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We have used diffusion quantum Monte Carlo(DMC) calculations to study the pressure-induced phase
transition from the diamond tob-tin structure in silicon. The calculations employ the pseudopotential tech-
nique and systematically improvable B-spline basis sets. We show that in order to achieve a precision of 1 GPa
in the transition pressure the noncanceling errors in the energies of the two structures must be reduced to
30 meV/atom. Extensive tests on system size errors, nonlocal pseudopotential errors, basis-set incompleteness
errors, and other sources of error, performed on periodically repeated systems of up to 432 atoms, show that all
these errors together can be reduced to well below 30 meV/atom. The calculated DMC transition pressure is
about 3–4 GPa higher than the accepted experimental range of values, and we argue that the discrepancy may
be due to the fixed-node error inherent in DMC techniques.
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I. INTRODUCTION

The importance of the quantum Monte Carlo technique
(QMC) for computing the energetics of condensed matter is
becoming ever more widely appreciated. Even though its
computational demands are much greater than those of stan-
dard density functional theory(DFT), its considerably
greater accuracy for many systems1 makes the additional ef-
fort well worthwhile. Indeed, QMC is often seen as one of
the key ways of assessing the inadequacies of DFT.2–4 Nev-
ertheless, QMC itself is not exact, and it is important to
probe its accuracy for different kinds of problem. A sensitive
way of doing this is to examine the relative energies of dif-
ferent crystal structures of a material. We present here a
QMC study of the energetics of the diamond andb-tin struc-
tures of silicon; we calculate their total energies as a function
of volume, and hence the transition pressure between the
structures, for which there are experimental data.5,6 We ana-
lyze in detail the sources of the QMC errors, and use the
comparison with experiment to gauge the likely size of errors
that cannot be eliminated.

The QMC calculations are performed within periodic
boundary conditions. Only the valence electrons are treated
explicitly, the interactions between valence and core elec-
trons being represented by pseudopotentials. We perform two
type of QMC calculations: variational Monte Carlo(VMC)
and diffusion Monte Carlo(DMC). DMC results are consid-
erably more accurate, but VMC plays an indispensable role
because it provides the optimized trial many-electron wave
functions needed in DMC. This set of techniques is described
in detail in a recent review,1 and implemented in theCASINO

code7 used in this work. The techniques are known to give
cohesive energies for group IV elements in the diamond
structure in very close agreement(within 100 meV/atom)
with experimental values. They have also indicated substan-
tial DFT errors in, for example, the formation energy of self-
interstitials in Si,3 the energetics of H2 dissociation on Si

(001),2 and the energies of carbon clusters.4,8

The primary quantity calculated in this work is the total
energy per atom in the perfect crystal. This energy is subject
to different kinds of error. The first kind consists of errors
that can in principle be reduced below any specified toler-
ance, for example statistical error, time step and population
control bias, basis-set error in the trial wave function, and
error due to the limited size of the periodically repeated cell.
Then there are errors that cannot be systematically elimi-
nated, but whose size can at least be estimated by purely
theoretical means. The main error of this kind comes from
the so called “pseudopotential localization approximation,”
which cannot be avoided in present QMC techniques based
on nonlocal pseudopotentials.10 Finally, there are errors that
cannot be eliminated and are also difficult to assess except
by comparison with experiment. There is only one error of
this kind, the so called QMC “fixed-node error.” Our strategy
in this work will be to demonstrate that all errors of the first
kind have been made negligible, do our best to estimate er-
rors of the second kind, and then appeal to experiment to
assess the fixed-node error.

We have chosen to study the diamond/b-tin transition in
Si for several reasons. First, it has been investigated by sev-
eral experimental groups,5 with results that are consistent
enough for the present purpose. Second, there is already con-
siderable QMC experience with diamond-structure Si, from
which it is known that the cohesive energy is correct to
within the experimental error of ±80 meV/atom, and the
equilibrium lattice parameter and bulk modulus are also ac-
curately reproduced.3,24,25The third and most important rea-
son for studying this transition is that it is likely to be theo-
retically troublesome, because of the significant change of
electronic structure. In the fourfold coordinated diamond
structure, Si is a semiconductor, whereas in the sixfold coor-
dinatedb-tin structure it is a semimetal. The difference in the
electronic exchange and correlation energies between the
two phases is likely to lead to noncancelling errors. This is
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manifested in the serious underprediction of the transition
pressure by the local density approximation(LDA ), the pre-
dicted value of 5.7–6.7 GPa11–15being only about half of the
experimental value of 10.3–12.5 GPa5 (in fact, a value of
8.8 GPa for the transition pressure has also been reported by
one experimental group,16 but this is thought to be an under-
estimate). This error is considerably reduced by the general-
ized gradient approximation(GGA), which gives transition
pressure between 12.2 and 14.6 GPa.14 Essentially the same
DFT errors lead to a LDA underprediction of the Si melting
temperature by 23%,17,18reduced to 12% by the GGA.18 The
reason why such transitions are a sensitive test of QMC(or
any other total-energy method) is that rather small changes in
relative energies give substantial changes in the transition
pressure: in Si, an energy change of 100 meV/atom gives a
change in transition pressure of,3 GPa.

The content of this paper is as follows. In Sec. II, we
summarize briefly the QMC techniques and describe in more
detail the sources of error and the measures we have taken to
eliminate or reduce them. Section III reports our numerical
results, presenting our extensive tests on the different kinds
of error and then our results for the energies, volumes, and
transition pressure of the diamond/b-tin transition and the
comparison with experiment. In Sec. IV, we discuss the im-
plications of the work and draw conclusions.

II. METHODS

The VMC and DMC techniques used in this work have
been described in detail in reviews,1 so here we recall rather
briefly the underlying ideas and outline the sources of error
that we have tried to bring under control.

The VMC method gives an upper bound on the exact
ground-state energyE0. Given a normalized trial wave func-
tion CTsRd, where R=sr 1,r 2. . . ,r Nd is a 3N-dimensional
vector representing the positions ofN electrons, and denoting

by Ĥ the many-electron Hamiltonian, the variational energy

Ev;kCTuĤuCTlùE0 is estimated by sampling the value of

the local energyELsRd;CT
−1sRdĤCTsRd with configura-

tions R, distributed according to the probability density
CTsRd2. Our trial wave functions are of the usual Slater-
Jastrow type:

CTsRd = D↑D↓eJ, s1d

whereD↑ andD↓ are Slater determinants of up- and down-
spin single-electron orbitals, andeJ is the so called Jastrow
factor, which is the exponential of a sum of one- and two-
body terms, with the latter being a parametrized function of
electron separation, designed to satisfy the cusp conditions.
The parameters in the Jastrow factor are varied to minimize
the variance of the local energyEL.

In practice, VMC results are not accurate enough, and one
needs to use DMC. The basic idea is to compute the evolu-
tion of the many-body wave functionF by the time-
dependent Schrödinger equation in imaginary time −]F /]t

=sĤ−ETdF, whereET is an energy offset. The equivalence
of this to a diffusion equation allowsF to be regarded as a
probability distribution represented by a population of diffus-

ing walkers. In practice, it is essential to use “importance
sampling,” which means computing the evolution of the
function f definedf =FCT, where the trial wave functionCT
is a good approximation to the true many-electron wave
function, taken from the VMC calculations. The time evolu-
tion of f is given by:

−
]fsR,td

]t
= −

1

2
¹2fsR,td + ¹ · fvDsRdfsR,tdg

+ fELsRd − ETgfsR,td, s2d

wherevDsRd; ¹ ln uCTsRdu is the 3N-dimensional drift ve-
locity andELsRd, as before, is the local energy. In principle,
the DMC scheme yields the exact ground state energy, but
for fermion systems there is a fundamental problem. This is
thatF changes sign asR varies, so that it can only be treated
as a probability in regions ofR space where it does not
change sign. These regions, and the nodal surfaces that de-
fines their boundaries, are necessarily those of the trial wave
function CT. The consequence is that the energy given by
DMC is not the true ground state energy but is an upper
bound because of the constraint that the nodal surface is that
of CT. This gives rise to the so called “fixed-node” error,
which is one of the concerns of this paper.

In summarizing the technical questions that are important
in this work, we focus on the implementation of DMC, since
this determines the accuracy of the final results. The time
evolution of the diffusing walkers is computed using the
Green’s function technique in the short-time approximation.1

We shall present tests showing that the time step used in this
approximation can be chosen to render errors negligible. For
the representation of the single-electron orbitals contained in
the Slater determinantsD↑ and D↓, a number of basis sets
have been used in previous work, including plane waves and
Gaussians. In the present work, we use a B-spline basis, also
known as “blip functions,” consisting of piecewise continu-
ous localized cubic spline functions centred on the points of
a regular grid. For a detailed account of this basis set, and an
explanation of the great advantages of using this basis for
QMC, see Ref. 19. The key point here is that basis-set con-
vergence is readily achieved simply by decreasing the spac-
ing a of the blip grid. Roughly speaking, if the single-
electron orbitals would require a wave vector cutoffkmax for
their representation in a plane-wave basis, then the blip-grid
spacing will need to beaøp /kmax, and rapid convergence is
expected asa is reduced below this value.

An important source of error in QMC calculations using
periodic boundary conditions is the limited size of the repeat-
ing cell. In DFT calculations one normally studies a primi-
tive unit cell and integrates quantities over the Brillouin
zone, a procedure whose cost is proportional to the number
of k-points sampled. This is equivalent to studying a much
larger unit cell with a singlek point. In many-body calcula-
tions, it is not possible to reduce the problem to one within
the primitive unit cell because the many-body Hamiltonian is
not invariant under the translation of a single electron by a
primitive lattice vector. In other words, one has to use a large
simulation cell and solve at onek point, and the cost is pro-
portional to the cube of the number of electrons in the cell.
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This means that converging QMC calculations with respect
to system size is much more costly than converging DFT
ones. We follow the common practice9 of correcting for this
error by using separate DFT calculations: we add to the
DMC energies the differenceDEG→k between the DFT-LDA
energy calculated with a very large set ofk points and the
DFT-LDA energy calculated using the same sampling as in
the DMC calculation.

In this work, we used pseudopotentials generated by both
Hartree-Fock(HF) and LDA calculations on the Si atom. The
nonlocality that is essential in these pseudopotentials gives
rise to unavoidable errors in DMC. The reason is that the
diffusion equation with a nonlocal Hamiltonian becomes:

−
]f

]t
= −

1

2
¹2f + ¹ · fvDfg +

sĤ − ETdCT

CT
f

−H V̂nlCT

CT
−

V̂nlF

F
J f , s3d

whereV̂nl is the nonlocal component of the pseudopotential.
The last term in the equation can change its sign as time
evolves, and therefore presents the same difficulties as the
fermion sign problem. To avoid this difficulty one introduces
the so called “localization approximation,” in which the last
term in Eq.(3) is simply neglected. If the trial wave function
CT is close to the true(fixed node) ground state wavefunc-
tion C, then this approximation introduces an error which is
small and proportional tosCT−Cd2. This error, however, is
nonvariational, so it can decrease as well as increase the total
energy.10

We also tested the effect of adding a “core polarization
potential” (CPP)20,21,23 to the pseudopotential. CPPs go be-
yond the standard pseudopotential approximation, by de-
scribing the polarization of the atomic cores by the electrons
and the other atomic cores. In the CPP approximation, the
polarization of a particular core is determined by the electric
field at the nucleus from the instantaneous positions of the
electrons and the other atomic cores. CPPs therefore account
approximately for both dynamical core-valence correlation
effects and static polarization effects. Our implementation of
CPPs within QMC calculations is described in Ref. 20, and
we used the CPP parameters reported in Ref. 21.

Details of theCASINO code used in all the QMC calcula-
tions are given in Ref. 7. In order to suppress statistical bias
in the total energy, QMC calculations need to be run with a
large population of walkers, and this makes it efficient to run
on massively parallel machines, with parallelism achieved by
distributing walkers across processors.

III. RESULTS

A. Tests

We present here the results of our tests on error sources;
results on the diamond/b-tin transition itself are reported in
Sec. III B. To provide a framework for the discussion of
errors, we set ourselves the target of reducing the sum of all
controllable errors below 30 meV/atom, this value being
chosen because it corresponds to an error,1 GPa in the

transition pressure. The sources of controllable error are:
sampling statistics, time step, blip-grid spacing, cell size,
pseudopotentials, localization approximation, and CPP.

To ensure that sampling bias is negligible, our DMC cal-
culations are run with a target population of 640 walkers for
both crystal structures. With this number of walkers, the sta-
tistical error necessarily falls well below our threshold of
30 meV/atom. The reason for this is that the DMC decay to
the ground state occurs after,100 steps, but the calculations
need to extend over,1000 steps to ensure complete stabil-
ity. With the cell sizes used in this work and the number of
walkers we employ, the statistical error after,1000 steps is
already less than 5 meV/atom. As an illustration of this, Fig.
1 shows results from typical simulations of the diamond and
b-tin structures, close to their equilibrium volumes. The
rapid decay to the ground state is clear, and one also notes
the stability of the walker population around the target value
of 640. For this number of walkers, the DMC calculations
are efficient on up to 128 processors. Beyond this processor
number, parallel scaling worsens, because fluctuations in the
number of walkers start to cause inefficient load balancing.

In Fig. 2 we show tests on time step errors, performed
with a cell containing 16 atoms in theb-tin structure at the
volume V=15 Å3/atom, which is close to the calculated
DFT-LDA equilibrium volume. We tested time steps between
0.01 and 0.15 a.u., with the length of the runs chosen so that
the statistical error was less than 10 meV/atom. The results
show that with a time step of 0.03 a.u. the error is smaller
than the target accuracy, and we therefore used a time step of
0.03 a.u. for our final calculations.

The blip-function basis set19 was also tested with the 16-
atomb-tin cell andV=15 Å3/atom. In Table I we report the
values of the kinetic energy, the local potential energy and
the nonlocal potential energy calculated using DFT, VMC,
and DMC, both with plane-waves(PW) and blips. The PW
results were obtained using the PWSCF code22 with a PW
cutoff energy of 15 Ry. For the purpose of these tests, we did
not use a Jastrow factor in the VMC calculations, so that the
three energy terms should have exactly the same values in
DFT and VMC. This is clearly the case for the VMC per-
formed using PW, but there is a difference of up to
60 meV/atom when the VMC calculations are performed us-
ing the blip representation with the natural gridsa=p /kmaxd.
However, this difference is reduced to less than 5 meV/atom
if a grid of half the spacing is usedsa=p /2kmaxd. This proves
that, provided the blip grid is dense enough, the results are
indistinguishable from those obtained using plane waves. For
DMC calculations, a Jastrow factor has been included in the
trial wave function, and the situation is more interesting.
Even though the natural grid does not provide a perfect de-
scription of the single-particle orbitals, the DMC total energy
is essentially the same as that calculated with PW. Of course,
this is what one would expect in a perfect DMC calculation,
since the total energy is independent of the trial wave func-
tion. However, with the fixed-node and pseudopotential lo-
calization approximations, the total energy does in general
show a weak dependence on the trial wave function.

Tests on the size of the simulation cell were performed on
both the diamond and theb-tin structures, with cells contain-
ing up to 432 atoms. Since we were mainly interested in the
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diamond→b-tin transition pressure, we calculated the ener-
gies at the two volumes V=20 Å3/atom and V
=15 Å3/atom for the diamond andb-tin structures, respec-
tively, which are both close to the calculated equilibrium
volumes. As far as the transition pressure is concerned, the
important quantity to test is the energy difference between
the phases at the two volumes. The results of the tests are
reported in Table II, where we also report the values of the
energies extrapolated to infinite cell sizeEtot

` for the two
structures. These are obtained by linear extrapolation to 1/N,
with N the number of atoms in the repeating cell, between
the k-points corrected results obtained with the two cells
containing 128 and 432 atoms. The cell size errors obtained
with 128-atom cells are about 110 meV/atom, and they are

approximately the same in the two structures. This indicates
that the residual size error can be regarded as a constant
energy offset, which will not affect physical properties such
as structural parameters and the diamond→b-tin transition
pressure, and we therefore chose to use cells containing 128
atoms.

We tested both a HF and a LDA pseudopotential. In both
cases, the local part of the pseudopotential was chosen to be
the p angular momentum component. The tests were per-

FIG. 1. Lower panel: DMC lo-
cal energies as function of time
(time step=0.03 a.u.) for theb-tin
structure with V=15 Å3/atom
(dotted line) and the diamond
structure with V=20 Å3/atom
(continuous line). Upper panel:
the population of walkers for the
b-tin structure (dotted line) and
the diamond structure(continuous
line).

FIG. 2. DMC total energy per atom as a function of time step,
with error bars showing the statistical errors. The calculations were
performed using a cell containing 16 atoms in theb-tin structure at
the volumeV=15 Å3/atom.

TABLE I. Total energyEtot and the kinetic energy, local pseudo-
potential energy and nonlocal pseudopotential energy components
Ekin, Eloc, andEnl calculated using plane wave(PW) basis sets and
blip function basis sets with two grid spacingsa (energy units:
eV/atom). Results are from DFT, VMC, and DMC calculations on
Si in the b-tin structure, with a repeating cell of 16 atoms. A Ja-
strow factor was included only in the DMC calculations. Blip-grid
spacinga is specified in terms of the PW cutoff wave vectorkmax,
corresponding to a cutoff energy of 15 Ry.

PW Blips sa=p /kmaxd Blips sa=p /2kmaxd

DFT

Ekin 43.863

Eloc 15.057

Enl 1.543

VMC

Ekin 43.864(3) 43.924(3) 43.862(3)

Eloc 15.057(3) 15.063(3) 15.058(3)

Enl 1.533(3) 1.525(3) 1.535(3)

Etot −101.335s3d −101.277s3d −101.341s3d
DMC

Etot −105.714s4d −105.713s5d −105.716s5d
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formed once again on the two structures withV
=15 Å3/atom andV=20 Å3/atom for theb tin and the dia-
mond structures, respectively. We found that the energy dif-
ferences between the two structures were 0.535(5) and
0.550s5d eV/atom for the HF and the LDA pseudopotentials,
respectively. The two numbers are very close, which indi-
cates that the choice of the pseudopotential does not affect
the results significantly. However, we believe that in a QMC
calculation it is more consistent to use a HF pseudopotential
rather than a LDA one, because the former does not build in
any correlation. We therefore used the HF pseudopotential.

To test the pseudopotential localization approximation, we
performed additional calculations with the HF pseudopoten-
tial by changing the local part of the pseudopotential to thes
angular momentum component. Calculations were per-
formed on the diamond structure with a 16-atom cell and
V=20 Å3/atom. Clearly, by changing the local part of the
pseudopotential there is no guarantee that the quality of the
pseudopotential does not change, therefore it is conceivable
that the total energy may change simply because the pseudo-
potential has changed. So we have first performed a DFT-
LDA calculation with this pseudopotential, and found a dif-
ference of less than 2 meV/atom when the local part is
changed fromp to s, which is extremely small for our pur-
poses. We then performed a DMC simulation with the HF
pseudopotential having thes channel as the local part, and
within a statistical error of 10 meV/atom we found no en-
ergy difference from the calculation with the HF pseudopo-
tential and thep channel as the local part. This indicates that
the error from the localization approximation is probably less
than 10 meV/atom in this case.

As a final test on the pseudopotential, we considered the
inclusion of a CPP. We expect the CPP energy to be more
important in theb-tin structure, which has a smaller volume
and therefore the electrons and ions are on average closer to
one another. Tests were performed on both structures at the
two volumes V=15 Å3/atom andV=20 Å3/atom for the
b-tin and the diamond structures, respectively. We found that
with the CPP the energy difference between the two calcula-
tions was 0.505s10d eV/atom, which is slightly lower than
the value of 0.535s10d eV/atom obtained without the CPP.
The inclusion of this correction has a small effect on the
transition pressure which will be discussed in Sec. III B.

B. Results

We now turn to the energetics of the diamond andb-tin
structures and the transition pressure between them. Since

the b-tin structure is body-centred tetragonal, its energy de-
pends not only on volume, but also on thec/a ratio. For each
volume, we should therefore minimize the energy with re-
spect to thec/a ratio. However, using DFT-LDA calculations
we found that the minimum of the energy depends rather
weakly onc/a, and that choosingc/a=0.54 for all volumes
of interest only affects the energy by a few meV/atom. To
check that thisc/a ratio is also appropriate within DMC, we
have performed DMC calculations at five differentc/a ratios
for V=15 Å3/atom. The results of the test are displayed in
Fig. 3, where we report the DMC raw data and thek-points
corrected results. By interpolating the DMC data, we find
that the DMC minimum is atc/a=0.554, which is very close
to the experimental valuec/a=0.552. For comparison, we
also report calculations for the same structures performed
with DFT-LDA. It is clear that the dependence of the energy
on thec/a ratio is very similar in the two techniques, and
therefore we chose to usec/a=0.54 for all calculations.

In Fig. 4 we report the calculated energiesEsVd for the
two structures corrected fork-points errors. CPP corrections
are not included in these results. These energy points were
then used to fit the parameters of the Birch-Murnaghan equa-
tion of state:

TABLE II. DMC total energies(eV/atom) for the diamond and theb-tin structures of Si, obtained from calculations on 128- and
432-atom cells.EG is the raw DMC energy,DEG→k is thek-points correction,Etot is the sum ofEG andDEG→k, andEtot

` is the value ofEtot

extrapolated to infinite cell size. For each cell size,dE is the differenceEtot−Etot
` .

128 432

Etot
`EG DEG→k Etot dE EG DEG→k Etot dE

diamond −106.926s5d −0.102 −107.028s5d 0.108(5) −106.937s6d −0.014 −106.951s6d 0.031(6) −106.920s5d
b-tin −106.457s5d −0.045 −106.502s5d 0.117(5) −106.416s7d −0.004 −106.420s7d 0.035(7) −106.385s5d

FIG. 3. DMC energies for theb-tin structure at the volumeV
=15 Å3/atom as a function of thec/a ratio, performed with cells
containing 128 atoms(P). DFT results performed with the equiva-
lent mesh ofk-points are also shown(s). DMC k-points corrected
results are shown as filled squares, and DFT results fully converged
with respect tok-point sampling as open squares. The lines are
guides to the eye.
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3

2
s1 + jdSV0

V
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+
1

2
Sj +

3

2
DG , s4d

wherej=s3−3B08 /4d, V0 is the equilibrium volume,B0 the

zero-pressure bulk modulus,B08 its derivative with respect to
pressure at zero pressure, andE0 the energy minimum. The
fitted curves are also reported in the same figure. The values
of the fitted parameters are reported in Table III together with
DFT-LDA and DFT-GGA results and experimental data. In
the table we also report previous DMC results obtained by Li
et al.24 for the diamond structure. The agreement with the
experimental data is extremely good, and is also somewhat
better than obtained previously by Liet al.24 In particular, the
equilibrium volume is overestimated by only 0.5%. In com-
parison, DFT-LDA underestimates the equilibrium volume
by 2%, and the two DFT-GGA BP and PW9114 overestimate
it by 1% and 2%, respectively.

Using our results, we obtain a DMC transition pressure of
,19 GPa. Before comparing our calculated transition pres-
sure with the experiments, we note that our calculations do
not include zero-point motion, which has been shown to be
different in the two phases. Moreover, experimental transi-
tion pressures are only reported at room temperature, there-
fore there is a significant contribution to the free energy com-
ing from the difference in vibrational free energies between
the two structures. As shown by Gaál-Nagyet al.,11 the zero
point motion stabilizes theb-tin structure with respect to the
diamond structure, and lowers the transition pressure by
about 0.3 GPa. At room temperature the stabilization of the
b-tin structure lowers the transition pressure by an additional
1 GPa, so that the two effects lower the transition pressure
by ,1.3 GPa. If we add this correction to our calculated

FIG. 4. DMC total energies for theb-tin (j) and the diamond
(P) structures. The size of the points corresponds to about two
standard deviations. The dashed and continuous lines are Birch-
Murnaghan EOS curves fitted to the data.

TABLE III. Structural properties and the diamond→b-tin transition pressurept, calculated within DFT
using different exchange-correlation functionals and within DMC.V0 is the equilibrium volume,B0 the zero
pressure bulk modulus,Ecoh is cohesive energy,DE0 is the calculated difference of minimum energy between
the two structures, andc/a is the ratio of tetragonal lattice parameters of theb-tin structure. Theoretical
cohesive energies have all been corrected for zero point motion(0.06 and 0.04 eV in the diamond andb-tin
structures, respectively). The structural parameters calculated within DMC for the diamond structure were
obtained from a Birch-Murnaghan equation of state fit to energies calculated at volumes between 17 and
24 Å/atom. For theb-tin structure volumes between 11 and 19 Å/atom were used. The experimental data are
at 0 and 77 K, for the zero pressure equilibrium volume and bulk modulus, respectively. The transition
pressures have been corrected for finite temperature effects evaluated at 300 K(Ref. 11). The DMC calcu-
lations for the transition pressure also include a CPP.

Expt. LDA BP PW91 DMC DMC(This work)

Diamond

V0 sÅ3d 20.01a 19.57b 20.46b 20.23b 20.23(20)c 20.11(3)

B0 (GPa) 99a 97b 90b 92b 103 (7)c 103 (10)

Ecoh (eV) 4.62(8)d 5.338e 4.653e 4.51(3)c, 4.63(2)f 4.62(1)

b-tin

V0 sÅ3d 14.63b 15.84b 15.67b 15.26(3)

B0 (GPa) 115b 99b 104b 114 (5)

Ecoh (eV) 5.115e 4.313e 4.10(1)

c/a 0.552a 0.548b 0.548b 0.554

DE0 (eV) 0.226b 0.404b 0.341b 0.505(10)

pt (GPa) 10.3−12.5g 6.7b 13.3b 10.9b 16.5 (5)

aReference 26.
bReference 14.
cReference 24.
dReference 27.

eReference 28.
fReference 3.
gReference 5.
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transition pressure we obtain 17.7 GPa. Moreover, these cal-
culations did not include CPP corrections, which reduces the
free energy of theb-tin structure relative to the diamond
structure. If we assume that these corrections are approxi-
mately the same at different volumes in the two structure,
then we finally obtain a corrected transition pressure of
16.5 GPa. The experimental transition pressure is in the
range 10.3–12.5 GPa,5 which is significantly lower than pre-
dicted by our calculations.

IV. DISCUSSION

We recall that the main purpose of this work is to assess
the accuracy of QMC for Si by examining its prediction for
the transition pressure between the diamond andb-tin struc-
tures. However, we discuss first the controllable sources of
error that we have attempted to reduce below our threshold
of 30 meV/atom.

We have shown that errors due to statistical sampling and
finite time step are readily reduced to negligible size. Con-
vergence with respect to basis set completeness is also easy
to achieve, and we have noted the important advantages of
the B-spline(blip) basis, which combines ease of conver-
gence with excellent scaling with respect to system size, as
reported in detail elsewhere.19 System size errors also appear
to be under excellent control. By performing DMC on cells
of up to 432 atoms, we have shown that the error in total
energy is reduced to,110 meV/atom, but the size error on
the difference in energy between the diamond andb-tin
structures is reduced to less than,5 meV/atom. Errors due
to the pseudopotential approximation itself, as well as to the
pseudopotential localization approximation, also appear to be
no larger than,5 meV/atom, though we have not shown
this rigorously. Finally, we have studied the effect of includ-
ing core polarization, and show that this reduces the energy
difference between the two structures by,30 meV/atom.
Taken together, these tests suggest that if there were no other
sources of error, the transition pressure could be calculated to
within ,1 GPa.

Our results for diamond-Si confirm the excellent accuracy
of DMC for this structure. Our cohesive energy agrees with

the experimental value within the experimental error of
,80 meV/atom, the equilibrium lattice constant is correct to
0.2% and the bulk modulus to 3%. However, for the transi-
tion pressure, our DMC result of 16.5 GPa is significantly
larger than the experimental range of 10.3–12.5 GPa. This
less than satisfactory agreement could in principle be due
either to uncertainty in the experimental results or to remain-
ing errors in the QMC calculations. We think it unlikely that
experiments could underestimate the equilibrium transition
pressure by such a large amount. There appears to be a large
barrier to the transition on increase of pressure, and the tran-
sition is in fact irreversible, with complex tetrahedral phases
being formed on release of pressure.5,6 If anything, this irre-
versibility would make it more likely for the experimental
values to be too high. On the theoretical side, we have shown
that most of the sources of error are too small to account for
the discrepancy. The only remaining theoretical error that
could be large enough is the fixed-node error. Since the fixed
node error can only increase the energy, and since the DMC
transition pressure is too high, a possible scenario is that the
fixed-node error raises the energy ofb-tin-Si relative to
diamond-Si.

In conclusion, we have shown the feasibility of using
QMC to calculate the relative stability of different crystal
structures, with most technical errors reduced enough to give
the transition pressure to within,1 GPa. Nevertheless, the
computed transition pressure for the diamond→b-tin transi-
tion in Si differs from the experimental value by,4–6 GPa.
The evidence presented indicates that the discrepancy may
be due to QMC fixed-node error.
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