state energy but is an upper
of error and then our results for the energies, volumes, angound because of the constraint that the nodal surface is that

transition pressure of the diamorgtin transition and the f ¥;. This gives rise to the so called “fixed-node” error,
comparison with experiment. In Sec. IV, we discuss the imyyhich is one of the concerns of this paper.

plications of the work and draw conclusions. In summarizing the technical questions that are important
in this work, we focus on the implementation of DMC, since
Il. METHODS this determines the accuracy of the final results. The time

evolution of the diffusing walkers is computed using the
Green’s function technique in the short-time approximation.
We shall present tests showing that the time step used in this
lé\pproximation can be chosen to render errors negligible. For
the representation of the single-electron orbitals contained in
: . . the Slater determinan®' and D!, a number of basis sets
ground-state enerdlo. Given a normahzed tna! wave func- have been used in previous work, including plane waves and
tion Wx(R), Whgre R:(rl’r?: -fy) is a 3\I-d|men5|onfall Gaussians. In the present work, we use a B-spline basis, also
vector representing the positionshéfelectrons, and denoting |, own as “blip functions,” consisting of piecewise continu-
by H the many-electron Hamiltonian, the variational energyous localized cubic spline functions centred on the points of
E,=(¥{|H|V)=E, is estimated by sampling the value of a regular grid. For a detailed account of this basis set, and an
the local energyEL(R)E\If}l(R)l:l*I'T(R) with configura- explanation of the great advantages of using this basis for

tions R, distributed according to the probability density QMC, see Ref. 19. The key point here is that basis-set con-
W(R)2. Our trial wave functions are of the usual Slater- vergence 1S reaghly a_ch|eved simply by (_jecre_\asmg the spac-
Jastrow type: ing a of thg blip grid. Rogghly speaking, if the single-
electron orbitals would require a wave vector cutgff, for
V(R)=D'D'e, (1) their representation in a plane-wave basis, then the blip-grid

) spacing will need to ba< =/k,,, and rapid convergence is
whereD' andD' are Slater determinants of up- and down- expected as is reduced below this value.

spin singlg-elgctron orbitals, gr&:] is the so called Jastrow An important source of error in QMC calculations using
factor, which is the exponential of a sum of one- and two-periodic boundary conditions is the limited size of the repeat-
body terms, with the latter being a parametrized function Ofing cell. In DFT calculations one normally studies a primi-
electron separation, designed to satisfy the cusp conditiongye unit cell and integrates quantities over the Brillouin
The parameters in the Jastrow factor are varied to minimizggne 4 procedure whose cost is proportional to the number
the variance of the local enerdy . of k-points sampled. This is equivalent to studying a much
In practice, VMC results are not accurate enough, and ongyrger unit cell with a singlé point. In many-body calcula-
needs to use DMC. The basic idea is to compute the evolyjons, it is not possible to reduce the problem to one within
tion of the many-body wave functiomb by the time-  ine primitive unit cell because the many-body Hamiltonian is
dependent Schrodinger equation in imaginary tin#/t  not invariant under the translation of a single electron by a
=(H-Ep®, whereEs is an energy offset. The equivalence primitive lattice vector. In other words, one has to use a large
of this to a diffusion equation allon® to be regarded as a simulation cell and solve at orlepoint, and the cost is pro-
probability distribution represented by a population of diffus- portional to the cube of the number of electrons in the cell.

The VMC and DMC techniques used in this work have
been described in detail in reviewspo here we recall rather
briefly the underlying ideas and outline the sources of erro
that we have tried to bring under control.

The VMC method gives an upper bound on the exac
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This means that converging QMC calculations with respectransition pressure. The sources of controllable error are:
to system size is much more costly than converging DFTsampling statistics, time step, blip-grid spacing, cell size,
ones. We follow the common practfcef correcting for this  pseudopotentials, localization approximation, and CPP.

error by using separate DFT calculations: we add to the To ensure that sampling bias is negligible, our DMC cal-
DMC energies the differenc&E[_, between the DFT-LDA culations are run with a target _population of 640 walkers for
energy calculated with a very large setlofpoints and the Doth crystal structures. With this number of walkers, the sta-

DFT-LDA energy calculated using the same sampling as irfistical error necessarily falls well below our threshold of
the DMC calculation. 30 meV/atom. The reason for this is that the DMC decay to

In this work, we used pseudopotentials generated by botH€ ground state occurs after100 steps, but the calculations
Hartree-FockHF) and LDA calculations on the Si atom. The "€€d to extend over-1000 steps to ensure complete stabil-
nonlocality that is essential in these pseudopotentials give'éy' With the cell sizes used _m_thls work and the numbe_r of
rise to unavoidable errors in DMC. The reason is that thewalkers we employ, the statistical error afted000 steps is

diffusi tion with a nonlocal Hamiltonian becomes: already less than 5 meV/atom. As an illustration of this, Fig.
ftusion equation wi iton * 1 shows results from typical simulations of the diamond and

B-tin structures, close to their equilibrium volumes. The

o = _EVZf +V - [vpf]+ w]« rapid decay to the ground state is clear, and one also notes
ot 2 ¥y the stability of the walker population around the target value
~ B of 640. For this number of walkers, the DMC calculations

_{ oWy Vo® f 3) are efficient on up to 128 processors. Beyond this processor

WV o ' number, parallel scaling worsens, because fluctuations in the

- number of walkers start to cause inefficient load balancing.
whereV,, is the nonlocal component of the pseudopotential. |n Fig. 2 we show tests on time step errors, performed
The last term in the equation can change its sign as tim@ith a cell containing 16 atoms in the-tin structure at the
evolves, and therefore presents the same difficulties as thglume V=15 A3/atom, which is close to the calculated
fermion sign problem. To avoid this difficulty one introduces DFT-LDA equilibrium volume. We tested time steps between
the so called “localization approximation,” in which the last 0.01 and 0.15 a.u., with the length of the runs chosen so that
term in Eq.(3) is simply neglected. If the trial wave function the statistical error was less than 10 meV/atom. The results
W1 is close to the trugfixed nodg ground state wavefunc- show that with a time step of 0.03 a.u. the error is smaller
tion W, then this approximation introduces an error which isthan the target accuracy, and we therefore used a time step of
small and proportional t6¥—¥)2. This error, however, is .03 a.u. for our final calculations.
nonvariational, so it can decrease as well as increase the total The blip-function basis sEtwas also tested with the 16-
energy*” atom B-tin cell andvV=15 A3/atom. In Table | we report the

We also tested the effect of adding a “core polarizationvalues of the kinetic energy, the local potential energy and
potential” (CPP?02123to the pseudopotential. CPPs go be-the nonlocal potential energy calculated using DFT, VMC,
yond the standard pseudopotential approximation, by deand DMC, both with plane-wave®W) and blips. The PW
scribing the polarization of the atomic cores by the electronsgesults were obtained using the PWSCF @deith a PW
and the other atomic cores. In the CPP approximation, theutoff energy of 15 Ry. For the purpose of these tests, we did
polarization of a particular core is determined by the electrimot use a Jastrow factor in the VMC calculations, so that the
field at the nucleus from the instantaneous positions of théhree energy terms should have exactly the same values in
electrons and the other atomic cores. CPPs therefore accountT and VMC. This is clearly the case for the VMC per-
approximately for both dynamical core-valence correlationformed using PW, but there is a difference of up to
effects and static polarization effects. Our implementation 060 meV/atom when the VMC calculations are performed us-
CPPs within QMC calculations is described in Ref. 20, andng the blip representation with the natural gakE 7/ Kyay -
we used the CPP parameters reported in Ref. 21. However, this difference is reduced to less than 5 meV/atom

Details of thecAsiNO code used in all the QMC calcula- if a grid of half the spacing is usd@=/2k,,). This proves
tions are given in Ref. 7. In order to suppress statistical biaghat, provided the blip grid is dense enough, the results are
in the total energy, QMC calculations need to be run with gndistinguishable from those obtained using plane waves. For
large population of walkers, and this makes it efficient to runpyc calculations, a Jastrow factor has been included in the
on massively parallel machines, with parallelism achieved byrial wave function, and the situation is more interesting.

distributing walkers across processors. Even though the natural grid does not provide a perfect de-
scription of the single-particle orbitals, the DMC total energy
Ill. RESULTS is essentially the same as that calculated with PW. Of course,

this is what one would expect in a perfect DMC calculation,
since the total energy is independent of the trial wave func-
We present here the results of our tests on error sourcetipn. However, with the fixed-node and pseudopotential lo-
results on the diamongtin transition itself are reported in calization approximations, the total energy does in general
Sec. llI B. To provide a framework for the discussion of show a weak dependence on the trial wave function.
errors, we set ourselves the target of reducing the sum of all Tests on the size of the simulation cell were performed on
controllable errors below 30 meV/atom, this value beingboth the diamond and thetin structures, with cells contain-
chosen because it corresponds to an errdrGPa in the ing up to 432 atoms. Since we were mainly interested in the

A. Tests
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diamond— gB-tin transition pressure, we calculated the ener-approximately the same in the two structures. This indicates
gies at the two volumesV=20A3/atom and V that the residual size error can be regarded as a constant
=15 A3/atom for the diamond ang-tin structures, respec- energy offset, which will not affect physical properties such
tively, which are both close to the calculated equilibriumas structural parameters and the diameng-tin transition
volumes. As far as the transition pressure is concerned, theressure, and we therefore chose to use cells containing 128
important quantity to test is the energy difference betweeratoms.

the phases at the two volumes. The results of the tests are We tested both a HF and a LDA pseudopotential. In both
reported in Table I, where we also report the values of thecases, the local part of the pseudopotential was chosen to be
energies extrapolated to infinite cell si&, for the two the p angular momentum component. The tests were per-
structures. These are obtained by linear extrapolation kg 1/

with N the number of atoms in the repeating cell, between TABLE I. Total energyE, and the kinetic energy, local pseudo-
the k-points corrected results obtained with the two cellspotential energy and nonlocal pseudopotential energy components
containing 128 and 432 atoms. The cell size errors obtaineBkin: Eioe; @ndEy calculated using plane way®W) basis sets and

with 128-atom cells are about 110 meV/atom, and they ar&lip function basis sets with two grid spacings(energy units:
eV/atom. Results are from DFT, VMC, and DMC calculations on

Si in the B-tin structure, with a repeating cell of 16 atoms. A Ja-

-105.7 T T T T
| | strow factor was included only in the DMC calculations. Blip-grid
spacinga is specified in terms of the PW cutoff wave veckq{,y
10572 N corresponding to a cutoff energy of 15 Ry.
i | PW Blips (a= /Ky  BIips (a= 7/ 2Ka)
= -10s.
B r | DFT
'-E 10576 |- - Eyin 43.863
z | i Eoc 15.057
En 1.543
-105.78 — -
VMC
| | | Exn  43.8643) 43.9243) 43.8623)
10585 ' 0.05 ' X ' 0.15 ' 0.2 Eoc 15.0573) 15.0633) 15.0583)
Time step (.. E, 15333 1.5253) 1.5353)
FIG. 2. DMC total energy per atom as a function of time step, Bt —101.33%3)  -101.2713) -101.3413)
with error bars showing the statistical errors. The calculations wer@®@MC
performed using a cell containing 16 atoms in Bwin structure at Eot —105.7144) -105.7135) -105.7165)

the volumeV=15 A3/atom.
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TABLE Il. DMC total energies(eV/aton) for the diamond and thg-tin structures of Si, obtained from calculations on 128- and
432-atom cellsEr is the raw DMC energyAEr_ is thek-points correctionE, is the sum ofE; and AE_, andEg, is the value ofEy,
extrapolated to infinite cell size. For each cell sigE,is the differenceE,—Ey,.

128 432
Er AEr_ g Etot oE Er AEr_ Etot oE Etot

diamond -106.926) -0.102 -107.02&) 0.1085) -106.9376) -0.014 -106.956) 0.0316) -106.9205)
B-tin -106.4575) -0.045 -106.506) 0.1115) -106.4167) -0.004 -106.42() 0.0357) -106.38%5)

formed once again on the two structures witti  the B-tin structure is body-centred tetragonal, its energy de-
=15 A%/atom andv=20 A%/atom for thes tin and the dia- pends not only on volume, but also on thi ratio. For each
mond structures, respectively. We found that the energy difvolume, we should therefore minimize the energy with re-
ferences between the two structures were QH3%®nd  spect to thes/a ratio. However, using DFT-LDA calculations
0.5505) eV/atom for the HF and the LDA pseudopotentials, we found that the minimum of the energy depends rather
respectively. The two numbers are very close, which indiweakly onc/a, and that choosing/a=0.54 for all volumes
cates that the choice of the pseudopotential does not affegf interest only affects the energy by a few meV/atom. To
the results significantly. However, we believe that in a QMCcheck that thi/a ratio is also appropriate within DMC, we
calculation it is more consistent to use a HF pseudopotentia|aye performed DMC calculations at five differeit ratios
rather than a LDA one, because the former does not build i, \/= 15 A3/atom. The results of the test are displayed in
any correlation. We therefore used the HF pseudopotentiaI.Fig. 3, where we report the DMC raw data and ¥points

To test the pseudopotential localization approximation, w : ; :
performed additional calculations with the HF pseudopotene-correcuz)d results. By interpolating the DMC data, we find

. ; . that the DMC minimum is at/a=0.554, which is very close
tial by changing the local part of the pseudopotential toghe 10 the experimental value/a=0552. Eor comparison. we
angular momentum component. Calculations were per- P e P '

formed on the diamond structure with a 16-atom cell anGalso report calculations for the same structures performed
V=20 A%/ atom. Clearly, by changing the local part of the with DFT-LDA. It is clear that the dependence of the energy

pseudopotential there is no guarantee that the quality of th@n thec/a ratio is very similar in the two techniques, and
pseudopotential does not change, therefore it is conceivabf€refore we chose to usda=0.54 for all calculations.

that the total energy may change simply because the pseudo- " Fig- 4 we report the calculated energige/) for the
potential has changed. So we have first performed a DFTWO structures corrected fee-points errors. CPP corrections
LDA calculation with this pseudopotential, and found a dif- &€ not included in these results. These energy points were
ference of less than 2 meV/atom when the local part isthen used to fit the parameters of the Birch-Murnaghan equa-
changed fronp to s, which is extremely small for our pur- tion of state:

poses. We then performed a DMC simulation with the HF
pseudopotential having thechannel as the local part, and
within a statistical error of 10 meV/atom we found no en-
ergy difference from the calculation with the HF pseudopo-
tential and thep channel as the local part. This indicates that
the error from the localization approximation is probably less -106:30
than 10 meV/atom in this case.

As a final test on the pseudopotential, we considered theg
inclusion of a CPP. We expect the CPP energy to be mMOres 440l
important in theB-tin structure, which has a smaller volume A
and therefore the electrons and ions are on average closer "
one another. Tests were performed on both structures at th
two volumesV=15 A%/atom andV=20 A3/atom for the
B-tin and the diamond structures, respectively. We found that
with the CPP the energy difference between the two calcula-
tions was 0.50%10) eV/atom, which is slightly lower than y ; 50
the value of 0.53%10) eV/atom obtained without the CPP. c/a
The inclusion of this correction has a small effect on the
transition pressure which will be discussed in Sec. Il B.

-106.20 — . . . =

-106.50

]
0.65 0.70

FIG. 3. DMC energies for thg-tin structure at the volum¥®
=15 A3/atom as a function of the/a ratio, performed with cells
containing 128 atom@&®). DFT results performed with the equiva-
lent mesh ok-points are also showfD). DMC k-points corrected
results are shown as filled squares, and DFT results fully converged
We now turn to the energetics of the diamond &@tin  with respect tok-point sampling as open squares. The lines are
structures and the transition pressure between them. Singgides to the eye.

B. Results
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zero-pressure bulk moduluBy its derivative with respect to
pressure at zero pressure, diglthe energy minimum. The
fitted curves are also reported in the same figure. The values
of the fitted parameters are reported in Table Il together with
DFT-LDA and DFT-GGA results and experimental data. In
the table we also report previous DMC results obtained by Li
et al?* for the diamond structure. The agreement with the
experimental data is extremely good, and is also somewhat
better than obtained previously by &i al24 In particular, the
equilibrium volume is overestimated by only 0.5%. In com-
parison, DFT-LDA underestimates the equilibrium volume
by 2%, and the two DFT-GGA BP and PWdbverestimate

it by 1% and 2%, respectively.

Using our results, we obtain a DMC transition pressure of
~19 GPa. Before comparing our calculated transition pres-
sure with the experiments, we note that our calculations do
not include zero-point motion, which has been shown to be

(@) structures. The size of the points corresponds to about tWoytcerant in the two phases. Moreover, experimental transi-

standard deviations. The dashed and continuous lines are Birc

Murnaghan EOS curves fitted to the data.

E=E +§VB §(1+2§)(V—°>4/3
- =0 2 020 4 Vi

_§(Vo)?_3 (V_> 1( §>}
2<v> ;Araly ) *o\ersg) @

where ¢=(3-3By/4), V, is the equilibrium volumeB, the

}ffon pressures are only reported at room temperature, there-
fore there is a significant contribution to the free energy com-
ing from the difference in vibrational free energies between
the two structures. As shown by Gaal-Naglyal.,'! the zero
point motion stabilizes thg-tin structure with respect to the
diamond structure, and lowers the transition pressure by
about 0.3 GPa. At room temperature the stabilization of the
B-tin structure lowers the transition pressure by an additional
1 GPa, so that the two effects lower the transition pressure
by ~1.3 GPa. If we add this correction to our calculated

TABLE Ill. Structural properties and the diamonég-tin transition pressure,, calculated within DFT
using different exchange-correlation functionals and within DNgis the equilibrium volumeB, the zero
pressure bulk modulug, is cohesive energ\Ey is the calculated difference of minimum energy between
the two structures, and/a is the ratio of tetragonal lattice parameters of {B«in structure. Theoretical
cohesive energies have all been corrected for zero point m@i66 and 0.04 eV in the diamond aetin
structures, respectivelyThe structural parameters calculated within DMC for the diamond structure were
obtained from a Birch-Murnaghan equation of state fit to energies calculated at volumes between 17 and
24 A/atom. For thgs-tin structure volumes between 11 and 19 A/atom were used. The experimental data are
at 0 and 77 K, for the zero pressure equilibrium volume and bulk modulus, respectively. The transition
pressures have been corrected for finite temperature effects evaluated at(Be@ K1). The DMC calcu-
lations for the transition pressure also include a CPP.

Expt. LDA BP PWO1 DMC DMC(This work)
Diamond
Vo (A3) 20.0F 1957 2046  20.2% 20.23(20)° 20.11(3)
B, (GP3 9R 97 9P 9 103(7)¢ 103(10)
Econ (V) 4.628)¢ 5.33& 4.65%  4.513), 4.632) 4.621)
B-tin
Vo (A3 1463 1588 1567 15.26(3)
B, (GP3 119 9% 104 114 (5)
Econ (€V) 5.11% 4.31% 4.1Q1)
cla 0.552 0.54¢ 0.548 0.554
AE, (eV) 0.22¢  0.404  0.347P 0.505(10)
p; (GPa 10.3-12.9 6.7 13.39 10.9 16.5(5)

aReference 26.
bReference 14.
‘Reference 24.
dReference 27.

®Reference 28.
fReference 3.
9Reference 5.
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transition pressure we obtain 17.7 GPa. Moreover, these calhe experimental value within the experimental error of
culations did not include CPP corrections, which reduces the-80 meV/atom, the equilibrium lattice constant is correct to
free energy of thes-tin structure relative to the diamond 0.2% and the bulk modulus to 3%. However, for the transi-
structure. If we assume that these corrections are approxiion pressure, our DMC result of 16.5 GPa is significantly
mately the same at different volumes in the two structurelarger than the experimental range of 10.3—12.5 GPa. This
then we finally obtain a corrected transition pressure oless than satisfactory agreement could in principle be due
16.5 GPa. The experimental transition pressure is in theither to uncertainty in the experimental results or to remain-
range 10.3—12.5 GPawhich is significantly lower than pre- ing errors in the QMC calculations. We think it unlikely that
dicted by our calculations. experiments could underestimate the equilibrium transition
pressure by such a large amount. There appears to be a large
barrier to the transition on increase of pressure, and the tran-
IV. DISCUSSION sition is in fact irreversible, with complex tetrahedral phases

We recall that the main purpose of this work is to asses§€ing formed on release of pressifelf anything, this irre-
the accuracy of QMC for Si by examining its prediction for versibility would make it more likely for the experimental
the transition pressure between the diamond gutish struc- values to be too high. On the theoretical side, we have shown
tures. However, we discuss first the controllable sources dhat most of the sources of error are too small to account for
error that we have attempted to reduce below our thresholthe discrepancy. The only remaining theoretical error that
of 30 meV/atom. could be large enough is the fixed-node error. Since the fixed
We have shown that errors due to statistical sampling an@ode error can only increase the energy, and since the DMC
finite time step are readily reduced to negligible size. Coniransition pressure is too high, a possible scenario is that the
vergence with respect to basis set completeness is also edéyed-node error raises the energy GHin-Si relative to
to achieve, and we have noted the important advantages gfamond-Si.
the B-spline(blip) basis, which combines ease of conver- In conclusion, we have shown the feasibility of using
gence with excellent scaling with respect to system size, aQMC to calculate the relative stability of different crystal
reported in detail elsewhet& System size errors also appear Structures, with most technical errors reduced enough to give
to be under excellent control. By performing DMC on cells the transition pressure to withirl GPa. Nevertheless, the
of up to 432 atoms, we have shown that the error in totafOmputed transition pressure for the diameng-tin transi-
energy is reduced te-110 meV/atom, but the size error on tion in Si differs from the experimental value by4—-6 GPa.
the difference in energy between the diamond ghtin ~ The evidence presented indicates that the discrepancy may
structures is reduced to less thais meV/atom. Errors due be due to QMC fixed-node error.
to the pseudo.potentle_ll approximation |t§elf, as well as to the ACKNOWLEDGMENTS
pseudopotential localization approximation, also appear to be
no larger than~5 meV/atom, though we have not shown  The computations were performed on the CSAR and the
this rigorously. Finally, we have studied the effect of includ-HPCx services, using allocations of time from NERC
ing core polarization, and show that this reduces the energghrough the Mineral Physics Consortium and from EPSRC
difference between the two structures By80 meV/atom. through the UKCP Consortium. Calculations have also been
Taken together, these tests suggest that if there were no othegrformed on the Altix machine at University College Lon-
sources of error, the transition pressure could be calculated @on provided by the SRIF Programme. D.A. acknowledges
within ~1 GPa. support from the Royal Society and the Leverhulme Trust.
Our results for diamond-Si confirm the excellent accuracyWe gratefully acknowledge helpful discussions with Cyrus
of DMC for this structure. Our cohesive energy agrees withUmrigar.
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